convert to_kill
[binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* Generic I/O error. Note that it's important that this is '-1',
217 as we still have target_xfer-related code returning hardcoded
218 '-1' on error. */
219 TARGET_XFER_E_IO = -1,
220
221 /* Transfer failed because the piece of the object requested is
222 unavailable. */
223 TARGET_XFER_E_UNAVAILABLE = -2,
224
225 /* Keep list in sync with target_xfer_error_to_string. */
226 };
227
228 #define TARGET_XFER_STATUS_ERROR_P(STATUS) ((STATUS) < TARGET_XFER_EOF)
229
230 /* Return the string form of ERR. */
231
232 extern const char *target_xfer_status_to_string (enum target_xfer_status err);
233
234 /* Enumeration of the kinds of traceframe searches that a target may
235 be able to perform. */
236
237 enum trace_find_type
238 {
239 tfind_number,
240 tfind_pc,
241 tfind_tp,
242 tfind_range,
243 tfind_outside,
244 };
245
246 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
247 DEF_VEC_P(static_tracepoint_marker_p);
248
249 typedef enum target_xfer_status
250 target_xfer_partial_ftype (struct target_ops *ops,
251 enum target_object object,
252 const char *annex,
253 gdb_byte *readbuf,
254 const gdb_byte *writebuf,
255 ULONGEST offset,
256 ULONGEST len,
257 ULONGEST *xfered_len);
258
259 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
260 OBJECT. The OFFSET, for a seekable object, specifies the
261 starting point. The ANNEX can be used to provide additional
262 data-specific information to the target.
263
264 Return the number of bytes actually transfered, or a negative error
265 code (an 'enum target_xfer_error' value) if the transfer is not
266 supported or otherwise fails. Return of a positive value less than
267 LEN indicates that no further transfer is possible. Unlike the raw
268 to_xfer_partial interface, callers of these functions do not need
269 to retry partial transfers. */
270
271 extern LONGEST target_read (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276 struct memory_read_result
277 {
278 /* First address that was read. */
279 ULONGEST begin;
280 /* Past-the-end address. */
281 ULONGEST end;
282 /* The data. */
283 gdb_byte *data;
284 };
285 typedef struct memory_read_result memory_read_result_s;
286 DEF_VEC_O(memory_read_result_s);
287
288 extern void free_memory_read_result_vector (void *);
289
290 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
291 ULONGEST offset,
292 LONGEST len);
293
294 extern LONGEST target_write (struct target_ops *ops,
295 enum target_object object,
296 const char *annex, const gdb_byte *buf,
297 ULONGEST offset, LONGEST len);
298
299 /* Similar to target_write, except that it also calls PROGRESS with
300 the number of bytes written and the opaque BATON after every
301 successful partial write (and before the first write). This is
302 useful for progress reporting and user interaction while writing
303 data. To abort the transfer, the progress callback can throw an
304 exception. */
305
306 LONGEST target_write_with_progress (struct target_ops *ops,
307 enum target_object object,
308 const char *annex, const gdb_byte *buf,
309 ULONGEST offset, LONGEST len,
310 void (*progress) (ULONGEST, void *),
311 void *baton);
312
313 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
314 be read using OPS. The return value will be -1 if the transfer
315 fails or is not supported; 0 if the object is empty; or the length
316 of the object otherwise. If a positive value is returned, a
317 sufficiently large buffer will be allocated using xmalloc and
318 returned in *BUF_P containing the contents of the object.
319
320 This method should be used for objects sufficiently small to store
321 in a single xmalloc'd buffer, when no fixed bound on the object's
322 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
323 through this function. */
324
325 extern LONGEST target_read_alloc (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, gdb_byte **buf_p);
328
329 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
330 returned as a string, allocated using xmalloc. If an error occurs
331 or the transfer is unsupported, NULL is returned. Empty objects
332 are returned as allocated but empty strings. A warning is issued
333 if the result contains any embedded NUL bytes. */
334
335 extern char *target_read_stralloc (struct target_ops *ops,
336 enum target_object object,
337 const char *annex);
338
339 /* See target_ops->to_xfer_partial. */
340 extern target_xfer_partial_ftype target_xfer_partial;
341
342 /* Wrappers to target read/write that perform memory transfers. They
343 throw an error if the memory transfer fails.
344
345 NOTE: cagney/2003-10-23: The naming schema is lifted from
346 "frame.h". The parameter order is lifted from get_frame_memory,
347 which in turn lifted it from read_memory. */
348
349 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
350 gdb_byte *buf, LONGEST len);
351 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
352 CORE_ADDR addr, int len,
353 enum bfd_endian byte_order);
354 \f
355 struct thread_info; /* fwd decl for parameter list below: */
356
357 /* The type of the callback to the to_async method. */
358
359 typedef void async_callback_ftype (enum inferior_event_type event_type,
360 void *context);
361
362 /* These defines are used to mark target_ops methods. The script
363 make-target-delegates scans these and auto-generates the base
364 method implementations. There are four macros that can be used:
365
366 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
367 does nothing. This is only valid if the method return type is
368 'void'.
369
370 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
371 'tcomplain ()'. The base method simply makes this call, which is
372 assumed not to return.
373
374 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
375 base method returns this expression's value.
376
377 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
378 make-target-delegates does not generate a base method in this case,
379 but instead uses the argument function as the base method. */
380
381 #define TARGET_DEFAULT_IGNORE()
382 #define TARGET_DEFAULT_NORETURN(ARG)
383 #define TARGET_DEFAULT_RETURN(ARG)
384 #define TARGET_DEFAULT_FUNC(ARG)
385
386 struct target_ops
387 {
388 struct target_ops *beneath; /* To the target under this one. */
389 char *to_shortname; /* Name this target type */
390 char *to_longname; /* Name for printing */
391 char *to_doc; /* Documentation. Does not include trailing
392 newline, and starts with a one-line descrip-
393 tion (probably similar to to_longname). */
394 /* Per-target scratch pad. */
395 void *to_data;
396 /* The open routine takes the rest of the parameters from the
397 command, and (if successful) pushes a new target onto the
398 stack. Targets should supply this routine, if only to provide
399 an error message. */
400 void (*to_open) (char *, int);
401 /* Old targets with a static target vector provide "to_close".
402 New re-entrant targets provide "to_xclose" and that is expected
403 to xfree everything (including the "struct target_ops"). */
404 void (*to_xclose) (struct target_ops *targ);
405 void (*to_close) (struct target_ops *);
406 void (*to_attach) (struct target_ops *ops, char *, int)
407 TARGET_DEFAULT_FUNC (find_default_attach);
408 void (*to_post_attach) (struct target_ops *, int)
409 TARGET_DEFAULT_IGNORE ();
410 void (*to_detach) (struct target_ops *ops, const char *, int)
411 TARGET_DEFAULT_IGNORE ();
412 void (*to_disconnect) (struct target_ops *, char *, int);
413 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
414 TARGET_DEFAULT_NORETURN (noprocess ());
415 ptid_t (*to_wait) (struct target_ops *,
416 ptid_t, struct target_waitstatus *, int)
417 TARGET_DEFAULT_NORETURN (noprocess ());
418 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int)
419 TARGET_DEFAULT_IGNORE ();
420 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
421 TARGET_DEFAULT_NORETURN (noprocess ());
422 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
423 TARGET_DEFAULT_NORETURN (noprocess ());
424
425 /* Transfer LEN bytes of memory between GDB address MYADDR and
426 target address MEMADDR. If WRITE, transfer them to the target, else
427 transfer them from the target. TARGET is the target from which we
428 get this function.
429
430 Return value, N, is one of the following:
431
432 0 means that we can't handle this. If errno has been set, it is the
433 error which prevented us from doing it (FIXME: What about bfd_error?).
434
435 positive (call it N) means that we have transferred N bytes
436 starting at MEMADDR. We might be able to handle more bytes
437 beyond this length, but no promises.
438
439 negative (call its absolute value N) means that we cannot
440 transfer right at MEMADDR, but we could transfer at least
441 something at MEMADDR + N.
442
443 NOTE: cagney/2004-10-01: This has been entirely superseeded by
444 to_xfer_partial and inferior inheritance. */
445
446 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
447 int len, int write,
448 struct mem_attrib *attrib,
449 struct target_ops *target);
450
451 void (*to_files_info) (struct target_ops *)
452 TARGET_DEFAULT_IGNORE ();
453 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
454 struct bp_target_info *)
455 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
456 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
457 struct bp_target_info *)
458 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
459 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int)
460 TARGET_DEFAULT_RETURN (0);
461 int (*to_ranged_break_num_registers) (struct target_ops *)
462 TARGET_DEFAULT_RETURN (-1);
463 int (*to_insert_hw_breakpoint) (struct target_ops *,
464 struct gdbarch *, struct bp_target_info *)
465 TARGET_DEFAULT_RETURN (-1);
466 int (*to_remove_hw_breakpoint) (struct target_ops *,
467 struct gdbarch *, struct bp_target_info *)
468 TARGET_DEFAULT_RETURN (-1);
469
470 /* Documentation of what the two routines below are expected to do is
471 provided with the corresponding target_* macros. */
472 int (*to_remove_watchpoint) (struct target_ops *,
473 CORE_ADDR, int, int, struct expression *)
474 TARGET_DEFAULT_RETURN (-1);
475 int (*to_insert_watchpoint) (struct target_ops *,
476 CORE_ADDR, int, int, struct expression *)
477 TARGET_DEFAULT_RETURN (-1);
478
479 int (*to_insert_mask_watchpoint) (struct target_ops *,
480 CORE_ADDR, CORE_ADDR, int)
481 TARGET_DEFAULT_RETURN (1);
482 int (*to_remove_mask_watchpoint) (struct target_ops *,
483 CORE_ADDR, CORE_ADDR, int)
484 TARGET_DEFAULT_RETURN (1);
485 int (*to_stopped_by_watchpoint) (struct target_ops *)
486 TARGET_DEFAULT_RETURN (0);
487 int to_have_steppable_watchpoint;
488 int to_have_continuable_watchpoint;
489 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
490 TARGET_DEFAULT_RETURN (0);
491 int (*to_watchpoint_addr_within_range) (struct target_ops *,
492 CORE_ADDR, CORE_ADDR, int)
493 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
494
495 /* Documentation of this routine is provided with the corresponding
496 target_* macro. */
497 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
498 CORE_ADDR, int)
499 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
500
501 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
502 CORE_ADDR, int, int,
503 struct expression *)
504 TARGET_DEFAULT_RETURN (0);
505 int (*to_masked_watch_num_registers) (struct target_ops *,
506 CORE_ADDR, CORE_ADDR)
507 TARGET_DEFAULT_RETURN (-1);
508 void (*to_terminal_init) (struct target_ops *)
509 TARGET_DEFAULT_IGNORE ();
510 void (*to_terminal_inferior) (struct target_ops *)
511 TARGET_DEFAULT_IGNORE ();
512 void (*to_terminal_ours_for_output) (struct target_ops *)
513 TARGET_DEFAULT_IGNORE ();
514 void (*to_terminal_ours) (struct target_ops *)
515 TARGET_DEFAULT_IGNORE ();
516 void (*to_terminal_save_ours) (struct target_ops *)
517 TARGET_DEFAULT_IGNORE ();
518 void (*to_terminal_info) (struct target_ops *, const char *, int)
519 TARGET_DEFAULT_FUNC (default_terminal_info);
520 void (*to_kill) (struct target_ops *)
521 TARGET_DEFAULT_NORETURN (noprocess ());
522 void (*to_load) (struct target_ops *, char *, int)
523 TARGET_DEFAULT_NORETURN (tcomplain ());
524 void (*to_create_inferior) (struct target_ops *,
525 char *, char *, char **, int);
526 void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
527 TARGET_DEFAULT_IGNORE ();
528 int (*to_insert_fork_catchpoint) (struct target_ops *, int)
529 TARGET_DEFAULT_RETURN (1);
530 int (*to_remove_fork_catchpoint) (struct target_ops *, int)
531 TARGET_DEFAULT_RETURN (1);
532 int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
533 TARGET_DEFAULT_RETURN (1);
534 int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
535 TARGET_DEFAULT_RETURN (1);
536 int (*to_follow_fork) (struct target_ops *, int, int);
537 int (*to_insert_exec_catchpoint) (struct target_ops *, int)
538 TARGET_DEFAULT_RETURN (1);
539 int (*to_remove_exec_catchpoint) (struct target_ops *, int)
540 TARGET_DEFAULT_RETURN (1);
541 int (*to_set_syscall_catchpoint) (struct target_ops *,
542 int, int, int, int, int *)
543 TARGET_DEFAULT_RETURN (1);
544 int (*to_has_exited) (struct target_ops *, int, int, int *)
545 TARGET_DEFAULT_RETURN (0);
546 void (*to_mourn_inferior) (struct target_ops *);
547 int (*to_can_run) (struct target_ops *);
548
549 /* Documentation of this routine is provided with the corresponding
550 target_* macro. */
551 void (*to_pass_signals) (struct target_ops *, int, unsigned char *);
552
553 /* Documentation of this routine is provided with the
554 corresponding target_* function. */
555 void (*to_program_signals) (struct target_ops *, int, unsigned char *);
556
557 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
558 void (*to_find_new_threads) (struct target_ops *);
559 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
560 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *)
561 TARGET_DEFAULT_RETURN (0);
562 char *(*to_thread_name) (struct target_ops *, struct thread_info *)
563 TARGET_DEFAULT_RETURN (0);
564 void (*to_stop) (struct target_ops *, ptid_t)
565 TARGET_DEFAULT_IGNORE ();
566 void (*to_rcmd) (struct target_ops *,
567 char *command, struct ui_file *output)
568 TARGET_DEFAULT_FUNC (default_rcmd);
569 char *(*to_pid_to_exec_file) (struct target_ops *, int pid)
570 TARGET_DEFAULT_RETURN (0);
571 void (*to_log_command) (struct target_ops *, const char *)
572 TARGET_DEFAULT_IGNORE ();
573 struct target_section_table *(*to_get_section_table) (struct target_ops *);
574 enum strata to_stratum;
575 int (*to_has_all_memory) (struct target_ops *);
576 int (*to_has_memory) (struct target_ops *);
577 int (*to_has_stack) (struct target_ops *);
578 int (*to_has_registers) (struct target_ops *);
579 int (*to_has_execution) (struct target_ops *, ptid_t);
580 int to_has_thread_control; /* control thread execution */
581 int to_attach_no_wait;
582 /* ASYNC target controls */
583 int (*to_can_async_p) (struct target_ops *)
584 TARGET_DEFAULT_FUNC (find_default_can_async_p);
585 int (*to_is_async_p) (struct target_ops *)
586 TARGET_DEFAULT_FUNC (find_default_is_async_p);
587 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
588 TARGET_DEFAULT_NORETURN (tcomplain ());
589 int (*to_supports_non_stop) (struct target_ops *);
590 /* find_memory_regions support method for gcore */
591 int (*to_find_memory_regions) (struct target_ops *,
592 find_memory_region_ftype func, void *data)
593 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
594 /* make_corefile_notes support method for gcore */
595 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *)
596 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
597 /* get_bookmark support method for bookmarks */
598 gdb_byte * (*to_get_bookmark) (struct target_ops *, char *, int)
599 TARGET_DEFAULT_NORETURN (tcomplain ());
600 /* goto_bookmark support method for bookmarks */
601 void (*to_goto_bookmark) (struct target_ops *, gdb_byte *, int)
602 TARGET_DEFAULT_NORETURN (tcomplain ());
603 /* Return the thread-local address at OFFSET in the
604 thread-local storage for the thread PTID and the shared library
605 or executable file given by OBJFILE. If that block of
606 thread-local storage hasn't been allocated yet, this function
607 may return an error. */
608 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
609 ptid_t ptid,
610 CORE_ADDR load_module_addr,
611 CORE_ADDR offset);
612
613 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
614 OBJECT. The OFFSET, for a seekable object, specifies the
615 starting point. The ANNEX can be used to provide additional
616 data-specific information to the target.
617
618 Return the transferred status, error or OK (an
619 'enum target_xfer_status' value). Save the number of bytes
620 actually transferred in *XFERED_LEN if transfer is successful
621 (TARGET_XFER_OK) or the number unavailable bytes if the requested
622 data is unavailable (TARGET_XFER_E_UNAVAILABLE). *XFERED_LEN
623 smaller than LEN does not indicate the end of the object, only
624 the end of the transfer; higher level code should continue
625 transferring if desired. This is handled in target.c.
626
627 The interface does not support a "retry" mechanism. Instead it
628 assumes that at least one byte will be transfered on each
629 successful call.
630
631 NOTE: cagney/2003-10-17: The current interface can lead to
632 fragmented transfers. Lower target levels should not implement
633 hacks, such as enlarging the transfer, in an attempt to
634 compensate for this. Instead, the target stack should be
635 extended so that it implements supply/collect methods and a
636 look-aside object cache. With that available, the lowest
637 target can safely and freely "push" data up the stack.
638
639 See target_read and target_write for more information. One,
640 and only one, of readbuf or writebuf must be non-NULL. */
641
642 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
643 enum target_object object,
644 const char *annex,
645 gdb_byte *readbuf,
646 const gdb_byte *writebuf,
647 ULONGEST offset, ULONGEST len,
648 ULONGEST *xfered_len)
649 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
650
651 /* Returns the memory map for the target. A return value of NULL
652 means that no memory map is available. If a memory address
653 does not fall within any returned regions, it's assumed to be
654 RAM. The returned memory regions should not overlap.
655
656 The order of regions does not matter; target_memory_map will
657 sort regions by starting address. For that reason, this
658 function should not be called directly except via
659 target_memory_map.
660
661 This method should not cache data; if the memory map could
662 change unexpectedly, it should be invalidated, and higher
663 layers will re-fetch it. */
664 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
665
666 /* Erases the region of flash memory starting at ADDRESS, of
667 length LENGTH.
668
669 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
670 on flash block boundaries, as reported by 'to_memory_map'. */
671 void (*to_flash_erase) (struct target_ops *,
672 ULONGEST address, LONGEST length);
673
674 /* Finishes a flash memory write sequence. After this operation
675 all flash memory should be available for writing and the result
676 of reading from areas written by 'to_flash_write' should be
677 equal to what was written. */
678 void (*to_flash_done) (struct target_ops *);
679
680 /* Describe the architecture-specific features of this target.
681 Returns the description found, or NULL if no description
682 was available. */
683 const struct target_desc *(*to_read_description) (struct target_ops *ops);
684
685 /* Build the PTID of the thread on which a given task is running,
686 based on LWP and THREAD. These values are extracted from the
687 task Private_Data section of the Ada Task Control Block, and
688 their interpretation depends on the target. */
689 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
690 long lwp, long thread)
691 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
692
693 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
694 Return 0 if *READPTR is already at the end of the buffer.
695 Return -1 if there is insufficient buffer for a whole entry.
696 Return 1 if an entry was read into *TYPEP and *VALP. */
697 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
698 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
699
700 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
701 sequence of bytes in PATTERN with length PATTERN_LEN.
702
703 The result is 1 if found, 0 if not found, and -1 if there was an error
704 requiring halting of the search (e.g. memory read error).
705 If the pattern is found the address is recorded in FOUND_ADDRP. */
706 int (*to_search_memory) (struct target_ops *ops,
707 CORE_ADDR start_addr, ULONGEST search_space_len,
708 const gdb_byte *pattern, ULONGEST pattern_len,
709 CORE_ADDR *found_addrp);
710
711 /* Can target execute in reverse? */
712 int (*to_can_execute_reverse) (struct target_ops *)
713 TARGET_DEFAULT_RETURN (0);
714
715 /* The direction the target is currently executing. Must be
716 implemented on targets that support reverse execution and async
717 mode. The default simply returns forward execution. */
718 enum exec_direction_kind (*to_execution_direction) (struct target_ops *)
719 TARGET_DEFAULT_FUNC (default_execution_direction);
720
721 /* Does this target support debugging multiple processes
722 simultaneously? */
723 int (*to_supports_multi_process) (struct target_ops *)
724 TARGET_DEFAULT_RETURN (0);
725
726 /* Does this target support enabling and disabling tracepoints while a trace
727 experiment is running? */
728 int (*to_supports_enable_disable_tracepoint) (struct target_ops *)
729 TARGET_DEFAULT_RETURN (0);
730
731 /* Does this target support disabling address space randomization? */
732 int (*to_supports_disable_randomization) (struct target_ops *);
733
734 /* Does this target support the tracenz bytecode for string collection? */
735 int (*to_supports_string_tracing) (struct target_ops *)
736 TARGET_DEFAULT_RETURN (0);
737
738 /* Does this target support evaluation of breakpoint conditions on its
739 end? */
740 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *)
741 TARGET_DEFAULT_RETURN (0);
742
743 /* Does this target support evaluation of breakpoint commands on its
744 end? */
745 int (*to_can_run_breakpoint_commands) (struct target_ops *)
746 TARGET_DEFAULT_RETURN (0);
747
748 /* Determine current architecture of thread PTID.
749
750 The target is supposed to determine the architecture of the code where
751 the target is currently stopped at (on Cell, if a target is in spu_run,
752 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
753 This is architecture used to perform decr_pc_after_break adjustment,
754 and also determines the frame architecture of the innermost frame.
755 ptrace operations need to operate according to target_gdbarch ().
756
757 The default implementation always returns target_gdbarch (). */
758 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t)
759 TARGET_DEFAULT_FUNC (default_thread_architecture);
760
761 /* Determine current address space of thread PTID.
762
763 The default implementation always returns the inferior's
764 address space. */
765 struct address_space *(*to_thread_address_space) (struct target_ops *,
766 ptid_t);
767
768 /* Target file operations. */
769
770 /* Open FILENAME on the target, using FLAGS and MODE. Return a
771 target file descriptor, or -1 if an error occurs (and set
772 *TARGET_ERRNO). */
773 int (*to_fileio_open) (struct target_ops *,
774 const char *filename, int flags, int mode,
775 int *target_errno);
776
777 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
778 Return the number of bytes written, or -1 if an error occurs
779 (and set *TARGET_ERRNO). */
780 int (*to_fileio_pwrite) (struct target_ops *,
781 int fd, const gdb_byte *write_buf, int len,
782 ULONGEST offset, int *target_errno);
783
784 /* Read up to LEN bytes FD on the target into READ_BUF.
785 Return the number of bytes read, or -1 if an error occurs
786 (and set *TARGET_ERRNO). */
787 int (*to_fileio_pread) (struct target_ops *,
788 int fd, gdb_byte *read_buf, int len,
789 ULONGEST offset, int *target_errno);
790
791 /* Close FD on the target. Return 0, or -1 if an error occurs
792 (and set *TARGET_ERRNO). */
793 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
794
795 /* Unlink FILENAME on the target. Return 0, or -1 if an error
796 occurs (and set *TARGET_ERRNO). */
797 int (*to_fileio_unlink) (struct target_ops *,
798 const char *filename, int *target_errno);
799
800 /* Read value of symbolic link FILENAME on the target. Return a
801 null-terminated string allocated via xmalloc, or NULL if an error
802 occurs (and set *TARGET_ERRNO). */
803 char *(*to_fileio_readlink) (struct target_ops *,
804 const char *filename, int *target_errno);
805
806
807 /* Implement the "info proc" command. */
808 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
809
810 /* Tracepoint-related operations. */
811
812 /* Prepare the target for a tracing run. */
813 void (*to_trace_init) (struct target_ops *)
814 TARGET_DEFAULT_NORETURN (tcomplain ());
815
816 /* Send full details of a tracepoint location to the target. */
817 void (*to_download_tracepoint) (struct target_ops *,
818 struct bp_location *location)
819 TARGET_DEFAULT_NORETURN (tcomplain ());
820
821 /* Is the target able to download tracepoint locations in current
822 state? */
823 int (*to_can_download_tracepoint) (struct target_ops *)
824 TARGET_DEFAULT_RETURN (0);
825
826 /* Send full details of a trace state variable to the target. */
827 void (*to_download_trace_state_variable) (struct target_ops *,
828 struct trace_state_variable *tsv)
829 TARGET_DEFAULT_NORETURN (tcomplain ());
830
831 /* Enable a tracepoint on the target. */
832 void (*to_enable_tracepoint) (struct target_ops *,
833 struct bp_location *location)
834 TARGET_DEFAULT_NORETURN (tcomplain ());
835
836 /* Disable a tracepoint on the target. */
837 void (*to_disable_tracepoint) (struct target_ops *,
838 struct bp_location *location)
839 TARGET_DEFAULT_NORETURN (tcomplain ());
840
841 /* Inform the target info of memory regions that are readonly
842 (such as text sections), and so it should return data from
843 those rather than look in the trace buffer. */
844 void (*to_trace_set_readonly_regions) (struct target_ops *)
845 TARGET_DEFAULT_NORETURN (tcomplain ());
846
847 /* Start a trace run. */
848 void (*to_trace_start) (struct target_ops *)
849 TARGET_DEFAULT_NORETURN (tcomplain ());
850
851 /* Get the current status of a tracing run. */
852 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts)
853 TARGET_DEFAULT_RETURN (-1);
854
855 void (*to_get_tracepoint_status) (struct target_ops *,
856 struct breakpoint *tp,
857 struct uploaded_tp *utp)
858 TARGET_DEFAULT_NORETURN (tcomplain ());
859
860 /* Stop a trace run. */
861 void (*to_trace_stop) (struct target_ops *)
862 TARGET_DEFAULT_NORETURN (tcomplain ());
863
864 /* Ask the target to find a trace frame of the given type TYPE,
865 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
866 number of the trace frame, and also the tracepoint number at
867 TPP. If no trace frame matches, return -1. May throw if the
868 operation fails. */
869 int (*to_trace_find) (struct target_ops *,
870 enum trace_find_type type, int num,
871 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
872 TARGET_DEFAULT_RETURN (-1);
873
874 /* Get the value of the trace state variable number TSV, returning
875 1 if the value is known and writing the value itself into the
876 location pointed to by VAL, else returning 0. */
877 int (*to_get_trace_state_variable_value) (struct target_ops *,
878 int tsv, LONGEST *val)
879 TARGET_DEFAULT_RETURN (0);
880
881 int (*to_save_trace_data) (struct target_ops *, const char *filename)
882 TARGET_DEFAULT_NORETURN (tcomplain ());
883
884 int (*to_upload_tracepoints) (struct target_ops *,
885 struct uploaded_tp **utpp)
886 TARGET_DEFAULT_RETURN (0);
887
888 int (*to_upload_trace_state_variables) (struct target_ops *,
889 struct uploaded_tsv **utsvp)
890 TARGET_DEFAULT_RETURN (0);
891
892 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
893 ULONGEST offset, LONGEST len)
894 TARGET_DEFAULT_NORETURN (tcomplain ());
895
896 /* Get the minimum length of instruction on which a fast tracepoint
897 may be set on the target. If this operation is unsupported,
898 return -1. If for some reason the minimum length cannot be
899 determined, return 0. */
900 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *)
901 TARGET_DEFAULT_RETURN (-1);
902
903 /* Set the target's tracing behavior in response to unexpected
904 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
905 void (*to_set_disconnected_tracing) (struct target_ops *, int val)
906 TARGET_DEFAULT_IGNORE ();
907 void (*to_set_circular_trace_buffer) (struct target_ops *, int val)
908 TARGET_DEFAULT_IGNORE ();
909 /* Set the size of trace buffer in the target. */
910 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val)
911 TARGET_DEFAULT_IGNORE ();
912
913 /* Add/change textual notes about the trace run, returning 1 if
914 successful, 0 otherwise. */
915 int (*to_set_trace_notes) (struct target_ops *,
916 const char *user, const char *notes,
917 const char *stopnotes)
918 TARGET_DEFAULT_RETURN (0);
919
920 /* Return the processor core that thread PTID was last seen on.
921 This information is updated only when:
922 - update_thread_list is called
923 - thread stops
924 If the core cannot be determined -- either for the specified
925 thread, or right now, or in this debug session, or for this
926 target -- return -1. */
927 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
928
929 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
930 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
931 a match, 0 if there's a mismatch, and -1 if an error is
932 encountered while reading memory. */
933 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
934 CORE_ADDR memaddr, ULONGEST size);
935
936 /* Return the address of the start of the Thread Information Block
937 a Windows OS specific feature. */
938 int (*to_get_tib_address) (struct target_ops *,
939 ptid_t ptid, CORE_ADDR *addr)
940 TARGET_DEFAULT_NORETURN (tcomplain ());
941
942 /* Send the new settings of write permission variables. */
943 void (*to_set_permissions) (struct target_ops *)
944 TARGET_DEFAULT_IGNORE ();
945
946 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
947 with its details. Return 1 on success, 0 on failure. */
948 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
949 struct static_tracepoint_marker *marker)
950 TARGET_DEFAULT_RETURN (0);
951
952 /* Return a vector of all tracepoints markers string id ID, or all
953 markers if ID is NULL. */
954 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid) (struct target_ops *, const char *id)
955 TARGET_DEFAULT_NORETURN (tcomplain ());
956
957 /* Return a traceframe info object describing the current
958 traceframe's contents. If the target doesn't support
959 traceframe info, return NULL. If the current traceframe is not
960 selected (the current traceframe number is -1), the target can
961 choose to return either NULL or an empty traceframe info. If
962 NULL is returned, for example in remote target, GDB will read
963 from the live inferior. If an empty traceframe info is
964 returned, for example in tfile target, which means the
965 traceframe info is available, but the requested memory is not
966 available in it. GDB will try to see if the requested memory
967 is available in the read-only sections. This method should not
968 cache data; higher layers take care of caching, invalidating,
969 and re-fetching when necessary. */
970 struct traceframe_info *(*to_traceframe_info) (struct target_ops *)
971 TARGET_DEFAULT_RETURN (0);
972
973 /* Ask the target to use or not to use agent according to USE. Return 1
974 successful, 0 otherwise. */
975 int (*to_use_agent) (struct target_ops *, int use)
976 TARGET_DEFAULT_NORETURN (tcomplain ());
977
978 /* Is the target able to use agent in current state? */
979 int (*to_can_use_agent) (struct target_ops *)
980 TARGET_DEFAULT_RETURN (0);
981
982 /* Check whether the target supports branch tracing. */
983 int (*to_supports_btrace) (struct target_ops *)
984 TARGET_DEFAULT_RETURN (0);
985
986 /* Enable branch tracing for PTID and allocate a branch trace target
987 information struct for reading and for disabling branch trace. */
988 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
989 ptid_t ptid);
990
991 /* Disable branch tracing and deallocate TINFO. */
992 void (*to_disable_btrace) (struct target_ops *,
993 struct btrace_target_info *tinfo);
994
995 /* Disable branch tracing and deallocate TINFO. This function is similar
996 to to_disable_btrace, except that it is called during teardown and is
997 only allowed to perform actions that are safe. A counter-example would
998 be attempting to talk to a remote target. */
999 void (*to_teardown_btrace) (struct target_ops *,
1000 struct btrace_target_info *tinfo);
1001
1002 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1003 DATA is cleared before new trace is added.
1004 The branch trace will start with the most recent block and continue
1005 towards older blocks. */
1006 enum btrace_error (*to_read_btrace) (struct target_ops *self,
1007 VEC (btrace_block_s) **data,
1008 struct btrace_target_info *btinfo,
1009 enum btrace_read_type type);
1010
1011 /* Stop trace recording. */
1012 void (*to_stop_recording) (struct target_ops *);
1013
1014 /* Print information about the recording. */
1015 void (*to_info_record) (struct target_ops *);
1016
1017 /* Save the recorded execution trace into a file. */
1018 void (*to_save_record) (struct target_ops *, const char *filename);
1019
1020 /* Delete the recorded execution trace from the current position onwards. */
1021 void (*to_delete_record) (struct target_ops *);
1022
1023 /* Query if the record target is currently replaying. */
1024 int (*to_record_is_replaying) (struct target_ops *);
1025
1026 /* Go to the begin of the execution trace. */
1027 void (*to_goto_record_begin) (struct target_ops *);
1028
1029 /* Go to the end of the execution trace. */
1030 void (*to_goto_record_end) (struct target_ops *);
1031
1032 /* Go to a specific location in the recorded execution trace. */
1033 void (*to_goto_record) (struct target_ops *, ULONGEST insn);
1034
1035 /* Disassemble SIZE instructions in the recorded execution trace from
1036 the current position.
1037 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1038 disassemble SIZE succeeding instructions. */
1039 void (*to_insn_history) (struct target_ops *, int size, int flags);
1040
1041 /* Disassemble SIZE instructions in the recorded execution trace around
1042 FROM.
1043 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1044 disassemble SIZE instructions after FROM. */
1045 void (*to_insn_history_from) (struct target_ops *,
1046 ULONGEST from, int size, int flags);
1047
1048 /* Disassemble a section of the recorded execution trace from instruction
1049 BEGIN (inclusive) to instruction END (inclusive). */
1050 void (*to_insn_history_range) (struct target_ops *,
1051 ULONGEST begin, ULONGEST end, int flags);
1052
1053 /* Print a function trace of the recorded execution trace.
1054 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1055 succeeding functions. */
1056 void (*to_call_history) (struct target_ops *, int size, int flags);
1057
1058 /* Print a function trace of the recorded execution trace starting
1059 at function FROM.
1060 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1061 SIZE functions after FROM. */
1062 void (*to_call_history_from) (struct target_ops *,
1063 ULONGEST begin, int size, int flags);
1064
1065 /* Print a function trace of an execution trace section from function BEGIN
1066 (inclusive) to function END (inclusive). */
1067 void (*to_call_history_range) (struct target_ops *,
1068 ULONGEST begin, ULONGEST end, int flags);
1069
1070 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1071 non-empty annex. */
1072 int (*to_augmented_libraries_svr4_read) (struct target_ops *)
1073 TARGET_DEFAULT_RETURN (0);
1074
1075 /* Those unwinders are tried before any other arch unwinders. Use NULL if
1076 it is not used. */
1077 const struct frame_unwind *to_get_unwinder;
1078 const struct frame_unwind *to_get_tailcall_unwinder;
1079
1080 /* Return the number of bytes by which the PC needs to be decremented
1081 after executing a breakpoint instruction.
1082 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
1083 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
1084 struct gdbarch *gdbarch);
1085
1086 int to_magic;
1087 /* Need sub-structure for target machine related rather than comm related?
1088 */
1089 };
1090
1091 /* Magic number for checking ops size. If a struct doesn't end with this
1092 number, somebody changed the declaration but didn't change all the
1093 places that initialize one. */
1094
1095 #define OPS_MAGIC 3840
1096
1097 /* The ops structure for our "current" target process. This should
1098 never be NULL. If there is no target, it points to the dummy_target. */
1099
1100 extern struct target_ops current_target;
1101
1102 /* Define easy words for doing these operations on our current target. */
1103
1104 #define target_shortname (current_target.to_shortname)
1105 #define target_longname (current_target.to_longname)
1106
1107 /* Does whatever cleanup is required for a target that we are no
1108 longer going to be calling. This routine is automatically always
1109 called after popping the target off the target stack - the target's
1110 own methods are no longer available through the target vector.
1111 Closing file descriptors and freeing all memory allocated memory are
1112 typical things it should do. */
1113
1114 void target_close (struct target_ops *targ);
1115
1116 /* Attaches to a process on the target side. Arguments are as passed
1117 to the `attach' command by the user. This routine can be called
1118 when the target is not on the target-stack, if the target_can_run
1119 routine returns 1; in that case, it must push itself onto the stack.
1120 Upon exit, the target should be ready for normal operations, and
1121 should be ready to deliver the status of the process immediately
1122 (without waiting) to an upcoming target_wait call. */
1123
1124 void target_attach (char *, int);
1125
1126 /* Some targets don't generate traps when attaching to the inferior,
1127 or their target_attach implementation takes care of the waiting.
1128 These targets must set to_attach_no_wait. */
1129
1130 #define target_attach_no_wait \
1131 (current_target.to_attach_no_wait)
1132
1133 /* The target_attach operation places a process under debugger control,
1134 and stops the process.
1135
1136 This operation provides a target-specific hook that allows the
1137 necessary bookkeeping to be performed after an attach completes. */
1138 #define target_post_attach(pid) \
1139 (*current_target.to_post_attach) (&current_target, pid)
1140
1141 /* Takes a program previously attached to and detaches it.
1142 The program may resume execution (some targets do, some don't) and will
1143 no longer stop on signals, etc. We better not have left any breakpoints
1144 in the program or it'll die when it hits one. ARGS is arguments
1145 typed by the user (e.g. a signal to send the process). FROM_TTY
1146 says whether to be verbose or not. */
1147
1148 extern void target_detach (const char *, int);
1149
1150 /* Disconnect from the current target without resuming it (leaving it
1151 waiting for a debugger). */
1152
1153 extern void target_disconnect (char *, int);
1154
1155 /* Resume execution of the target process PTID (or a group of
1156 threads). STEP says whether to single-step or to run free; SIGGNAL
1157 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1158 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1159 PTID means `step/resume only this process id'. A wildcard PTID
1160 (all threads, or all threads of process) means `step/resume
1161 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1162 matches) resume with their 'thread->suspend.stop_signal' signal
1163 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1164 if in "no pass" state. */
1165
1166 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1167
1168 /* Wait for process pid to do something. PTID = -1 to wait for any
1169 pid to do something. Return pid of child, or -1 in case of error;
1170 store status through argument pointer STATUS. Note that it is
1171 _NOT_ OK to throw_exception() out of target_wait() without popping
1172 the debugging target from the stack; GDB isn't prepared to get back
1173 to the prompt with a debugging target but without the frame cache,
1174 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1175 options. */
1176
1177 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1178 int options);
1179
1180 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1181
1182 extern void target_fetch_registers (struct regcache *regcache, int regno);
1183
1184 /* Store at least register REGNO, or all regs if REGNO == -1.
1185 It can store as many registers as it wants to, so target_prepare_to_store
1186 must have been previously called. Calls error() if there are problems. */
1187
1188 extern void target_store_registers (struct regcache *regcache, int regs);
1189
1190 /* Get ready to modify the registers array. On machines which store
1191 individual registers, this doesn't need to do anything. On machines
1192 which store all the registers in one fell swoop, this makes sure
1193 that REGISTERS contains all the registers from the program being
1194 debugged. */
1195
1196 #define target_prepare_to_store(regcache) \
1197 (*current_target.to_prepare_to_store) (&current_target, regcache)
1198
1199 /* Determine current address space of thread PTID. */
1200
1201 struct address_space *target_thread_address_space (ptid_t);
1202
1203 /* Implement the "info proc" command. This returns one if the request
1204 was handled, and zero otherwise. It can also throw an exception if
1205 an error was encountered while attempting to handle the
1206 request. */
1207
1208 int target_info_proc (char *, enum info_proc_what);
1209
1210 /* Returns true if this target can debug multiple processes
1211 simultaneously. */
1212
1213 #define target_supports_multi_process() \
1214 (*current_target.to_supports_multi_process) (&current_target)
1215
1216 /* Returns true if this target can disable address space randomization. */
1217
1218 int target_supports_disable_randomization (void);
1219
1220 /* Returns true if this target can enable and disable tracepoints
1221 while a trace experiment is running. */
1222
1223 #define target_supports_enable_disable_tracepoint() \
1224 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1225
1226 #define target_supports_string_tracing() \
1227 (*current_target.to_supports_string_tracing) (&current_target)
1228
1229 /* Returns true if this target can handle breakpoint conditions
1230 on its end. */
1231
1232 #define target_supports_evaluation_of_breakpoint_conditions() \
1233 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1234
1235 /* Returns true if this target can handle breakpoint commands
1236 on its end. */
1237
1238 #define target_can_run_breakpoint_commands() \
1239 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1240
1241 extern int target_read_string (CORE_ADDR, char **, int, int *);
1242
1243 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1244 ssize_t len);
1245
1246 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1247 ssize_t len);
1248
1249 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1250
1251 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1252
1253 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1254 ssize_t len);
1255
1256 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1257 ssize_t len);
1258
1259 /* Fetches the target's memory map. If one is found it is sorted
1260 and returned, after some consistency checking. Otherwise, NULL
1261 is returned. */
1262 VEC(mem_region_s) *target_memory_map (void);
1263
1264 /* Erase the specified flash region. */
1265 void target_flash_erase (ULONGEST address, LONGEST length);
1266
1267 /* Finish a sequence of flash operations. */
1268 void target_flash_done (void);
1269
1270 /* Describes a request for a memory write operation. */
1271 struct memory_write_request
1272 {
1273 /* Begining address that must be written. */
1274 ULONGEST begin;
1275 /* Past-the-end address. */
1276 ULONGEST end;
1277 /* The data to write. */
1278 gdb_byte *data;
1279 /* A callback baton for progress reporting for this request. */
1280 void *baton;
1281 };
1282 typedef struct memory_write_request memory_write_request_s;
1283 DEF_VEC_O(memory_write_request_s);
1284
1285 /* Enumeration specifying different flash preservation behaviour. */
1286 enum flash_preserve_mode
1287 {
1288 flash_preserve,
1289 flash_discard
1290 };
1291
1292 /* Write several memory blocks at once. This version can be more
1293 efficient than making several calls to target_write_memory, in
1294 particular because it can optimize accesses to flash memory.
1295
1296 Moreover, this is currently the only memory access function in gdb
1297 that supports writing to flash memory, and it should be used for
1298 all cases where access to flash memory is desirable.
1299
1300 REQUESTS is the vector (see vec.h) of memory_write_request.
1301 PRESERVE_FLASH_P indicates what to do with blocks which must be
1302 erased, but not completely rewritten.
1303 PROGRESS_CB is a function that will be periodically called to provide
1304 feedback to user. It will be called with the baton corresponding
1305 to the request currently being written. It may also be called
1306 with a NULL baton, when preserved flash sectors are being rewritten.
1307
1308 The function returns 0 on success, and error otherwise. */
1309 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1310 enum flash_preserve_mode preserve_flash_p,
1311 void (*progress_cb) (ULONGEST, void *));
1312
1313 /* Print a line about the current target. */
1314
1315 #define target_files_info() \
1316 (*current_target.to_files_info) (&current_target)
1317
1318 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1319 the target machine. Returns 0 for success, and returns non-zero or
1320 throws an error (with a detailed failure reason error code and
1321 message) otherwise. */
1322
1323 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1324 struct bp_target_info *bp_tgt);
1325
1326 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1327 machine. Result is 0 for success, non-zero for error. */
1328
1329 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1330 struct bp_target_info *bp_tgt);
1331
1332 /* Initialize the terminal settings we record for the inferior,
1333 before we actually run the inferior. */
1334
1335 #define target_terminal_init() \
1336 (*current_target.to_terminal_init) (&current_target)
1337
1338 /* Put the inferior's terminal settings into effect.
1339 This is preparation for starting or resuming the inferior. */
1340
1341 extern void target_terminal_inferior (void);
1342
1343 /* Put some of our terminal settings into effect,
1344 enough to get proper results from our output,
1345 but do not change into or out of RAW mode
1346 so that no input is discarded.
1347
1348 After doing this, either terminal_ours or terminal_inferior
1349 should be called to get back to a normal state of affairs. */
1350
1351 #define target_terminal_ours_for_output() \
1352 (*current_target.to_terminal_ours_for_output) (&current_target)
1353
1354 /* Put our terminal settings into effect.
1355 First record the inferior's terminal settings
1356 so they can be restored properly later. */
1357
1358 #define target_terminal_ours() \
1359 (*current_target.to_terminal_ours) (&current_target)
1360
1361 /* Save our terminal settings.
1362 This is called from TUI after entering or leaving the curses
1363 mode. Since curses modifies our terminal this call is here
1364 to take this change into account. */
1365
1366 #define target_terminal_save_ours() \
1367 (*current_target.to_terminal_save_ours) (&current_target)
1368
1369 /* Print useful information about our terminal status, if such a thing
1370 exists. */
1371
1372 #define target_terminal_info(arg, from_tty) \
1373 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1374
1375 /* Kill the inferior process. Make it go away. */
1376
1377 extern void target_kill (void);
1378
1379 /* Load an executable file into the target process. This is expected
1380 to not only bring new code into the target process, but also to
1381 update GDB's symbol tables to match.
1382
1383 ARG contains command-line arguments, to be broken down with
1384 buildargv (). The first non-switch argument is the filename to
1385 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1386 0)), which is an offset to apply to the load addresses of FILE's
1387 sections. The target may define switches, or other non-switch
1388 arguments, as it pleases. */
1389
1390 extern void target_load (char *arg, int from_tty);
1391
1392 /* Start an inferior process and set inferior_ptid to its pid.
1393 EXEC_FILE is the file to run.
1394 ALLARGS is a string containing the arguments to the program.
1395 ENV is the environment vector to pass. Errors reported with error().
1396 On VxWorks and various standalone systems, we ignore exec_file. */
1397
1398 void target_create_inferior (char *exec_file, char *args,
1399 char **env, int from_tty);
1400
1401 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1402 notification of inferior events such as fork and vork immediately
1403 after the inferior is created. (This because of how gdb gets an
1404 inferior created via invoking a shell to do it. In such a scenario,
1405 if the shell init file has commands in it, the shell will fork and
1406 exec for each of those commands, and we will see each such fork
1407 event. Very bad.)
1408
1409 Such targets will supply an appropriate definition for this function. */
1410
1411 #define target_post_startup_inferior(ptid) \
1412 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1413
1414 /* On some targets, we can catch an inferior fork or vfork event when
1415 it occurs. These functions insert/remove an already-created
1416 catchpoint for such events. They return 0 for success, 1 if the
1417 catchpoint type is not supported and -1 for failure. */
1418
1419 #define target_insert_fork_catchpoint(pid) \
1420 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1421
1422 #define target_remove_fork_catchpoint(pid) \
1423 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1424
1425 #define target_insert_vfork_catchpoint(pid) \
1426 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1427
1428 #define target_remove_vfork_catchpoint(pid) \
1429 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1430
1431 /* If the inferior forks or vforks, this function will be called at
1432 the next resume in order to perform any bookkeeping and fiddling
1433 necessary to continue debugging either the parent or child, as
1434 requested, and releasing the other. Information about the fork
1435 or vfork event is available via get_last_target_status ().
1436 This function returns 1 if the inferior should not be resumed
1437 (i.e. there is another event pending). */
1438
1439 int target_follow_fork (int follow_child, int detach_fork);
1440
1441 /* On some targets, we can catch an inferior exec event when it
1442 occurs. These functions insert/remove an already-created
1443 catchpoint for such events. They return 0 for success, 1 if the
1444 catchpoint type is not supported and -1 for failure. */
1445
1446 #define target_insert_exec_catchpoint(pid) \
1447 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1448
1449 #define target_remove_exec_catchpoint(pid) \
1450 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1451
1452 /* Syscall catch.
1453
1454 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1455 If NEEDED is zero, it means the target can disable the mechanism to
1456 catch system calls because there are no more catchpoints of this type.
1457
1458 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1459 being requested. In this case, both TABLE_SIZE and TABLE should
1460 be ignored.
1461
1462 TABLE_SIZE is the number of elements in TABLE. It only matters if
1463 ANY_COUNT is zero.
1464
1465 TABLE is an array of ints, indexed by syscall number. An element in
1466 this array is nonzero if that syscall should be caught. This argument
1467 only matters if ANY_COUNT is zero.
1468
1469 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1470 for failure. */
1471
1472 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1473 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1474 pid, needed, any_count, \
1475 table_size, table)
1476
1477 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1478 exit code of PID, if any. */
1479
1480 #define target_has_exited(pid,wait_status,exit_status) \
1481 (*current_target.to_has_exited) (&current_target, \
1482 pid,wait_status,exit_status)
1483
1484 /* The debugger has completed a blocking wait() call. There is now
1485 some process event that must be processed. This function should
1486 be defined by those targets that require the debugger to perform
1487 cleanup or internal state changes in response to the process event. */
1488
1489 /* The inferior process has died. Do what is right. */
1490
1491 void target_mourn_inferior (void);
1492
1493 /* Does target have enough data to do a run or attach command? */
1494
1495 #define target_can_run(t) \
1496 ((t)->to_can_run) (t)
1497
1498 /* Set list of signals to be handled in the target.
1499
1500 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1501 (enum gdb_signal). For every signal whose entry in this array is
1502 non-zero, the target is allowed -but not required- to skip reporting
1503 arrival of the signal to the GDB core by returning from target_wait,
1504 and to pass the signal directly to the inferior instead.
1505
1506 However, if the target is hardware single-stepping a thread that is
1507 about to receive a signal, it needs to be reported in any case, even
1508 if mentioned in a previous target_pass_signals call. */
1509
1510 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1511
1512 /* Set list of signals the target may pass to the inferior. This
1513 directly maps to the "handle SIGNAL pass/nopass" setting.
1514
1515 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1516 number (enum gdb_signal). For every signal whose entry in this
1517 array is non-zero, the target is allowed to pass the signal to the
1518 inferior. Signals not present in the array shall be silently
1519 discarded. This does not influence whether to pass signals to the
1520 inferior as a result of a target_resume call. This is useful in
1521 scenarios where the target needs to decide whether to pass or not a
1522 signal to the inferior without GDB core involvement, such as for
1523 example, when detaching (as threads may have been suspended with
1524 pending signals not reported to GDB). */
1525
1526 extern void target_program_signals (int nsig, unsigned char *program_signals);
1527
1528 /* Check to see if a thread is still alive. */
1529
1530 extern int target_thread_alive (ptid_t ptid);
1531
1532 /* Query for new threads and add them to the thread list. */
1533
1534 extern void target_find_new_threads (void);
1535
1536 /* Make target stop in a continuable fashion. (For instance, under
1537 Unix, this should act like SIGSTOP). This function is normally
1538 used by GUIs to implement a stop button. */
1539
1540 extern void target_stop (ptid_t ptid);
1541
1542 /* Send the specified COMMAND to the target's monitor
1543 (shell,interpreter) for execution. The result of the query is
1544 placed in OUTBUF. */
1545
1546 #define target_rcmd(command, outbuf) \
1547 (*current_target.to_rcmd) (&current_target, command, outbuf)
1548
1549
1550 /* Does the target include all of memory, or only part of it? This
1551 determines whether we look up the target chain for other parts of
1552 memory if this target can't satisfy a request. */
1553
1554 extern int target_has_all_memory_1 (void);
1555 #define target_has_all_memory target_has_all_memory_1 ()
1556
1557 /* Does the target include memory? (Dummy targets don't.) */
1558
1559 extern int target_has_memory_1 (void);
1560 #define target_has_memory target_has_memory_1 ()
1561
1562 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1563 we start a process.) */
1564
1565 extern int target_has_stack_1 (void);
1566 #define target_has_stack target_has_stack_1 ()
1567
1568 /* Does the target have registers? (Exec files don't.) */
1569
1570 extern int target_has_registers_1 (void);
1571 #define target_has_registers target_has_registers_1 ()
1572
1573 /* Does the target have execution? Can we make it jump (through
1574 hoops), or pop its stack a few times? This means that the current
1575 target is currently executing; for some targets, that's the same as
1576 whether or not the target is capable of execution, but there are
1577 also targets which can be current while not executing. In that
1578 case this will become true after target_create_inferior or
1579 target_attach. */
1580
1581 extern int target_has_execution_1 (ptid_t);
1582
1583 /* Like target_has_execution_1, but always passes inferior_ptid. */
1584
1585 extern int target_has_execution_current (void);
1586
1587 #define target_has_execution target_has_execution_current ()
1588
1589 /* Default implementations for process_stratum targets. Return true
1590 if there's a selected inferior, false otherwise. */
1591
1592 extern int default_child_has_all_memory (struct target_ops *ops);
1593 extern int default_child_has_memory (struct target_ops *ops);
1594 extern int default_child_has_stack (struct target_ops *ops);
1595 extern int default_child_has_registers (struct target_ops *ops);
1596 extern int default_child_has_execution (struct target_ops *ops,
1597 ptid_t the_ptid);
1598
1599 /* Can the target support the debugger control of thread execution?
1600 Can it lock the thread scheduler? */
1601
1602 #define target_can_lock_scheduler \
1603 (current_target.to_has_thread_control & tc_schedlock)
1604
1605 /* Should the target enable async mode if it is supported? Temporary
1606 cludge until async mode is a strict superset of sync mode. */
1607 extern int target_async_permitted;
1608
1609 /* Can the target support asynchronous execution? */
1610 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1611
1612 /* Is the target in asynchronous execution mode? */
1613 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1614
1615 int target_supports_non_stop (void);
1616
1617 /* Put the target in async mode with the specified callback function. */
1618 #define target_async(CALLBACK,CONTEXT) \
1619 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1620
1621 #define target_execution_direction() \
1622 (current_target.to_execution_direction (&current_target))
1623
1624 /* Converts a process id to a string. Usually, the string just contains
1625 `process xyz', but on some systems it may contain
1626 `process xyz thread abc'. */
1627
1628 extern char *target_pid_to_str (ptid_t ptid);
1629
1630 extern char *normal_pid_to_str (ptid_t ptid);
1631
1632 /* Return a short string describing extra information about PID,
1633 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1634 is okay. */
1635
1636 #define target_extra_thread_info(TP) \
1637 (current_target.to_extra_thread_info (&current_target, TP))
1638
1639 /* Return the thread's name. A NULL result means that the target
1640 could not determine this thread's name. */
1641
1642 extern char *target_thread_name (struct thread_info *);
1643
1644 /* Attempts to find the pathname of the executable file
1645 that was run to create a specified process.
1646
1647 The process PID must be stopped when this operation is used.
1648
1649 If the executable file cannot be determined, NULL is returned.
1650
1651 Else, a pointer to a character string containing the pathname
1652 is returned. This string should be copied into a buffer by
1653 the client if the string will not be immediately used, or if
1654 it must persist. */
1655
1656 #define target_pid_to_exec_file(pid) \
1657 (current_target.to_pid_to_exec_file) (&current_target, pid)
1658
1659 /* See the to_thread_architecture description in struct target_ops. */
1660
1661 #define target_thread_architecture(ptid) \
1662 (current_target.to_thread_architecture (&current_target, ptid))
1663
1664 /*
1665 * Iterator function for target memory regions.
1666 * Calls a callback function once for each memory region 'mapped'
1667 * in the child process. Defined as a simple macro rather than
1668 * as a function macro so that it can be tested for nullity.
1669 */
1670
1671 #define target_find_memory_regions(FUNC, DATA) \
1672 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1673
1674 /*
1675 * Compose corefile .note section.
1676 */
1677
1678 #define target_make_corefile_notes(BFD, SIZE_P) \
1679 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1680
1681 /* Bookmark interfaces. */
1682 #define target_get_bookmark(ARGS, FROM_TTY) \
1683 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1684
1685 #define target_goto_bookmark(ARG, FROM_TTY) \
1686 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1687
1688 /* Hardware watchpoint interfaces. */
1689
1690 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1691 write). Only the INFERIOR_PTID task is being queried. */
1692
1693 #define target_stopped_by_watchpoint() \
1694 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1695
1696 /* Non-zero if we have steppable watchpoints */
1697
1698 #define target_have_steppable_watchpoint \
1699 (current_target.to_have_steppable_watchpoint)
1700
1701 /* Non-zero if we have continuable watchpoints */
1702
1703 #define target_have_continuable_watchpoint \
1704 (current_target.to_have_continuable_watchpoint)
1705
1706 /* Provide defaults for hardware watchpoint functions. */
1707
1708 /* If the *_hw_beakpoint functions have not been defined
1709 elsewhere use the definitions in the target vector. */
1710
1711 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1712 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1713 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1714 (including this one?). OTHERTYPE is who knows what... */
1715
1716 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1717 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1718 TYPE, CNT, OTHERTYPE);
1719
1720 /* Returns the number of debug registers needed to watch the given
1721 memory region, or zero if not supported. */
1722
1723 #define target_region_ok_for_hw_watchpoint(addr, len) \
1724 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1725 addr, len)
1726
1727
1728 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1729 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1730 COND is the expression for its condition, or NULL if there's none.
1731 Returns 0 for success, 1 if the watchpoint type is not supported,
1732 -1 for failure. */
1733
1734 #define target_insert_watchpoint(addr, len, type, cond) \
1735 (*current_target.to_insert_watchpoint) (&current_target, \
1736 addr, len, type, cond)
1737
1738 #define target_remove_watchpoint(addr, len, type, cond) \
1739 (*current_target.to_remove_watchpoint) (&current_target, \
1740 addr, len, type, cond)
1741
1742 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1743 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1744 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1745 masked watchpoints are not supported, -1 for failure. */
1746
1747 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1748
1749 /* Remove a masked watchpoint at ADDR with the mask MASK.
1750 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1751 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1752 for failure. */
1753
1754 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1755
1756 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1757 the target machine. Returns 0 for success, and returns non-zero or
1758 throws an error (with a detailed failure reason error code and
1759 message) otherwise. */
1760
1761 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1762 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1763 gdbarch, bp_tgt)
1764
1765 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1766 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1767 gdbarch, bp_tgt)
1768
1769 /* Return number of debug registers needed for a ranged breakpoint,
1770 or -1 if ranged breakpoints are not supported. */
1771
1772 extern int target_ranged_break_num_registers (void);
1773
1774 /* Return non-zero if target knows the data address which triggered this
1775 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1776 INFERIOR_PTID task is being queried. */
1777 #define target_stopped_data_address(target, addr_p) \
1778 (*target.to_stopped_data_address) (target, addr_p)
1779
1780 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1781 LENGTH bytes beginning at START. */
1782 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1783 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1784
1785 /* Return non-zero if the target is capable of using hardware to evaluate
1786 the condition expression. In this case, if the condition is false when
1787 the watched memory location changes, execution may continue without the
1788 debugger being notified.
1789
1790 Due to limitations in the hardware implementation, it may be capable of
1791 avoiding triggering the watchpoint in some cases where the condition
1792 expression is false, but may report some false positives as well.
1793 For this reason, GDB will still evaluate the condition expression when
1794 the watchpoint triggers. */
1795 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1796 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1797 addr, len, type, cond)
1798
1799 /* Return number of debug registers needed for a masked watchpoint,
1800 -1 if masked watchpoints are not supported or -2 if the given address
1801 and mask combination cannot be used. */
1802
1803 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1804
1805 /* Target can execute in reverse? */
1806 #define target_can_execute_reverse \
1807 current_target.to_can_execute_reverse (&current_target)
1808
1809 extern const struct target_desc *target_read_description (struct target_ops *);
1810
1811 #define target_get_ada_task_ptid(lwp, tid) \
1812 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1813
1814 /* Utility implementation of searching memory. */
1815 extern int simple_search_memory (struct target_ops* ops,
1816 CORE_ADDR start_addr,
1817 ULONGEST search_space_len,
1818 const gdb_byte *pattern,
1819 ULONGEST pattern_len,
1820 CORE_ADDR *found_addrp);
1821
1822 /* Main entry point for searching memory. */
1823 extern int target_search_memory (CORE_ADDR start_addr,
1824 ULONGEST search_space_len,
1825 const gdb_byte *pattern,
1826 ULONGEST pattern_len,
1827 CORE_ADDR *found_addrp);
1828
1829 /* Target file operations. */
1830
1831 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1832 target file descriptor, or -1 if an error occurs (and set
1833 *TARGET_ERRNO). */
1834 extern int target_fileio_open (const char *filename, int flags, int mode,
1835 int *target_errno);
1836
1837 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1838 Return the number of bytes written, or -1 if an error occurs
1839 (and set *TARGET_ERRNO). */
1840 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1841 ULONGEST offset, int *target_errno);
1842
1843 /* Read up to LEN bytes FD on the target into READ_BUF.
1844 Return the number of bytes read, or -1 if an error occurs
1845 (and set *TARGET_ERRNO). */
1846 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1847 ULONGEST offset, int *target_errno);
1848
1849 /* Close FD on the target. Return 0, or -1 if an error occurs
1850 (and set *TARGET_ERRNO). */
1851 extern int target_fileio_close (int fd, int *target_errno);
1852
1853 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1854 occurs (and set *TARGET_ERRNO). */
1855 extern int target_fileio_unlink (const char *filename, int *target_errno);
1856
1857 /* Read value of symbolic link FILENAME on the target. Return a
1858 null-terminated string allocated via xmalloc, or NULL if an error
1859 occurs (and set *TARGET_ERRNO). */
1860 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1861
1862 /* Read target file FILENAME. The return value will be -1 if the transfer
1863 fails or is not supported; 0 if the object is empty; or the length
1864 of the object otherwise. If a positive value is returned, a
1865 sufficiently large buffer will be allocated using xmalloc and
1866 returned in *BUF_P containing the contents of the object.
1867
1868 This method should be used for objects sufficiently small to store
1869 in a single xmalloc'd buffer, when no fixed bound on the object's
1870 size is known in advance. */
1871 extern LONGEST target_fileio_read_alloc (const char *filename,
1872 gdb_byte **buf_p);
1873
1874 /* Read target file FILENAME. The result is NUL-terminated and
1875 returned as a string, allocated using xmalloc. If an error occurs
1876 or the transfer is unsupported, NULL is returned. Empty objects
1877 are returned as allocated but empty strings. A warning is issued
1878 if the result contains any embedded NUL bytes. */
1879 extern char *target_fileio_read_stralloc (const char *filename);
1880
1881
1882 /* Tracepoint-related operations. */
1883
1884 #define target_trace_init() \
1885 (*current_target.to_trace_init) (&current_target)
1886
1887 #define target_download_tracepoint(t) \
1888 (*current_target.to_download_tracepoint) (&current_target, t)
1889
1890 #define target_can_download_tracepoint() \
1891 (*current_target.to_can_download_tracepoint) (&current_target)
1892
1893 #define target_download_trace_state_variable(tsv) \
1894 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
1895
1896 #define target_enable_tracepoint(loc) \
1897 (*current_target.to_enable_tracepoint) (&current_target, loc)
1898
1899 #define target_disable_tracepoint(loc) \
1900 (*current_target.to_disable_tracepoint) (&current_target, loc)
1901
1902 #define target_trace_start() \
1903 (*current_target.to_trace_start) (&current_target)
1904
1905 #define target_trace_set_readonly_regions() \
1906 (*current_target.to_trace_set_readonly_regions) (&current_target)
1907
1908 #define target_get_trace_status(ts) \
1909 (*current_target.to_get_trace_status) (&current_target, ts)
1910
1911 #define target_get_tracepoint_status(tp,utp) \
1912 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
1913
1914 #define target_trace_stop() \
1915 (*current_target.to_trace_stop) (&current_target)
1916
1917 #define target_trace_find(type,num,addr1,addr2,tpp) \
1918 (*current_target.to_trace_find) (&current_target, \
1919 (type), (num), (addr1), (addr2), (tpp))
1920
1921 #define target_get_trace_state_variable_value(tsv,val) \
1922 (*current_target.to_get_trace_state_variable_value) (&current_target, \
1923 (tsv), (val))
1924
1925 #define target_save_trace_data(filename) \
1926 (*current_target.to_save_trace_data) (&current_target, filename)
1927
1928 #define target_upload_tracepoints(utpp) \
1929 (*current_target.to_upload_tracepoints) (&current_target, utpp)
1930
1931 #define target_upload_trace_state_variables(utsvp) \
1932 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
1933
1934 #define target_get_raw_trace_data(buf,offset,len) \
1935 (*current_target.to_get_raw_trace_data) (&current_target, \
1936 (buf), (offset), (len))
1937
1938 #define target_get_min_fast_tracepoint_insn_len() \
1939 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
1940
1941 #define target_set_disconnected_tracing(val) \
1942 (*current_target.to_set_disconnected_tracing) (&current_target, val)
1943
1944 #define target_set_circular_trace_buffer(val) \
1945 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
1946
1947 #define target_set_trace_buffer_size(val) \
1948 (*current_target.to_set_trace_buffer_size) (&current_target, val)
1949
1950 #define target_set_trace_notes(user,notes,stopnotes) \
1951 (*current_target.to_set_trace_notes) (&current_target, \
1952 (user), (notes), (stopnotes))
1953
1954 #define target_get_tib_address(ptid, addr) \
1955 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
1956
1957 #define target_set_permissions() \
1958 (*current_target.to_set_permissions) (&current_target)
1959
1960 #define target_static_tracepoint_marker_at(addr, marker) \
1961 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
1962 addr, marker)
1963
1964 #define target_static_tracepoint_markers_by_strid(marker_id) \
1965 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
1966 marker_id)
1967
1968 #define target_traceframe_info() \
1969 (*current_target.to_traceframe_info) (&current_target)
1970
1971 #define target_use_agent(use) \
1972 (*current_target.to_use_agent) (&current_target, use)
1973
1974 #define target_can_use_agent() \
1975 (*current_target.to_can_use_agent) (&current_target)
1976
1977 #define target_augmented_libraries_svr4_read() \
1978 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
1979
1980 /* Command logging facility. */
1981
1982 #define target_log_command(p) \
1983 (*current_target.to_log_command) (&current_target, p)
1984
1985
1986 extern int target_core_of_thread (ptid_t ptid);
1987
1988 /* See to_get_unwinder in struct target_ops. */
1989 extern const struct frame_unwind *target_get_unwinder (void);
1990
1991 /* See to_get_tailcall_unwinder in struct target_ops. */
1992 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
1993
1994 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1995 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1996 if there's a mismatch, and -1 if an error is encountered while
1997 reading memory. Throws an error if the functionality is found not
1998 to be supported by the current target. */
1999 int target_verify_memory (const gdb_byte *data,
2000 CORE_ADDR memaddr, ULONGEST size);
2001
2002 /* Routines for maintenance of the target structures...
2003
2004 complete_target_initialization: Finalize a target_ops by filling in
2005 any fields needed by the target implementation.
2006
2007 add_target: Add a target to the list of all possible targets.
2008
2009 push_target: Make this target the top of the stack of currently used
2010 targets, within its particular stratum of the stack. Result
2011 is 0 if now atop the stack, nonzero if not on top (maybe
2012 should warn user).
2013
2014 unpush_target: Remove this from the stack of currently used targets,
2015 no matter where it is on the list. Returns 0 if no
2016 change, 1 if removed from stack. */
2017
2018 extern void add_target (struct target_ops *);
2019
2020 extern void add_target_with_completer (struct target_ops *t,
2021 completer_ftype *completer);
2022
2023 extern void complete_target_initialization (struct target_ops *t);
2024
2025 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
2026 for maintaining backwards compatibility when renaming targets. */
2027
2028 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
2029
2030 extern void push_target (struct target_ops *);
2031
2032 extern int unpush_target (struct target_ops *);
2033
2034 extern void target_pre_inferior (int);
2035
2036 extern void target_preopen (int);
2037
2038 /* Does whatever cleanup is required to get rid of all pushed targets. */
2039 extern void pop_all_targets (void);
2040
2041 /* Like pop_all_targets, but pops only targets whose stratum is
2042 strictly above ABOVE_STRATUM. */
2043 extern void pop_all_targets_above (enum strata above_stratum);
2044
2045 extern int target_is_pushed (struct target_ops *t);
2046
2047 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2048 CORE_ADDR offset);
2049
2050 /* Struct target_section maps address ranges to file sections. It is
2051 mostly used with BFD files, but can be used without (e.g. for handling
2052 raw disks, or files not in formats handled by BFD). */
2053
2054 struct target_section
2055 {
2056 CORE_ADDR addr; /* Lowest address in section */
2057 CORE_ADDR endaddr; /* 1+highest address in section */
2058
2059 struct bfd_section *the_bfd_section;
2060
2061 /* The "owner" of the section.
2062 It can be any unique value. It is set by add_target_sections
2063 and used by remove_target_sections.
2064 For example, for executables it is a pointer to exec_bfd and
2065 for shlibs it is the so_list pointer. */
2066 void *owner;
2067 };
2068
2069 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2070
2071 struct target_section_table
2072 {
2073 struct target_section *sections;
2074 struct target_section *sections_end;
2075 };
2076
2077 /* Return the "section" containing the specified address. */
2078 struct target_section *target_section_by_addr (struct target_ops *target,
2079 CORE_ADDR addr);
2080
2081 /* Return the target section table this target (or the targets
2082 beneath) currently manipulate. */
2083
2084 extern struct target_section_table *target_get_section_table
2085 (struct target_ops *target);
2086
2087 /* From mem-break.c */
2088
2089 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2090 struct bp_target_info *);
2091
2092 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2093 struct bp_target_info *);
2094
2095 extern int default_memory_remove_breakpoint (struct gdbarch *,
2096 struct bp_target_info *);
2097
2098 extern int default_memory_insert_breakpoint (struct gdbarch *,
2099 struct bp_target_info *);
2100
2101
2102 /* From target.c */
2103
2104 extern void initialize_targets (void);
2105
2106 extern void noprocess (void) ATTRIBUTE_NORETURN;
2107
2108 extern void target_require_runnable (void);
2109
2110 extern void find_default_attach (struct target_ops *, char *, int);
2111
2112 extern void find_default_create_inferior (struct target_ops *,
2113 char *, char *, char **, int);
2114
2115 extern struct target_ops *find_target_beneath (struct target_ops *);
2116
2117 /* Find the target at STRATUM. If no target is at that stratum,
2118 return NULL. */
2119
2120 struct target_ops *find_target_at (enum strata stratum);
2121
2122 /* Read OS data object of type TYPE from the target, and return it in
2123 XML format. The result is NUL-terminated and returned as a string,
2124 allocated using xmalloc. If an error occurs or the transfer is
2125 unsupported, NULL is returned. Empty objects are returned as
2126 allocated but empty strings. */
2127
2128 extern char *target_get_osdata (const char *type);
2129
2130 \f
2131 /* Stuff that should be shared among the various remote targets. */
2132
2133 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2134 information (higher values, more information). */
2135 extern int remote_debug;
2136
2137 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2138 extern int baud_rate;
2139 /* Timeout limit for response from target. */
2140 extern int remote_timeout;
2141
2142 \f
2143
2144 /* Set the show memory breakpoints mode to show, and installs a cleanup
2145 to restore it back to the current value. */
2146 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2147
2148 extern int may_write_registers;
2149 extern int may_write_memory;
2150 extern int may_insert_breakpoints;
2151 extern int may_insert_tracepoints;
2152 extern int may_insert_fast_tracepoints;
2153 extern int may_stop;
2154
2155 extern void update_target_permissions (void);
2156
2157 \f
2158 /* Imported from machine dependent code. */
2159
2160 /* Blank target vector entries are initialized to target_ignore. */
2161 void target_ignore (void);
2162
2163 /* See to_supports_btrace in struct target_ops. */
2164 #define target_supports_btrace() \
2165 (current_target.to_supports_btrace (&current_target))
2166
2167 /* See to_enable_btrace in struct target_ops. */
2168 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2169
2170 /* See to_disable_btrace in struct target_ops. */
2171 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2172
2173 /* See to_teardown_btrace in struct target_ops. */
2174 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2175
2176 /* See to_read_btrace in struct target_ops. */
2177 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2178 struct btrace_target_info *,
2179 enum btrace_read_type);
2180
2181 /* See to_stop_recording in struct target_ops. */
2182 extern void target_stop_recording (void);
2183
2184 /* See to_info_record in struct target_ops. */
2185 extern void target_info_record (void);
2186
2187 /* See to_save_record in struct target_ops. */
2188 extern void target_save_record (const char *filename);
2189
2190 /* Query if the target supports deleting the execution log. */
2191 extern int target_supports_delete_record (void);
2192
2193 /* See to_delete_record in struct target_ops. */
2194 extern void target_delete_record (void);
2195
2196 /* See to_record_is_replaying in struct target_ops. */
2197 extern int target_record_is_replaying (void);
2198
2199 /* See to_goto_record_begin in struct target_ops. */
2200 extern void target_goto_record_begin (void);
2201
2202 /* See to_goto_record_end in struct target_ops. */
2203 extern void target_goto_record_end (void);
2204
2205 /* See to_goto_record in struct target_ops. */
2206 extern void target_goto_record (ULONGEST insn);
2207
2208 /* See to_insn_history. */
2209 extern void target_insn_history (int size, int flags);
2210
2211 /* See to_insn_history_from. */
2212 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2213
2214 /* See to_insn_history_range. */
2215 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2216
2217 /* See to_call_history. */
2218 extern void target_call_history (int size, int flags);
2219
2220 /* See to_call_history_from. */
2221 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2222
2223 /* See to_call_history_range. */
2224 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2225
2226 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2227 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2228 struct gdbarch *gdbarch);
2229
2230 /* See to_decr_pc_after_break. */
2231 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2232
2233 #endif /* !defined (TARGET_H) */