convert to_search_memory
[binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* Generic I/O error. Note that it's important that this is '-1',
217 as we still have target_xfer-related code returning hardcoded
218 '-1' on error. */
219 TARGET_XFER_E_IO = -1,
220
221 /* Transfer failed because the piece of the object requested is
222 unavailable. */
223 TARGET_XFER_E_UNAVAILABLE = -2,
224
225 /* Keep list in sync with target_xfer_error_to_string. */
226 };
227
228 #define TARGET_XFER_STATUS_ERROR_P(STATUS) ((STATUS) < TARGET_XFER_EOF)
229
230 /* Return the string form of ERR. */
231
232 extern const char *target_xfer_status_to_string (enum target_xfer_status err);
233
234 /* Enumeration of the kinds of traceframe searches that a target may
235 be able to perform. */
236
237 enum trace_find_type
238 {
239 tfind_number,
240 tfind_pc,
241 tfind_tp,
242 tfind_range,
243 tfind_outside,
244 };
245
246 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
247 DEF_VEC_P(static_tracepoint_marker_p);
248
249 typedef enum target_xfer_status
250 target_xfer_partial_ftype (struct target_ops *ops,
251 enum target_object object,
252 const char *annex,
253 gdb_byte *readbuf,
254 const gdb_byte *writebuf,
255 ULONGEST offset,
256 ULONGEST len,
257 ULONGEST *xfered_len);
258
259 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
260 OBJECT. The OFFSET, for a seekable object, specifies the
261 starting point. The ANNEX can be used to provide additional
262 data-specific information to the target.
263
264 Return the number of bytes actually transfered, or a negative error
265 code (an 'enum target_xfer_error' value) if the transfer is not
266 supported or otherwise fails. Return of a positive value less than
267 LEN indicates that no further transfer is possible. Unlike the raw
268 to_xfer_partial interface, callers of these functions do not need
269 to retry partial transfers. */
270
271 extern LONGEST target_read (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276 struct memory_read_result
277 {
278 /* First address that was read. */
279 ULONGEST begin;
280 /* Past-the-end address. */
281 ULONGEST end;
282 /* The data. */
283 gdb_byte *data;
284 };
285 typedef struct memory_read_result memory_read_result_s;
286 DEF_VEC_O(memory_read_result_s);
287
288 extern void free_memory_read_result_vector (void *);
289
290 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
291 ULONGEST offset,
292 LONGEST len);
293
294 extern LONGEST target_write (struct target_ops *ops,
295 enum target_object object,
296 const char *annex, const gdb_byte *buf,
297 ULONGEST offset, LONGEST len);
298
299 /* Similar to target_write, except that it also calls PROGRESS with
300 the number of bytes written and the opaque BATON after every
301 successful partial write (and before the first write). This is
302 useful for progress reporting and user interaction while writing
303 data. To abort the transfer, the progress callback can throw an
304 exception. */
305
306 LONGEST target_write_with_progress (struct target_ops *ops,
307 enum target_object object,
308 const char *annex, const gdb_byte *buf,
309 ULONGEST offset, LONGEST len,
310 void (*progress) (ULONGEST, void *),
311 void *baton);
312
313 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
314 be read using OPS. The return value will be -1 if the transfer
315 fails or is not supported; 0 if the object is empty; or the length
316 of the object otherwise. If a positive value is returned, a
317 sufficiently large buffer will be allocated using xmalloc and
318 returned in *BUF_P containing the contents of the object.
319
320 This method should be used for objects sufficiently small to store
321 in a single xmalloc'd buffer, when no fixed bound on the object's
322 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
323 through this function. */
324
325 extern LONGEST target_read_alloc (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, gdb_byte **buf_p);
328
329 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
330 returned as a string, allocated using xmalloc. If an error occurs
331 or the transfer is unsupported, NULL is returned. Empty objects
332 are returned as allocated but empty strings. A warning is issued
333 if the result contains any embedded NUL bytes. */
334
335 extern char *target_read_stralloc (struct target_ops *ops,
336 enum target_object object,
337 const char *annex);
338
339 /* See target_ops->to_xfer_partial. */
340 extern target_xfer_partial_ftype target_xfer_partial;
341
342 /* Wrappers to target read/write that perform memory transfers. They
343 throw an error if the memory transfer fails.
344
345 NOTE: cagney/2003-10-23: The naming schema is lifted from
346 "frame.h". The parameter order is lifted from get_frame_memory,
347 which in turn lifted it from read_memory. */
348
349 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
350 gdb_byte *buf, LONGEST len);
351 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
352 CORE_ADDR addr, int len,
353 enum bfd_endian byte_order);
354 \f
355 struct thread_info; /* fwd decl for parameter list below: */
356
357 /* The type of the callback to the to_async method. */
358
359 typedef void async_callback_ftype (enum inferior_event_type event_type,
360 void *context);
361
362 /* These defines are used to mark target_ops methods. The script
363 make-target-delegates scans these and auto-generates the base
364 method implementations. There are four macros that can be used:
365
366 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
367 does nothing. This is only valid if the method return type is
368 'void'.
369
370 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
371 'tcomplain ()'. The base method simply makes this call, which is
372 assumed not to return.
373
374 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
375 base method returns this expression's value.
376
377 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
378 make-target-delegates does not generate a base method in this case,
379 but instead uses the argument function as the base method. */
380
381 #define TARGET_DEFAULT_IGNORE()
382 #define TARGET_DEFAULT_NORETURN(ARG)
383 #define TARGET_DEFAULT_RETURN(ARG)
384 #define TARGET_DEFAULT_FUNC(ARG)
385
386 struct target_ops
387 {
388 struct target_ops *beneath; /* To the target under this one. */
389 char *to_shortname; /* Name this target type */
390 char *to_longname; /* Name for printing */
391 char *to_doc; /* Documentation. Does not include trailing
392 newline, and starts with a one-line descrip-
393 tion (probably similar to to_longname). */
394 /* Per-target scratch pad. */
395 void *to_data;
396 /* The open routine takes the rest of the parameters from the
397 command, and (if successful) pushes a new target onto the
398 stack. Targets should supply this routine, if only to provide
399 an error message. */
400 void (*to_open) (char *, int);
401 /* Old targets with a static target vector provide "to_close".
402 New re-entrant targets provide "to_xclose" and that is expected
403 to xfree everything (including the "struct target_ops"). */
404 void (*to_xclose) (struct target_ops *targ);
405 void (*to_close) (struct target_ops *);
406 void (*to_attach) (struct target_ops *ops, char *, int)
407 TARGET_DEFAULT_FUNC (find_default_attach);
408 void (*to_post_attach) (struct target_ops *, int)
409 TARGET_DEFAULT_IGNORE ();
410 void (*to_detach) (struct target_ops *ops, const char *, int)
411 TARGET_DEFAULT_IGNORE ();
412 void (*to_disconnect) (struct target_ops *, char *, int);
413 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
414 TARGET_DEFAULT_NORETURN (noprocess ());
415 ptid_t (*to_wait) (struct target_ops *,
416 ptid_t, struct target_waitstatus *, int)
417 TARGET_DEFAULT_NORETURN (noprocess ());
418 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int)
419 TARGET_DEFAULT_IGNORE ();
420 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
421 TARGET_DEFAULT_NORETURN (noprocess ());
422 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
423 TARGET_DEFAULT_NORETURN (noprocess ());
424
425 /* Transfer LEN bytes of memory between GDB address MYADDR and
426 target address MEMADDR. If WRITE, transfer them to the target, else
427 transfer them from the target. TARGET is the target from which we
428 get this function.
429
430 Return value, N, is one of the following:
431
432 0 means that we can't handle this. If errno has been set, it is the
433 error which prevented us from doing it (FIXME: What about bfd_error?).
434
435 positive (call it N) means that we have transferred N bytes
436 starting at MEMADDR. We might be able to handle more bytes
437 beyond this length, but no promises.
438
439 negative (call its absolute value N) means that we cannot
440 transfer right at MEMADDR, but we could transfer at least
441 something at MEMADDR + N.
442
443 NOTE: cagney/2004-10-01: This has been entirely superseeded by
444 to_xfer_partial and inferior inheritance. */
445
446 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
447 int len, int write,
448 struct mem_attrib *attrib,
449 struct target_ops *target);
450
451 void (*to_files_info) (struct target_ops *)
452 TARGET_DEFAULT_IGNORE ();
453 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
454 struct bp_target_info *)
455 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
456 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
457 struct bp_target_info *)
458 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
459 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int)
460 TARGET_DEFAULT_RETURN (0);
461 int (*to_ranged_break_num_registers) (struct target_ops *)
462 TARGET_DEFAULT_RETURN (-1);
463 int (*to_insert_hw_breakpoint) (struct target_ops *,
464 struct gdbarch *, struct bp_target_info *)
465 TARGET_DEFAULT_RETURN (-1);
466 int (*to_remove_hw_breakpoint) (struct target_ops *,
467 struct gdbarch *, struct bp_target_info *)
468 TARGET_DEFAULT_RETURN (-1);
469
470 /* Documentation of what the two routines below are expected to do is
471 provided with the corresponding target_* macros. */
472 int (*to_remove_watchpoint) (struct target_ops *,
473 CORE_ADDR, int, int, struct expression *)
474 TARGET_DEFAULT_RETURN (-1);
475 int (*to_insert_watchpoint) (struct target_ops *,
476 CORE_ADDR, int, int, struct expression *)
477 TARGET_DEFAULT_RETURN (-1);
478
479 int (*to_insert_mask_watchpoint) (struct target_ops *,
480 CORE_ADDR, CORE_ADDR, int)
481 TARGET_DEFAULT_RETURN (1);
482 int (*to_remove_mask_watchpoint) (struct target_ops *,
483 CORE_ADDR, CORE_ADDR, int)
484 TARGET_DEFAULT_RETURN (1);
485 int (*to_stopped_by_watchpoint) (struct target_ops *)
486 TARGET_DEFAULT_RETURN (0);
487 int to_have_steppable_watchpoint;
488 int to_have_continuable_watchpoint;
489 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
490 TARGET_DEFAULT_RETURN (0);
491 int (*to_watchpoint_addr_within_range) (struct target_ops *,
492 CORE_ADDR, CORE_ADDR, int)
493 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
494
495 /* Documentation of this routine is provided with the corresponding
496 target_* macro. */
497 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
498 CORE_ADDR, int)
499 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
500
501 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
502 CORE_ADDR, int, int,
503 struct expression *)
504 TARGET_DEFAULT_RETURN (0);
505 int (*to_masked_watch_num_registers) (struct target_ops *,
506 CORE_ADDR, CORE_ADDR)
507 TARGET_DEFAULT_RETURN (-1);
508 void (*to_terminal_init) (struct target_ops *)
509 TARGET_DEFAULT_IGNORE ();
510 void (*to_terminal_inferior) (struct target_ops *)
511 TARGET_DEFAULT_IGNORE ();
512 void (*to_terminal_ours_for_output) (struct target_ops *)
513 TARGET_DEFAULT_IGNORE ();
514 void (*to_terminal_ours) (struct target_ops *)
515 TARGET_DEFAULT_IGNORE ();
516 void (*to_terminal_save_ours) (struct target_ops *)
517 TARGET_DEFAULT_IGNORE ();
518 void (*to_terminal_info) (struct target_ops *, const char *, int)
519 TARGET_DEFAULT_FUNC (default_terminal_info);
520 void (*to_kill) (struct target_ops *)
521 TARGET_DEFAULT_NORETURN (noprocess ());
522 void (*to_load) (struct target_ops *, char *, int)
523 TARGET_DEFAULT_NORETURN (tcomplain ());
524 void (*to_create_inferior) (struct target_ops *,
525 char *, char *, char **, int);
526 void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
527 TARGET_DEFAULT_IGNORE ();
528 int (*to_insert_fork_catchpoint) (struct target_ops *, int)
529 TARGET_DEFAULT_RETURN (1);
530 int (*to_remove_fork_catchpoint) (struct target_ops *, int)
531 TARGET_DEFAULT_RETURN (1);
532 int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
533 TARGET_DEFAULT_RETURN (1);
534 int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
535 TARGET_DEFAULT_RETURN (1);
536 int (*to_follow_fork) (struct target_ops *, int, int)
537 TARGET_DEFAULT_FUNC (default_follow_fork);
538 int (*to_insert_exec_catchpoint) (struct target_ops *, int)
539 TARGET_DEFAULT_RETURN (1);
540 int (*to_remove_exec_catchpoint) (struct target_ops *, int)
541 TARGET_DEFAULT_RETURN (1);
542 int (*to_set_syscall_catchpoint) (struct target_ops *,
543 int, int, int, int, int *)
544 TARGET_DEFAULT_RETURN (1);
545 int (*to_has_exited) (struct target_ops *, int, int, int *)
546 TARGET_DEFAULT_RETURN (0);
547 void (*to_mourn_inferior) (struct target_ops *)
548 TARGET_DEFAULT_FUNC (default_mourn_inferior);
549 int (*to_can_run) (struct target_ops *);
550
551 /* Documentation of this routine is provided with the corresponding
552 target_* macro. */
553 void (*to_pass_signals) (struct target_ops *, int, unsigned char *)
554 TARGET_DEFAULT_IGNORE ();
555
556 /* Documentation of this routine is provided with the
557 corresponding target_* function. */
558 void (*to_program_signals) (struct target_ops *, int, unsigned char *)
559 TARGET_DEFAULT_IGNORE ();
560
561 int (*to_thread_alive) (struct target_ops *, ptid_t ptid)
562 TARGET_DEFAULT_RETURN (0);
563 void (*to_find_new_threads) (struct target_ops *)
564 TARGET_DEFAULT_IGNORE ();
565 char *(*to_pid_to_str) (struct target_ops *, ptid_t)
566 TARGET_DEFAULT_FUNC (default_pid_to_str);
567 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *)
568 TARGET_DEFAULT_RETURN (0);
569 char *(*to_thread_name) (struct target_ops *, struct thread_info *)
570 TARGET_DEFAULT_RETURN (0);
571 void (*to_stop) (struct target_ops *, ptid_t)
572 TARGET_DEFAULT_IGNORE ();
573 void (*to_rcmd) (struct target_ops *,
574 char *command, struct ui_file *output)
575 TARGET_DEFAULT_FUNC (default_rcmd);
576 char *(*to_pid_to_exec_file) (struct target_ops *, int pid)
577 TARGET_DEFAULT_RETURN (0);
578 void (*to_log_command) (struct target_ops *, const char *)
579 TARGET_DEFAULT_IGNORE ();
580 struct target_section_table *(*to_get_section_table) (struct target_ops *)
581 TARGET_DEFAULT_RETURN (0);
582 enum strata to_stratum;
583 int (*to_has_all_memory) (struct target_ops *);
584 int (*to_has_memory) (struct target_ops *);
585 int (*to_has_stack) (struct target_ops *);
586 int (*to_has_registers) (struct target_ops *);
587 int (*to_has_execution) (struct target_ops *, ptid_t);
588 int to_has_thread_control; /* control thread execution */
589 int to_attach_no_wait;
590 /* ASYNC target controls */
591 int (*to_can_async_p) (struct target_ops *)
592 TARGET_DEFAULT_FUNC (find_default_can_async_p);
593 int (*to_is_async_p) (struct target_ops *)
594 TARGET_DEFAULT_FUNC (find_default_is_async_p);
595 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
596 TARGET_DEFAULT_NORETURN (tcomplain ());
597 int (*to_supports_non_stop) (struct target_ops *);
598 /* find_memory_regions support method for gcore */
599 int (*to_find_memory_regions) (struct target_ops *,
600 find_memory_region_ftype func, void *data)
601 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
602 /* make_corefile_notes support method for gcore */
603 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *)
604 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
605 /* get_bookmark support method for bookmarks */
606 gdb_byte * (*to_get_bookmark) (struct target_ops *, char *, int)
607 TARGET_DEFAULT_NORETURN (tcomplain ());
608 /* goto_bookmark support method for bookmarks */
609 void (*to_goto_bookmark) (struct target_ops *, gdb_byte *, int)
610 TARGET_DEFAULT_NORETURN (tcomplain ());
611 /* Return the thread-local address at OFFSET in the
612 thread-local storage for the thread PTID and the shared library
613 or executable file given by OBJFILE. If that block of
614 thread-local storage hasn't been allocated yet, this function
615 may return an error. */
616 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
617 ptid_t ptid,
618 CORE_ADDR load_module_addr,
619 CORE_ADDR offset);
620
621 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
622 OBJECT. The OFFSET, for a seekable object, specifies the
623 starting point. The ANNEX can be used to provide additional
624 data-specific information to the target.
625
626 Return the transferred status, error or OK (an
627 'enum target_xfer_status' value). Save the number of bytes
628 actually transferred in *XFERED_LEN if transfer is successful
629 (TARGET_XFER_OK) or the number unavailable bytes if the requested
630 data is unavailable (TARGET_XFER_E_UNAVAILABLE). *XFERED_LEN
631 smaller than LEN does not indicate the end of the object, only
632 the end of the transfer; higher level code should continue
633 transferring if desired. This is handled in target.c.
634
635 The interface does not support a "retry" mechanism. Instead it
636 assumes that at least one byte will be transfered on each
637 successful call.
638
639 NOTE: cagney/2003-10-17: The current interface can lead to
640 fragmented transfers. Lower target levels should not implement
641 hacks, such as enlarging the transfer, in an attempt to
642 compensate for this. Instead, the target stack should be
643 extended so that it implements supply/collect methods and a
644 look-aside object cache. With that available, the lowest
645 target can safely and freely "push" data up the stack.
646
647 See target_read and target_write for more information. One,
648 and only one, of readbuf or writebuf must be non-NULL. */
649
650 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
651 enum target_object object,
652 const char *annex,
653 gdb_byte *readbuf,
654 const gdb_byte *writebuf,
655 ULONGEST offset, ULONGEST len,
656 ULONGEST *xfered_len)
657 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
658
659 /* Returns the memory map for the target. A return value of NULL
660 means that no memory map is available. If a memory address
661 does not fall within any returned regions, it's assumed to be
662 RAM. The returned memory regions should not overlap.
663
664 The order of regions does not matter; target_memory_map will
665 sort regions by starting address. For that reason, this
666 function should not be called directly except via
667 target_memory_map.
668
669 This method should not cache data; if the memory map could
670 change unexpectedly, it should be invalidated, and higher
671 layers will re-fetch it. */
672 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *)
673 TARGET_DEFAULT_RETURN (0);
674
675 /* Erases the region of flash memory starting at ADDRESS, of
676 length LENGTH.
677
678 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
679 on flash block boundaries, as reported by 'to_memory_map'. */
680 void (*to_flash_erase) (struct target_ops *,
681 ULONGEST address, LONGEST length)
682 TARGET_DEFAULT_NORETURN (tcomplain ());
683
684 /* Finishes a flash memory write sequence. After this operation
685 all flash memory should be available for writing and the result
686 of reading from areas written by 'to_flash_write' should be
687 equal to what was written. */
688 void (*to_flash_done) (struct target_ops *)
689 TARGET_DEFAULT_NORETURN (tcomplain ());
690
691 /* Describe the architecture-specific features of this target.
692 Returns the description found, or NULL if no description
693 was available. */
694 const struct target_desc *(*to_read_description) (struct target_ops *ops);
695
696 /* Build the PTID of the thread on which a given task is running,
697 based on LWP and THREAD. These values are extracted from the
698 task Private_Data section of the Ada Task Control Block, and
699 their interpretation depends on the target. */
700 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
701 long lwp, long thread)
702 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
703
704 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
705 Return 0 if *READPTR is already at the end of the buffer.
706 Return -1 if there is insufficient buffer for a whole entry.
707 Return 1 if an entry was read into *TYPEP and *VALP. */
708 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
709 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
710 TARGET_DEFAULT_FUNC (default_auxv_parse);
711
712 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
713 sequence of bytes in PATTERN with length PATTERN_LEN.
714
715 The result is 1 if found, 0 if not found, and -1 if there was an error
716 requiring halting of the search (e.g. memory read error).
717 If the pattern is found the address is recorded in FOUND_ADDRP. */
718 int (*to_search_memory) (struct target_ops *ops,
719 CORE_ADDR start_addr, ULONGEST search_space_len,
720 const gdb_byte *pattern, ULONGEST pattern_len,
721 CORE_ADDR *found_addrp)
722 TARGET_DEFAULT_FUNC (default_search_memory);
723
724 /* Can target execute in reverse? */
725 int (*to_can_execute_reverse) (struct target_ops *)
726 TARGET_DEFAULT_RETURN (0);
727
728 /* The direction the target is currently executing. Must be
729 implemented on targets that support reverse execution and async
730 mode. The default simply returns forward execution. */
731 enum exec_direction_kind (*to_execution_direction) (struct target_ops *)
732 TARGET_DEFAULT_FUNC (default_execution_direction);
733
734 /* Does this target support debugging multiple processes
735 simultaneously? */
736 int (*to_supports_multi_process) (struct target_ops *)
737 TARGET_DEFAULT_RETURN (0);
738
739 /* Does this target support enabling and disabling tracepoints while a trace
740 experiment is running? */
741 int (*to_supports_enable_disable_tracepoint) (struct target_ops *)
742 TARGET_DEFAULT_RETURN (0);
743
744 /* Does this target support disabling address space randomization? */
745 int (*to_supports_disable_randomization) (struct target_ops *);
746
747 /* Does this target support the tracenz bytecode for string collection? */
748 int (*to_supports_string_tracing) (struct target_ops *)
749 TARGET_DEFAULT_RETURN (0);
750
751 /* Does this target support evaluation of breakpoint conditions on its
752 end? */
753 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *)
754 TARGET_DEFAULT_RETURN (0);
755
756 /* Does this target support evaluation of breakpoint commands on its
757 end? */
758 int (*to_can_run_breakpoint_commands) (struct target_ops *)
759 TARGET_DEFAULT_RETURN (0);
760
761 /* Determine current architecture of thread PTID.
762
763 The target is supposed to determine the architecture of the code where
764 the target is currently stopped at (on Cell, if a target is in spu_run,
765 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
766 This is architecture used to perform decr_pc_after_break adjustment,
767 and also determines the frame architecture of the innermost frame.
768 ptrace operations need to operate according to target_gdbarch ().
769
770 The default implementation always returns target_gdbarch (). */
771 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t)
772 TARGET_DEFAULT_FUNC (default_thread_architecture);
773
774 /* Determine current address space of thread PTID.
775
776 The default implementation always returns the inferior's
777 address space. */
778 struct address_space *(*to_thread_address_space) (struct target_ops *,
779 ptid_t);
780
781 /* Target file operations. */
782
783 /* Open FILENAME on the target, using FLAGS and MODE. Return a
784 target file descriptor, or -1 if an error occurs (and set
785 *TARGET_ERRNO). */
786 int (*to_fileio_open) (struct target_ops *,
787 const char *filename, int flags, int mode,
788 int *target_errno);
789
790 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
791 Return the number of bytes written, or -1 if an error occurs
792 (and set *TARGET_ERRNO). */
793 int (*to_fileio_pwrite) (struct target_ops *,
794 int fd, const gdb_byte *write_buf, int len,
795 ULONGEST offset, int *target_errno);
796
797 /* Read up to LEN bytes FD on the target into READ_BUF.
798 Return the number of bytes read, or -1 if an error occurs
799 (and set *TARGET_ERRNO). */
800 int (*to_fileio_pread) (struct target_ops *,
801 int fd, gdb_byte *read_buf, int len,
802 ULONGEST offset, int *target_errno);
803
804 /* Close FD on the target. Return 0, or -1 if an error occurs
805 (and set *TARGET_ERRNO). */
806 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
807
808 /* Unlink FILENAME on the target. Return 0, or -1 if an error
809 occurs (and set *TARGET_ERRNO). */
810 int (*to_fileio_unlink) (struct target_ops *,
811 const char *filename, int *target_errno);
812
813 /* Read value of symbolic link FILENAME on the target. Return a
814 null-terminated string allocated via xmalloc, or NULL if an error
815 occurs (and set *TARGET_ERRNO). */
816 char *(*to_fileio_readlink) (struct target_ops *,
817 const char *filename, int *target_errno);
818
819
820 /* Implement the "info proc" command. */
821 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
822
823 /* Tracepoint-related operations. */
824
825 /* Prepare the target for a tracing run. */
826 void (*to_trace_init) (struct target_ops *)
827 TARGET_DEFAULT_NORETURN (tcomplain ());
828
829 /* Send full details of a tracepoint location to the target. */
830 void (*to_download_tracepoint) (struct target_ops *,
831 struct bp_location *location)
832 TARGET_DEFAULT_NORETURN (tcomplain ());
833
834 /* Is the target able to download tracepoint locations in current
835 state? */
836 int (*to_can_download_tracepoint) (struct target_ops *)
837 TARGET_DEFAULT_RETURN (0);
838
839 /* Send full details of a trace state variable to the target. */
840 void (*to_download_trace_state_variable) (struct target_ops *,
841 struct trace_state_variable *tsv)
842 TARGET_DEFAULT_NORETURN (tcomplain ());
843
844 /* Enable a tracepoint on the target. */
845 void (*to_enable_tracepoint) (struct target_ops *,
846 struct bp_location *location)
847 TARGET_DEFAULT_NORETURN (tcomplain ());
848
849 /* Disable a tracepoint on the target. */
850 void (*to_disable_tracepoint) (struct target_ops *,
851 struct bp_location *location)
852 TARGET_DEFAULT_NORETURN (tcomplain ());
853
854 /* Inform the target info of memory regions that are readonly
855 (such as text sections), and so it should return data from
856 those rather than look in the trace buffer. */
857 void (*to_trace_set_readonly_regions) (struct target_ops *)
858 TARGET_DEFAULT_NORETURN (tcomplain ());
859
860 /* Start a trace run. */
861 void (*to_trace_start) (struct target_ops *)
862 TARGET_DEFAULT_NORETURN (tcomplain ());
863
864 /* Get the current status of a tracing run. */
865 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts)
866 TARGET_DEFAULT_RETURN (-1);
867
868 void (*to_get_tracepoint_status) (struct target_ops *,
869 struct breakpoint *tp,
870 struct uploaded_tp *utp)
871 TARGET_DEFAULT_NORETURN (tcomplain ());
872
873 /* Stop a trace run. */
874 void (*to_trace_stop) (struct target_ops *)
875 TARGET_DEFAULT_NORETURN (tcomplain ());
876
877 /* Ask the target to find a trace frame of the given type TYPE,
878 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
879 number of the trace frame, and also the tracepoint number at
880 TPP. If no trace frame matches, return -1. May throw if the
881 operation fails. */
882 int (*to_trace_find) (struct target_ops *,
883 enum trace_find_type type, int num,
884 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
885 TARGET_DEFAULT_RETURN (-1);
886
887 /* Get the value of the trace state variable number TSV, returning
888 1 if the value is known and writing the value itself into the
889 location pointed to by VAL, else returning 0. */
890 int (*to_get_trace_state_variable_value) (struct target_ops *,
891 int tsv, LONGEST *val)
892 TARGET_DEFAULT_RETURN (0);
893
894 int (*to_save_trace_data) (struct target_ops *, const char *filename)
895 TARGET_DEFAULT_NORETURN (tcomplain ());
896
897 int (*to_upload_tracepoints) (struct target_ops *,
898 struct uploaded_tp **utpp)
899 TARGET_DEFAULT_RETURN (0);
900
901 int (*to_upload_trace_state_variables) (struct target_ops *,
902 struct uploaded_tsv **utsvp)
903 TARGET_DEFAULT_RETURN (0);
904
905 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
906 ULONGEST offset, LONGEST len)
907 TARGET_DEFAULT_NORETURN (tcomplain ());
908
909 /* Get the minimum length of instruction on which a fast tracepoint
910 may be set on the target. If this operation is unsupported,
911 return -1. If for some reason the minimum length cannot be
912 determined, return 0. */
913 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *)
914 TARGET_DEFAULT_RETURN (-1);
915
916 /* Set the target's tracing behavior in response to unexpected
917 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
918 void (*to_set_disconnected_tracing) (struct target_ops *, int val)
919 TARGET_DEFAULT_IGNORE ();
920 void (*to_set_circular_trace_buffer) (struct target_ops *, int val)
921 TARGET_DEFAULT_IGNORE ();
922 /* Set the size of trace buffer in the target. */
923 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val)
924 TARGET_DEFAULT_IGNORE ();
925
926 /* Add/change textual notes about the trace run, returning 1 if
927 successful, 0 otherwise. */
928 int (*to_set_trace_notes) (struct target_ops *,
929 const char *user, const char *notes,
930 const char *stopnotes)
931 TARGET_DEFAULT_RETURN (0);
932
933 /* Return the processor core that thread PTID was last seen on.
934 This information is updated only when:
935 - update_thread_list is called
936 - thread stops
937 If the core cannot be determined -- either for the specified
938 thread, or right now, or in this debug session, or for this
939 target -- return -1. */
940 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid)
941 TARGET_DEFAULT_RETURN (-1);
942
943 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
944 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
945 a match, 0 if there's a mismatch, and -1 if an error is
946 encountered while reading memory. */
947 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
948 CORE_ADDR memaddr, ULONGEST size)
949 TARGET_DEFAULT_NORETURN (tcomplain ());
950
951 /* Return the address of the start of the Thread Information Block
952 a Windows OS specific feature. */
953 int (*to_get_tib_address) (struct target_ops *,
954 ptid_t ptid, CORE_ADDR *addr)
955 TARGET_DEFAULT_NORETURN (tcomplain ());
956
957 /* Send the new settings of write permission variables. */
958 void (*to_set_permissions) (struct target_ops *)
959 TARGET_DEFAULT_IGNORE ();
960
961 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
962 with its details. Return 1 on success, 0 on failure. */
963 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
964 struct static_tracepoint_marker *marker)
965 TARGET_DEFAULT_RETURN (0);
966
967 /* Return a vector of all tracepoints markers string id ID, or all
968 markers if ID is NULL. */
969 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid) (struct target_ops *, const char *id)
970 TARGET_DEFAULT_NORETURN (tcomplain ());
971
972 /* Return a traceframe info object describing the current
973 traceframe's contents. If the target doesn't support
974 traceframe info, return NULL. If the current traceframe is not
975 selected (the current traceframe number is -1), the target can
976 choose to return either NULL or an empty traceframe info. If
977 NULL is returned, for example in remote target, GDB will read
978 from the live inferior. If an empty traceframe info is
979 returned, for example in tfile target, which means the
980 traceframe info is available, but the requested memory is not
981 available in it. GDB will try to see if the requested memory
982 is available in the read-only sections. This method should not
983 cache data; higher layers take care of caching, invalidating,
984 and re-fetching when necessary. */
985 struct traceframe_info *(*to_traceframe_info) (struct target_ops *)
986 TARGET_DEFAULT_RETURN (0);
987
988 /* Ask the target to use or not to use agent according to USE. Return 1
989 successful, 0 otherwise. */
990 int (*to_use_agent) (struct target_ops *, int use)
991 TARGET_DEFAULT_NORETURN (tcomplain ());
992
993 /* Is the target able to use agent in current state? */
994 int (*to_can_use_agent) (struct target_ops *)
995 TARGET_DEFAULT_RETURN (0);
996
997 /* Check whether the target supports branch tracing. */
998 int (*to_supports_btrace) (struct target_ops *)
999 TARGET_DEFAULT_RETURN (0);
1000
1001 /* Enable branch tracing for PTID and allocate a branch trace target
1002 information struct for reading and for disabling branch trace. */
1003 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
1004 ptid_t ptid);
1005
1006 /* Disable branch tracing and deallocate TINFO. */
1007 void (*to_disable_btrace) (struct target_ops *,
1008 struct btrace_target_info *tinfo);
1009
1010 /* Disable branch tracing and deallocate TINFO. This function is similar
1011 to to_disable_btrace, except that it is called during teardown and is
1012 only allowed to perform actions that are safe. A counter-example would
1013 be attempting to talk to a remote target. */
1014 void (*to_teardown_btrace) (struct target_ops *,
1015 struct btrace_target_info *tinfo);
1016
1017 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1018 DATA is cleared before new trace is added.
1019 The branch trace will start with the most recent block and continue
1020 towards older blocks. */
1021 enum btrace_error (*to_read_btrace) (struct target_ops *self,
1022 VEC (btrace_block_s) **data,
1023 struct btrace_target_info *btinfo,
1024 enum btrace_read_type type);
1025
1026 /* Stop trace recording. */
1027 void (*to_stop_recording) (struct target_ops *);
1028
1029 /* Print information about the recording. */
1030 void (*to_info_record) (struct target_ops *);
1031
1032 /* Save the recorded execution trace into a file. */
1033 void (*to_save_record) (struct target_ops *, const char *filename)
1034 TARGET_DEFAULT_NORETURN (tcomplain ());
1035
1036 /* Delete the recorded execution trace from the current position onwards. */
1037 void (*to_delete_record) (struct target_ops *)
1038 TARGET_DEFAULT_NORETURN (tcomplain ());
1039
1040 /* Query if the record target is currently replaying. */
1041 int (*to_record_is_replaying) (struct target_ops *)
1042 TARGET_DEFAULT_RETURN (0);
1043
1044 /* Go to the begin of the execution trace. */
1045 void (*to_goto_record_begin) (struct target_ops *)
1046 TARGET_DEFAULT_NORETURN (tcomplain ());
1047
1048 /* Go to the end of the execution trace. */
1049 void (*to_goto_record_end) (struct target_ops *)
1050 TARGET_DEFAULT_NORETURN (tcomplain ());
1051
1052 /* Go to a specific location in the recorded execution trace. */
1053 void (*to_goto_record) (struct target_ops *, ULONGEST insn)
1054 TARGET_DEFAULT_NORETURN (tcomplain ());
1055
1056 /* Disassemble SIZE instructions in the recorded execution trace from
1057 the current position.
1058 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1059 disassemble SIZE succeeding instructions. */
1060 void (*to_insn_history) (struct target_ops *, int size, int flags)
1061 TARGET_DEFAULT_NORETURN (tcomplain ());
1062
1063 /* Disassemble SIZE instructions in the recorded execution trace around
1064 FROM.
1065 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1066 disassemble SIZE instructions after FROM. */
1067 void (*to_insn_history_from) (struct target_ops *,
1068 ULONGEST from, int size, int flags)
1069 TARGET_DEFAULT_NORETURN (tcomplain ());
1070
1071 /* Disassemble a section of the recorded execution trace from instruction
1072 BEGIN (inclusive) to instruction END (inclusive). */
1073 void (*to_insn_history_range) (struct target_ops *,
1074 ULONGEST begin, ULONGEST end, int flags)
1075 TARGET_DEFAULT_NORETURN (tcomplain ());
1076
1077 /* Print a function trace of the recorded execution trace.
1078 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1079 succeeding functions. */
1080 void (*to_call_history) (struct target_ops *, int size, int flags)
1081 TARGET_DEFAULT_NORETURN (tcomplain ());
1082
1083 /* Print a function trace of the recorded execution trace starting
1084 at function FROM.
1085 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1086 SIZE functions after FROM. */
1087 void (*to_call_history_from) (struct target_ops *,
1088 ULONGEST begin, int size, int flags)
1089 TARGET_DEFAULT_NORETURN (tcomplain ());
1090
1091 /* Print a function trace of an execution trace section from function BEGIN
1092 (inclusive) to function END (inclusive). */
1093 void (*to_call_history_range) (struct target_ops *,
1094 ULONGEST begin, ULONGEST end, int flags)
1095 TARGET_DEFAULT_NORETURN (tcomplain ());
1096
1097 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1098 non-empty annex. */
1099 int (*to_augmented_libraries_svr4_read) (struct target_ops *)
1100 TARGET_DEFAULT_RETURN (0);
1101
1102 /* Those unwinders are tried before any other arch unwinders. Use NULL if
1103 it is not used. */
1104 const struct frame_unwind *to_get_unwinder;
1105 const struct frame_unwind *to_get_tailcall_unwinder;
1106
1107 /* Return the number of bytes by which the PC needs to be decremented
1108 after executing a breakpoint instruction.
1109 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
1110 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
1111 struct gdbarch *gdbarch);
1112
1113 int to_magic;
1114 /* Need sub-structure for target machine related rather than comm related?
1115 */
1116 };
1117
1118 /* Magic number for checking ops size. If a struct doesn't end with this
1119 number, somebody changed the declaration but didn't change all the
1120 places that initialize one. */
1121
1122 #define OPS_MAGIC 3840
1123
1124 /* The ops structure for our "current" target process. This should
1125 never be NULL. If there is no target, it points to the dummy_target. */
1126
1127 extern struct target_ops current_target;
1128
1129 /* Define easy words for doing these operations on our current target. */
1130
1131 #define target_shortname (current_target.to_shortname)
1132 #define target_longname (current_target.to_longname)
1133
1134 /* Does whatever cleanup is required for a target that we are no
1135 longer going to be calling. This routine is automatically always
1136 called after popping the target off the target stack - the target's
1137 own methods are no longer available through the target vector.
1138 Closing file descriptors and freeing all memory allocated memory are
1139 typical things it should do. */
1140
1141 void target_close (struct target_ops *targ);
1142
1143 /* Attaches to a process on the target side. Arguments are as passed
1144 to the `attach' command by the user. This routine can be called
1145 when the target is not on the target-stack, if the target_can_run
1146 routine returns 1; in that case, it must push itself onto the stack.
1147 Upon exit, the target should be ready for normal operations, and
1148 should be ready to deliver the status of the process immediately
1149 (without waiting) to an upcoming target_wait call. */
1150
1151 void target_attach (char *, int);
1152
1153 /* Some targets don't generate traps when attaching to the inferior,
1154 or their target_attach implementation takes care of the waiting.
1155 These targets must set to_attach_no_wait. */
1156
1157 #define target_attach_no_wait \
1158 (current_target.to_attach_no_wait)
1159
1160 /* The target_attach operation places a process under debugger control,
1161 and stops the process.
1162
1163 This operation provides a target-specific hook that allows the
1164 necessary bookkeeping to be performed after an attach completes. */
1165 #define target_post_attach(pid) \
1166 (*current_target.to_post_attach) (&current_target, pid)
1167
1168 /* Takes a program previously attached to and detaches it.
1169 The program may resume execution (some targets do, some don't) and will
1170 no longer stop on signals, etc. We better not have left any breakpoints
1171 in the program or it'll die when it hits one. ARGS is arguments
1172 typed by the user (e.g. a signal to send the process). FROM_TTY
1173 says whether to be verbose or not. */
1174
1175 extern void target_detach (const char *, int);
1176
1177 /* Disconnect from the current target without resuming it (leaving it
1178 waiting for a debugger). */
1179
1180 extern void target_disconnect (char *, int);
1181
1182 /* Resume execution of the target process PTID (or a group of
1183 threads). STEP says whether to single-step or to run free; SIGGNAL
1184 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1185 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1186 PTID means `step/resume only this process id'. A wildcard PTID
1187 (all threads, or all threads of process) means `step/resume
1188 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1189 matches) resume with their 'thread->suspend.stop_signal' signal
1190 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1191 if in "no pass" state. */
1192
1193 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1194
1195 /* Wait for process pid to do something. PTID = -1 to wait for any
1196 pid to do something. Return pid of child, or -1 in case of error;
1197 store status through argument pointer STATUS. Note that it is
1198 _NOT_ OK to throw_exception() out of target_wait() without popping
1199 the debugging target from the stack; GDB isn't prepared to get back
1200 to the prompt with a debugging target but without the frame cache,
1201 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1202 options. */
1203
1204 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1205 int options);
1206
1207 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1208
1209 extern void target_fetch_registers (struct regcache *regcache, int regno);
1210
1211 /* Store at least register REGNO, or all regs if REGNO == -1.
1212 It can store as many registers as it wants to, so target_prepare_to_store
1213 must have been previously called. Calls error() if there are problems. */
1214
1215 extern void target_store_registers (struct regcache *regcache, int regs);
1216
1217 /* Get ready to modify the registers array. On machines which store
1218 individual registers, this doesn't need to do anything. On machines
1219 which store all the registers in one fell swoop, this makes sure
1220 that REGISTERS contains all the registers from the program being
1221 debugged. */
1222
1223 #define target_prepare_to_store(regcache) \
1224 (*current_target.to_prepare_to_store) (&current_target, regcache)
1225
1226 /* Determine current address space of thread PTID. */
1227
1228 struct address_space *target_thread_address_space (ptid_t);
1229
1230 /* Implement the "info proc" command. This returns one if the request
1231 was handled, and zero otherwise. It can also throw an exception if
1232 an error was encountered while attempting to handle the
1233 request. */
1234
1235 int target_info_proc (char *, enum info_proc_what);
1236
1237 /* Returns true if this target can debug multiple processes
1238 simultaneously. */
1239
1240 #define target_supports_multi_process() \
1241 (*current_target.to_supports_multi_process) (&current_target)
1242
1243 /* Returns true if this target can disable address space randomization. */
1244
1245 int target_supports_disable_randomization (void);
1246
1247 /* Returns true if this target can enable and disable tracepoints
1248 while a trace experiment is running. */
1249
1250 #define target_supports_enable_disable_tracepoint() \
1251 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1252
1253 #define target_supports_string_tracing() \
1254 (*current_target.to_supports_string_tracing) (&current_target)
1255
1256 /* Returns true if this target can handle breakpoint conditions
1257 on its end. */
1258
1259 #define target_supports_evaluation_of_breakpoint_conditions() \
1260 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1261
1262 /* Returns true if this target can handle breakpoint commands
1263 on its end. */
1264
1265 #define target_can_run_breakpoint_commands() \
1266 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1267
1268 extern int target_read_string (CORE_ADDR, char **, int, int *);
1269
1270 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1271 ssize_t len);
1272
1273 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1274 ssize_t len);
1275
1276 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1277
1278 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1279
1280 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1281 ssize_t len);
1282
1283 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1284 ssize_t len);
1285
1286 /* Fetches the target's memory map. If one is found it is sorted
1287 and returned, after some consistency checking. Otherwise, NULL
1288 is returned. */
1289 VEC(mem_region_s) *target_memory_map (void);
1290
1291 /* Erase the specified flash region. */
1292 void target_flash_erase (ULONGEST address, LONGEST length);
1293
1294 /* Finish a sequence of flash operations. */
1295 void target_flash_done (void);
1296
1297 /* Describes a request for a memory write operation. */
1298 struct memory_write_request
1299 {
1300 /* Begining address that must be written. */
1301 ULONGEST begin;
1302 /* Past-the-end address. */
1303 ULONGEST end;
1304 /* The data to write. */
1305 gdb_byte *data;
1306 /* A callback baton for progress reporting for this request. */
1307 void *baton;
1308 };
1309 typedef struct memory_write_request memory_write_request_s;
1310 DEF_VEC_O(memory_write_request_s);
1311
1312 /* Enumeration specifying different flash preservation behaviour. */
1313 enum flash_preserve_mode
1314 {
1315 flash_preserve,
1316 flash_discard
1317 };
1318
1319 /* Write several memory blocks at once. This version can be more
1320 efficient than making several calls to target_write_memory, in
1321 particular because it can optimize accesses to flash memory.
1322
1323 Moreover, this is currently the only memory access function in gdb
1324 that supports writing to flash memory, and it should be used for
1325 all cases where access to flash memory is desirable.
1326
1327 REQUESTS is the vector (see vec.h) of memory_write_request.
1328 PRESERVE_FLASH_P indicates what to do with blocks which must be
1329 erased, but not completely rewritten.
1330 PROGRESS_CB is a function that will be periodically called to provide
1331 feedback to user. It will be called with the baton corresponding
1332 to the request currently being written. It may also be called
1333 with a NULL baton, when preserved flash sectors are being rewritten.
1334
1335 The function returns 0 on success, and error otherwise. */
1336 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1337 enum flash_preserve_mode preserve_flash_p,
1338 void (*progress_cb) (ULONGEST, void *));
1339
1340 /* Print a line about the current target. */
1341
1342 #define target_files_info() \
1343 (*current_target.to_files_info) (&current_target)
1344
1345 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1346 the target machine. Returns 0 for success, and returns non-zero or
1347 throws an error (with a detailed failure reason error code and
1348 message) otherwise. */
1349
1350 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1351 struct bp_target_info *bp_tgt);
1352
1353 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1354 machine. Result is 0 for success, non-zero for error. */
1355
1356 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1357 struct bp_target_info *bp_tgt);
1358
1359 /* Initialize the terminal settings we record for the inferior,
1360 before we actually run the inferior. */
1361
1362 #define target_terminal_init() \
1363 (*current_target.to_terminal_init) (&current_target)
1364
1365 /* Put the inferior's terminal settings into effect.
1366 This is preparation for starting or resuming the inferior. */
1367
1368 extern void target_terminal_inferior (void);
1369
1370 /* Put some of our terminal settings into effect,
1371 enough to get proper results from our output,
1372 but do not change into or out of RAW mode
1373 so that no input is discarded.
1374
1375 After doing this, either terminal_ours or terminal_inferior
1376 should be called to get back to a normal state of affairs. */
1377
1378 #define target_terminal_ours_for_output() \
1379 (*current_target.to_terminal_ours_for_output) (&current_target)
1380
1381 /* Put our terminal settings into effect.
1382 First record the inferior's terminal settings
1383 so they can be restored properly later. */
1384
1385 #define target_terminal_ours() \
1386 (*current_target.to_terminal_ours) (&current_target)
1387
1388 /* Save our terminal settings.
1389 This is called from TUI after entering or leaving the curses
1390 mode. Since curses modifies our terminal this call is here
1391 to take this change into account. */
1392
1393 #define target_terminal_save_ours() \
1394 (*current_target.to_terminal_save_ours) (&current_target)
1395
1396 /* Print useful information about our terminal status, if such a thing
1397 exists. */
1398
1399 #define target_terminal_info(arg, from_tty) \
1400 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1401
1402 /* Kill the inferior process. Make it go away. */
1403
1404 extern void target_kill (void);
1405
1406 /* Load an executable file into the target process. This is expected
1407 to not only bring new code into the target process, but also to
1408 update GDB's symbol tables to match.
1409
1410 ARG contains command-line arguments, to be broken down with
1411 buildargv (). The first non-switch argument is the filename to
1412 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1413 0)), which is an offset to apply to the load addresses of FILE's
1414 sections. The target may define switches, or other non-switch
1415 arguments, as it pleases. */
1416
1417 extern void target_load (char *arg, int from_tty);
1418
1419 /* Start an inferior process and set inferior_ptid to its pid.
1420 EXEC_FILE is the file to run.
1421 ALLARGS is a string containing the arguments to the program.
1422 ENV is the environment vector to pass. Errors reported with error().
1423 On VxWorks and various standalone systems, we ignore exec_file. */
1424
1425 void target_create_inferior (char *exec_file, char *args,
1426 char **env, int from_tty);
1427
1428 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1429 notification of inferior events such as fork and vork immediately
1430 after the inferior is created. (This because of how gdb gets an
1431 inferior created via invoking a shell to do it. In such a scenario,
1432 if the shell init file has commands in it, the shell will fork and
1433 exec for each of those commands, and we will see each such fork
1434 event. Very bad.)
1435
1436 Such targets will supply an appropriate definition for this function. */
1437
1438 #define target_post_startup_inferior(ptid) \
1439 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1440
1441 /* On some targets, we can catch an inferior fork or vfork event when
1442 it occurs. These functions insert/remove an already-created
1443 catchpoint for such events. They return 0 for success, 1 if the
1444 catchpoint type is not supported and -1 for failure. */
1445
1446 #define target_insert_fork_catchpoint(pid) \
1447 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1448
1449 #define target_remove_fork_catchpoint(pid) \
1450 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1451
1452 #define target_insert_vfork_catchpoint(pid) \
1453 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1454
1455 #define target_remove_vfork_catchpoint(pid) \
1456 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1457
1458 /* If the inferior forks or vforks, this function will be called at
1459 the next resume in order to perform any bookkeeping and fiddling
1460 necessary to continue debugging either the parent or child, as
1461 requested, and releasing the other. Information about the fork
1462 or vfork event is available via get_last_target_status ().
1463 This function returns 1 if the inferior should not be resumed
1464 (i.e. there is another event pending). */
1465
1466 int target_follow_fork (int follow_child, int detach_fork);
1467
1468 /* On some targets, we can catch an inferior exec event when it
1469 occurs. These functions insert/remove an already-created
1470 catchpoint for such events. They return 0 for success, 1 if the
1471 catchpoint type is not supported and -1 for failure. */
1472
1473 #define target_insert_exec_catchpoint(pid) \
1474 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1475
1476 #define target_remove_exec_catchpoint(pid) \
1477 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1478
1479 /* Syscall catch.
1480
1481 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1482 If NEEDED is zero, it means the target can disable the mechanism to
1483 catch system calls because there are no more catchpoints of this type.
1484
1485 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1486 being requested. In this case, both TABLE_SIZE and TABLE should
1487 be ignored.
1488
1489 TABLE_SIZE is the number of elements in TABLE. It only matters if
1490 ANY_COUNT is zero.
1491
1492 TABLE is an array of ints, indexed by syscall number. An element in
1493 this array is nonzero if that syscall should be caught. This argument
1494 only matters if ANY_COUNT is zero.
1495
1496 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1497 for failure. */
1498
1499 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1500 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1501 pid, needed, any_count, \
1502 table_size, table)
1503
1504 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1505 exit code of PID, if any. */
1506
1507 #define target_has_exited(pid,wait_status,exit_status) \
1508 (*current_target.to_has_exited) (&current_target, \
1509 pid,wait_status,exit_status)
1510
1511 /* The debugger has completed a blocking wait() call. There is now
1512 some process event that must be processed. This function should
1513 be defined by those targets that require the debugger to perform
1514 cleanup or internal state changes in response to the process event. */
1515
1516 /* The inferior process has died. Do what is right. */
1517
1518 void target_mourn_inferior (void);
1519
1520 /* Does target have enough data to do a run or attach command? */
1521
1522 #define target_can_run(t) \
1523 ((t)->to_can_run) (t)
1524
1525 /* Set list of signals to be handled in the target.
1526
1527 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1528 (enum gdb_signal). For every signal whose entry in this array is
1529 non-zero, the target is allowed -but not required- to skip reporting
1530 arrival of the signal to the GDB core by returning from target_wait,
1531 and to pass the signal directly to the inferior instead.
1532
1533 However, if the target is hardware single-stepping a thread that is
1534 about to receive a signal, it needs to be reported in any case, even
1535 if mentioned in a previous target_pass_signals call. */
1536
1537 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1538
1539 /* Set list of signals the target may pass to the inferior. This
1540 directly maps to the "handle SIGNAL pass/nopass" setting.
1541
1542 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1543 number (enum gdb_signal). For every signal whose entry in this
1544 array is non-zero, the target is allowed to pass the signal to the
1545 inferior. Signals not present in the array shall be silently
1546 discarded. This does not influence whether to pass signals to the
1547 inferior as a result of a target_resume call. This is useful in
1548 scenarios where the target needs to decide whether to pass or not a
1549 signal to the inferior without GDB core involvement, such as for
1550 example, when detaching (as threads may have been suspended with
1551 pending signals not reported to GDB). */
1552
1553 extern void target_program_signals (int nsig, unsigned char *program_signals);
1554
1555 /* Check to see if a thread is still alive. */
1556
1557 extern int target_thread_alive (ptid_t ptid);
1558
1559 /* Query for new threads and add them to the thread list. */
1560
1561 extern void target_find_new_threads (void);
1562
1563 /* Make target stop in a continuable fashion. (For instance, under
1564 Unix, this should act like SIGSTOP). This function is normally
1565 used by GUIs to implement a stop button. */
1566
1567 extern void target_stop (ptid_t ptid);
1568
1569 /* Send the specified COMMAND to the target's monitor
1570 (shell,interpreter) for execution. The result of the query is
1571 placed in OUTBUF. */
1572
1573 #define target_rcmd(command, outbuf) \
1574 (*current_target.to_rcmd) (&current_target, command, outbuf)
1575
1576
1577 /* Does the target include all of memory, or only part of it? This
1578 determines whether we look up the target chain for other parts of
1579 memory if this target can't satisfy a request. */
1580
1581 extern int target_has_all_memory_1 (void);
1582 #define target_has_all_memory target_has_all_memory_1 ()
1583
1584 /* Does the target include memory? (Dummy targets don't.) */
1585
1586 extern int target_has_memory_1 (void);
1587 #define target_has_memory target_has_memory_1 ()
1588
1589 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1590 we start a process.) */
1591
1592 extern int target_has_stack_1 (void);
1593 #define target_has_stack target_has_stack_1 ()
1594
1595 /* Does the target have registers? (Exec files don't.) */
1596
1597 extern int target_has_registers_1 (void);
1598 #define target_has_registers target_has_registers_1 ()
1599
1600 /* Does the target have execution? Can we make it jump (through
1601 hoops), or pop its stack a few times? This means that the current
1602 target is currently executing; for some targets, that's the same as
1603 whether or not the target is capable of execution, but there are
1604 also targets which can be current while not executing. In that
1605 case this will become true after target_create_inferior or
1606 target_attach. */
1607
1608 extern int target_has_execution_1 (ptid_t);
1609
1610 /* Like target_has_execution_1, but always passes inferior_ptid. */
1611
1612 extern int target_has_execution_current (void);
1613
1614 #define target_has_execution target_has_execution_current ()
1615
1616 /* Default implementations for process_stratum targets. Return true
1617 if there's a selected inferior, false otherwise. */
1618
1619 extern int default_child_has_all_memory (struct target_ops *ops);
1620 extern int default_child_has_memory (struct target_ops *ops);
1621 extern int default_child_has_stack (struct target_ops *ops);
1622 extern int default_child_has_registers (struct target_ops *ops);
1623 extern int default_child_has_execution (struct target_ops *ops,
1624 ptid_t the_ptid);
1625
1626 /* Can the target support the debugger control of thread execution?
1627 Can it lock the thread scheduler? */
1628
1629 #define target_can_lock_scheduler \
1630 (current_target.to_has_thread_control & tc_schedlock)
1631
1632 /* Should the target enable async mode if it is supported? Temporary
1633 cludge until async mode is a strict superset of sync mode. */
1634 extern int target_async_permitted;
1635
1636 /* Can the target support asynchronous execution? */
1637 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1638
1639 /* Is the target in asynchronous execution mode? */
1640 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1641
1642 int target_supports_non_stop (void);
1643
1644 /* Put the target in async mode with the specified callback function. */
1645 #define target_async(CALLBACK,CONTEXT) \
1646 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1647
1648 #define target_execution_direction() \
1649 (current_target.to_execution_direction (&current_target))
1650
1651 /* Converts a process id to a string. Usually, the string just contains
1652 `process xyz', but on some systems it may contain
1653 `process xyz thread abc'. */
1654
1655 extern char *target_pid_to_str (ptid_t ptid);
1656
1657 extern char *normal_pid_to_str (ptid_t ptid);
1658
1659 /* Return a short string describing extra information about PID,
1660 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1661 is okay. */
1662
1663 #define target_extra_thread_info(TP) \
1664 (current_target.to_extra_thread_info (&current_target, TP))
1665
1666 /* Return the thread's name. A NULL result means that the target
1667 could not determine this thread's name. */
1668
1669 extern char *target_thread_name (struct thread_info *);
1670
1671 /* Attempts to find the pathname of the executable file
1672 that was run to create a specified process.
1673
1674 The process PID must be stopped when this operation is used.
1675
1676 If the executable file cannot be determined, NULL is returned.
1677
1678 Else, a pointer to a character string containing the pathname
1679 is returned. This string should be copied into a buffer by
1680 the client if the string will not be immediately used, or if
1681 it must persist. */
1682
1683 #define target_pid_to_exec_file(pid) \
1684 (current_target.to_pid_to_exec_file) (&current_target, pid)
1685
1686 /* See the to_thread_architecture description in struct target_ops. */
1687
1688 #define target_thread_architecture(ptid) \
1689 (current_target.to_thread_architecture (&current_target, ptid))
1690
1691 /*
1692 * Iterator function for target memory regions.
1693 * Calls a callback function once for each memory region 'mapped'
1694 * in the child process. Defined as a simple macro rather than
1695 * as a function macro so that it can be tested for nullity.
1696 */
1697
1698 #define target_find_memory_regions(FUNC, DATA) \
1699 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1700
1701 /*
1702 * Compose corefile .note section.
1703 */
1704
1705 #define target_make_corefile_notes(BFD, SIZE_P) \
1706 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1707
1708 /* Bookmark interfaces. */
1709 #define target_get_bookmark(ARGS, FROM_TTY) \
1710 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1711
1712 #define target_goto_bookmark(ARG, FROM_TTY) \
1713 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1714
1715 /* Hardware watchpoint interfaces. */
1716
1717 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1718 write). Only the INFERIOR_PTID task is being queried. */
1719
1720 #define target_stopped_by_watchpoint() \
1721 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1722
1723 /* Non-zero if we have steppable watchpoints */
1724
1725 #define target_have_steppable_watchpoint \
1726 (current_target.to_have_steppable_watchpoint)
1727
1728 /* Non-zero if we have continuable watchpoints */
1729
1730 #define target_have_continuable_watchpoint \
1731 (current_target.to_have_continuable_watchpoint)
1732
1733 /* Provide defaults for hardware watchpoint functions. */
1734
1735 /* If the *_hw_beakpoint functions have not been defined
1736 elsewhere use the definitions in the target vector. */
1737
1738 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1739 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1740 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1741 (including this one?). OTHERTYPE is who knows what... */
1742
1743 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1744 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1745 TYPE, CNT, OTHERTYPE);
1746
1747 /* Returns the number of debug registers needed to watch the given
1748 memory region, or zero if not supported. */
1749
1750 #define target_region_ok_for_hw_watchpoint(addr, len) \
1751 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1752 addr, len)
1753
1754
1755 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1756 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1757 COND is the expression for its condition, or NULL if there's none.
1758 Returns 0 for success, 1 if the watchpoint type is not supported,
1759 -1 for failure. */
1760
1761 #define target_insert_watchpoint(addr, len, type, cond) \
1762 (*current_target.to_insert_watchpoint) (&current_target, \
1763 addr, len, type, cond)
1764
1765 #define target_remove_watchpoint(addr, len, type, cond) \
1766 (*current_target.to_remove_watchpoint) (&current_target, \
1767 addr, len, type, cond)
1768
1769 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1770 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1771 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1772 masked watchpoints are not supported, -1 for failure. */
1773
1774 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1775
1776 /* Remove a masked watchpoint at ADDR with the mask MASK.
1777 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1778 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1779 for failure. */
1780
1781 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1782
1783 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1784 the target machine. Returns 0 for success, and returns non-zero or
1785 throws an error (with a detailed failure reason error code and
1786 message) otherwise. */
1787
1788 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1789 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1790 gdbarch, bp_tgt)
1791
1792 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1793 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1794 gdbarch, bp_tgt)
1795
1796 /* Return number of debug registers needed for a ranged breakpoint,
1797 or -1 if ranged breakpoints are not supported. */
1798
1799 extern int target_ranged_break_num_registers (void);
1800
1801 /* Return non-zero if target knows the data address which triggered this
1802 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1803 INFERIOR_PTID task is being queried. */
1804 #define target_stopped_data_address(target, addr_p) \
1805 (*target.to_stopped_data_address) (target, addr_p)
1806
1807 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1808 LENGTH bytes beginning at START. */
1809 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1810 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1811
1812 /* Return non-zero if the target is capable of using hardware to evaluate
1813 the condition expression. In this case, if the condition is false when
1814 the watched memory location changes, execution may continue without the
1815 debugger being notified.
1816
1817 Due to limitations in the hardware implementation, it may be capable of
1818 avoiding triggering the watchpoint in some cases where the condition
1819 expression is false, but may report some false positives as well.
1820 For this reason, GDB will still evaluate the condition expression when
1821 the watchpoint triggers. */
1822 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1823 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1824 addr, len, type, cond)
1825
1826 /* Return number of debug registers needed for a masked watchpoint,
1827 -1 if masked watchpoints are not supported or -2 if the given address
1828 and mask combination cannot be used. */
1829
1830 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1831
1832 /* Target can execute in reverse? */
1833 #define target_can_execute_reverse \
1834 current_target.to_can_execute_reverse (&current_target)
1835
1836 extern const struct target_desc *target_read_description (struct target_ops *);
1837
1838 #define target_get_ada_task_ptid(lwp, tid) \
1839 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1840
1841 /* Utility implementation of searching memory. */
1842 extern int simple_search_memory (struct target_ops* ops,
1843 CORE_ADDR start_addr,
1844 ULONGEST search_space_len,
1845 const gdb_byte *pattern,
1846 ULONGEST pattern_len,
1847 CORE_ADDR *found_addrp);
1848
1849 /* Main entry point for searching memory. */
1850 extern int target_search_memory (CORE_ADDR start_addr,
1851 ULONGEST search_space_len,
1852 const gdb_byte *pattern,
1853 ULONGEST pattern_len,
1854 CORE_ADDR *found_addrp);
1855
1856 /* Target file operations. */
1857
1858 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1859 target file descriptor, or -1 if an error occurs (and set
1860 *TARGET_ERRNO). */
1861 extern int target_fileio_open (const char *filename, int flags, int mode,
1862 int *target_errno);
1863
1864 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1865 Return the number of bytes written, or -1 if an error occurs
1866 (and set *TARGET_ERRNO). */
1867 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1868 ULONGEST offset, int *target_errno);
1869
1870 /* Read up to LEN bytes FD on the target into READ_BUF.
1871 Return the number of bytes read, or -1 if an error occurs
1872 (and set *TARGET_ERRNO). */
1873 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1874 ULONGEST offset, int *target_errno);
1875
1876 /* Close FD on the target. Return 0, or -1 if an error occurs
1877 (and set *TARGET_ERRNO). */
1878 extern int target_fileio_close (int fd, int *target_errno);
1879
1880 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1881 occurs (and set *TARGET_ERRNO). */
1882 extern int target_fileio_unlink (const char *filename, int *target_errno);
1883
1884 /* Read value of symbolic link FILENAME on the target. Return a
1885 null-terminated string allocated via xmalloc, or NULL if an error
1886 occurs (and set *TARGET_ERRNO). */
1887 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1888
1889 /* Read target file FILENAME. The return value will be -1 if the transfer
1890 fails or is not supported; 0 if the object is empty; or the length
1891 of the object otherwise. If a positive value is returned, a
1892 sufficiently large buffer will be allocated using xmalloc and
1893 returned in *BUF_P containing the contents of the object.
1894
1895 This method should be used for objects sufficiently small to store
1896 in a single xmalloc'd buffer, when no fixed bound on the object's
1897 size is known in advance. */
1898 extern LONGEST target_fileio_read_alloc (const char *filename,
1899 gdb_byte **buf_p);
1900
1901 /* Read target file FILENAME. The result is NUL-terminated and
1902 returned as a string, allocated using xmalloc. If an error occurs
1903 or the transfer is unsupported, NULL is returned. Empty objects
1904 are returned as allocated but empty strings. A warning is issued
1905 if the result contains any embedded NUL bytes. */
1906 extern char *target_fileio_read_stralloc (const char *filename);
1907
1908
1909 /* Tracepoint-related operations. */
1910
1911 #define target_trace_init() \
1912 (*current_target.to_trace_init) (&current_target)
1913
1914 #define target_download_tracepoint(t) \
1915 (*current_target.to_download_tracepoint) (&current_target, t)
1916
1917 #define target_can_download_tracepoint() \
1918 (*current_target.to_can_download_tracepoint) (&current_target)
1919
1920 #define target_download_trace_state_variable(tsv) \
1921 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
1922
1923 #define target_enable_tracepoint(loc) \
1924 (*current_target.to_enable_tracepoint) (&current_target, loc)
1925
1926 #define target_disable_tracepoint(loc) \
1927 (*current_target.to_disable_tracepoint) (&current_target, loc)
1928
1929 #define target_trace_start() \
1930 (*current_target.to_trace_start) (&current_target)
1931
1932 #define target_trace_set_readonly_regions() \
1933 (*current_target.to_trace_set_readonly_regions) (&current_target)
1934
1935 #define target_get_trace_status(ts) \
1936 (*current_target.to_get_trace_status) (&current_target, ts)
1937
1938 #define target_get_tracepoint_status(tp,utp) \
1939 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
1940
1941 #define target_trace_stop() \
1942 (*current_target.to_trace_stop) (&current_target)
1943
1944 #define target_trace_find(type,num,addr1,addr2,tpp) \
1945 (*current_target.to_trace_find) (&current_target, \
1946 (type), (num), (addr1), (addr2), (tpp))
1947
1948 #define target_get_trace_state_variable_value(tsv,val) \
1949 (*current_target.to_get_trace_state_variable_value) (&current_target, \
1950 (tsv), (val))
1951
1952 #define target_save_trace_data(filename) \
1953 (*current_target.to_save_trace_data) (&current_target, filename)
1954
1955 #define target_upload_tracepoints(utpp) \
1956 (*current_target.to_upload_tracepoints) (&current_target, utpp)
1957
1958 #define target_upload_trace_state_variables(utsvp) \
1959 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
1960
1961 #define target_get_raw_trace_data(buf,offset,len) \
1962 (*current_target.to_get_raw_trace_data) (&current_target, \
1963 (buf), (offset), (len))
1964
1965 #define target_get_min_fast_tracepoint_insn_len() \
1966 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
1967
1968 #define target_set_disconnected_tracing(val) \
1969 (*current_target.to_set_disconnected_tracing) (&current_target, val)
1970
1971 #define target_set_circular_trace_buffer(val) \
1972 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
1973
1974 #define target_set_trace_buffer_size(val) \
1975 (*current_target.to_set_trace_buffer_size) (&current_target, val)
1976
1977 #define target_set_trace_notes(user,notes,stopnotes) \
1978 (*current_target.to_set_trace_notes) (&current_target, \
1979 (user), (notes), (stopnotes))
1980
1981 #define target_get_tib_address(ptid, addr) \
1982 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
1983
1984 #define target_set_permissions() \
1985 (*current_target.to_set_permissions) (&current_target)
1986
1987 #define target_static_tracepoint_marker_at(addr, marker) \
1988 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
1989 addr, marker)
1990
1991 #define target_static_tracepoint_markers_by_strid(marker_id) \
1992 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
1993 marker_id)
1994
1995 #define target_traceframe_info() \
1996 (*current_target.to_traceframe_info) (&current_target)
1997
1998 #define target_use_agent(use) \
1999 (*current_target.to_use_agent) (&current_target, use)
2000
2001 #define target_can_use_agent() \
2002 (*current_target.to_can_use_agent) (&current_target)
2003
2004 #define target_augmented_libraries_svr4_read() \
2005 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
2006
2007 /* Command logging facility. */
2008
2009 #define target_log_command(p) \
2010 (*current_target.to_log_command) (&current_target, p)
2011
2012
2013 extern int target_core_of_thread (ptid_t ptid);
2014
2015 /* See to_get_unwinder in struct target_ops. */
2016 extern const struct frame_unwind *target_get_unwinder (void);
2017
2018 /* See to_get_tailcall_unwinder in struct target_ops. */
2019 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2020
2021 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2022 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2023 if there's a mismatch, and -1 if an error is encountered while
2024 reading memory. Throws an error if the functionality is found not
2025 to be supported by the current target. */
2026 int target_verify_memory (const gdb_byte *data,
2027 CORE_ADDR memaddr, ULONGEST size);
2028
2029 /* Routines for maintenance of the target structures...
2030
2031 complete_target_initialization: Finalize a target_ops by filling in
2032 any fields needed by the target implementation.
2033
2034 add_target: Add a target to the list of all possible targets.
2035
2036 push_target: Make this target the top of the stack of currently used
2037 targets, within its particular stratum of the stack. Result
2038 is 0 if now atop the stack, nonzero if not on top (maybe
2039 should warn user).
2040
2041 unpush_target: Remove this from the stack of currently used targets,
2042 no matter where it is on the list. Returns 0 if no
2043 change, 1 if removed from stack. */
2044
2045 extern void add_target (struct target_ops *);
2046
2047 extern void add_target_with_completer (struct target_ops *t,
2048 completer_ftype *completer);
2049
2050 extern void complete_target_initialization (struct target_ops *t);
2051
2052 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
2053 for maintaining backwards compatibility when renaming targets. */
2054
2055 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
2056
2057 extern void push_target (struct target_ops *);
2058
2059 extern int unpush_target (struct target_ops *);
2060
2061 extern void target_pre_inferior (int);
2062
2063 extern void target_preopen (int);
2064
2065 /* Does whatever cleanup is required to get rid of all pushed targets. */
2066 extern void pop_all_targets (void);
2067
2068 /* Like pop_all_targets, but pops only targets whose stratum is
2069 strictly above ABOVE_STRATUM. */
2070 extern void pop_all_targets_above (enum strata above_stratum);
2071
2072 extern int target_is_pushed (struct target_ops *t);
2073
2074 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2075 CORE_ADDR offset);
2076
2077 /* Struct target_section maps address ranges to file sections. It is
2078 mostly used with BFD files, but can be used without (e.g. for handling
2079 raw disks, or files not in formats handled by BFD). */
2080
2081 struct target_section
2082 {
2083 CORE_ADDR addr; /* Lowest address in section */
2084 CORE_ADDR endaddr; /* 1+highest address in section */
2085
2086 struct bfd_section *the_bfd_section;
2087
2088 /* The "owner" of the section.
2089 It can be any unique value. It is set by add_target_sections
2090 and used by remove_target_sections.
2091 For example, for executables it is a pointer to exec_bfd and
2092 for shlibs it is the so_list pointer. */
2093 void *owner;
2094 };
2095
2096 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2097
2098 struct target_section_table
2099 {
2100 struct target_section *sections;
2101 struct target_section *sections_end;
2102 };
2103
2104 /* Return the "section" containing the specified address. */
2105 struct target_section *target_section_by_addr (struct target_ops *target,
2106 CORE_ADDR addr);
2107
2108 /* Return the target section table this target (or the targets
2109 beneath) currently manipulate. */
2110
2111 extern struct target_section_table *target_get_section_table
2112 (struct target_ops *target);
2113
2114 /* From mem-break.c */
2115
2116 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2117 struct bp_target_info *);
2118
2119 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2120 struct bp_target_info *);
2121
2122 extern int default_memory_remove_breakpoint (struct gdbarch *,
2123 struct bp_target_info *);
2124
2125 extern int default_memory_insert_breakpoint (struct gdbarch *,
2126 struct bp_target_info *);
2127
2128
2129 /* From target.c */
2130
2131 extern void initialize_targets (void);
2132
2133 extern void noprocess (void) ATTRIBUTE_NORETURN;
2134
2135 extern void target_require_runnable (void);
2136
2137 extern void find_default_attach (struct target_ops *, char *, int);
2138
2139 extern void find_default_create_inferior (struct target_ops *,
2140 char *, char *, char **, int);
2141
2142 extern struct target_ops *find_target_beneath (struct target_ops *);
2143
2144 /* Find the target at STRATUM. If no target is at that stratum,
2145 return NULL. */
2146
2147 struct target_ops *find_target_at (enum strata stratum);
2148
2149 /* Read OS data object of type TYPE from the target, and return it in
2150 XML format. The result is NUL-terminated and returned as a string,
2151 allocated using xmalloc. If an error occurs or the transfer is
2152 unsupported, NULL is returned. Empty objects are returned as
2153 allocated but empty strings. */
2154
2155 extern char *target_get_osdata (const char *type);
2156
2157 \f
2158 /* Stuff that should be shared among the various remote targets. */
2159
2160 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2161 information (higher values, more information). */
2162 extern int remote_debug;
2163
2164 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2165 extern int baud_rate;
2166 /* Timeout limit for response from target. */
2167 extern int remote_timeout;
2168
2169 \f
2170
2171 /* Set the show memory breakpoints mode to show, and installs a cleanup
2172 to restore it back to the current value. */
2173 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2174
2175 extern int may_write_registers;
2176 extern int may_write_memory;
2177 extern int may_insert_breakpoints;
2178 extern int may_insert_tracepoints;
2179 extern int may_insert_fast_tracepoints;
2180 extern int may_stop;
2181
2182 extern void update_target_permissions (void);
2183
2184 \f
2185 /* Imported from machine dependent code. */
2186
2187 /* Blank target vector entries are initialized to target_ignore. */
2188 void target_ignore (void);
2189
2190 /* See to_supports_btrace in struct target_ops. */
2191 #define target_supports_btrace() \
2192 (current_target.to_supports_btrace (&current_target))
2193
2194 /* See to_enable_btrace in struct target_ops. */
2195 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2196
2197 /* See to_disable_btrace in struct target_ops. */
2198 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2199
2200 /* See to_teardown_btrace in struct target_ops. */
2201 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2202
2203 /* See to_read_btrace in struct target_ops. */
2204 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2205 struct btrace_target_info *,
2206 enum btrace_read_type);
2207
2208 /* See to_stop_recording in struct target_ops. */
2209 extern void target_stop_recording (void);
2210
2211 /* See to_info_record in struct target_ops. */
2212 extern void target_info_record (void);
2213
2214 /* See to_save_record in struct target_ops. */
2215 extern void target_save_record (const char *filename);
2216
2217 /* Query if the target supports deleting the execution log. */
2218 extern int target_supports_delete_record (void);
2219
2220 /* See to_delete_record in struct target_ops. */
2221 extern void target_delete_record (void);
2222
2223 /* See to_record_is_replaying in struct target_ops. */
2224 extern int target_record_is_replaying (void);
2225
2226 /* See to_goto_record_begin in struct target_ops. */
2227 extern void target_goto_record_begin (void);
2228
2229 /* See to_goto_record_end in struct target_ops. */
2230 extern void target_goto_record_end (void);
2231
2232 /* See to_goto_record in struct target_ops. */
2233 extern void target_goto_record (ULONGEST insn);
2234
2235 /* See to_insn_history. */
2236 extern void target_insn_history (int size, int flags);
2237
2238 /* See to_insn_history_from. */
2239 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2240
2241 /* See to_insn_history_range. */
2242 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2243
2244 /* See to_call_history. */
2245 extern void target_call_history (int size, int flags);
2246
2247 /* See to_call_history_from. */
2248 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2249
2250 /* See to_call_history_range. */
2251 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2252
2253 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2254 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2255 struct gdbarch *gdbarch);
2256
2257 /* See to_decr_pc_after_break. */
2258 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2259
2260 #endif /* !defined (TARGET_H) */