convert to_stop
[binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* Generic I/O error. Note that it's important that this is '-1',
217 as we still have target_xfer-related code returning hardcoded
218 '-1' on error. */
219 TARGET_XFER_E_IO = -1,
220
221 /* Transfer failed because the piece of the object requested is
222 unavailable. */
223 TARGET_XFER_E_UNAVAILABLE = -2,
224
225 /* Keep list in sync with target_xfer_error_to_string. */
226 };
227
228 #define TARGET_XFER_STATUS_ERROR_P(STATUS) ((STATUS) < TARGET_XFER_EOF)
229
230 /* Return the string form of ERR. */
231
232 extern const char *target_xfer_status_to_string (enum target_xfer_status err);
233
234 /* Enumeration of the kinds of traceframe searches that a target may
235 be able to perform. */
236
237 enum trace_find_type
238 {
239 tfind_number,
240 tfind_pc,
241 tfind_tp,
242 tfind_range,
243 tfind_outside,
244 };
245
246 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
247 DEF_VEC_P(static_tracepoint_marker_p);
248
249 typedef enum target_xfer_status
250 target_xfer_partial_ftype (struct target_ops *ops,
251 enum target_object object,
252 const char *annex,
253 gdb_byte *readbuf,
254 const gdb_byte *writebuf,
255 ULONGEST offset,
256 ULONGEST len,
257 ULONGEST *xfered_len);
258
259 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
260 OBJECT. The OFFSET, for a seekable object, specifies the
261 starting point. The ANNEX can be used to provide additional
262 data-specific information to the target.
263
264 Return the number of bytes actually transfered, or a negative error
265 code (an 'enum target_xfer_error' value) if the transfer is not
266 supported or otherwise fails. Return of a positive value less than
267 LEN indicates that no further transfer is possible. Unlike the raw
268 to_xfer_partial interface, callers of these functions do not need
269 to retry partial transfers. */
270
271 extern LONGEST target_read (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276 struct memory_read_result
277 {
278 /* First address that was read. */
279 ULONGEST begin;
280 /* Past-the-end address. */
281 ULONGEST end;
282 /* The data. */
283 gdb_byte *data;
284 };
285 typedef struct memory_read_result memory_read_result_s;
286 DEF_VEC_O(memory_read_result_s);
287
288 extern void free_memory_read_result_vector (void *);
289
290 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
291 ULONGEST offset,
292 LONGEST len);
293
294 extern LONGEST target_write (struct target_ops *ops,
295 enum target_object object,
296 const char *annex, const gdb_byte *buf,
297 ULONGEST offset, LONGEST len);
298
299 /* Similar to target_write, except that it also calls PROGRESS with
300 the number of bytes written and the opaque BATON after every
301 successful partial write (and before the first write). This is
302 useful for progress reporting and user interaction while writing
303 data. To abort the transfer, the progress callback can throw an
304 exception. */
305
306 LONGEST target_write_with_progress (struct target_ops *ops,
307 enum target_object object,
308 const char *annex, const gdb_byte *buf,
309 ULONGEST offset, LONGEST len,
310 void (*progress) (ULONGEST, void *),
311 void *baton);
312
313 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
314 be read using OPS. The return value will be -1 if the transfer
315 fails or is not supported; 0 if the object is empty; or the length
316 of the object otherwise. If a positive value is returned, a
317 sufficiently large buffer will be allocated using xmalloc and
318 returned in *BUF_P containing the contents of the object.
319
320 This method should be used for objects sufficiently small to store
321 in a single xmalloc'd buffer, when no fixed bound on the object's
322 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
323 through this function. */
324
325 extern LONGEST target_read_alloc (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, gdb_byte **buf_p);
328
329 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
330 returned as a string, allocated using xmalloc. If an error occurs
331 or the transfer is unsupported, NULL is returned. Empty objects
332 are returned as allocated but empty strings. A warning is issued
333 if the result contains any embedded NUL bytes. */
334
335 extern char *target_read_stralloc (struct target_ops *ops,
336 enum target_object object,
337 const char *annex);
338
339 /* See target_ops->to_xfer_partial. */
340 extern target_xfer_partial_ftype target_xfer_partial;
341
342 /* Wrappers to target read/write that perform memory transfers. They
343 throw an error if the memory transfer fails.
344
345 NOTE: cagney/2003-10-23: The naming schema is lifted from
346 "frame.h". The parameter order is lifted from get_frame_memory,
347 which in turn lifted it from read_memory. */
348
349 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
350 gdb_byte *buf, LONGEST len);
351 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
352 CORE_ADDR addr, int len,
353 enum bfd_endian byte_order);
354 \f
355 struct thread_info; /* fwd decl for parameter list below: */
356
357 /* The type of the callback to the to_async method. */
358
359 typedef void async_callback_ftype (enum inferior_event_type event_type,
360 void *context);
361
362 /* These defines are used to mark target_ops methods. The script
363 make-target-delegates scans these and auto-generates the base
364 method implementations. There are four macros that can be used:
365
366 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
367 does nothing. This is only valid if the method return type is
368 'void'.
369
370 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
371 'tcomplain ()'. The base method simply makes this call, which is
372 assumed not to return.
373
374 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
375 base method returns this expression's value.
376
377 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
378 make-target-delegates does not generate a base method in this case,
379 but instead uses the argument function as the base method. */
380
381 #define TARGET_DEFAULT_IGNORE()
382 #define TARGET_DEFAULT_NORETURN(ARG)
383 #define TARGET_DEFAULT_RETURN(ARG)
384 #define TARGET_DEFAULT_FUNC(ARG)
385
386 struct target_ops
387 {
388 struct target_ops *beneath; /* To the target under this one. */
389 char *to_shortname; /* Name this target type */
390 char *to_longname; /* Name for printing */
391 char *to_doc; /* Documentation. Does not include trailing
392 newline, and starts with a one-line descrip-
393 tion (probably similar to to_longname). */
394 /* Per-target scratch pad. */
395 void *to_data;
396 /* The open routine takes the rest of the parameters from the
397 command, and (if successful) pushes a new target onto the
398 stack. Targets should supply this routine, if only to provide
399 an error message. */
400 void (*to_open) (char *, int);
401 /* Old targets with a static target vector provide "to_close".
402 New re-entrant targets provide "to_xclose" and that is expected
403 to xfree everything (including the "struct target_ops"). */
404 void (*to_xclose) (struct target_ops *targ);
405 void (*to_close) (struct target_ops *);
406 void (*to_attach) (struct target_ops *ops, char *, int)
407 TARGET_DEFAULT_FUNC (find_default_attach);
408 void (*to_post_attach) (struct target_ops *, int)
409 TARGET_DEFAULT_IGNORE ();
410 void (*to_detach) (struct target_ops *ops, const char *, int)
411 TARGET_DEFAULT_IGNORE ();
412 void (*to_disconnect) (struct target_ops *, char *, int);
413 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
414 TARGET_DEFAULT_NORETURN (noprocess ());
415 ptid_t (*to_wait) (struct target_ops *,
416 ptid_t, struct target_waitstatus *, int)
417 TARGET_DEFAULT_NORETURN (noprocess ());
418 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
419 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
420 TARGET_DEFAULT_NORETURN (noprocess ());
421 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
422 TARGET_DEFAULT_NORETURN (noprocess ());
423
424 /* Transfer LEN bytes of memory between GDB address MYADDR and
425 target address MEMADDR. If WRITE, transfer them to the target, else
426 transfer them from the target. TARGET is the target from which we
427 get this function.
428
429 Return value, N, is one of the following:
430
431 0 means that we can't handle this. If errno has been set, it is the
432 error which prevented us from doing it (FIXME: What about bfd_error?).
433
434 positive (call it N) means that we have transferred N bytes
435 starting at MEMADDR. We might be able to handle more bytes
436 beyond this length, but no promises.
437
438 negative (call its absolute value N) means that we cannot
439 transfer right at MEMADDR, but we could transfer at least
440 something at MEMADDR + N.
441
442 NOTE: cagney/2004-10-01: This has been entirely superseeded by
443 to_xfer_partial and inferior inheritance. */
444
445 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
446 int len, int write,
447 struct mem_attrib *attrib,
448 struct target_ops *target);
449
450 void (*to_files_info) (struct target_ops *)
451 TARGET_DEFAULT_IGNORE ();
452 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
453 struct bp_target_info *)
454 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
455 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
456 struct bp_target_info *)
457 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
458 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int)
459 TARGET_DEFAULT_RETURN (0);
460 int (*to_ranged_break_num_registers) (struct target_ops *);
461 int (*to_insert_hw_breakpoint) (struct target_ops *,
462 struct gdbarch *, struct bp_target_info *)
463 TARGET_DEFAULT_RETURN (-1);
464 int (*to_remove_hw_breakpoint) (struct target_ops *,
465 struct gdbarch *, struct bp_target_info *)
466 TARGET_DEFAULT_RETURN (-1);
467
468 /* Documentation of what the two routines below are expected to do is
469 provided with the corresponding target_* macros. */
470 int (*to_remove_watchpoint) (struct target_ops *,
471 CORE_ADDR, int, int, struct expression *)
472 TARGET_DEFAULT_RETURN (-1);
473 int (*to_insert_watchpoint) (struct target_ops *,
474 CORE_ADDR, int, int, struct expression *)
475 TARGET_DEFAULT_RETURN (-1);
476
477 int (*to_insert_mask_watchpoint) (struct target_ops *,
478 CORE_ADDR, CORE_ADDR, int);
479 int (*to_remove_mask_watchpoint) (struct target_ops *,
480 CORE_ADDR, CORE_ADDR, int);
481 int (*to_stopped_by_watchpoint) (struct target_ops *)
482 TARGET_DEFAULT_RETURN (0);
483 int to_have_steppable_watchpoint;
484 int to_have_continuable_watchpoint;
485 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
486 TARGET_DEFAULT_RETURN (0);
487 int (*to_watchpoint_addr_within_range) (struct target_ops *,
488 CORE_ADDR, CORE_ADDR, int)
489 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
490
491 /* Documentation of this routine is provided with the corresponding
492 target_* macro. */
493 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
494 CORE_ADDR, int)
495 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
496
497 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
498 CORE_ADDR, int, int,
499 struct expression *)
500 TARGET_DEFAULT_RETURN (0);
501 int (*to_masked_watch_num_registers) (struct target_ops *,
502 CORE_ADDR, CORE_ADDR);
503 void (*to_terminal_init) (struct target_ops *)
504 TARGET_DEFAULT_IGNORE ();
505 void (*to_terminal_inferior) (struct target_ops *)
506 TARGET_DEFAULT_IGNORE ();
507 void (*to_terminal_ours_for_output) (struct target_ops *)
508 TARGET_DEFAULT_IGNORE ();
509 void (*to_terminal_ours) (struct target_ops *)
510 TARGET_DEFAULT_IGNORE ();
511 void (*to_terminal_save_ours) (struct target_ops *)
512 TARGET_DEFAULT_IGNORE ();
513 void (*to_terminal_info) (struct target_ops *, const char *, int)
514 TARGET_DEFAULT_FUNC (default_terminal_info);
515 void (*to_kill) (struct target_ops *);
516 void (*to_load) (struct target_ops *, char *, int)
517 TARGET_DEFAULT_NORETURN (tcomplain ());
518 void (*to_create_inferior) (struct target_ops *,
519 char *, char *, char **, int);
520 void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
521 TARGET_DEFAULT_IGNORE ();
522 int (*to_insert_fork_catchpoint) (struct target_ops *, int)
523 TARGET_DEFAULT_RETURN (1);
524 int (*to_remove_fork_catchpoint) (struct target_ops *, int)
525 TARGET_DEFAULT_RETURN (1);
526 int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
527 TARGET_DEFAULT_RETURN (1);
528 int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
529 TARGET_DEFAULT_RETURN (1);
530 int (*to_follow_fork) (struct target_ops *, int, int);
531 int (*to_insert_exec_catchpoint) (struct target_ops *, int)
532 TARGET_DEFAULT_RETURN (1);
533 int (*to_remove_exec_catchpoint) (struct target_ops *, int)
534 TARGET_DEFAULT_RETURN (1);
535 int (*to_set_syscall_catchpoint) (struct target_ops *,
536 int, int, int, int, int *)
537 TARGET_DEFAULT_RETURN (1);
538 int (*to_has_exited) (struct target_ops *, int, int, int *)
539 TARGET_DEFAULT_RETURN (0);
540 void (*to_mourn_inferior) (struct target_ops *);
541 int (*to_can_run) (struct target_ops *);
542
543 /* Documentation of this routine is provided with the corresponding
544 target_* macro. */
545 void (*to_pass_signals) (struct target_ops *, int, unsigned char *);
546
547 /* Documentation of this routine is provided with the
548 corresponding target_* function. */
549 void (*to_program_signals) (struct target_ops *, int, unsigned char *);
550
551 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
552 void (*to_find_new_threads) (struct target_ops *);
553 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
554 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *)
555 TARGET_DEFAULT_RETURN (0);
556 char *(*to_thread_name) (struct target_ops *, struct thread_info *)
557 TARGET_DEFAULT_RETURN (0);
558 void (*to_stop) (struct target_ops *, ptid_t)
559 TARGET_DEFAULT_IGNORE ();
560 void (*to_rcmd) (struct target_ops *,
561 char *command, struct ui_file *output)
562 TARGET_DEFAULT_FUNC (default_rcmd);
563 char *(*to_pid_to_exec_file) (struct target_ops *, int pid)
564 TARGET_DEFAULT_RETURN (0);
565 void (*to_log_command) (struct target_ops *, const char *)
566 TARGET_DEFAULT_IGNORE ();
567 struct target_section_table *(*to_get_section_table) (struct target_ops *);
568 enum strata to_stratum;
569 int (*to_has_all_memory) (struct target_ops *);
570 int (*to_has_memory) (struct target_ops *);
571 int (*to_has_stack) (struct target_ops *);
572 int (*to_has_registers) (struct target_ops *);
573 int (*to_has_execution) (struct target_ops *, ptid_t);
574 int to_has_thread_control; /* control thread execution */
575 int to_attach_no_wait;
576 /* ASYNC target controls */
577 int (*to_can_async_p) (struct target_ops *)
578 TARGET_DEFAULT_FUNC (find_default_can_async_p);
579 int (*to_is_async_p) (struct target_ops *)
580 TARGET_DEFAULT_FUNC (find_default_is_async_p);
581 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
582 TARGET_DEFAULT_NORETURN (tcomplain ());
583 int (*to_supports_non_stop) (struct target_ops *);
584 /* find_memory_regions support method for gcore */
585 int (*to_find_memory_regions) (struct target_ops *,
586 find_memory_region_ftype func, void *data)
587 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
588 /* make_corefile_notes support method for gcore */
589 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *)
590 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
591 /* get_bookmark support method for bookmarks */
592 gdb_byte * (*to_get_bookmark) (struct target_ops *, char *, int)
593 TARGET_DEFAULT_NORETURN (tcomplain ());
594 /* goto_bookmark support method for bookmarks */
595 void (*to_goto_bookmark) (struct target_ops *, gdb_byte *, int)
596 TARGET_DEFAULT_NORETURN (tcomplain ());
597 /* Return the thread-local address at OFFSET in the
598 thread-local storage for the thread PTID and the shared library
599 or executable file given by OBJFILE. If that block of
600 thread-local storage hasn't been allocated yet, this function
601 may return an error. */
602 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
603 ptid_t ptid,
604 CORE_ADDR load_module_addr,
605 CORE_ADDR offset);
606
607 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
608 OBJECT. The OFFSET, for a seekable object, specifies the
609 starting point. The ANNEX can be used to provide additional
610 data-specific information to the target.
611
612 Return the transferred status, error or OK (an
613 'enum target_xfer_status' value). Save the number of bytes
614 actually transferred in *XFERED_LEN if transfer is successful
615 (TARGET_XFER_OK) or the number unavailable bytes if the requested
616 data is unavailable (TARGET_XFER_E_UNAVAILABLE). *XFERED_LEN
617 smaller than LEN does not indicate the end of the object, only
618 the end of the transfer; higher level code should continue
619 transferring if desired. This is handled in target.c.
620
621 The interface does not support a "retry" mechanism. Instead it
622 assumes that at least one byte will be transfered on each
623 successful call.
624
625 NOTE: cagney/2003-10-17: The current interface can lead to
626 fragmented transfers. Lower target levels should not implement
627 hacks, such as enlarging the transfer, in an attempt to
628 compensate for this. Instead, the target stack should be
629 extended so that it implements supply/collect methods and a
630 look-aside object cache. With that available, the lowest
631 target can safely and freely "push" data up the stack.
632
633 See target_read and target_write for more information. One,
634 and only one, of readbuf or writebuf must be non-NULL. */
635
636 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
637 enum target_object object,
638 const char *annex,
639 gdb_byte *readbuf,
640 const gdb_byte *writebuf,
641 ULONGEST offset, ULONGEST len,
642 ULONGEST *xfered_len)
643 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
644
645 /* Returns the memory map for the target. A return value of NULL
646 means that no memory map is available. If a memory address
647 does not fall within any returned regions, it's assumed to be
648 RAM. The returned memory regions should not overlap.
649
650 The order of regions does not matter; target_memory_map will
651 sort regions by starting address. For that reason, this
652 function should not be called directly except via
653 target_memory_map.
654
655 This method should not cache data; if the memory map could
656 change unexpectedly, it should be invalidated, and higher
657 layers will re-fetch it. */
658 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
659
660 /* Erases the region of flash memory starting at ADDRESS, of
661 length LENGTH.
662
663 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
664 on flash block boundaries, as reported by 'to_memory_map'. */
665 void (*to_flash_erase) (struct target_ops *,
666 ULONGEST address, LONGEST length);
667
668 /* Finishes a flash memory write sequence. After this operation
669 all flash memory should be available for writing and the result
670 of reading from areas written by 'to_flash_write' should be
671 equal to what was written. */
672 void (*to_flash_done) (struct target_ops *);
673
674 /* Describe the architecture-specific features of this target.
675 Returns the description found, or NULL if no description
676 was available. */
677 const struct target_desc *(*to_read_description) (struct target_ops *ops);
678
679 /* Build the PTID of the thread on which a given task is running,
680 based on LWP and THREAD. These values are extracted from the
681 task Private_Data section of the Ada Task Control Block, and
682 their interpretation depends on the target. */
683 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
684 long lwp, long thread)
685 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
686
687 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
688 Return 0 if *READPTR is already at the end of the buffer.
689 Return -1 if there is insufficient buffer for a whole entry.
690 Return 1 if an entry was read into *TYPEP and *VALP. */
691 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
692 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
693
694 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
695 sequence of bytes in PATTERN with length PATTERN_LEN.
696
697 The result is 1 if found, 0 if not found, and -1 if there was an error
698 requiring halting of the search (e.g. memory read error).
699 If the pattern is found the address is recorded in FOUND_ADDRP. */
700 int (*to_search_memory) (struct target_ops *ops,
701 CORE_ADDR start_addr, ULONGEST search_space_len,
702 const gdb_byte *pattern, ULONGEST pattern_len,
703 CORE_ADDR *found_addrp);
704
705 /* Can target execute in reverse? */
706 int (*to_can_execute_reverse) (struct target_ops *)
707 TARGET_DEFAULT_RETURN (0);
708
709 /* The direction the target is currently executing. Must be
710 implemented on targets that support reverse execution and async
711 mode. The default simply returns forward execution. */
712 enum exec_direction_kind (*to_execution_direction) (struct target_ops *)
713 TARGET_DEFAULT_FUNC (default_execution_direction);
714
715 /* Does this target support debugging multiple processes
716 simultaneously? */
717 int (*to_supports_multi_process) (struct target_ops *)
718 TARGET_DEFAULT_RETURN (0);
719
720 /* Does this target support enabling and disabling tracepoints while a trace
721 experiment is running? */
722 int (*to_supports_enable_disable_tracepoint) (struct target_ops *)
723 TARGET_DEFAULT_RETURN (0);
724
725 /* Does this target support disabling address space randomization? */
726 int (*to_supports_disable_randomization) (struct target_ops *);
727
728 /* Does this target support the tracenz bytecode for string collection? */
729 int (*to_supports_string_tracing) (struct target_ops *)
730 TARGET_DEFAULT_RETURN (0);
731
732 /* Does this target support evaluation of breakpoint conditions on its
733 end? */
734 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *)
735 TARGET_DEFAULT_RETURN (0);
736
737 /* Does this target support evaluation of breakpoint commands on its
738 end? */
739 int (*to_can_run_breakpoint_commands) (struct target_ops *)
740 TARGET_DEFAULT_RETURN (0);
741
742 /* Determine current architecture of thread PTID.
743
744 The target is supposed to determine the architecture of the code where
745 the target is currently stopped at (on Cell, if a target is in spu_run,
746 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
747 This is architecture used to perform decr_pc_after_break adjustment,
748 and also determines the frame architecture of the innermost frame.
749 ptrace operations need to operate according to target_gdbarch ().
750
751 The default implementation always returns target_gdbarch (). */
752 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t)
753 TARGET_DEFAULT_FUNC (default_thread_architecture);
754
755 /* Determine current address space of thread PTID.
756
757 The default implementation always returns the inferior's
758 address space. */
759 struct address_space *(*to_thread_address_space) (struct target_ops *,
760 ptid_t);
761
762 /* Target file operations. */
763
764 /* Open FILENAME on the target, using FLAGS and MODE. Return a
765 target file descriptor, or -1 if an error occurs (and set
766 *TARGET_ERRNO). */
767 int (*to_fileio_open) (struct target_ops *,
768 const char *filename, int flags, int mode,
769 int *target_errno);
770
771 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
772 Return the number of bytes written, or -1 if an error occurs
773 (and set *TARGET_ERRNO). */
774 int (*to_fileio_pwrite) (struct target_ops *,
775 int fd, const gdb_byte *write_buf, int len,
776 ULONGEST offset, int *target_errno);
777
778 /* Read up to LEN bytes FD on the target into READ_BUF.
779 Return the number of bytes read, or -1 if an error occurs
780 (and set *TARGET_ERRNO). */
781 int (*to_fileio_pread) (struct target_ops *,
782 int fd, gdb_byte *read_buf, int len,
783 ULONGEST offset, int *target_errno);
784
785 /* Close FD on the target. Return 0, or -1 if an error occurs
786 (and set *TARGET_ERRNO). */
787 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
788
789 /* Unlink FILENAME on the target. Return 0, or -1 if an error
790 occurs (and set *TARGET_ERRNO). */
791 int (*to_fileio_unlink) (struct target_ops *,
792 const char *filename, int *target_errno);
793
794 /* Read value of symbolic link FILENAME on the target. Return a
795 null-terminated string allocated via xmalloc, or NULL if an error
796 occurs (and set *TARGET_ERRNO). */
797 char *(*to_fileio_readlink) (struct target_ops *,
798 const char *filename, int *target_errno);
799
800
801 /* Implement the "info proc" command. */
802 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
803
804 /* Tracepoint-related operations. */
805
806 /* Prepare the target for a tracing run. */
807 void (*to_trace_init) (struct target_ops *)
808 TARGET_DEFAULT_NORETURN (tcomplain ());
809
810 /* Send full details of a tracepoint location to the target. */
811 void (*to_download_tracepoint) (struct target_ops *,
812 struct bp_location *location)
813 TARGET_DEFAULT_NORETURN (tcomplain ());
814
815 /* Is the target able to download tracepoint locations in current
816 state? */
817 int (*to_can_download_tracepoint) (struct target_ops *)
818 TARGET_DEFAULT_RETURN (0);
819
820 /* Send full details of a trace state variable to the target. */
821 void (*to_download_trace_state_variable) (struct target_ops *,
822 struct trace_state_variable *tsv)
823 TARGET_DEFAULT_NORETURN (tcomplain ());
824
825 /* Enable a tracepoint on the target. */
826 void (*to_enable_tracepoint) (struct target_ops *,
827 struct bp_location *location)
828 TARGET_DEFAULT_NORETURN (tcomplain ());
829
830 /* Disable a tracepoint on the target. */
831 void (*to_disable_tracepoint) (struct target_ops *,
832 struct bp_location *location)
833 TARGET_DEFAULT_NORETURN (tcomplain ());
834
835 /* Inform the target info of memory regions that are readonly
836 (such as text sections), and so it should return data from
837 those rather than look in the trace buffer. */
838 void (*to_trace_set_readonly_regions) (struct target_ops *)
839 TARGET_DEFAULT_NORETURN (tcomplain ());
840
841 /* Start a trace run. */
842 void (*to_trace_start) (struct target_ops *)
843 TARGET_DEFAULT_NORETURN (tcomplain ());
844
845 /* Get the current status of a tracing run. */
846 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts)
847 TARGET_DEFAULT_RETURN (-1);
848
849 void (*to_get_tracepoint_status) (struct target_ops *,
850 struct breakpoint *tp,
851 struct uploaded_tp *utp)
852 TARGET_DEFAULT_NORETURN (tcomplain ());
853
854 /* Stop a trace run. */
855 void (*to_trace_stop) (struct target_ops *)
856 TARGET_DEFAULT_NORETURN (tcomplain ());
857
858 /* Ask the target to find a trace frame of the given type TYPE,
859 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
860 number of the trace frame, and also the tracepoint number at
861 TPP. If no trace frame matches, return -1. May throw if the
862 operation fails. */
863 int (*to_trace_find) (struct target_ops *,
864 enum trace_find_type type, int num,
865 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
866 TARGET_DEFAULT_RETURN (-1);
867
868 /* Get the value of the trace state variable number TSV, returning
869 1 if the value is known and writing the value itself into the
870 location pointed to by VAL, else returning 0. */
871 int (*to_get_trace_state_variable_value) (struct target_ops *,
872 int tsv, LONGEST *val)
873 TARGET_DEFAULT_RETURN (0);
874
875 int (*to_save_trace_data) (struct target_ops *, const char *filename)
876 TARGET_DEFAULT_NORETURN (tcomplain ());
877
878 int (*to_upload_tracepoints) (struct target_ops *,
879 struct uploaded_tp **utpp)
880 TARGET_DEFAULT_RETURN (0);
881
882 int (*to_upload_trace_state_variables) (struct target_ops *,
883 struct uploaded_tsv **utsvp)
884 TARGET_DEFAULT_RETURN (0);
885
886 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
887 ULONGEST offset, LONGEST len)
888 TARGET_DEFAULT_NORETURN (tcomplain ());
889
890 /* Get the minimum length of instruction on which a fast tracepoint
891 may be set on the target. If this operation is unsupported,
892 return -1. If for some reason the minimum length cannot be
893 determined, return 0. */
894 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *)
895 TARGET_DEFAULT_RETURN (-1);
896
897 /* Set the target's tracing behavior in response to unexpected
898 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
899 void (*to_set_disconnected_tracing) (struct target_ops *, int val)
900 TARGET_DEFAULT_IGNORE ();
901 void (*to_set_circular_trace_buffer) (struct target_ops *, int val)
902 TARGET_DEFAULT_IGNORE ();
903 /* Set the size of trace buffer in the target. */
904 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val)
905 TARGET_DEFAULT_IGNORE ();
906
907 /* Add/change textual notes about the trace run, returning 1 if
908 successful, 0 otherwise. */
909 int (*to_set_trace_notes) (struct target_ops *,
910 const char *user, const char *notes,
911 const char *stopnotes)
912 TARGET_DEFAULT_RETURN (0);
913
914 /* Return the processor core that thread PTID was last seen on.
915 This information is updated only when:
916 - update_thread_list is called
917 - thread stops
918 If the core cannot be determined -- either for the specified
919 thread, or right now, or in this debug session, or for this
920 target -- return -1. */
921 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
922
923 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
924 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
925 a match, 0 if there's a mismatch, and -1 if an error is
926 encountered while reading memory. */
927 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
928 CORE_ADDR memaddr, ULONGEST size);
929
930 /* Return the address of the start of the Thread Information Block
931 a Windows OS specific feature. */
932 int (*to_get_tib_address) (struct target_ops *,
933 ptid_t ptid, CORE_ADDR *addr)
934 TARGET_DEFAULT_NORETURN (tcomplain ());
935
936 /* Send the new settings of write permission variables. */
937 void (*to_set_permissions) (struct target_ops *)
938 TARGET_DEFAULT_IGNORE ();
939
940 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
941 with its details. Return 1 on success, 0 on failure. */
942 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
943 struct static_tracepoint_marker *marker)
944 TARGET_DEFAULT_RETURN (0);
945
946 /* Return a vector of all tracepoints markers string id ID, or all
947 markers if ID is NULL. */
948 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid) (struct target_ops *, const char *id)
949 TARGET_DEFAULT_NORETURN (tcomplain ());
950
951 /* Return a traceframe info object describing the current
952 traceframe's contents. If the target doesn't support
953 traceframe info, return NULL. If the current traceframe is not
954 selected (the current traceframe number is -1), the target can
955 choose to return either NULL or an empty traceframe info. If
956 NULL is returned, for example in remote target, GDB will read
957 from the live inferior. If an empty traceframe info is
958 returned, for example in tfile target, which means the
959 traceframe info is available, but the requested memory is not
960 available in it. GDB will try to see if the requested memory
961 is available in the read-only sections. This method should not
962 cache data; higher layers take care of caching, invalidating,
963 and re-fetching when necessary. */
964 struct traceframe_info *(*to_traceframe_info) (struct target_ops *)
965 TARGET_DEFAULT_RETURN (0);
966
967 /* Ask the target to use or not to use agent according to USE. Return 1
968 successful, 0 otherwise. */
969 int (*to_use_agent) (struct target_ops *, int use)
970 TARGET_DEFAULT_NORETURN (tcomplain ());
971
972 /* Is the target able to use agent in current state? */
973 int (*to_can_use_agent) (struct target_ops *)
974 TARGET_DEFAULT_RETURN (0);
975
976 /* Check whether the target supports branch tracing. */
977 int (*to_supports_btrace) (struct target_ops *)
978 TARGET_DEFAULT_RETURN (0);
979
980 /* Enable branch tracing for PTID and allocate a branch trace target
981 information struct for reading and for disabling branch trace. */
982 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
983 ptid_t ptid);
984
985 /* Disable branch tracing and deallocate TINFO. */
986 void (*to_disable_btrace) (struct target_ops *,
987 struct btrace_target_info *tinfo);
988
989 /* Disable branch tracing and deallocate TINFO. This function is similar
990 to to_disable_btrace, except that it is called during teardown and is
991 only allowed to perform actions that are safe. A counter-example would
992 be attempting to talk to a remote target. */
993 void (*to_teardown_btrace) (struct target_ops *,
994 struct btrace_target_info *tinfo);
995
996 /* Read branch trace data for the thread indicated by BTINFO into DATA.
997 DATA is cleared before new trace is added.
998 The branch trace will start with the most recent block and continue
999 towards older blocks. */
1000 enum btrace_error (*to_read_btrace) (struct target_ops *self,
1001 VEC (btrace_block_s) **data,
1002 struct btrace_target_info *btinfo,
1003 enum btrace_read_type type);
1004
1005 /* Stop trace recording. */
1006 void (*to_stop_recording) (struct target_ops *);
1007
1008 /* Print information about the recording. */
1009 void (*to_info_record) (struct target_ops *);
1010
1011 /* Save the recorded execution trace into a file. */
1012 void (*to_save_record) (struct target_ops *, const char *filename);
1013
1014 /* Delete the recorded execution trace from the current position onwards. */
1015 void (*to_delete_record) (struct target_ops *);
1016
1017 /* Query if the record target is currently replaying. */
1018 int (*to_record_is_replaying) (struct target_ops *);
1019
1020 /* Go to the begin of the execution trace. */
1021 void (*to_goto_record_begin) (struct target_ops *);
1022
1023 /* Go to the end of the execution trace. */
1024 void (*to_goto_record_end) (struct target_ops *);
1025
1026 /* Go to a specific location in the recorded execution trace. */
1027 void (*to_goto_record) (struct target_ops *, ULONGEST insn);
1028
1029 /* Disassemble SIZE instructions in the recorded execution trace from
1030 the current position.
1031 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1032 disassemble SIZE succeeding instructions. */
1033 void (*to_insn_history) (struct target_ops *, int size, int flags);
1034
1035 /* Disassemble SIZE instructions in the recorded execution trace around
1036 FROM.
1037 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1038 disassemble SIZE instructions after FROM. */
1039 void (*to_insn_history_from) (struct target_ops *,
1040 ULONGEST from, int size, int flags);
1041
1042 /* Disassemble a section of the recorded execution trace from instruction
1043 BEGIN (inclusive) to instruction END (inclusive). */
1044 void (*to_insn_history_range) (struct target_ops *,
1045 ULONGEST begin, ULONGEST end, int flags);
1046
1047 /* Print a function trace of the recorded execution trace.
1048 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1049 succeeding functions. */
1050 void (*to_call_history) (struct target_ops *, int size, int flags);
1051
1052 /* Print a function trace of the recorded execution trace starting
1053 at function FROM.
1054 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1055 SIZE functions after FROM. */
1056 void (*to_call_history_from) (struct target_ops *,
1057 ULONGEST begin, int size, int flags);
1058
1059 /* Print a function trace of an execution trace section from function BEGIN
1060 (inclusive) to function END (inclusive). */
1061 void (*to_call_history_range) (struct target_ops *,
1062 ULONGEST begin, ULONGEST end, int flags);
1063
1064 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1065 non-empty annex. */
1066 int (*to_augmented_libraries_svr4_read) (struct target_ops *)
1067 TARGET_DEFAULT_RETURN (0);
1068
1069 /* Those unwinders are tried before any other arch unwinders. Use NULL if
1070 it is not used. */
1071 const struct frame_unwind *to_get_unwinder;
1072 const struct frame_unwind *to_get_tailcall_unwinder;
1073
1074 /* Return the number of bytes by which the PC needs to be decremented
1075 after executing a breakpoint instruction.
1076 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
1077 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
1078 struct gdbarch *gdbarch);
1079
1080 int to_magic;
1081 /* Need sub-structure for target machine related rather than comm related?
1082 */
1083 };
1084
1085 /* Magic number for checking ops size. If a struct doesn't end with this
1086 number, somebody changed the declaration but didn't change all the
1087 places that initialize one. */
1088
1089 #define OPS_MAGIC 3840
1090
1091 /* The ops structure for our "current" target process. This should
1092 never be NULL. If there is no target, it points to the dummy_target. */
1093
1094 extern struct target_ops current_target;
1095
1096 /* Define easy words for doing these operations on our current target. */
1097
1098 #define target_shortname (current_target.to_shortname)
1099 #define target_longname (current_target.to_longname)
1100
1101 /* Does whatever cleanup is required for a target that we are no
1102 longer going to be calling. This routine is automatically always
1103 called after popping the target off the target stack - the target's
1104 own methods are no longer available through the target vector.
1105 Closing file descriptors and freeing all memory allocated memory are
1106 typical things it should do. */
1107
1108 void target_close (struct target_ops *targ);
1109
1110 /* Attaches to a process on the target side. Arguments are as passed
1111 to the `attach' command by the user. This routine can be called
1112 when the target is not on the target-stack, if the target_can_run
1113 routine returns 1; in that case, it must push itself onto the stack.
1114 Upon exit, the target should be ready for normal operations, and
1115 should be ready to deliver the status of the process immediately
1116 (without waiting) to an upcoming target_wait call. */
1117
1118 void target_attach (char *, int);
1119
1120 /* Some targets don't generate traps when attaching to the inferior,
1121 or their target_attach implementation takes care of the waiting.
1122 These targets must set to_attach_no_wait. */
1123
1124 #define target_attach_no_wait \
1125 (current_target.to_attach_no_wait)
1126
1127 /* The target_attach operation places a process under debugger control,
1128 and stops the process.
1129
1130 This operation provides a target-specific hook that allows the
1131 necessary bookkeeping to be performed after an attach completes. */
1132 #define target_post_attach(pid) \
1133 (*current_target.to_post_attach) (&current_target, pid)
1134
1135 /* Takes a program previously attached to and detaches it.
1136 The program may resume execution (some targets do, some don't) and will
1137 no longer stop on signals, etc. We better not have left any breakpoints
1138 in the program or it'll die when it hits one. ARGS is arguments
1139 typed by the user (e.g. a signal to send the process). FROM_TTY
1140 says whether to be verbose or not. */
1141
1142 extern void target_detach (const char *, int);
1143
1144 /* Disconnect from the current target without resuming it (leaving it
1145 waiting for a debugger). */
1146
1147 extern void target_disconnect (char *, int);
1148
1149 /* Resume execution of the target process PTID (or a group of
1150 threads). STEP says whether to single-step or to run free; SIGGNAL
1151 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1152 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1153 PTID means `step/resume only this process id'. A wildcard PTID
1154 (all threads, or all threads of process) means `step/resume
1155 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1156 matches) resume with their 'thread->suspend.stop_signal' signal
1157 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1158 if in "no pass" state. */
1159
1160 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1161
1162 /* Wait for process pid to do something. PTID = -1 to wait for any
1163 pid to do something. Return pid of child, or -1 in case of error;
1164 store status through argument pointer STATUS. Note that it is
1165 _NOT_ OK to throw_exception() out of target_wait() without popping
1166 the debugging target from the stack; GDB isn't prepared to get back
1167 to the prompt with a debugging target but without the frame cache,
1168 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1169 options. */
1170
1171 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1172 int options);
1173
1174 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1175
1176 extern void target_fetch_registers (struct regcache *regcache, int regno);
1177
1178 /* Store at least register REGNO, or all regs if REGNO == -1.
1179 It can store as many registers as it wants to, so target_prepare_to_store
1180 must have been previously called. Calls error() if there are problems. */
1181
1182 extern void target_store_registers (struct regcache *regcache, int regs);
1183
1184 /* Get ready to modify the registers array. On machines which store
1185 individual registers, this doesn't need to do anything. On machines
1186 which store all the registers in one fell swoop, this makes sure
1187 that REGISTERS contains all the registers from the program being
1188 debugged. */
1189
1190 #define target_prepare_to_store(regcache) \
1191 (*current_target.to_prepare_to_store) (&current_target, regcache)
1192
1193 /* Determine current address space of thread PTID. */
1194
1195 struct address_space *target_thread_address_space (ptid_t);
1196
1197 /* Implement the "info proc" command. This returns one if the request
1198 was handled, and zero otherwise. It can also throw an exception if
1199 an error was encountered while attempting to handle the
1200 request. */
1201
1202 int target_info_proc (char *, enum info_proc_what);
1203
1204 /* Returns true if this target can debug multiple processes
1205 simultaneously. */
1206
1207 #define target_supports_multi_process() \
1208 (*current_target.to_supports_multi_process) (&current_target)
1209
1210 /* Returns true if this target can disable address space randomization. */
1211
1212 int target_supports_disable_randomization (void);
1213
1214 /* Returns true if this target can enable and disable tracepoints
1215 while a trace experiment is running. */
1216
1217 #define target_supports_enable_disable_tracepoint() \
1218 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1219
1220 #define target_supports_string_tracing() \
1221 (*current_target.to_supports_string_tracing) (&current_target)
1222
1223 /* Returns true if this target can handle breakpoint conditions
1224 on its end. */
1225
1226 #define target_supports_evaluation_of_breakpoint_conditions() \
1227 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1228
1229 /* Returns true if this target can handle breakpoint commands
1230 on its end. */
1231
1232 #define target_can_run_breakpoint_commands() \
1233 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1234
1235 extern int target_read_string (CORE_ADDR, char **, int, int *);
1236
1237 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1238 ssize_t len);
1239
1240 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1241 ssize_t len);
1242
1243 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1244
1245 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1246
1247 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1248 ssize_t len);
1249
1250 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1251 ssize_t len);
1252
1253 /* Fetches the target's memory map. If one is found it is sorted
1254 and returned, after some consistency checking. Otherwise, NULL
1255 is returned. */
1256 VEC(mem_region_s) *target_memory_map (void);
1257
1258 /* Erase the specified flash region. */
1259 void target_flash_erase (ULONGEST address, LONGEST length);
1260
1261 /* Finish a sequence of flash operations. */
1262 void target_flash_done (void);
1263
1264 /* Describes a request for a memory write operation. */
1265 struct memory_write_request
1266 {
1267 /* Begining address that must be written. */
1268 ULONGEST begin;
1269 /* Past-the-end address. */
1270 ULONGEST end;
1271 /* The data to write. */
1272 gdb_byte *data;
1273 /* A callback baton for progress reporting for this request. */
1274 void *baton;
1275 };
1276 typedef struct memory_write_request memory_write_request_s;
1277 DEF_VEC_O(memory_write_request_s);
1278
1279 /* Enumeration specifying different flash preservation behaviour. */
1280 enum flash_preserve_mode
1281 {
1282 flash_preserve,
1283 flash_discard
1284 };
1285
1286 /* Write several memory blocks at once. This version can be more
1287 efficient than making several calls to target_write_memory, in
1288 particular because it can optimize accesses to flash memory.
1289
1290 Moreover, this is currently the only memory access function in gdb
1291 that supports writing to flash memory, and it should be used for
1292 all cases where access to flash memory is desirable.
1293
1294 REQUESTS is the vector (see vec.h) of memory_write_request.
1295 PRESERVE_FLASH_P indicates what to do with blocks which must be
1296 erased, but not completely rewritten.
1297 PROGRESS_CB is a function that will be periodically called to provide
1298 feedback to user. It will be called with the baton corresponding
1299 to the request currently being written. It may also be called
1300 with a NULL baton, when preserved flash sectors are being rewritten.
1301
1302 The function returns 0 on success, and error otherwise. */
1303 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1304 enum flash_preserve_mode preserve_flash_p,
1305 void (*progress_cb) (ULONGEST, void *));
1306
1307 /* Print a line about the current target. */
1308
1309 #define target_files_info() \
1310 (*current_target.to_files_info) (&current_target)
1311
1312 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1313 the target machine. Returns 0 for success, and returns non-zero or
1314 throws an error (with a detailed failure reason error code and
1315 message) otherwise. */
1316
1317 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1318 struct bp_target_info *bp_tgt);
1319
1320 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1321 machine. Result is 0 for success, non-zero for error. */
1322
1323 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1324 struct bp_target_info *bp_tgt);
1325
1326 /* Initialize the terminal settings we record for the inferior,
1327 before we actually run the inferior. */
1328
1329 #define target_terminal_init() \
1330 (*current_target.to_terminal_init) (&current_target)
1331
1332 /* Put the inferior's terminal settings into effect.
1333 This is preparation for starting or resuming the inferior. */
1334
1335 extern void target_terminal_inferior (void);
1336
1337 /* Put some of our terminal settings into effect,
1338 enough to get proper results from our output,
1339 but do not change into or out of RAW mode
1340 so that no input is discarded.
1341
1342 After doing this, either terminal_ours or terminal_inferior
1343 should be called to get back to a normal state of affairs. */
1344
1345 #define target_terminal_ours_for_output() \
1346 (*current_target.to_terminal_ours_for_output) (&current_target)
1347
1348 /* Put our terminal settings into effect.
1349 First record the inferior's terminal settings
1350 so they can be restored properly later. */
1351
1352 #define target_terminal_ours() \
1353 (*current_target.to_terminal_ours) (&current_target)
1354
1355 /* Save our terminal settings.
1356 This is called from TUI after entering or leaving the curses
1357 mode. Since curses modifies our terminal this call is here
1358 to take this change into account. */
1359
1360 #define target_terminal_save_ours() \
1361 (*current_target.to_terminal_save_ours) (&current_target)
1362
1363 /* Print useful information about our terminal status, if such a thing
1364 exists. */
1365
1366 #define target_terminal_info(arg, from_tty) \
1367 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1368
1369 /* Kill the inferior process. Make it go away. */
1370
1371 extern void target_kill (void);
1372
1373 /* Load an executable file into the target process. This is expected
1374 to not only bring new code into the target process, but also to
1375 update GDB's symbol tables to match.
1376
1377 ARG contains command-line arguments, to be broken down with
1378 buildargv (). The first non-switch argument is the filename to
1379 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1380 0)), which is an offset to apply to the load addresses of FILE's
1381 sections. The target may define switches, or other non-switch
1382 arguments, as it pleases. */
1383
1384 extern void target_load (char *arg, int from_tty);
1385
1386 /* Start an inferior process and set inferior_ptid to its pid.
1387 EXEC_FILE is the file to run.
1388 ALLARGS is a string containing the arguments to the program.
1389 ENV is the environment vector to pass. Errors reported with error().
1390 On VxWorks and various standalone systems, we ignore exec_file. */
1391
1392 void target_create_inferior (char *exec_file, char *args,
1393 char **env, int from_tty);
1394
1395 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1396 notification of inferior events such as fork and vork immediately
1397 after the inferior is created. (This because of how gdb gets an
1398 inferior created via invoking a shell to do it. In such a scenario,
1399 if the shell init file has commands in it, the shell will fork and
1400 exec for each of those commands, and we will see each such fork
1401 event. Very bad.)
1402
1403 Such targets will supply an appropriate definition for this function. */
1404
1405 #define target_post_startup_inferior(ptid) \
1406 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1407
1408 /* On some targets, we can catch an inferior fork or vfork event when
1409 it occurs. These functions insert/remove an already-created
1410 catchpoint for such events. They return 0 for success, 1 if the
1411 catchpoint type is not supported and -1 for failure. */
1412
1413 #define target_insert_fork_catchpoint(pid) \
1414 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1415
1416 #define target_remove_fork_catchpoint(pid) \
1417 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1418
1419 #define target_insert_vfork_catchpoint(pid) \
1420 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1421
1422 #define target_remove_vfork_catchpoint(pid) \
1423 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1424
1425 /* If the inferior forks or vforks, this function will be called at
1426 the next resume in order to perform any bookkeeping and fiddling
1427 necessary to continue debugging either the parent or child, as
1428 requested, and releasing the other. Information about the fork
1429 or vfork event is available via get_last_target_status ().
1430 This function returns 1 if the inferior should not be resumed
1431 (i.e. there is another event pending). */
1432
1433 int target_follow_fork (int follow_child, int detach_fork);
1434
1435 /* On some targets, we can catch an inferior exec event when it
1436 occurs. These functions insert/remove an already-created
1437 catchpoint for such events. They return 0 for success, 1 if the
1438 catchpoint type is not supported and -1 for failure. */
1439
1440 #define target_insert_exec_catchpoint(pid) \
1441 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1442
1443 #define target_remove_exec_catchpoint(pid) \
1444 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1445
1446 /* Syscall catch.
1447
1448 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1449 If NEEDED is zero, it means the target can disable the mechanism to
1450 catch system calls because there are no more catchpoints of this type.
1451
1452 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1453 being requested. In this case, both TABLE_SIZE and TABLE should
1454 be ignored.
1455
1456 TABLE_SIZE is the number of elements in TABLE. It only matters if
1457 ANY_COUNT is zero.
1458
1459 TABLE is an array of ints, indexed by syscall number. An element in
1460 this array is nonzero if that syscall should be caught. This argument
1461 only matters if ANY_COUNT is zero.
1462
1463 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1464 for failure. */
1465
1466 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1467 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1468 pid, needed, any_count, \
1469 table_size, table)
1470
1471 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1472 exit code of PID, if any. */
1473
1474 #define target_has_exited(pid,wait_status,exit_status) \
1475 (*current_target.to_has_exited) (&current_target, \
1476 pid,wait_status,exit_status)
1477
1478 /* The debugger has completed a blocking wait() call. There is now
1479 some process event that must be processed. This function should
1480 be defined by those targets that require the debugger to perform
1481 cleanup or internal state changes in response to the process event. */
1482
1483 /* The inferior process has died. Do what is right. */
1484
1485 void target_mourn_inferior (void);
1486
1487 /* Does target have enough data to do a run or attach command? */
1488
1489 #define target_can_run(t) \
1490 ((t)->to_can_run) (t)
1491
1492 /* Set list of signals to be handled in the target.
1493
1494 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1495 (enum gdb_signal). For every signal whose entry in this array is
1496 non-zero, the target is allowed -but not required- to skip reporting
1497 arrival of the signal to the GDB core by returning from target_wait,
1498 and to pass the signal directly to the inferior instead.
1499
1500 However, if the target is hardware single-stepping a thread that is
1501 about to receive a signal, it needs to be reported in any case, even
1502 if mentioned in a previous target_pass_signals call. */
1503
1504 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1505
1506 /* Set list of signals the target may pass to the inferior. This
1507 directly maps to the "handle SIGNAL pass/nopass" setting.
1508
1509 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1510 number (enum gdb_signal). For every signal whose entry in this
1511 array is non-zero, the target is allowed to pass the signal to the
1512 inferior. Signals not present in the array shall be silently
1513 discarded. This does not influence whether to pass signals to the
1514 inferior as a result of a target_resume call. This is useful in
1515 scenarios where the target needs to decide whether to pass or not a
1516 signal to the inferior without GDB core involvement, such as for
1517 example, when detaching (as threads may have been suspended with
1518 pending signals not reported to GDB). */
1519
1520 extern void target_program_signals (int nsig, unsigned char *program_signals);
1521
1522 /* Check to see if a thread is still alive. */
1523
1524 extern int target_thread_alive (ptid_t ptid);
1525
1526 /* Query for new threads and add them to the thread list. */
1527
1528 extern void target_find_new_threads (void);
1529
1530 /* Make target stop in a continuable fashion. (For instance, under
1531 Unix, this should act like SIGSTOP). This function is normally
1532 used by GUIs to implement a stop button. */
1533
1534 extern void target_stop (ptid_t ptid);
1535
1536 /* Send the specified COMMAND to the target's monitor
1537 (shell,interpreter) for execution. The result of the query is
1538 placed in OUTBUF. */
1539
1540 #define target_rcmd(command, outbuf) \
1541 (*current_target.to_rcmd) (&current_target, command, outbuf)
1542
1543
1544 /* Does the target include all of memory, or only part of it? This
1545 determines whether we look up the target chain for other parts of
1546 memory if this target can't satisfy a request. */
1547
1548 extern int target_has_all_memory_1 (void);
1549 #define target_has_all_memory target_has_all_memory_1 ()
1550
1551 /* Does the target include memory? (Dummy targets don't.) */
1552
1553 extern int target_has_memory_1 (void);
1554 #define target_has_memory target_has_memory_1 ()
1555
1556 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1557 we start a process.) */
1558
1559 extern int target_has_stack_1 (void);
1560 #define target_has_stack target_has_stack_1 ()
1561
1562 /* Does the target have registers? (Exec files don't.) */
1563
1564 extern int target_has_registers_1 (void);
1565 #define target_has_registers target_has_registers_1 ()
1566
1567 /* Does the target have execution? Can we make it jump (through
1568 hoops), or pop its stack a few times? This means that the current
1569 target is currently executing; for some targets, that's the same as
1570 whether or not the target is capable of execution, but there are
1571 also targets which can be current while not executing. In that
1572 case this will become true after target_create_inferior or
1573 target_attach. */
1574
1575 extern int target_has_execution_1 (ptid_t);
1576
1577 /* Like target_has_execution_1, but always passes inferior_ptid. */
1578
1579 extern int target_has_execution_current (void);
1580
1581 #define target_has_execution target_has_execution_current ()
1582
1583 /* Default implementations for process_stratum targets. Return true
1584 if there's a selected inferior, false otherwise. */
1585
1586 extern int default_child_has_all_memory (struct target_ops *ops);
1587 extern int default_child_has_memory (struct target_ops *ops);
1588 extern int default_child_has_stack (struct target_ops *ops);
1589 extern int default_child_has_registers (struct target_ops *ops);
1590 extern int default_child_has_execution (struct target_ops *ops,
1591 ptid_t the_ptid);
1592
1593 /* Can the target support the debugger control of thread execution?
1594 Can it lock the thread scheduler? */
1595
1596 #define target_can_lock_scheduler \
1597 (current_target.to_has_thread_control & tc_schedlock)
1598
1599 /* Should the target enable async mode if it is supported? Temporary
1600 cludge until async mode is a strict superset of sync mode. */
1601 extern int target_async_permitted;
1602
1603 /* Can the target support asynchronous execution? */
1604 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1605
1606 /* Is the target in asynchronous execution mode? */
1607 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1608
1609 int target_supports_non_stop (void);
1610
1611 /* Put the target in async mode with the specified callback function. */
1612 #define target_async(CALLBACK,CONTEXT) \
1613 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1614
1615 #define target_execution_direction() \
1616 (current_target.to_execution_direction (&current_target))
1617
1618 /* Converts a process id to a string. Usually, the string just contains
1619 `process xyz', but on some systems it may contain
1620 `process xyz thread abc'. */
1621
1622 extern char *target_pid_to_str (ptid_t ptid);
1623
1624 extern char *normal_pid_to_str (ptid_t ptid);
1625
1626 /* Return a short string describing extra information about PID,
1627 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1628 is okay. */
1629
1630 #define target_extra_thread_info(TP) \
1631 (current_target.to_extra_thread_info (&current_target, TP))
1632
1633 /* Return the thread's name. A NULL result means that the target
1634 could not determine this thread's name. */
1635
1636 extern char *target_thread_name (struct thread_info *);
1637
1638 /* Attempts to find the pathname of the executable file
1639 that was run to create a specified process.
1640
1641 The process PID must be stopped when this operation is used.
1642
1643 If the executable file cannot be determined, NULL is returned.
1644
1645 Else, a pointer to a character string containing the pathname
1646 is returned. This string should be copied into a buffer by
1647 the client if the string will not be immediately used, or if
1648 it must persist. */
1649
1650 #define target_pid_to_exec_file(pid) \
1651 (current_target.to_pid_to_exec_file) (&current_target, pid)
1652
1653 /* See the to_thread_architecture description in struct target_ops. */
1654
1655 #define target_thread_architecture(ptid) \
1656 (current_target.to_thread_architecture (&current_target, ptid))
1657
1658 /*
1659 * Iterator function for target memory regions.
1660 * Calls a callback function once for each memory region 'mapped'
1661 * in the child process. Defined as a simple macro rather than
1662 * as a function macro so that it can be tested for nullity.
1663 */
1664
1665 #define target_find_memory_regions(FUNC, DATA) \
1666 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1667
1668 /*
1669 * Compose corefile .note section.
1670 */
1671
1672 #define target_make_corefile_notes(BFD, SIZE_P) \
1673 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1674
1675 /* Bookmark interfaces. */
1676 #define target_get_bookmark(ARGS, FROM_TTY) \
1677 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1678
1679 #define target_goto_bookmark(ARG, FROM_TTY) \
1680 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1681
1682 /* Hardware watchpoint interfaces. */
1683
1684 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1685 write). Only the INFERIOR_PTID task is being queried. */
1686
1687 #define target_stopped_by_watchpoint() \
1688 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1689
1690 /* Non-zero if we have steppable watchpoints */
1691
1692 #define target_have_steppable_watchpoint \
1693 (current_target.to_have_steppable_watchpoint)
1694
1695 /* Non-zero if we have continuable watchpoints */
1696
1697 #define target_have_continuable_watchpoint \
1698 (current_target.to_have_continuable_watchpoint)
1699
1700 /* Provide defaults for hardware watchpoint functions. */
1701
1702 /* If the *_hw_beakpoint functions have not been defined
1703 elsewhere use the definitions in the target vector. */
1704
1705 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1706 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1707 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1708 (including this one?). OTHERTYPE is who knows what... */
1709
1710 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1711 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1712 TYPE, CNT, OTHERTYPE);
1713
1714 /* Returns the number of debug registers needed to watch the given
1715 memory region, or zero if not supported. */
1716
1717 #define target_region_ok_for_hw_watchpoint(addr, len) \
1718 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1719 addr, len)
1720
1721
1722 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1723 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1724 COND is the expression for its condition, or NULL if there's none.
1725 Returns 0 for success, 1 if the watchpoint type is not supported,
1726 -1 for failure. */
1727
1728 #define target_insert_watchpoint(addr, len, type, cond) \
1729 (*current_target.to_insert_watchpoint) (&current_target, \
1730 addr, len, type, cond)
1731
1732 #define target_remove_watchpoint(addr, len, type, cond) \
1733 (*current_target.to_remove_watchpoint) (&current_target, \
1734 addr, len, type, cond)
1735
1736 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1737 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1738 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1739 masked watchpoints are not supported, -1 for failure. */
1740
1741 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1742
1743 /* Remove a masked watchpoint at ADDR with the mask MASK.
1744 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1745 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1746 for failure. */
1747
1748 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1749
1750 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1751 the target machine. Returns 0 for success, and returns non-zero or
1752 throws an error (with a detailed failure reason error code and
1753 message) otherwise. */
1754
1755 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1756 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1757 gdbarch, bp_tgt)
1758
1759 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1760 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1761 gdbarch, bp_tgt)
1762
1763 /* Return number of debug registers needed for a ranged breakpoint,
1764 or -1 if ranged breakpoints are not supported. */
1765
1766 extern int target_ranged_break_num_registers (void);
1767
1768 /* Return non-zero if target knows the data address which triggered this
1769 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1770 INFERIOR_PTID task is being queried. */
1771 #define target_stopped_data_address(target, addr_p) \
1772 (*target.to_stopped_data_address) (target, addr_p)
1773
1774 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1775 LENGTH bytes beginning at START. */
1776 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1777 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1778
1779 /* Return non-zero if the target is capable of using hardware to evaluate
1780 the condition expression. In this case, if the condition is false when
1781 the watched memory location changes, execution may continue without the
1782 debugger being notified.
1783
1784 Due to limitations in the hardware implementation, it may be capable of
1785 avoiding triggering the watchpoint in some cases where the condition
1786 expression is false, but may report some false positives as well.
1787 For this reason, GDB will still evaluate the condition expression when
1788 the watchpoint triggers. */
1789 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1790 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1791 addr, len, type, cond)
1792
1793 /* Return number of debug registers needed for a masked watchpoint,
1794 -1 if masked watchpoints are not supported or -2 if the given address
1795 and mask combination cannot be used. */
1796
1797 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1798
1799 /* Target can execute in reverse? */
1800 #define target_can_execute_reverse \
1801 current_target.to_can_execute_reverse (&current_target)
1802
1803 extern const struct target_desc *target_read_description (struct target_ops *);
1804
1805 #define target_get_ada_task_ptid(lwp, tid) \
1806 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1807
1808 /* Utility implementation of searching memory. */
1809 extern int simple_search_memory (struct target_ops* ops,
1810 CORE_ADDR start_addr,
1811 ULONGEST search_space_len,
1812 const gdb_byte *pattern,
1813 ULONGEST pattern_len,
1814 CORE_ADDR *found_addrp);
1815
1816 /* Main entry point for searching memory. */
1817 extern int target_search_memory (CORE_ADDR start_addr,
1818 ULONGEST search_space_len,
1819 const gdb_byte *pattern,
1820 ULONGEST pattern_len,
1821 CORE_ADDR *found_addrp);
1822
1823 /* Target file operations. */
1824
1825 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1826 target file descriptor, or -1 if an error occurs (and set
1827 *TARGET_ERRNO). */
1828 extern int target_fileio_open (const char *filename, int flags, int mode,
1829 int *target_errno);
1830
1831 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1832 Return the number of bytes written, or -1 if an error occurs
1833 (and set *TARGET_ERRNO). */
1834 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1835 ULONGEST offset, int *target_errno);
1836
1837 /* Read up to LEN bytes FD on the target into READ_BUF.
1838 Return the number of bytes read, or -1 if an error occurs
1839 (and set *TARGET_ERRNO). */
1840 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1841 ULONGEST offset, int *target_errno);
1842
1843 /* Close FD on the target. Return 0, or -1 if an error occurs
1844 (and set *TARGET_ERRNO). */
1845 extern int target_fileio_close (int fd, int *target_errno);
1846
1847 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1848 occurs (and set *TARGET_ERRNO). */
1849 extern int target_fileio_unlink (const char *filename, int *target_errno);
1850
1851 /* Read value of symbolic link FILENAME on the target. Return a
1852 null-terminated string allocated via xmalloc, or NULL if an error
1853 occurs (and set *TARGET_ERRNO). */
1854 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1855
1856 /* Read target file FILENAME. The return value will be -1 if the transfer
1857 fails or is not supported; 0 if the object is empty; or the length
1858 of the object otherwise. If a positive value is returned, a
1859 sufficiently large buffer will be allocated using xmalloc and
1860 returned in *BUF_P containing the contents of the object.
1861
1862 This method should be used for objects sufficiently small to store
1863 in a single xmalloc'd buffer, when no fixed bound on the object's
1864 size is known in advance. */
1865 extern LONGEST target_fileio_read_alloc (const char *filename,
1866 gdb_byte **buf_p);
1867
1868 /* Read target file FILENAME. The result is NUL-terminated and
1869 returned as a string, allocated using xmalloc. If an error occurs
1870 or the transfer is unsupported, NULL is returned. Empty objects
1871 are returned as allocated but empty strings. A warning is issued
1872 if the result contains any embedded NUL bytes. */
1873 extern char *target_fileio_read_stralloc (const char *filename);
1874
1875
1876 /* Tracepoint-related operations. */
1877
1878 #define target_trace_init() \
1879 (*current_target.to_trace_init) (&current_target)
1880
1881 #define target_download_tracepoint(t) \
1882 (*current_target.to_download_tracepoint) (&current_target, t)
1883
1884 #define target_can_download_tracepoint() \
1885 (*current_target.to_can_download_tracepoint) (&current_target)
1886
1887 #define target_download_trace_state_variable(tsv) \
1888 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
1889
1890 #define target_enable_tracepoint(loc) \
1891 (*current_target.to_enable_tracepoint) (&current_target, loc)
1892
1893 #define target_disable_tracepoint(loc) \
1894 (*current_target.to_disable_tracepoint) (&current_target, loc)
1895
1896 #define target_trace_start() \
1897 (*current_target.to_trace_start) (&current_target)
1898
1899 #define target_trace_set_readonly_regions() \
1900 (*current_target.to_trace_set_readonly_regions) (&current_target)
1901
1902 #define target_get_trace_status(ts) \
1903 (*current_target.to_get_trace_status) (&current_target, ts)
1904
1905 #define target_get_tracepoint_status(tp,utp) \
1906 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
1907
1908 #define target_trace_stop() \
1909 (*current_target.to_trace_stop) (&current_target)
1910
1911 #define target_trace_find(type,num,addr1,addr2,tpp) \
1912 (*current_target.to_trace_find) (&current_target, \
1913 (type), (num), (addr1), (addr2), (tpp))
1914
1915 #define target_get_trace_state_variable_value(tsv,val) \
1916 (*current_target.to_get_trace_state_variable_value) (&current_target, \
1917 (tsv), (val))
1918
1919 #define target_save_trace_data(filename) \
1920 (*current_target.to_save_trace_data) (&current_target, filename)
1921
1922 #define target_upload_tracepoints(utpp) \
1923 (*current_target.to_upload_tracepoints) (&current_target, utpp)
1924
1925 #define target_upload_trace_state_variables(utsvp) \
1926 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
1927
1928 #define target_get_raw_trace_data(buf,offset,len) \
1929 (*current_target.to_get_raw_trace_data) (&current_target, \
1930 (buf), (offset), (len))
1931
1932 #define target_get_min_fast_tracepoint_insn_len() \
1933 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
1934
1935 #define target_set_disconnected_tracing(val) \
1936 (*current_target.to_set_disconnected_tracing) (&current_target, val)
1937
1938 #define target_set_circular_trace_buffer(val) \
1939 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
1940
1941 #define target_set_trace_buffer_size(val) \
1942 (*current_target.to_set_trace_buffer_size) (&current_target, val)
1943
1944 #define target_set_trace_notes(user,notes,stopnotes) \
1945 (*current_target.to_set_trace_notes) (&current_target, \
1946 (user), (notes), (stopnotes))
1947
1948 #define target_get_tib_address(ptid, addr) \
1949 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
1950
1951 #define target_set_permissions() \
1952 (*current_target.to_set_permissions) (&current_target)
1953
1954 #define target_static_tracepoint_marker_at(addr, marker) \
1955 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
1956 addr, marker)
1957
1958 #define target_static_tracepoint_markers_by_strid(marker_id) \
1959 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
1960 marker_id)
1961
1962 #define target_traceframe_info() \
1963 (*current_target.to_traceframe_info) (&current_target)
1964
1965 #define target_use_agent(use) \
1966 (*current_target.to_use_agent) (&current_target, use)
1967
1968 #define target_can_use_agent() \
1969 (*current_target.to_can_use_agent) (&current_target)
1970
1971 #define target_augmented_libraries_svr4_read() \
1972 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
1973
1974 /* Command logging facility. */
1975
1976 #define target_log_command(p) \
1977 (*current_target.to_log_command) (&current_target, p)
1978
1979
1980 extern int target_core_of_thread (ptid_t ptid);
1981
1982 /* See to_get_unwinder in struct target_ops. */
1983 extern const struct frame_unwind *target_get_unwinder (void);
1984
1985 /* See to_get_tailcall_unwinder in struct target_ops. */
1986 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
1987
1988 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1989 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1990 if there's a mismatch, and -1 if an error is encountered while
1991 reading memory. Throws an error if the functionality is found not
1992 to be supported by the current target. */
1993 int target_verify_memory (const gdb_byte *data,
1994 CORE_ADDR memaddr, ULONGEST size);
1995
1996 /* Routines for maintenance of the target structures...
1997
1998 complete_target_initialization: Finalize a target_ops by filling in
1999 any fields needed by the target implementation.
2000
2001 add_target: Add a target to the list of all possible targets.
2002
2003 push_target: Make this target the top of the stack of currently used
2004 targets, within its particular stratum of the stack. Result
2005 is 0 if now atop the stack, nonzero if not on top (maybe
2006 should warn user).
2007
2008 unpush_target: Remove this from the stack of currently used targets,
2009 no matter where it is on the list. Returns 0 if no
2010 change, 1 if removed from stack. */
2011
2012 extern void add_target (struct target_ops *);
2013
2014 extern void add_target_with_completer (struct target_ops *t,
2015 completer_ftype *completer);
2016
2017 extern void complete_target_initialization (struct target_ops *t);
2018
2019 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
2020 for maintaining backwards compatibility when renaming targets. */
2021
2022 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
2023
2024 extern void push_target (struct target_ops *);
2025
2026 extern int unpush_target (struct target_ops *);
2027
2028 extern void target_pre_inferior (int);
2029
2030 extern void target_preopen (int);
2031
2032 /* Does whatever cleanup is required to get rid of all pushed targets. */
2033 extern void pop_all_targets (void);
2034
2035 /* Like pop_all_targets, but pops only targets whose stratum is
2036 strictly above ABOVE_STRATUM. */
2037 extern void pop_all_targets_above (enum strata above_stratum);
2038
2039 extern int target_is_pushed (struct target_ops *t);
2040
2041 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2042 CORE_ADDR offset);
2043
2044 /* Struct target_section maps address ranges to file sections. It is
2045 mostly used with BFD files, but can be used without (e.g. for handling
2046 raw disks, or files not in formats handled by BFD). */
2047
2048 struct target_section
2049 {
2050 CORE_ADDR addr; /* Lowest address in section */
2051 CORE_ADDR endaddr; /* 1+highest address in section */
2052
2053 struct bfd_section *the_bfd_section;
2054
2055 /* The "owner" of the section.
2056 It can be any unique value. It is set by add_target_sections
2057 and used by remove_target_sections.
2058 For example, for executables it is a pointer to exec_bfd and
2059 for shlibs it is the so_list pointer. */
2060 void *owner;
2061 };
2062
2063 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2064
2065 struct target_section_table
2066 {
2067 struct target_section *sections;
2068 struct target_section *sections_end;
2069 };
2070
2071 /* Return the "section" containing the specified address. */
2072 struct target_section *target_section_by_addr (struct target_ops *target,
2073 CORE_ADDR addr);
2074
2075 /* Return the target section table this target (or the targets
2076 beneath) currently manipulate. */
2077
2078 extern struct target_section_table *target_get_section_table
2079 (struct target_ops *target);
2080
2081 /* From mem-break.c */
2082
2083 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2084 struct bp_target_info *);
2085
2086 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2087 struct bp_target_info *);
2088
2089 extern int default_memory_remove_breakpoint (struct gdbarch *,
2090 struct bp_target_info *);
2091
2092 extern int default_memory_insert_breakpoint (struct gdbarch *,
2093 struct bp_target_info *);
2094
2095
2096 /* From target.c */
2097
2098 extern void initialize_targets (void);
2099
2100 extern void noprocess (void) ATTRIBUTE_NORETURN;
2101
2102 extern void target_require_runnable (void);
2103
2104 extern void find_default_attach (struct target_ops *, char *, int);
2105
2106 extern void find_default_create_inferior (struct target_ops *,
2107 char *, char *, char **, int);
2108
2109 extern struct target_ops *find_target_beneath (struct target_ops *);
2110
2111 /* Find the target at STRATUM. If no target is at that stratum,
2112 return NULL. */
2113
2114 struct target_ops *find_target_at (enum strata stratum);
2115
2116 /* Read OS data object of type TYPE from the target, and return it in
2117 XML format. The result is NUL-terminated and returned as a string,
2118 allocated using xmalloc. If an error occurs or the transfer is
2119 unsupported, NULL is returned. Empty objects are returned as
2120 allocated but empty strings. */
2121
2122 extern char *target_get_osdata (const char *type);
2123
2124 \f
2125 /* Stuff that should be shared among the various remote targets. */
2126
2127 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2128 information (higher values, more information). */
2129 extern int remote_debug;
2130
2131 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2132 extern int baud_rate;
2133 /* Timeout limit for response from target. */
2134 extern int remote_timeout;
2135
2136 \f
2137
2138 /* Set the show memory breakpoints mode to show, and installs a cleanup
2139 to restore it back to the current value. */
2140 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2141
2142 extern int may_write_registers;
2143 extern int may_write_memory;
2144 extern int may_insert_breakpoints;
2145 extern int may_insert_tracepoints;
2146 extern int may_insert_fast_tracepoints;
2147 extern int may_stop;
2148
2149 extern void update_target_permissions (void);
2150
2151 \f
2152 /* Imported from machine dependent code. */
2153
2154 /* Blank target vector entries are initialized to target_ignore. */
2155 void target_ignore (void);
2156
2157 /* See to_supports_btrace in struct target_ops. */
2158 #define target_supports_btrace() \
2159 (current_target.to_supports_btrace (&current_target))
2160
2161 /* See to_enable_btrace in struct target_ops. */
2162 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2163
2164 /* See to_disable_btrace in struct target_ops. */
2165 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2166
2167 /* See to_teardown_btrace in struct target_ops. */
2168 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2169
2170 /* See to_read_btrace in struct target_ops. */
2171 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2172 struct btrace_target_info *,
2173 enum btrace_read_type);
2174
2175 /* See to_stop_recording in struct target_ops. */
2176 extern void target_stop_recording (void);
2177
2178 /* See to_info_record in struct target_ops. */
2179 extern void target_info_record (void);
2180
2181 /* See to_save_record in struct target_ops. */
2182 extern void target_save_record (const char *filename);
2183
2184 /* Query if the target supports deleting the execution log. */
2185 extern int target_supports_delete_record (void);
2186
2187 /* See to_delete_record in struct target_ops. */
2188 extern void target_delete_record (void);
2189
2190 /* See to_record_is_replaying in struct target_ops. */
2191 extern int target_record_is_replaying (void);
2192
2193 /* See to_goto_record_begin in struct target_ops. */
2194 extern void target_goto_record_begin (void);
2195
2196 /* See to_goto_record_end in struct target_ops. */
2197 extern void target_goto_record_end (void);
2198
2199 /* See to_goto_record in struct target_ops. */
2200 extern void target_goto_record (ULONGEST insn);
2201
2202 /* See to_insn_history. */
2203 extern void target_insn_history (int size, int flags);
2204
2205 /* See to_insn_history_from. */
2206 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2207
2208 /* See to_insn_history_range. */
2209 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2210
2211 /* See to_call_history. */
2212 extern void target_call_history (int size, int flags);
2213
2214 /* See to_call_history_from. */
2215 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2216
2217 /* See to_call_history_range. */
2218 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2219
2220 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2221 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2222 struct gdbarch *gdbarch);
2223
2224 /* See to_decr_pc_after_break. */
2225 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2226
2227 #endif /* !defined (TARGET_H) */