convert to_masked_watch_num_registers
[binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* Generic I/O error. Note that it's important that this is '-1',
217 as we still have target_xfer-related code returning hardcoded
218 '-1' on error. */
219 TARGET_XFER_E_IO = -1,
220
221 /* Transfer failed because the piece of the object requested is
222 unavailable. */
223 TARGET_XFER_E_UNAVAILABLE = -2,
224
225 /* Keep list in sync with target_xfer_error_to_string. */
226 };
227
228 #define TARGET_XFER_STATUS_ERROR_P(STATUS) ((STATUS) < TARGET_XFER_EOF)
229
230 /* Return the string form of ERR. */
231
232 extern const char *target_xfer_status_to_string (enum target_xfer_status err);
233
234 /* Enumeration of the kinds of traceframe searches that a target may
235 be able to perform. */
236
237 enum trace_find_type
238 {
239 tfind_number,
240 tfind_pc,
241 tfind_tp,
242 tfind_range,
243 tfind_outside,
244 };
245
246 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
247 DEF_VEC_P(static_tracepoint_marker_p);
248
249 typedef enum target_xfer_status
250 target_xfer_partial_ftype (struct target_ops *ops,
251 enum target_object object,
252 const char *annex,
253 gdb_byte *readbuf,
254 const gdb_byte *writebuf,
255 ULONGEST offset,
256 ULONGEST len,
257 ULONGEST *xfered_len);
258
259 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
260 OBJECT. The OFFSET, for a seekable object, specifies the
261 starting point. The ANNEX can be used to provide additional
262 data-specific information to the target.
263
264 Return the number of bytes actually transfered, or a negative error
265 code (an 'enum target_xfer_error' value) if the transfer is not
266 supported or otherwise fails. Return of a positive value less than
267 LEN indicates that no further transfer is possible. Unlike the raw
268 to_xfer_partial interface, callers of these functions do not need
269 to retry partial transfers. */
270
271 extern LONGEST target_read (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276 struct memory_read_result
277 {
278 /* First address that was read. */
279 ULONGEST begin;
280 /* Past-the-end address. */
281 ULONGEST end;
282 /* The data. */
283 gdb_byte *data;
284 };
285 typedef struct memory_read_result memory_read_result_s;
286 DEF_VEC_O(memory_read_result_s);
287
288 extern void free_memory_read_result_vector (void *);
289
290 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
291 ULONGEST offset,
292 LONGEST len);
293
294 extern LONGEST target_write (struct target_ops *ops,
295 enum target_object object,
296 const char *annex, const gdb_byte *buf,
297 ULONGEST offset, LONGEST len);
298
299 /* Similar to target_write, except that it also calls PROGRESS with
300 the number of bytes written and the opaque BATON after every
301 successful partial write (and before the first write). This is
302 useful for progress reporting and user interaction while writing
303 data. To abort the transfer, the progress callback can throw an
304 exception. */
305
306 LONGEST target_write_with_progress (struct target_ops *ops,
307 enum target_object object,
308 const char *annex, const gdb_byte *buf,
309 ULONGEST offset, LONGEST len,
310 void (*progress) (ULONGEST, void *),
311 void *baton);
312
313 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
314 be read using OPS. The return value will be -1 if the transfer
315 fails or is not supported; 0 if the object is empty; or the length
316 of the object otherwise. If a positive value is returned, a
317 sufficiently large buffer will be allocated using xmalloc and
318 returned in *BUF_P containing the contents of the object.
319
320 This method should be used for objects sufficiently small to store
321 in a single xmalloc'd buffer, when no fixed bound on the object's
322 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
323 through this function. */
324
325 extern LONGEST target_read_alloc (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, gdb_byte **buf_p);
328
329 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
330 returned as a string, allocated using xmalloc. If an error occurs
331 or the transfer is unsupported, NULL is returned. Empty objects
332 are returned as allocated but empty strings. A warning is issued
333 if the result contains any embedded NUL bytes. */
334
335 extern char *target_read_stralloc (struct target_ops *ops,
336 enum target_object object,
337 const char *annex);
338
339 /* See target_ops->to_xfer_partial. */
340 extern target_xfer_partial_ftype target_xfer_partial;
341
342 /* Wrappers to target read/write that perform memory transfers. They
343 throw an error if the memory transfer fails.
344
345 NOTE: cagney/2003-10-23: The naming schema is lifted from
346 "frame.h". The parameter order is lifted from get_frame_memory,
347 which in turn lifted it from read_memory. */
348
349 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
350 gdb_byte *buf, LONGEST len);
351 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
352 CORE_ADDR addr, int len,
353 enum bfd_endian byte_order);
354 \f
355 struct thread_info; /* fwd decl for parameter list below: */
356
357 /* The type of the callback to the to_async method. */
358
359 typedef void async_callback_ftype (enum inferior_event_type event_type,
360 void *context);
361
362 /* These defines are used to mark target_ops methods. The script
363 make-target-delegates scans these and auto-generates the base
364 method implementations. There are four macros that can be used:
365
366 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
367 does nothing. This is only valid if the method return type is
368 'void'.
369
370 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
371 'tcomplain ()'. The base method simply makes this call, which is
372 assumed not to return.
373
374 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
375 base method returns this expression's value.
376
377 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
378 make-target-delegates does not generate a base method in this case,
379 but instead uses the argument function as the base method. */
380
381 #define TARGET_DEFAULT_IGNORE()
382 #define TARGET_DEFAULT_NORETURN(ARG)
383 #define TARGET_DEFAULT_RETURN(ARG)
384 #define TARGET_DEFAULT_FUNC(ARG)
385
386 struct target_ops
387 {
388 struct target_ops *beneath; /* To the target under this one. */
389 char *to_shortname; /* Name this target type */
390 char *to_longname; /* Name for printing */
391 char *to_doc; /* Documentation. Does not include trailing
392 newline, and starts with a one-line descrip-
393 tion (probably similar to to_longname). */
394 /* Per-target scratch pad. */
395 void *to_data;
396 /* The open routine takes the rest of the parameters from the
397 command, and (if successful) pushes a new target onto the
398 stack. Targets should supply this routine, if only to provide
399 an error message. */
400 void (*to_open) (char *, int);
401 /* Old targets with a static target vector provide "to_close".
402 New re-entrant targets provide "to_xclose" and that is expected
403 to xfree everything (including the "struct target_ops"). */
404 void (*to_xclose) (struct target_ops *targ);
405 void (*to_close) (struct target_ops *);
406 void (*to_attach) (struct target_ops *ops, char *, int)
407 TARGET_DEFAULT_FUNC (find_default_attach);
408 void (*to_post_attach) (struct target_ops *, int)
409 TARGET_DEFAULT_IGNORE ();
410 void (*to_detach) (struct target_ops *ops, const char *, int)
411 TARGET_DEFAULT_IGNORE ();
412 void (*to_disconnect) (struct target_ops *, char *, int);
413 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
414 TARGET_DEFAULT_NORETURN (noprocess ());
415 ptid_t (*to_wait) (struct target_ops *,
416 ptid_t, struct target_waitstatus *, int)
417 TARGET_DEFAULT_NORETURN (noprocess ());
418 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int)
419 TARGET_DEFAULT_IGNORE ();
420 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
421 TARGET_DEFAULT_NORETURN (noprocess ());
422 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
423 TARGET_DEFAULT_NORETURN (noprocess ());
424
425 /* Transfer LEN bytes of memory between GDB address MYADDR and
426 target address MEMADDR. If WRITE, transfer them to the target, else
427 transfer them from the target. TARGET is the target from which we
428 get this function.
429
430 Return value, N, is one of the following:
431
432 0 means that we can't handle this. If errno has been set, it is the
433 error which prevented us from doing it (FIXME: What about bfd_error?).
434
435 positive (call it N) means that we have transferred N bytes
436 starting at MEMADDR. We might be able to handle more bytes
437 beyond this length, but no promises.
438
439 negative (call its absolute value N) means that we cannot
440 transfer right at MEMADDR, but we could transfer at least
441 something at MEMADDR + N.
442
443 NOTE: cagney/2004-10-01: This has been entirely superseeded by
444 to_xfer_partial and inferior inheritance. */
445
446 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
447 int len, int write,
448 struct mem_attrib *attrib,
449 struct target_ops *target);
450
451 void (*to_files_info) (struct target_ops *)
452 TARGET_DEFAULT_IGNORE ();
453 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
454 struct bp_target_info *)
455 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
456 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
457 struct bp_target_info *)
458 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
459 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int)
460 TARGET_DEFAULT_RETURN (0);
461 int (*to_ranged_break_num_registers) (struct target_ops *)
462 TARGET_DEFAULT_RETURN (-1);
463 int (*to_insert_hw_breakpoint) (struct target_ops *,
464 struct gdbarch *, struct bp_target_info *)
465 TARGET_DEFAULT_RETURN (-1);
466 int (*to_remove_hw_breakpoint) (struct target_ops *,
467 struct gdbarch *, struct bp_target_info *)
468 TARGET_DEFAULT_RETURN (-1);
469
470 /* Documentation of what the two routines below are expected to do is
471 provided with the corresponding target_* macros. */
472 int (*to_remove_watchpoint) (struct target_ops *,
473 CORE_ADDR, int, int, struct expression *)
474 TARGET_DEFAULT_RETURN (-1);
475 int (*to_insert_watchpoint) (struct target_ops *,
476 CORE_ADDR, int, int, struct expression *)
477 TARGET_DEFAULT_RETURN (-1);
478
479 int (*to_insert_mask_watchpoint) (struct target_ops *,
480 CORE_ADDR, CORE_ADDR, int)
481 TARGET_DEFAULT_RETURN (1);
482 int (*to_remove_mask_watchpoint) (struct target_ops *,
483 CORE_ADDR, CORE_ADDR, int)
484 TARGET_DEFAULT_RETURN (1);
485 int (*to_stopped_by_watchpoint) (struct target_ops *)
486 TARGET_DEFAULT_RETURN (0);
487 int to_have_steppable_watchpoint;
488 int to_have_continuable_watchpoint;
489 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
490 TARGET_DEFAULT_RETURN (0);
491 int (*to_watchpoint_addr_within_range) (struct target_ops *,
492 CORE_ADDR, CORE_ADDR, int)
493 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
494
495 /* Documentation of this routine is provided with the corresponding
496 target_* macro. */
497 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
498 CORE_ADDR, int)
499 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
500
501 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
502 CORE_ADDR, int, int,
503 struct expression *)
504 TARGET_DEFAULT_RETURN (0);
505 int (*to_masked_watch_num_registers) (struct target_ops *,
506 CORE_ADDR, CORE_ADDR)
507 TARGET_DEFAULT_RETURN (-1);
508 void (*to_terminal_init) (struct target_ops *)
509 TARGET_DEFAULT_IGNORE ();
510 void (*to_terminal_inferior) (struct target_ops *)
511 TARGET_DEFAULT_IGNORE ();
512 void (*to_terminal_ours_for_output) (struct target_ops *)
513 TARGET_DEFAULT_IGNORE ();
514 void (*to_terminal_ours) (struct target_ops *)
515 TARGET_DEFAULT_IGNORE ();
516 void (*to_terminal_save_ours) (struct target_ops *)
517 TARGET_DEFAULT_IGNORE ();
518 void (*to_terminal_info) (struct target_ops *, const char *, int)
519 TARGET_DEFAULT_FUNC (default_terminal_info);
520 void (*to_kill) (struct target_ops *);
521 void (*to_load) (struct target_ops *, char *, int)
522 TARGET_DEFAULT_NORETURN (tcomplain ());
523 void (*to_create_inferior) (struct target_ops *,
524 char *, char *, char **, int);
525 void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
526 TARGET_DEFAULT_IGNORE ();
527 int (*to_insert_fork_catchpoint) (struct target_ops *, int)
528 TARGET_DEFAULT_RETURN (1);
529 int (*to_remove_fork_catchpoint) (struct target_ops *, int)
530 TARGET_DEFAULT_RETURN (1);
531 int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
532 TARGET_DEFAULT_RETURN (1);
533 int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
534 TARGET_DEFAULT_RETURN (1);
535 int (*to_follow_fork) (struct target_ops *, int, int);
536 int (*to_insert_exec_catchpoint) (struct target_ops *, int)
537 TARGET_DEFAULT_RETURN (1);
538 int (*to_remove_exec_catchpoint) (struct target_ops *, int)
539 TARGET_DEFAULT_RETURN (1);
540 int (*to_set_syscall_catchpoint) (struct target_ops *,
541 int, int, int, int, int *)
542 TARGET_DEFAULT_RETURN (1);
543 int (*to_has_exited) (struct target_ops *, int, int, int *)
544 TARGET_DEFAULT_RETURN (0);
545 void (*to_mourn_inferior) (struct target_ops *);
546 int (*to_can_run) (struct target_ops *);
547
548 /* Documentation of this routine is provided with the corresponding
549 target_* macro. */
550 void (*to_pass_signals) (struct target_ops *, int, unsigned char *);
551
552 /* Documentation of this routine is provided with the
553 corresponding target_* function. */
554 void (*to_program_signals) (struct target_ops *, int, unsigned char *);
555
556 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
557 void (*to_find_new_threads) (struct target_ops *);
558 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
559 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *)
560 TARGET_DEFAULT_RETURN (0);
561 char *(*to_thread_name) (struct target_ops *, struct thread_info *)
562 TARGET_DEFAULT_RETURN (0);
563 void (*to_stop) (struct target_ops *, ptid_t)
564 TARGET_DEFAULT_IGNORE ();
565 void (*to_rcmd) (struct target_ops *,
566 char *command, struct ui_file *output)
567 TARGET_DEFAULT_FUNC (default_rcmd);
568 char *(*to_pid_to_exec_file) (struct target_ops *, int pid)
569 TARGET_DEFAULT_RETURN (0);
570 void (*to_log_command) (struct target_ops *, const char *)
571 TARGET_DEFAULT_IGNORE ();
572 struct target_section_table *(*to_get_section_table) (struct target_ops *);
573 enum strata to_stratum;
574 int (*to_has_all_memory) (struct target_ops *);
575 int (*to_has_memory) (struct target_ops *);
576 int (*to_has_stack) (struct target_ops *);
577 int (*to_has_registers) (struct target_ops *);
578 int (*to_has_execution) (struct target_ops *, ptid_t);
579 int to_has_thread_control; /* control thread execution */
580 int to_attach_no_wait;
581 /* ASYNC target controls */
582 int (*to_can_async_p) (struct target_ops *)
583 TARGET_DEFAULT_FUNC (find_default_can_async_p);
584 int (*to_is_async_p) (struct target_ops *)
585 TARGET_DEFAULT_FUNC (find_default_is_async_p);
586 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
587 TARGET_DEFAULT_NORETURN (tcomplain ());
588 int (*to_supports_non_stop) (struct target_ops *);
589 /* find_memory_regions support method for gcore */
590 int (*to_find_memory_regions) (struct target_ops *,
591 find_memory_region_ftype func, void *data)
592 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
593 /* make_corefile_notes support method for gcore */
594 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *)
595 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
596 /* get_bookmark support method for bookmarks */
597 gdb_byte * (*to_get_bookmark) (struct target_ops *, char *, int)
598 TARGET_DEFAULT_NORETURN (tcomplain ());
599 /* goto_bookmark support method for bookmarks */
600 void (*to_goto_bookmark) (struct target_ops *, gdb_byte *, int)
601 TARGET_DEFAULT_NORETURN (tcomplain ());
602 /* Return the thread-local address at OFFSET in the
603 thread-local storage for the thread PTID and the shared library
604 or executable file given by OBJFILE. If that block of
605 thread-local storage hasn't been allocated yet, this function
606 may return an error. */
607 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
608 ptid_t ptid,
609 CORE_ADDR load_module_addr,
610 CORE_ADDR offset);
611
612 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
613 OBJECT. The OFFSET, for a seekable object, specifies the
614 starting point. The ANNEX can be used to provide additional
615 data-specific information to the target.
616
617 Return the transferred status, error or OK (an
618 'enum target_xfer_status' value). Save the number of bytes
619 actually transferred in *XFERED_LEN if transfer is successful
620 (TARGET_XFER_OK) or the number unavailable bytes if the requested
621 data is unavailable (TARGET_XFER_E_UNAVAILABLE). *XFERED_LEN
622 smaller than LEN does not indicate the end of the object, only
623 the end of the transfer; higher level code should continue
624 transferring if desired. This is handled in target.c.
625
626 The interface does not support a "retry" mechanism. Instead it
627 assumes that at least one byte will be transfered on each
628 successful call.
629
630 NOTE: cagney/2003-10-17: The current interface can lead to
631 fragmented transfers. Lower target levels should not implement
632 hacks, such as enlarging the transfer, in an attempt to
633 compensate for this. Instead, the target stack should be
634 extended so that it implements supply/collect methods and a
635 look-aside object cache. With that available, the lowest
636 target can safely and freely "push" data up the stack.
637
638 See target_read and target_write for more information. One,
639 and only one, of readbuf or writebuf must be non-NULL. */
640
641 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
642 enum target_object object,
643 const char *annex,
644 gdb_byte *readbuf,
645 const gdb_byte *writebuf,
646 ULONGEST offset, ULONGEST len,
647 ULONGEST *xfered_len)
648 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
649
650 /* Returns the memory map for the target. A return value of NULL
651 means that no memory map is available. If a memory address
652 does not fall within any returned regions, it's assumed to be
653 RAM. The returned memory regions should not overlap.
654
655 The order of regions does not matter; target_memory_map will
656 sort regions by starting address. For that reason, this
657 function should not be called directly except via
658 target_memory_map.
659
660 This method should not cache data; if the memory map could
661 change unexpectedly, it should be invalidated, and higher
662 layers will re-fetch it. */
663 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
664
665 /* Erases the region of flash memory starting at ADDRESS, of
666 length LENGTH.
667
668 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
669 on flash block boundaries, as reported by 'to_memory_map'. */
670 void (*to_flash_erase) (struct target_ops *,
671 ULONGEST address, LONGEST length);
672
673 /* Finishes a flash memory write sequence. After this operation
674 all flash memory should be available for writing and the result
675 of reading from areas written by 'to_flash_write' should be
676 equal to what was written. */
677 void (*to_flash_done) (struct target_ops *);
678
679 /* Describe the architecture-specific features of this target.
680 Returns the description found, or NULL if no description
681 was available. */
682 const struct target_desc *(*to_read_description) (struct target_ops *ops);
683
684 /* Build the PTID of the thread on which a given task is running,
685 based on LWP and THREAD. These values are extracted from the
686 task Private_Data section of the Ada Task Control Block, and
687 their interpretation depends on the target. */
688 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
689 long lwp, long thread)
690 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
691
692 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
693 Return 0 if *READPTR is already at the end of the buffer.
694 Return -1 if there is insufficient buffer for a whole entry.
695 Return 1 if an entry was read into *TYPEP and *VALP. */
696 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
697 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
698
699 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
700 sequence of bytes in PATTERN with length PATTERN_LEN.
701
702 The result is 1 if found, 0 if not found, and -1 if there was an error
703 requiring halting of the search (e.g. memory read error).
704 If the pattern is found the address is recorded in FOUND_ADDRP. */
705 int (*to_search_memory) (struct target_ops *ops,
706 CORE_ADDR start_addr, ULONGEST search_space_len,
707 const gdb_byte *pattern, ULONGEST pattern_len,
708 CORE_ADDR *found_addrp);
709
710 /* Can target execute in reverse? */
711 int (*to_can_execute_reverse) (struct target_ops *)
712 TARGET_DEFAULT_RETURN (0);
713
714 /* The direction the target is currently executing. Must be
715 implemented on targets that support reverse execution and async
716 mode. The default simply returns forward execution. */
717 enum exec_direction_kind (*to_execution_direction) (struct target_ops *)
718 TARGET_DEFAULT_FUNC (default_execution_direction);
719
720 /* Does this target support debugging multiple processes
721 simultaneously? */
722 int (*to_supports_multi_process) (struct target_ops *)
723 TARGET_DEFAULT_RETURN (0);
724
725 /* Does this target support enabling and disabling tracepoints while a trace
726 experiment is running? */
727 int (*to_supports_enable_disable_tracepoint) (struct target_ops *)
728 TARGET_DEFAULT_RETURN (0);
729
730 /* Does this target support disabling address space randomization? */
731 int (*to_supports_disable_randomization) (struct target_ops *);
732
733 /* Does this target support the tracenz bytecode for string collection? */
734 int (*to_supports_string_tracing) (struct target_ops *)
735 TARGET_DEFAULT_RETURN (0);
736
737 /* Does this target support evaluation of breakpoint conditions on its
738 end? */
739 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *)
740 TARGET_DEFAULT_RETURN (0);
741
742 /* Does this target support evaluation of breakpoint commands on its
743 end? */
744 int (*to_can_run_breakpoint_commands) (struct target_ops *)
745 TARGET_DEFAULT_RETURN (0);
746
747 /* Determine current architecture of thread PTID.
748
749 The target is supposed to determine the architecture of the code where
750 the target is currently stopped at (on Cell, if a target is in spu_run,
751 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
752 This is architecture used to perform decr_pc_after_break adjustment,
753 and also determines the frame architecture of the innermost frame.
754 ptrace operations need to operate according to target_gdbarch ().
755
756 The default implementation always returns target_gdbarch (). */
757 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t)
758 TARGET_DEFAULT_FUNC (default_thread_architecture);
759
760 /* Determine current address space of thread PTID.
761
762 The default implementation always returns the inferior's
763 address space. */
764 struct address_space *(*to_thread_address_space) (struct target_ops *,
765 ptid_t);
766
767 /* Target file operations. */
768
769 /* Open FILENAME on the target, using FLAGS and MODE. Return a
770 target file descriptor, or -1 if an error occurs (and set
771 *TARGET_ERRNO). */
772 int (*to_fileio_open) (struct target_ops *,
773 const char *filename, int flags, int mode,
774 int *target_errno);
775
776 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
777 Return the number of bytes written, or -1 if an error occurs
778 (and set *TARGET_ERRNO). */
779 int (*to_fileio_pwrite) (struct target_ops *,
780 int fd, const gdb_byte *write_buf, int len,
781 ULONGEST offset, int *target_errno);
782
783 /* Read up to LEN bytes FD on the target into READ_BUF.
784 Return the number of bytes read, or -1 if an error occurs
785 (and set *TARGET_ERRNO). */
786 int (*to_fileio_pread) (struct target_ops *,
787 int fd, gdb_byte *read_buf, int len,
788 ULONGEST offset, int *target_errno);
789
790 /* Close FD on the target. Return 0, or -1 if an error occurs
791 (and set *TARGET_ERRNO). */
792 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
793
794 /* Unlink FILENAME on the target. Return 0, or -1 if an error
795 occurs (and set *TARGET_ERRNO). */
796 int (*to_fileio_unlink) (struct target_ops *,
797 const char *filename, int *target_errno);
798
799 /* Read value of symbolic link FILENAME on the target. Return a
800 null-terminated string allocated via xmalloc, or NULL if an error
801 occurs (and set *TARGET_ERRNO). */
802 char *(*to_fileio_readlink) (struct target_ops *,
803 const char *filename, int *target_errno);
804
805
806 /* Implement the "info proc" command. */
807 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
808
809 /* Tracepoint-related operations. */
810
811 /* Prepare the target for a tracing run. */
812 void (*to_trace_init) (struct target_ops *)
813 TARGET_DEFAULT_NORETURN (tcomplain ());
814
815 /* Send full details of a tracepoint location to the target. */
816 void (*to_download_tracepoint) (struct target_ops *,
817 struct bp_location *location)
818 TARGET_DEFAULT_NORETURN (tcomplain ());
819
820 /* Is the target able to download tracepoint locations in current
821 state? */
822 int (*to_can_download_tracepoint) (struct target_ops *)
823 TARGET_DEFAULT_RETURN (0);
824
825 /* Send full details of a trace state variable to the target. */
826 void (*to_download_trace_state_variable) (struct target_ops *,
827 struct trace_state_variable *tsv)
828 TARGET_DEFAULT_NORETURN (tcomplain ());
829
830 /* Enable a tracepoint on the target. */
831 void (*to_enable_tracepoint) (struct target_ops *,
832 struct bp_location *location)
833 TARGET_DEFAULT_NORETURN (tcomplain ());
834
835 /* Disable a tracepoint on the target. */
836 void (*to_disable_tracepoint) (struct target_ops *,
837 struct bp_location *location)
838 TARGET_DEFAULT_NORETURN (tcomplain ());
839
840 /* Inform the target info of memory regions that are readonly
841 (such as text sections), and so it should return data from
842 those rather than look in the trace buffer. */
843 void (*to_trace_set_readonly_regions) (struct target_ops *)
844 TARGET_DEFAULT_NORETURN (tcomplain ());
845
846 /* Start a trace run. */
847 void (*to_trace_start) (struct target_ops *)
848 TARGET_DEFAULT_NORETURN (tcomplain ());
849
850 /* Get the current status of a tracing run. */
851 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts)
852 TARGET_DEFAULT_RETURN (-1);
853
854 void (*to_get_tracepoint_status) (struct target_ops *,
855 struct breakpoint *tp,
856 struct uploaded_tp *utp)
857 TARGET_DEFAULT_NORETURN (tcomplain ());
858
859 /* Stop a trace run. */
860 void (*to_trace_stop) (struct target_ops *)
861 TARGET_DEFAULT_NORETURN (tcomplain ());
862
863 /* Ask the target to find a trace frame of the given type TYPE,
864 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
865 number of the trace frame, and also the tracepoint number at
866 TPP. If no trace frame matches, return -1. May throw if the
867 operation fails. */
868 int (*to_trace_find) (struct target_ops *,
869 enum trace_find_type type, int num,
870 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
871 TARGET_DEFAULT_RETURN (-1);
872
873 /* Get the value of the trace state variable number TSV, returning
874 1 if the value is known and writing the value itself into the
875 location pointed to by VAL, else returning 0. */
876 int (*to_get_trace_state_variable_value) (struct target_ops *,
877 int tsv, LONGEST *val)
878 TARGET_DEFAULT_RETURN (0);
879
880 int (*to_save_trace_data) (struct target_ops *, const char *filename)
881 TARGET_DEFAULT_NORETURN (tcomplain ());
882
883 int (*to_upload_tracepoints) (struct target_ops *,
884 struct uploaded_tp **utpp)
885 TARGET_DEFAULT_RETURN (0);
886
887 int (*to_upload_trace_state_variables) (struct target_ops *,
888 struct uploaded_tsv **utsvp)
889 TARGET_DEFAULT_RETURN (0);
890
891 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
892 ULONGEST offset, LONGEST len)
893 TARGET_DEFAULT_NORETURN (tcomplain ());
894
895 /* Get the minimum length of instruction on which a fast tracepoint
896 may be set on the target. If this operation is unsupported,
897 return -1. If for some reason the minimum length cannot be
898 determined, return 0. */
899 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *)
900 TARGET_DEFAULT_RETURN (-1);
901
902 /* Set the target's tracing behavior in response to unexpected
903 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
904 void (*to_set_disconnected_tracing) (struct target_ops *, int val)
905 TARGET_DEFAULT_IGNORE ();
906 void (*to_set_circular_trace_buffer) (struct target_ops *, int val)
907 TARGET_DEFAULT_IGNORE ();
908 /* Set the size of trace buffer in the target. */
909 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val)
910 TARGET_DEFAULT_IGNORE ();
911
912 /* Add/change textual notes about the trace run, returning 1 if
913 successful, 0 otherwise. */
914 int (*to_set_trace_notes) (struct target_ops *,
915 const char *user, const char *notes,
916 const char *stopnotes)
917 TARGET_DEFAULT_RETURN (0);
918
919 /* Return the processor core that thread PTID was last seen on.
920 This information is updated only when:
921 - update_thread_list is called
922 - thread stops
923 If the core cannot be determined -- either for the specified
924 thread, or right now, or in this debug session, or for this
925 target -- return -1. */
926 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
927
928 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
929 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
930 a match, 0 if there's a mismatch, and -1 if an error is
931 encountered while reading memory. */
932 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
933 CORE_ADDR memaddr, ULONGEST size);
934
935 /* Return the address of the start of the Thread Information Block
936 a Windows OS specific feature. */
937 int (*to_get_tib_address) (struct target_ops *,
938 ptid_t ptid, CORE_ADDR *addr)
939 TARGET_DEFAULT_NORETURN (tcomplain ());
940
941 /* Send the new settings of write permission variables. */
942 void (*to_set_permissions) (struct target_ops *)
943 TARGET_DEFAULT_IGNORE ();
944
945 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
946 with its details. Return 1 on success, 0 on failure. */
947 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
948 struct static_tracepoint_marker *marker)
949 TARGET_DEFAULT_RETURN (0);
950
951 /* Return a vector of all tracepoints markers string id ID, or all
952 markers if ID is NULL. */
953 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid) (struct target_ops *, const char *id)
954 TARGET_DEFAULT_NORETURN (tcomplain ());
955
956 /* Return a traceframe info object describing the current
957 traceframe's contents. If the target doesn't support
958 traceframe info, return NULL. If the current traceframe is not
959 selected (the current traceframe number is -1), the target can
960 choose to return either NULL or an empty traceframe info. If
961 NULL is returned, for example in remote target, GDB will read
962 from the live inferior. If an empty traceframe info is
963 returned, for example in tfile target, which means the
964 traceframe info is available, but the requested memory is not
965 available in it. GDB will try to see if the requested memory
966 is available in the read-only sections. This method should not
967 cache data; higher layers take care of caching, invalidating,
968 and re-fetching when necessary. */
969 struct traceframe_info *(*to_traceframe_info) (struct target_ops *)
970 TARGET_DEFAULT_RETURN (0);
971
972 /* Ask the target to use or not to use agent according to USE. Return 1
973 successful, 0 otherwise. */
974 int (*to_use_agent) (struct target_ops *, int use)
975 TARGET_DEFAULT_NORETURN (tcomplain ());
976
977 /* Is the target able to use agent in current state? */
978 int (*to_can_use_agent) (struct target_ops *)
979 TARGET_DEFAULT_RETURN (0);
980
981 /* Check whether the target supports branch tracing. */
982 int (*to_supports_btrace) (struct target_ops *)
983 TARGET_DEFAULT_RETURN (0);
984
985 /* Enable branch tracing for PTID and allocate a branch trace target
986 information struct for reading and for disabling branch trace. */
987 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
988 ptid_t ptid);
989
990 /* Disable branch tracing and deallocate TINFO. */
991 void (*to_disable_btrace) (struct target_ops *,
992 struct btrace_target_info *tinfo);
993
994 /* Disable branch tracing and deallocate TINFO. This function is similar
995 to to_disable_btrace, except that it is called during teardown and is
996 only allowed to perform actions that are safe. A counter-example would
997 be attempting to talk to a remote target. */
998 void (*to_teardown_btrace) (struct target_ops *,
999 struct btrace_target_info *tinfo);
1000
1001 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1002 DATA is cleared before new trace is added.
1003 The branch trace will start with the most recent block and continue
1004 towards older blocks. */
1005 enum btrace_error (*to_read_btrace) (struct target_ops *self,
1006 VEC (btrace_block_s) **data,
1007 struct btrace_target_info *btinfo,
1008 enum btrace_read_type type);
1009
1010 /* Stop trace recording. */
1011 void (*to_stop_recording) (struct target_ops *);
1012
1013 /* Print information about the recording. */
1014 void (*to_info_record) (struct target_ops *);
1015
1016 /* Save the recorded execution trace into a file. */
1017 void (*to_save_record) (struct target_ops *, const char *filename);
1018
1019 /* Delete the recorded execution trace from the current position onwards. */
1020 void (*to_delete_record) (struct target_ops *);
1021
1022 /* Query if the record target is currently replaying. */
1023 int (*to_record_is_replaying) (struct target_ops *);
1024
1025 /* Go to the begin of the execution trace. */
1026 void (*to_goto_record_begin) (struct target_ops *);
1027
1028 /* Go to the end of the execution trace. */
1029 void (*to_goto_record_end) (struct target_ops *);
1030
1031 /* Go to a specific location in the recorded execution trace. */
1032 void (*to_goto_record) (struct target_ops *, ULONGEST insn);
1033
1034 /* Disassemble SIZE instructions in the recorded execution trace from
1035 the current position.
1036 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1037 disassemble SIZE succeeding instructions. */
1038 void (*to_insn_history) (struct target_ops *, int size, int flags);
1039
1040 /* Disassemble SIZE instructions in the recorded execution trace around
1041 FROM.
1042 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1043 disassemble SIZE instructions after FROM. */
1044 void (*to_insn_history_from) (struct target_ops *,
1045 ULONGEST from, int size, int flags);
1046
1047 /* Disassemble a section of the recorded execution trace from instruction
1048 BEGIN (inclusive) to instruction END (inclusive). */
1049 void (*to_insn_history_range) (struct target_ops *,
1050 ULONGEST begin, ULONGEST end, int flags);
1051
1052 /* Print a function trace of the recorded execution trace.
1053 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1054 succeeding functions. */
1055 void (*to_call_history) (struct target_ops *, int size, int flags);
1056
1057 /* Print a function trace of the recorded execution trace starting
1058 at function FROM.
1059 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1060 SIZE functions after FROM. */
1061 void (*to_call_history_from) (struct target_ops *,
1062 ULONGEST begin, int size, int flags);
1063
1064 /* Print a function trace of an execution trace section from function BEGIN
1065 (inclusive) to function END (inclusive). */
1066 void (*to_call_history_range) (struct target_ops *,
1067 ULONGEST begin, ULONGEST end, int flags);
1068
1069 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1070 non-empty annex. */
1071 int (*to_augmented_libraries_svr4_read) (struct target_ops *)
1072 TARGET_DEFAULT_RETURN (0);
1073
1074 /* Those unwinders are tried before any other arch unwinders. Use NULL if
1075 it is not used. */
1076 const struct frame_unwind *to_get_unwinder;
1077 const struct frame_unwind *to_get_tailcall_unwinder;
1078
1079 /* Return the number of bytes by which the PC needs to be decremented
1080 after executing a breakpoint instruction.
1081 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
1082 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
1083 struct gdbarch *gdbarch);
1084
1085 int to_magic;
1086 /* Need sub-structure for target machine related rather than comm related?
1087 */
1088 };
1089
1090 /* Magic number for checking ops size. If a struct doesn't end with this
1091 number, somebody changed the declaration but didn't change all the
1092 places that initialize one. */
1093
1094 #define OPS_MAGIC 3840
1095
1096 /* The ops structure for our "current" target process. This should
1097 never be NULL. If there is no target, it points to the dummy_target. */
1098
1099 extern struct target_ops current_target;
1100
1101 /* Define easy words for doing these operations on our current target. */
1102
1103 #define target_shortname (current_target.to_shortname)
1104 #define target_longname (current_target.to_longname)
1105
1106 /* Does whatever cleanup is required for a target that we are no
1107 longer going to be calling. This routine is automatically always
1108 called after popping the target off the target stack - the target's
1109 own methods are no longer available through the target vector.
1110 Closing file descriptors and freeing all memory allocated memory are
1111 typical things it should do. */
1112
1113 void target_close (struct target_ops *targ);
1114
1115 /* Attaches to a process on the target side. Arguments are as passed
1116 to the `attach' command by the user. This routine can be called
1117 when the target is not on the target-stack, if the target_can_run
1118 routine returns 1; in that case, it must push itself onto the stack.
1119 Upon exit, the target should be ready for normal operations, and
1120 should be ready to deliver the status of the process immediately
1121 (without waiting) to an upcoming target_wait call. */
1122
1123 void target_attach (char *, int);
1124
1125 /* Some targets don't generate traps when attaching to the inferior,
1126 or their target_attach implementation takes care of the waiting.
1127 These targets must set to_attach_no_wait. */
1128
1129 #define target_attach_no_wait \
1130 (current_target.to_attach_no_wait)
1131
1132 /* The target_attach operation places a process under debugger control,
1133 and stops the process.
1134
1135 This operation provides a target-specific hook that allows the
1136 necessary bookkeeping to be performed after an attach completes. */
1137 #define target_post_attach(pid) \
1138 (*current_target.to_post_attach) (&current_target, pid)
1139
1140 /* Takes a program previously attached to and detaches it.
1141 The program may resume execution (some targets do, some don't) and will
1142 no longer stop on signals, etc. We better not have left any breakpoints
1143 in the program or it'll die when it hits one. ARGS is arguments
1144 typed by the user (e.g. a signal to send the process). FROM_TTY
1145 says whether to be verbose or not. */
1146
1147 extern void target_detach (const char *, int);
1148
1149 /* Disconnect from the current target without resuming it (leaving it
1150 waiting for a debugger). */
1151
1152 extern void target_disconnect (char *, int);
1153
1154 /* Resume execution of the target process PTID (or a group of
1155 threads). STEP says whether to single-step or to run free; SIGGNAL
1156 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1157 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1158 PTID means `step/resume only this process id'. A wildcard PTID
1159 (all threads, or all threads of process) means `step/resume
1160 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1161 matches) resume with their 'thread->suspend.stop_signal' signal
1162 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1163 if in "no pass" state. */
1164
1165 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1166
1167 /* Wait for process pid to do something. PTID = -1 to wait for any
1168 pid to do something. Return pid of child, or -1 in case of error;
1169 store status through argument pointer STATUS. Note that it is
1170 _NOT_ OK to throw_exception() out of target_wait() without popping
1171 the debugging target from the stack; GDB isn't prepared to get back
1172 to the prompt with a debugging target but without the frame cache,
1173 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1174 options. */
1175
1176 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1177 int options);
1178
1179 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1180
1181 extern void target_fetch_registers (struct regcache *regcache, int regno);
1182
1183 /* Store at least register REGNO, or all regs if REGNO == -1.
1184 It can store as many registers as it wants to, so target_prepare_to_store
1185 must have been previously called. Calls error() if there are problems. */
1186
1187 extern void target_store_registers (struct regcache *regcache, int regs);
1188
1189 /* Get ready to modify the registers array. On machines which store
1190 individual registers, this doesn't need to do anything. On machines
1191 which store all the registers in one fell swoop, this makes sure
1192 that REGISTERS contains all the registers from the program being
1193 debugged. */
1194
1195 #define target_prepare_to_store(regcache) \
1196 (*current_target.to_prepare_to_store) (&current_target, regcache)
1197
1198 /* Determine current address space of thread PTID. */
1199
1200 struct address_space *target_thread_address_space (ptid_t);
1201
1202 /* Implement the "info proc" command. This returns one if the request
1203 was handled, and zero otherwise. It can also throw an exception if
1204 an error was encountered while attempting to handle the
1205 request. */
1206
1207 int target_info_proc (char *, enum info_proc_what);
1208
1209 /* Returns true if this target can debug multiple processes
1210 simultaneously. */
1211
1212 #define target_supports_multi_process() \
1213 (*current_target.to_supports_multi_process) (&current_target)
1214
1215 /* Returns true if this target can disable address space randomization. */
1216
1217 int target_supports_disable_randomization (void);
1218
1219 /* Returns true if this target can enable and disable tracepoints
1220 while a trace experiment is running. */
1221
1222 #define target_supports_enable_disable_tracepoint() \
1223 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1224
1225 #define target_supports_string_tracing() \
1226 (*current_target.to_supports_string_tracing) (&current_target)
1227
1228 /* Returns true if this target can handle breakpoint conditions
1229 on its end. */
1230
1231 #define target_supports_evaluation_of_breakpoint_conditions() \
1232 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1233
1234 /* Returns true if this target can handle breakpoint commands
1235 on its end. */
1236
1237 #define target_can_run_breakpoint_commands() \
1238 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1239
1240 extern int target_read_string (CORE_ADDR, char **, int, int *);
1241
1242 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1243 ssize_t len);
1244
1245 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1246 ssize_t len);
1247
1248 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1249
1250 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1251
1252 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1253 ssize_t len);
1254
1255 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1256 ssize_t len);
1257
1258 /* Fetches the target's memory map. If one is found it is sorted
1259 and returned, after some consistency checking. Otherwise, NULL
1260 is returned. */
1261 VEC(mem_region_s) *target_memory_map (void);
1262
1263 /* Erase the specified flash region. */
1264 void target_flash_erase (ULONGEST address, LONGEST length);
1265
1266 /* Finish a sequence of flash operations. */
1267 void target_flash_done (void);
1268
1269 /* Describes a request for a memory write operation. */
1270 struct memory_write_request
1271 {
1272 /* Begining address that must be written. */
1273 ULONGEST begin;
1274 /* Past-the-end address. */
1275 ULONGEST end;
1276 /* The data to write. */
1277 gdb_byte *data;
1278 /* A callback baton for progress reporting for this request. */
1279 void *baton;
1280 };
1281 typedef struct memory_write_request memory_write_request_s;
1282 DEF_VEC_O(memory_write_request_s);
1283
1284 /* Enumeration specifying different flash preservation behaviour. */
1285 enum flash_preserve_mode
1286 {
1287 flash_preserve,
1288 flash_discard
1289 };
1290
1291 /* Write several memory blocks at once. This version can be more
1292 efficient than making several calls to target_write_memory, in
1293 particular because it can optimize accesses to flash memory.
1294
1295 Moreover, this is currently the only memory access function in gdb
1296 that supports writing to flash memory, and it should be used for
1297 all cases where access to flash memory is desirable.
1298
1299 REQUESTS is the vector (see vec.h) of memory_write_request.
1300 PRESERVE_FLASH_P indicates what to do with blocks which must be
1301 erased, but not completely rewritten.
1302 PROGRESS_CB is a function that will be periodically called to provide
1303 feedback to user. It will be called with the baton corresponding
1304 to the request currently being written. It may also be called
1305 with a NULL baton, when preserved flash sectors are being rewritten.
1306
1307 The function returns 0 on success, and error otherwise. */
1308 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1309 enum flash_preserve_mode preserve_flash_p,
1310 void (*progress_cb) (ULONGEST, void *));
1311
1312 /* Print a line about the current target. */
1313
1314 #define target_files_info() \
1315 (*current_target.to_files_info) (&current_target)
1316
1317 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1318 the target machine. Returns 0 for success, and returns non-zero or
1319 throws an error (with a detailed failure reason error code and
1320 message) otherwise. */
1321
1322 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1323 struct bp_target_info *bp_tgt);
1324
1325 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1326 machine. Result is 0 for success, non-zero for error. */
1327
1328 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1329 struct bp_target_info *bp_tgt);
1330
1331 /* Initialize the terminal settings we record for the inferior,
1332 before we actually run the inferior. */
1333
1334 #define target_terminal_init() \
1335 (*current_target.to_terminal_init) (&current_target)
1336
1337 /* Put the inferior's terminal settings into effect.
1338 This is preparation for starting or resuming the inferior. */
1339
1340 extern void target_terminal_inferior (void);
1341
1342 /* Put some of our terminal settings into effect,
1343 enough to get proper results from our output,
1344 but do not change into or out of RAW mode
1345 so that no input is discarded.
1346
1347 After doing this, either terminal_ours or terminal_inferior
1348 should be called to get back to a normal state of affairs. */
1349
1350 #define target_terminal_ours_for_output() \
1351 (*current_target.to_terminal_ours_for_output) (&current_target)
1352
1353 /* Put our terminal settings into effect.
1354 First record the inferior's terminal settings
1355 so they can be restored properly later. */
1356
1357 #define target_terminal_ours() \
1358 (*current_target.to_terminal_ours) (&current_target)
1359
1360 /* Save our terminal settings.
1361 This is called from TUI after entering or leaving the curses
1362 mode. Since curses modifies our terminal this call is here
1363 to take this change into account. */
1364
1365 #define target_terminal_save_ours() \
1366 (*current_target.to_terminal_save_ours) (&current_target)
1367
1368 /* Print useful information about our terminal status, if such a thing
1369 exists. */
1370
1371 #define target_terminal_info(arg, from_tty) \
1372 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1373
1374 /* Kill the inferior process. Make it go away. */
1375
1376 extern void target_kill (void);
1377
1378 /* Load an executable file into the target process. This is expected
1379 to not only bring new code into the target process, but also to
1380 update GDB's symbol tables to match.
1381
1382 ARG contains command-line arguments, to be broken down with
1383 buildargv (). The first non-switch argument is the filename to
1384 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1385 0)), which is an offset to apply to the load addresses of FILE's
1386 sections. The target may define switches, or other non-switch
1387 arguments, as it pleases. */
1388
1389 extern void target_load (char *arg, int from_tty);
1390
1391 /* Start an inferior process and set inferior_ptid to its pid.
1392 EXEC_FILE is the file to run.
1393 ALLARGS is a string containing the arguments to the program.
1394 ENV is the environment vector to pass. Errors reported with error().
1395 On VxWorks and various standalone systems, we ignore exec_file. */
1396
1397 void target_create_inferior (char *exec_file, char *args,
1398 char **env, int from_tty);
1399
1400 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1401 notification of inferior events such as fork and vork immediately
1402 after the inferior is created. (This because of how gdb gets an
1403 inferior created via invoking a shell to do it. In such a scenario,
1404 if the shell init file has commands in it, the shell will fork and
1405 exec for each of those commands, and we will see each such fork
1406 event. Very bad.)
1407
1408 Such targets will supply an appropriate definition for this function. */
1409
1410 #define target_post_startup_inferior(ptid) \
1411 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1412
1413 /* On some targets, we can catch an inferior fork or vfork event when
1414 it occurs. These functions insert/remove an already-created
1415 catchpoint for such events. They return 0 for success, 1 if the
1416 catchpoint type is not supported and -1 for failure. */
1417
1418 #define target_insert_fork_catchpoint(pid) \
1419 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1420
1421 #define target_remove_fork_catchpoint(pid) \
1422 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1423
1424 #define target_insert_vfork_catchpoint(pid) \
1425 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1426
1427 #define target_remove_vfork_catchpoint(pid) \
1428 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1429
1430 /* If the inferior forks or vforks, this function will be called at
1431 the next resume in order to perform any bookkeeping and fiddling
1432 necessary to continue debugging either the parent or child, as
1433 requested, and releasing the other. Information about the fork
1434 or vfork event is available via get_last_target_status ().
1435 This function returns 1 if the inferior should not be resumed
1436 (i.e. there is another event pending). */
1437
1438 int target_follow_fork (int follow_child, int detach_fork);
1439
1440 /* On some targets, we can catch an inferior exec event when it
1441 occurs. These functions insert/remove an already-created
1442 catchpoint for such events. They return 0 for success, 1 if the
1443 catchpoint type is not supported and -1 for failure. */
1444
1445 #define target_insert_exec_catchpoint(pid) \
1446 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1447
1448 #define target_remove_exec_catchpoint(pid) \
1449 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1450
1451 /* Syscall catch.
1452
1453 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1454 If NEEDED is zero, it means the target can disable the mechanism to
1455 catch system calls because there are no more catchpoints of this type.
1456
1457 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1458 being requested. In this case, both TABLE_SIZE and TABLE should
1459 be ignored.
1460
1461 TABLE_SIZE is the number of elements in TABLE. It only matters if
1462 ANY_COUNT is zero.
1463
1464 TABLE is an array of ints, indexed by syscall number. An element in
1465 this array is nonzero if that syscall should be caught. This argument
1466 only matters if ANY_COUNT is zero.
1467
1468 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1469 for failure. */
1470
1471 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1472 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1473 pid, needed, any_count, \
1474 table_size, table)
1475
1476 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1477 exit code of PID, if any. */
1478
1479 #define target_has_exited(pid,wait_status,exit_status) \
1480 (*current_target.to_has_exited) (&current_target, \
1481 pid,wait_status,exit_status)
1482
1483 /* The debugger has completed a blocking wait() call. There is now
1484 some process event that must be processed. This function should
1485 be defined by those targets that require the debugger to perform
1486 cleanup or internal state changes in response to the process event. */
1487
1488 /* The inferior process has died. Do what is right. */
1489
1490 void target_mourn_inferior (void);
1491
1492 /* Does target have enough data to do a run or attach command? */
1493
1494 #define target_can_run(t) \
1495 ((t)->to_can_run) (t)
1496
1497 /* Set list of signals to be handled in the target.
1498
1499 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1500 (enum gdb_signal). For every signal whose entry in this array is
1501 non-zero, the target is allowed -but not required- to skip reporting
1502 arrival of the signal to the GDB core by returning from target_wait,
1503 and to pass the signal directly to the inferior instead.
1504
1505 However, if the target is hardware single-stepping a thread that is
1506 about to receive a signal, it needs to be reported in any case, even
1507 if mentioned in a previous target_pass_signals call. */
1508
1509 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1510
1511 /* Set list of signals the target may pass to the inferior. This
1512 directly maps to the "handle SIGNAL pass/nopass" setting.
1513
1514 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1515 number (enum gdb_signal). For every signal whose entry in this
1516 array is non-zero, the target is allowed to pass the signal to the
1517 inferior. Signals not present in the array shall be silently
1518 discarded. This does not influence whether to pass signals to the
1519 inferior as a result of a target_resume call. This is useful in
1520 scenarios where the target needs to decide whether to pass or not a
1521 signal to the inferior without GDB core involvement, such as for
1522 example, when detaching (as threads may have been suspended with
1523 pending signals not reported to GDB). */
1524
1525 extern void target_program_signals (int nsig, unsigned char *program_signals);
1526
1527 /* Check to see if a thread is still alive. */
1528
1529 extern int target_thread_alive (ptid_t ptid);
1530
1531 /* Query for new threads and add them to the thread list. */
1532
1533 extern void target_find_new_threads (void);
1534
1535 /* Make target stop in a continuable fashion. (For instance, under
1536 Unix, this should act like SIGSTOP). This function is normally
1537 used by GUIs to implement a stop button. */
1538
1539 extern void target_stop (ptid_t ptid);
1540
1541 /* Send the specified COMMAND to the target's monitor
1542 (shell,interpreter) for execution. The result of the query is
1543 placed in OUTBUF. */
1544
1545 #define target_rcmd(command, outbuf) \
1546 (*current_target.to_rcmd) (&current_target, command, outbuf)
1547
1548
1549 /* Does the target include all of memory, or only part of it? This
1550 determines whether we look up the target chain for other parts of
1551 memory if this target can't satisfy a request. */
1552
1553 extern int target_has_all_memory_1 (void);
1554 #define target_has_all_memory target_has_all_memory_1 ()
1555
1556 /* Does the target include memory? (Dummy targets don't.) */
1557
1558 extern int target_has_memory_1 (void);
1559 #define target_has_memory target_has_memory_1 ()
1560
1561 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1562 we start a process.) */
1563
1564 extern int target_has_stack_1 (void);
1565 #define target_has_stack target_has_stack_1 ()
1566
1567 /* Does the target have registers? (Exec files don't.) */
1568
1569 extern int target_has_registers_1 (void);
1570 #define target_has_registers target_has_registers_1 ()
1571
1572 /* Does the target have execution? Can we make it jump (through
1573 hoops), or pop its stack a few times? This means that the current
1574 target is currently executing; for some targets, that's the same as
1575 whether or not the target is capable of execution, but there are
1576 also targets which can be current while not executing. In that
1577 case this will become true after target_create_inferior or
1578 target_attach. */
1579
1580 extern int target_has_execution_1 (ptid_t);
1581
1582 /* Like target_has_execution_1, but always passes inferior_ptid. */
1583
1584 extern int target_has_execution_current (void);
1585
1586 #define target_has_execution target_has_execution_current ()
1587
1588 /* Default implementations for process_stratum targets. Return true
1589 if there's a selected inferior, false otherwise. */
1590
1591 extern int default_child_has_all_memory (struct target_ops *ops);
1592 extern int default_child_has_memory (struct target_ops *ops);
1593 extern int default_child_has_stack (struct target_ops *ops);
1594 extern int default_child_has_registers (struct target_ops *ops);
1595 extern int default_child_has_execution (struct target_ops *ops,
1596 ptid_t the_ptid);
1597
1598 /* Can the target support the debugger control of thread execution?
1599 Can it lock the thread scheduler? */
1600
1601 #define target_can_lock_scheduler \
1602 (current_target.to_has_thread_control & tc_schedlock)
1603
1604 /* Should the target enable async mode if it is supported? Temporary
1605 cludge until async mode is a strict superset of sync mode. */
1606 extern int target_async_permitted;
1607
1608 /* Can the target support asynchronous execution? */
1609 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1610
1611 /* Is the target in asynchronous execution mode? */
1612 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1613
1614 int target_supports_non_stop (void);
1615
1616 /* Put the target in async mode with the specified callback function. */
1617 #define target_async(CALLBACK,CONTEXT) \
1618 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1619
1620 #define target_execution_direction() \
1621 (current_target.to_execution_direction (&current_target))
1622
1623 /* Converts a process id to a string. Usually, the string just contains
1624 `process xyz', but on some systems it may contain
1625 `process xyz thread abc'. */
1626
1627 extern char *target_pid_to_str (ptid_t ptid);
1628
1629 extern char *normal_pid_to_str (ptid_t ptid);
1630
1631 /* Return a short string describing extra information about PID,
1632 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1633 is okay. */
1634
1635 #define target_extra_thread_info(TP) \
1636 (current_target.to_extra_thread_info (&current_target, TP))
1637
1638 /* Return the thread's name. A NULL result means that the target
1639 could not determine this thread's name. */
1640
1641 extern char *target_thread_name (struct thread_info *);
1642
1643 /* Attempts to find the pathname of the executable file
1644 that was run to create a specified process.
1645
1646 The process PID must be stopped when this operation is used.
1647
1648 If the executable file cannot be determined, NULL is returned.
1649
1650 Else, a pointer to a character string containing the pathname
1651 is returned. This string should be copied into a buffer by
1652 the client if the string will not be immediately used, or if
1653 it must persist. */
1654
1655 #define target_pid_to_exec_file(pid) \
1656 (current_target.to_pid_to_exec_file) (&current_target, pid)
1657
1658 /* See the to_thread_architecture description in struct target_ops. */
1659
1660 #define target_thread_architecture(ptid) \
1661 (current_target.to_thread_architecture (&current_target, ptid))
1662
1663 /*
1664 * Iterator function for target memory regions.
1665 * Calls a callback function once for each memory region 'mapped'
1666 * in the child process. Defined as a simple macro rather than
1667 * as a function macro so that it can be tested for nullity.
1668 */
1669
1670 #define target_find_memory_regions(FUNC, DATA) \
1671 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1672
1673 /*
1674 * Compose corefile .note section.
1675 */
1676
1677 #define target_make_corefile_notes(BFD, SIZE_P) \
1678 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1679
1680 /* Bookmark interfaces. */
1681 #define target_get_bookmark(ARGS, FROM_TTY) \
1682 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1683
1684 #define target_goto_bookmark(ARG, FROM_TTY) \
1685 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1686
1687 /* Hardware watchpoint interfaces. */
1688
1689 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1690 write). Only the INFERIOR_PTID task is being queried. */
1691
1692 #define target_stopped_by_watchpoint() \
1693 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1694
1695 /* Non-zero if we have steppable watchpoints */
1696
1697 #define target_have_steppable_watchpoint \
1698 (current_target.to_have_steppable_watchpoint)
1699
1700 /* Non-zero if we have continuable watchpoints */
1701
1702 #define target_have_continuable_watchpoint \
1703 (current_target.to_have_continuable_watchpoint)
1704
1705 /* Provide defaults for hardware watchpoint functions. */
1706
1707 /* If the *_hw_beakpoint functions have not been defined
1708 elsewhere use the definitions in the target vector. */
1709
1710 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1711 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1712 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1713 (including this one?). OTHERTYPE is who knows what... */
1714
1715 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1716 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1717 TYPE, CNT, OTHERTYPE);
1718
1719 /* Returns the number of debug registers needed to watch the given
1720 memory region, or zero if not supported. */
1721
1722 #define target_region_ok_for_hw_watchpoint(addr, len) \
1723 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1724 addr, len)
1725
1726
1727 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1728 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1729 COND is the expression for its condition, or NULL if there's none.
1730 Returns 0 for success, 1 if the watchpoint type is not supported,
1731 -1 for failure. */
1732
1733 #define target_insert_watchpoint(addr, len, type, cond) \
1734 (*current_target.to_insert_watchpoint) (&current_target, \
1735 addr, len, type, cond)
1736
1737 #define target_remove_watchpoint(addr, len, type, cond) \
1738 (*current_target.to_remove_watchpoint) (&current_target, \
1739 addr, len, type, cond)
1740
1741 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1742 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1743 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1744 masked watchpoints are not supported, -1 for failure. */
1745
1746 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1747
1748 /* Remove a masked watchpoint at ADDR with the mask MASK.
1749 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1750 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1751 for failure. */
1752
1753 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1754
1755 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1756 the target machine. Returns 0 for success, and returns non-zero or
1757 throws an error (with a detailed failure reason error code and
1758 message) otherwise. */
1759
1760 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1761 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1762 gdbarch, bp_tgt)
1763
1764 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1765 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1766 gdbarch, bp_tgt)
1767
1768 /* Return number of debug registers needed for a ranged breakpoint,
1769 or -1 if ranged breakpoints are not supported. */
1770
1771 extern int target_ranged_break_num_registers (void);
1772
1773 /* Return non-zero if target knows the data address which triggered this
1774 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1775 INFERIOR_PTID task is being queried. */
1776 #define target_stopped_data_address(target, addr_p) \
1777 (*target.to_stopped_data_address) (target, addr_p)
1778
1779 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1780 LENGTH bytes beginning at START. */
1781 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1782 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1783
1784 /* Return non-zero if the target is capable of using hardware to evaluate
1785 the condition expression. In this case, if the condition is false when
1786 the watched memory location changes, execution may continue without the
1787 debugger being notified.
1788
1789 Due to limitations in the hardware implementation, it may be capable of
1790 avoiding triggering the watchpoint in some cases where the condition
1791 expression is false, but may report some false positives as well.
1792 For this reason, GDB will still evaluate the condition expression when
1793 the watchpoint triggers. */
1794 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1795 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1796 addr, len, type, cond)
1797
1798 /* Return number of debug registers needed for a masked watchpoint,
1799 -1 if masked watchpoints are not supported or -2 if the given address
1800 and mask combination cannot be used. */
1801
1802 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1803
1804 /* Target can execute in reverse? */
1805 #define target_can_execute_reverse \
1806 current_target.to_can_execute_reverse (&current_target)
1807
1808 extern const struct target_desc *target_read_description (struct target_ops *);
1809
1810 #define target_get_ada_task_ptid(lwp, tid) \
1811 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1812
1813 /* Utility implementation of searching memory. */
1814 extern int simple_search_memory (struct target_ops* ops,
1815 CORE_ADDR start_addr,
1816 ULONGEST search_space_len,
1817 const gdb_byte *pattern,
1818 ULONGEST pattern_len,
1819 CORE_ADDR *found_addrp);
1820
1821 /* Main entry point for searching memory. */
1822 extern int target_search_memory (CORE_ADDR start_addr,
1823 ULONGEST search_space_len,
1824 const gdb_byte *pattern,
1825 ULONGEST pattern_len,
1826 CORE_ADDR *found_addrp);
1827
1828 /* Target file operations. */
1829
1830 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1831 target file descriptor, or -1 if an error occurs (and set
1832 *TARGET_ERRNO). */
1833 extern int target_fileio_open (const char *filename, int flags, int mode,
1834 int *target_errno);
1835
1836 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1837 Return the number of bytes written, or -1 if an error occurs
1838 (and set *TARGET_ERRNO). */
1839 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1840 ULONGEST offset, int *target_errno);
1841
1842 /* Read up to LEN bytes FD on the target into READ_BUF.
1843 Return the number of bytes read, or -1 if an error occurs
1844 (and set *TARGET_ERRNO). */
1845 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1846 ULONGEST offset, int *target_errno);
1847
1848 /* Close FD on the target. Return 0, or -1 if an error occurs
1849 (and set *TARGET_ERRNO). */
1850 extern int target_fileio_close (int fd, int *target_errno);
1851
1852 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1853 occurs (and set *TARGET_ERRNO). */
1854 extern int target_fileio_unlink (const char *filename, int *target_errno);
1855
1856 /* Read value of symbolic link FILENAME on the target. Return a
1857 null-terminated string allocated via xmalloc, or NULL if an error
1858 occurs (and set *TARGET_ERRNO). */
1859 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1860
1861 /* Read target file FILENAME. The return value will be -1 if the transfer
1862 fails or is not supported; 0 if the object is empty; or the length
1863 of the object otherwise. If a positive value is returned, a
1864 sufficiently large buffer will be allocated using xmalloc and
1865 returned in *BUF_P containing the contents of the object.
1866
1867 This method should be used for objects sufficiently small to store
1868 in a single xmalloc'd buffer, when no fixed bound on the object's
1869 size is known in advance. */
1870 extern LONGEST target_fileio_read_alloc (const char *filename,
1871 gdb_byte **buf_p);
1872
1873 /* Read target file FILENAME. The result is NUL-terminated and
1874 returned as a string, allocated using xmalloc. If an error occurs
1875 or the transfer is unsupported, NULL is returned. Empty objects
1876 are returned as allocated but empty strings. A warning is issued
1877 if the result contains any embedded NUL bytes. */
1878 extern char *target_fileio_read_stralloc (const char *filename);
1879
1880
1881 /* Tracepoint-related operations. */
1882
1883 #define target_trace_init() \
1884 (*current_target.to_trace_init) (&current_target)
1885
1886 #define target_download_tracepoint(t) \
1887 (*current_target.to_download_tracepoint) (&current_target, t)
1888
1889 #define target_can_download_tracepoint() \
1890 (*current_target.to_can_download_tracepoint) (&current_target)
1891
1892 #define target_download_trace_state_variable(tsv) \
1893 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
1894
1895 #define target_enable_tracepoint(loc) \
1896 (*current_target.to_enable_tracepoint) (&current_target, loc)
1897
1898 #define target_disable_tracepoint(loc) \
1899 (*current_target.to_disable_tracepoint) (&current_target, loc)
1900
1901 #define target_trace_start() \
1902 (*current_target.to_trace_start) (&current_target)
1903
1904 #define target_trace_set_readonly_regions() \
1905 (*current_target.to_trace_set_readonly_regions) (&current_target)
1906
1907 #define target_get_trace_status(ts) \
1908 (*current_target.to_get_trace_status) (&current_target, ts)
1909
1910 #define target_get_tracepoint_status(tp,utp) \
1911 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
1912
1913 #define target_trace_stop() \
1914 (*current_target.to_trace_stop) (&current_target)
1915
1916 #define target_trace_find(type,num,addr1,addr2,tpp) \
1917 (*current_target.to_trace_find) (&current_target, \
1918 (type), (num), (addr1), (addr2), (tpp))
1919
1920 #define target_get_trace_state_variable_value(tsv,val) \
1921 (*current_target.to_get_trace_state_variable_value) (&current_target, \
1922 (tsv), (val))
1923
1924 #define target_save_trace_data(filename) \
1925 (*current_target.to_save_trace_data) (&current_target, filename)
1926
1927 #define target_upload_tracepoints(utpp) \
1928 (*current_target.to_upload_tracepoints) (&current_target, utpp)
1929
1930 #define target_upload_trace_state_variables(utsvp) \
1931 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
1932
1933 #define target_get_raw_trace_data(buf,offset,len) \
1934 (*current_target.to_get_raw_trace_data) (&current_target, \
1935 (buf), (offset), (len))
1936
1937 #define target_get_min_fast_tracepoint_insn_len() \
1938 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
1939
1940 #define target_set_disconnected_tracing(val) \
1941 (*current_target.to_set_disconnected_tracing) (&current_target, val)
1942
1943 #define target_set_circular_trace_buffer(val) \
1944 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
1945
1946 #define target_set_trace_buffer_size(val) \
1947 (*current_target.to_set_trace_buffer_size) (&current_target, val)
1948
1949 #define target_set_trace_notes(user,notes,stopnotes) \
1950 (*current_target.to_set_trace_notes) (&current_target, \
1951 (user), (notes), (stopnotes))
1952
1953 #define target_get_tib_address(ptid, addr) \
1954 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
1955
1956 #define target_set_permissions() \
1957 (*current_target.to_set_permissions) (&current_target)
1958
1959 #define target_static_tracepoint_marker_at(addr, marker) \
1960 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
1961 addr, marker)
1962
1963 #define target_static_tracepoint_markers_by_strid(marker_id) \
1964 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
1965 marker_id)
1966
1967 #define target_traceframe_info() \
1968 (*current_target.to_traceframe_info) (&current_target)
1969
1970 #define target_use_agent(use) \
1971 (*current_target.to_use_agent) (&current_target, use)
1972
1973 #define target_can_use_agent() \
1974 (*current_target.to_can_use_agent) (&current_target)
1975
1976 #define target_augmented_libraries_svr4_read() \
1977 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
1978
1979 /* Command logging facility. */
1980
1981 #define target_log_command(p) \
1982 (*current_target.to_log_command) (&current_target, p)
1983
1984
1985 extern int target_core_of_thread (ptid_t ptid);
1986
1987 /* See to_get_unwinder in struct target_ops. */
1988 extern const struct frame_unwind *target_get_unwinder (void);
1989
1990 /* See to_get_tailcall_unwinder in struct target_ops. */
1991 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
1992
1993 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1994 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1995 if there's a mismatch, and -1 if an error is encountered while
1996 reading memory. Throws an error if the functionality is found not
1997 to be supported by the current target. */
1998 int target_verify_memory (const gdb_byte *data,
1999 CORE_ADDR memaddr, ULONGEST size);
2000
2001 /* Routines for maintenance of the target structures...
2002
2003 complete_target_initialization: Finalize a target_ops by filling in
2004 any fields needed by the target implementation.
2005
2006 add_target: Add a target to the list of all possible targets.
2007
2008 push_target: Make this target the top of the stack of currently used
2009 targets, within its particular stratum of the stack. Result
2010 is 0 if now atop the stack, nonzero if not on top (maybe
2011 should warn user).
2012
2013 unpush_target: Remove this from the stack of currently used targets,
2014 no matter where it is on the list. Returns 0 if no
2015 change, 1 if removed from stack. */
2016
2017 extern void add_target (struct target_ops *);
2018
2019 extern void add_target_with_completer (struct target_ops *t,
2020 completer_ftype *completer);
2021
2022 extern void complete_target_initialization (struct target_ops *t);
2023
2024 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
2025 for maintaining backwards compatibility when renaming targets. */
2026
2027 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
2028
2029 extern void push_target (struct target_ops *);
2030
2031 extern int unpush_target (struct target_ops *);
2032
2033 extern void target_pre_inferior (int);
2034
2035 extern void target_preopen (int);
2036
2037 /* Does whatever cleanup is required to get rid of all pushed targets. */
2038 extern void pop_all_targets (void);
2039
2040 /* Like pop_all_targets, but pops only targets whose stratum is
2041 strictly above ABOVE_STRATUM. */
2042 extern void pop_all_targets_above (enum strata above_stratum);
2043
2044 extern int target_is_pushed (struct target_ops *t);
2045
2046 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2047 CORE_ADDR offset);
2048
2049 /* Struct target_section maps address ranges to file sections. It is
2050 mostly used with BFD files, but can be used without (e.g. for handling
2051 raw disks, or files not in formats handled by BFD). */
2052
2053 struct target_section
2054 {
2055 CORE_ADDR addr; /* Lowest address in section */
2056 CORE_ADDR endaddr; /* 1+highest address in section */
2057
2058 struct bfd_section *the_bfd_section;
2059
2060 /* The "owner" of the section.
2061 It can be any unique value. It is set by add_target_sections
2062 and used by remove_target_sections.
2063 For example, for executables it is a pointer to exec_bfd and
2064 for shlibs it is the so_list pointer. */
2065 void *owner;
2066 };
2067
2068 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2069
2070 struct target_section_table
2071 {
2072 struct target_section *sections;
2073 struct target_section *sections_end;
2074 };
2075
2076 /* Return the "section" containing the specified address. */
2077 struct target_section *target_section_by_addr (struct target_ops *target,
2078 CORE_ADDR addr);
2079
2080 /* Return the target section table this target (or the targets
2081 beneath) currently manipulate. */
2082
2083 extern struct target_section_table *target_get_section_table
2084 (struct target_ops *target);
2085
2086 /* From mem-break.c */
2087
2088 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2089 struct bp_target_info *);
2090
2091 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2092 struct bp_target_info *);
2093
2094 extern int default_memory_remove_breakpoint (struct gdbarch *,
2095 struct bp_target_info *);
2096
2097 extern int default_memory_insert_breakpoint (struct gdbarch *,
2098 struct bp_target_info *);
2099
2100
2101 /* From target.c */
2102
2103 extern void initialize_targets (void);
2104
2105 extern void noprocess (void) ATTRIBUTE_NORETURN;
2106
2107 extern void target_require_runnable (void);
2108
2109 extern void find_default_attach (struct target_ops *, char *, int);
2110
2111 extern void find_default_create_inferior (struct target_ops *,
2112 char *, char *, char **, int);
2113
2114 extern struct target_ops *find_target_beneath (struct target_ops *);
2115
2116 /* Find the target at STRATUM. If no target is at that stratum,
2117 return NULL. */
2118
2119 struct target_ops *find_target_at (enum strata stratum);
2120
2121 /* Read OS data object of type TYPE from the target, and return it in
2122 XML format. The result is NUL-terminated and returned as a string,
2123 allocated using xmalloc. If an error occurs or the transfer is
2124 unsupported, NULL is returned. Empty objects are returned as
2125 allocated but empty strings. */
2126
2127 extern char *target_get_osdata (const char *type);
2128
2129 \f
2130 /* Stuff that should be shared among the various remote targets. */
2131
2132 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2133 information (higher values, more information). */
2134 extern int remote_debug;
2135
2136 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2137 extern int baud_rate;
2138 /* Timeout limit for response from target. */
2139 extern int remote_timeout;
2140
2141 \f
2142
2143 /* Set the show memory breakpoints mode to show, and installs a cleanup
2144 to restore it back to the current value. */
2145 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2146
2147 extern int may_write_registers;
2148 extern int may_write_memory;
2149 extern int may_insert_breakpoints;
2150 extern int may_insert_tracepoints;
2151 extern int may_insert_fast_tracepoints;
2152 extern int may_stop;
2153
2154 extern void update_target_permissions (void);
2155
2156 \f
2157 /* Imported from machine dependent code. */
2158
2159 /* Blank target vector entries are initialized to target_ignore. */
2160 void target_ignore (void);
2161
2162 /* See to_supports_btrace in struct target_ops. */
2163 #define target_supports_btrace() \
2164 (current_target.to_supports_btrace (&current_target))
2165
2166 /* See to_enable_btrace in struct target_ops. */
2167 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2168
2169 /* See to_disable_btrace in struct target_ops. */
2170 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2171
2172 /* See to_teardown_btrace in struct target_ops. */
2173 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2174
2175 /* See to_read_btrace in struct target_ops. */
2176 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2177 struct btrace_target_info *,
2178 enum btrace_read_type);
2179
2180 /* See to_stop_recording in struct target_ops. */
2181 extern void target_stop_recording (void);
2182
2183 /* See to_info_record in struct target_ops. */
2184 extern void target_info_record (void);
2185
2186 /* See to_save_record in struct target_ops. */
2187 extern void target_save_record (const char *filename);
2188
2189 /* Query if the target supports deleting the execution log. */
2190 extern int target_supports_delete_record (void);
2191
2192 /* See to_delete_record in struct target_ops. */
2193 extern void target_delete_record (void);
2194
2195 /* See to_record_is_replaying in struct target_ops. */
2196 extern int target_record_is_replaying (void);
2197
2198 /* See to_goto_record_begin in struct target_ops. */
2199 extern void target_goto_record_begin (void);
2200
2201 /* See to_goto_record_end in struct target_ops. */
2202 extern void target_goto_record_end (void);
2203
2204 /* See to_goto_record in struct target_ops. */
2205 extern void target_goto_record (ULONGEST insn);
2206
2207 /* See to_insn_history. */
2208 extern void target_insn_history (int size, int flags);
2209
2210 /* See to_insn_history_from. */
2211 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2212
2213 /* See to_insn_history_range. */
2214 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2215
2216 /* See to_call_history. */
2217 extern void target_call_history (int size, int flags);
2218
2219 /* See to_call_history_from. */
2220 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2221
2222 /* See to_call_history_range. */
2223 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2224
2225 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2226 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2227 struct gdbarch *gdbarch);
2228
2229 /* See to_decr_pc_after_break. */
2230 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2231
2232 #endif /* !defined (TARGET_H) */