convert to_program_signals
[binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* Generic I/O error. Note that it's important that this is '-1',
217 as we still have target_xfer-related code returning hardcoded
218 '-1' on error. */
219 TARGET_XFER_E_IO = -1,
220
221 /* Transfer failed because the piece of the object requested is
222 unavailable. */
223 TARGET_XFER_E_UNAVAILABLE = -2,
224
225 /* Keep list in sync with target_xfer_error_to_string. */
226 };
227
228 #define TARGET_XFER_STATUS_ERROR_P(STATUS) ((STATUS) < TARGET_XFER_EOF)
229
230 /* Return the string form of ERR. */
231
232 extern const char *target_xfer_status_to_string (enum target_xfer_status err);
233
234 /* Enumeration of the kinds of traceframe searches that a target may
235 be able to perform. */
236
237 enum trace_find_type
238 {
239 tfind_number,
240 tfind_pc,
241 tfind_tp,
242 tfind_range,
243 tfind_outside,
244 };
245
246 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
247 DEF_VEC_P(static_tracepoint_marker_p);
248
249 typedef enum target_xfer_status
250 target_xfer_partial_ftype (struct target_ops *ops,
251 enum target_object object,
252 const char *annex,
253 gdb_byte *readbuf,
254 const gdb_byte *writebuf,
255 ULONGEST offset,
256 ULONGEST len,
257 ULONGEST *xfered_len);
258
259 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
260 OBJECT. The OFFSET, for a seekable object, specifies the
261 starting point. The ANNEX can be used to provide additional
262 data-specific information to the target.
263
264 Return the number of bytes actually transfered, or a negative error
265 code (an 'enum target_xfer_error' value) if the transfer is not
266 supported or otherwise fails. Return of a positive value less than
267 LEN indicates that no further transfer is possible. Unlike the raw
268 to_xfer_partial interface, callers of these functions do not need
269 to retry partial transfers. */
270
271 extern LONGEST target_read (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276 struct memory_read_result
277 {
278 /* First address that was read. */
279 ULONGEST begin;
280 /* Past-the-end address. */
281 ULONGEST end;
282 /* The data. */
283 gdb_byte *data;
284 };
285 typedef struct memory_read_result memory_read_result_s;
286 DEF_VEC_O(memory_read_result_s);
287
288 extern void free_memory_read_result_vector (void *);
289
290 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
291 ULONGEST offset,
292 LONGEST len);
293
294 extern LONGEST target_write (struct target_ops *ops,
295 enum target_object object,
296 const char *annex, const gdb_byte *buf,
297 ULONGEST offset, LONGEST len);
298
299 /* Similar to target_write, except that it also calls PROGRESS with
300 the number of bytes written and the opaque BATON after every
301 successful partial write (and before the first write). This is
302 useful for progress reporting and user interaction while writing
303 data. To abort the transfer, the progress callback can throw an
304 exception. */
305
306 LONGEST target_write_with_progress (struct target_ops *ops,
307 enum target_object object,
308 const char *annex, const gdb_byte *buf,
309 ULONGEST offset, LONGEST len,
310 void (*progress) (ULONGEST, void *),
311 void *baton);
312
313 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
314 be read using OPS. The return value will be -1 if the transfer
315 fails or is not supported; 0 if the object is empty; or the length
316 of the object otherwise. If a positive value is returned, a
317 sufficiently large buffer will be allocated using xmalloc and
318 returned in *BUF_P containing the contents of the object.
319
320 This method should be used for objects sufficiently small to store
321 in a single xmalloc'd buffer, when no fixed bound on the object's
322 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
323 through this function. */
324
325 extern LONGEST target_read_alloc (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, gdb_byte **buf_p);
328
329 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
330 returned as a string, allocated using xmalloc. If an error occurs
331 or the transfer is unsupported, NULL is returned. Empty objects
332 are returned as allocated but empty strings. A warning is issued
333 if the result contains any embedded NUL bytes. */
334
335 extern char *target_read_stralloc (struct target_ops *ops,
336 enum target_object object,
337 const char *annex);
338
339 /* See target_ops->to_xfer_partial. */
340 extern target_xfer_partial_ftype target_xfer_partial;
341
342 /* Wrappers to target read/write that perform memory transfers. They
343 throw an error if the memory transfer fails.
344
345 NOTE: cagney/2003-10-23: The naming schema is lifted from
346 "frame.h". The parameter order is lifted from get_frame_memory,
347 which in turn lifted it from read_memory. */
348
349 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
350 gdb_byte *buf, LONGEST len);
351 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
352 CORE_ADDR addr, int len,
353 enum bfd_endian byte_order);
354 \f
355 struct thread_info; /* fwd decl for parameter list below: */
356
357 /* The type of the callback to the to_async method. */
358
359 typedef void async_callback_ftype (enum inferior_event_type event_type,
360 void *context);
361
362 /* These defines are used to mark target_ops methods. The script
363 make-target-delegates scans these and auto-generates the base
364 method implementations. There are four macros that can be used:
365
366 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
367 does nothing. This is only valid if the method return type is
368 'void'.
369
370 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
371 'tcomplain ()'. The base method simply makes this call, which is
372 assumed not to return.
373
374 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
375 base method returns this expression's value.
376
377 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
378 make-target-delegates does not generate a base method in this case,
379 but instead uses the argument function as the base method. */
380
381 #define TARGET_DEFAULT_IGNORE()
382 #define TARGET_DEFAULT_NORETURN(ARG)
383 #define TARGET_DEFAULT_RETURN(ARG)
384 #define TARGET_DEFAULT_FUNC(ARG)
385
386 struct target_ops
387 {
388 struct target_ops *beneath; /* To the target under this one. */
389 char *to_shortname; /* Name this target type */
390 char *to_longname; /* Name for printing */
391 char *to_doc; /* Documentation. Does not include trailing
392 newline, and starts with a one-line descrip-
393 tion (probably similar to to_longname). */
394 /* Per-target scratch pad. */
395 void *to_data;
396 /* The open routine takes the rest of the parameters from the
397 command, and (if successful) pushes a new target onto the
398 stack. Targets should supply this routine, if only to provide
399 an error message. */
400 void (*to_open) (char *, int);
401 /* Old targets with a static target vector provide "to_close".
402 New re-entrant targets provide "to_xclose" and that is expected
403 to xfree everything (including the "struct target_ops"). */
404 void (*to_xclose) (struct target_ops *targ);
405 void (*to_close) (struct target_ops *);
406 void (*to_attach) (struct target_ops *ops, char *, int)
407 TARGET_DEFAULT_FUNC (find_default_attach);
408 void (*to_post_attach) (struct target_ops *, int)
409 TARGET_DEFAULT_IGNORE ();
410 void (*to_detach) (struct target_ops *ops, const char *, int)
411 TARGET_DEFAULT_IGNORE ();
412 void (*to_disconnect) (struct target_ops *, char *, int);
413 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
414 TARGET_DEFAULT_NORETURN (noprocess ());
415 ptid_t (*to_wait) (struct target_ops *,
416 ptid_t, struct target_waitstatus *, int)
417 TARGET_DEFAULT_NORETURN (noprocess ());
418 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int)
419 TARGET_DEFAULT_IGNORE ();
420 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
421 TARGET_DEFAULT_NORETURN (noprocess ());
422 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
423 TARGET_DEFAULT_NORETURN (noprocess ());
424
425 /* Transfer LEN bytes of memory between GDB address MYADDR and
426 target address MEMADDR. If WRITE, transfer them to the target, else
427 transfer them from the target. TARGET is the target from which we
428 get this function.
429
430 Return value, N, is one of the following:
431
432 0 means that we can't handle this. If errno has been set, it is the
433 error which prevented us from doing it (FIXME: What about bfd_error?).
434
435 positive (call it N) means that we have transferred N bytes
436 starting at MEMADDR. We might be able to handle more bytes
437 beyond this length, but no promises.
438
439 negative (call its absolute value N) means that we cannot
440 transfer right at MEMADDR, but we could transfer at least
441 something at MEMADDR + N.
442
443 NOTE: cagney/2004-10-01: This has been entirely superseeded by
444 to_xfer_partial and inferior inheritance. */
445
446 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
447 int len, int write,
448 struct mem_attrib *attrib,
449 struct target_ops *target);
450
451 void (*to_files_info) (struct target_ops *)
452 TARGET_DEFAULT_IGNORE ();
453 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
454 struct bp_target_info *)
455 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
456 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
457 struct bp_target_info *)
458 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
459 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int)
460 TARGET_DEFAULT_RETURN (0);
461 int (*to_ranged_break_num_registers) (struct target_ops *)
462 TARGET_DEFAULT_RETURN (-1);
463 int (*to_insert_hw_breakpoint) (struct target_ops *,
464 struct gdbarch *, struct bp_target_info *)
465 TARGET_DEFAULT_RETURN (-1);
466 int (*to_remove_hw_breakpoint) (struct target_ops *,
467 struct gdbarch *, struct bp_target_info *)
468 TARGET_DEFAULT_RETURN (-1);
469
470 /* Documentation of what the two routines below are expected to do is
471 provided with the corresponding target_* macros. */
472 int (*to_remove_watchpoint) (struct target_ops *,
473 CORE_ADDR, int, int, struct expression *)
474 TARGET_DEFAULT_RETURN (-1);
475 int (*to_insert_watchpoint) (struct target_ops *,
476 CORE_ADDR, int, int, struct expression *)
477 TARGET_DEFAULT_RETURN (-1);
478
479 int (*to_insert_mask_watchpoint) (struct target_ops *,
480 CORE_ADDR, CORE_ADDR, int)
481 TARGET_DEFAULT_RETURN (1);
482 int (*to_remove_mask_watchpoint) (struct target_ops *,
483 CORE_ADDR, CORE_ADDR, int)
484 TARGET_DEFAULT_RETURN (1);
485 int (*to_stopped_by_watchpoint) (struct target_ops *)
486 TARGET_DEFAULT_RETURN (0);
487 int to_have_steppable_watchpoint;
488 int to_have_continuable_watchpoint;
489 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
490 TARGET_DEFAULT_RETURN (0);
491 int (*to_watchpoint_addr_within_range) (struct target_ops *,
492 CORE_ADDR, CORE_ADDR, int)
493 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
494
495 /* Documentation of this routine is provided with the corresponding
496 target_* macro. */
497 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
498 CORE_ADDR, int)
499 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
500
501 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
502 CORE_ADDR, int, int,
503 struct expression *)
504 TARGET_DEFAULT_RETURN (0);
505 int (*to_masked_watch_num_registers) (struct target_ops *,
506 CORE_ADDR, CORE_ADDR)
507 TARGET_DEFAULT_RETURN (-1);
508 void (*to_terminal_init) (struct target_ops *)
509 TARGET_DEFAULT_IGNORE ();
510 void (*to_terminal_inferior) (struct target_ops *)
511 TARGET_DEFAULT_IGNORE ();
512 void (*to_terminal_ours_for_output) (struct target_ops *)
513 TARGET_DEFAULT_IGNORE ();
514 void (*to_terminal_ours) (struct target_ops *)
515 TARGET_DEFAULT_IGNORE ();
516 void (*to_terminal_save_ours) (struct target_ops *)
517 TARGET_DEFAULT_IGNORE ();
518 void (*to_terminal_info) (struct target_ops *, const char *, int)
519 TARGET_DEFAULT_FUNC (default_terminal_info);
520 void (*to_kill) (struct target_ops *)
521 TARGET_DEFAULT_NORETURN (noprocess ());
522 void (*to_load) (struct target_ops *, char *, int)
523 TARGET_DEFAULT_NORETURN (tcomplain ());
524 void (*to_create_inferior) (struct target_ops *,
525 char *, char *, char **, int);
526 void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
527 TARGET_DEFAULT_IGNORE ();
528 int (*to_insert_fork_catchpoint) (struct target_ops *, int)
529 TARGET_DEFAULT_RETURN (1);
530 int (*to_remove_fork_catchpoint) (struct target_ops *, int)
531 TARGET_DEFAULT_RETURN (1);
532 int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
533 TARGET_DEFAULT_RETURN (1);
534 int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
535 TARGET_DEFAULT_RETURN (1);
536 int (*to_follow_fork) (struct target_ops *, int, int)
537 TARGET_DEFAULT_FUNC (default_follow_fork);
538 int (*to_insert_exec_catchpoint) (struct target_ops *, int)
539 TARGET_DEFAULT_RETURN (1);
540 int (*to_remove_exec_catchpoint) (struct target_ops *, int)
541 TARGET_DEFAULT_RETURN (1);
542 int (*to_set_syscall_catchpoint) (struct target_ops *,
543 int, int, int, int, int *)
544 TARGET_DEFAULT_RETURN (1);
545 int (*to_has_exited) (struct target_ops *, int, int, int *)
546 TARGET_DEFAULT_RETURN (0);
547 void (*to_mourn_inferior) (struct target_ops *)
548 TARGET_DEFAULT_FUNC (default_mourn_inferior);
549 int (*to_can_run) (struct target_ops *);
550
551 /* Documentation of this routine is provided with the corresponding
552 target_* macro. */
553 void (*to_pass_signals) (struct target_ops *, int, unsigned char *)
554 TARGET_DEFAULT_IGNORE ();
555
556 /* Documentation of this routine is provided with the
557 corresponding target_* function. */
558 void (*to_program_signals) (struct target_ops *, int, unsigned char *)
559 TARGET_DEFAULT_IGNORE ();
560
561 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
562 void (*to_find_new_threads) (struct target_ops *);
563 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
564 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *)
565 TARGET_DEFAULT_RETURN (0);
566 char *(*to_thread_name) (struct target_ops *, struct thread_info *)
567 TARGET_DEFAULT_RETURN (0);
568 void (*to_stop) (struct target_ops *, ptid_t)
569 TARGET_DEFAULT_IGNORE ();
570 void (*to_rcmd) (struct target_ops *,
571 char *command, struct ui_file *output)
572 TARGET_DEFAULT_FUNC (default_rcmd);
573 char *(*to_pid_to_exec_file) (struct target_ops *, int pid)
574 TARGET_DEFAULT_RETURN (0);
575 void (*to_log_command) (struct target_ops *, const char *)
576 TARGET_DEFAULT_IGNORE ();
577 struct target_section_table *(*to_get_section_table) (struct target_ops *);
578 enum strata to_stratum;
579 int (*to_has_all_memory) (struct target_ops *);
580 int (*to_has_memory) (struct target_ops *);
581 int (*to_has_stack) (struct target_ops *);
582 int (*to_has_registers) (struct target_ops *);
583 int (*to_has_execution) (struct target_ops *, ptid_t);
584 int to_has_thread_control; /* control thread execution */
585 int to_attach_no_wait;
586 /* ASYNC target controls */
587 int (*to_can_async_p) (struct target_ops *)
588 TARGET_DEFAULT_FUNC (find_default_can_async_p);
589 int (*to_is_async_p) (struct target_ops *)
590 TARGET_DEFAULT_FUNC (find_default_is_async_p);
591 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
592 TARGET_DEFAULT_NORETURN (tcomplain ());
593 int (*to_supports_non_stop) (struct target_ops *);
594 /* find_memory_regions support method for gcore */
595 int (*to_find_memory_regions) (struct target_ops *,
596 find_memory_region_ftype func, void *data)
597 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
598 /* make_corefile_notes support method for gcore */
599 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *)
600 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
601 /* get_bookmark support method for bookmarks */
602 gdb_byte * (*to_get_bookmark) (struct target_ops *, char *, int)
603 TARGET_DEFAULT_NORETURN (tcomplain ());
604 /* goto_bookmark support method for bookmarks */
605 void (*to_goto_bookmark) (struct target_ops *, gdb_byte *, int)
606 TARGET_DEFAULT_NORETURN (tcomplain ());
607 /* Return the thread-local address at OFFSET in the
608 thread-local storage for the thread PTID and the shared library
609 or executable file given by OBJFILE. If that block of
610 thread-local storage hasn't been allocated yet, this function
611 may return an error. */
612 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
613 ptid_t ptid,
614 CORE_ADDR load_module_addr,
615 CORE_ADDR offset);
616
617 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
618 OBJECT. The OFFSET, for a seekable object, specifies the
619 starting point. The ANNEX can be used to provide additional
620 data-specific information to the target.
621
622 Return the transferred status, error or OK (an
623 'enum target_xfer_status' value). Save the number of bytes
624 actually transferred in *XFERED_LEN if transfer is successful
625 (TARGET_XFER_OK) or the number unavailable bytes if the requested
626 data is unavailable (TARGET_XFER_E_UNAVAILABLE). *XFERED_LEN
627 smaller than LEN does not indicate the end of the object, only
628 the end of the transfer; higher level code should continue
629 transferring if desired. This is handled in target.c.
630
631 The interface does not support a "retry" mechanism. Instead it
632 assumes that at least one byte will be transfered on each
633 successful call.
634
635 NOTE: cagney/2003-10-17: The current interface can lead to
636 fragmented transfers. Lower target levels should not implement
637 hacks, such as enlarging the transfer, in an attempt to
638 compensate for this. Instead, the target stack should be
639 extended so that it implements supply/collect methods and a
640 look-aside object cache. With that available, the lowest
641 target can safely and freely "push" data up the stack.
642
643 See target_read and target_write for more information. One,
644 and only one, of readbuf or writebuf must be non-NULL. */
645
646 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
647 enum target_object object,
648 const char *annex,
649 gdb_byte *readbuf,
650 const gdb_byte *writebuf,
651 ULONGEST offset, ULONGEST len,
652 ULONGEST *xfered_len)
653 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
654
655 /* Returns the memory map for the target. A return value of NULL
656 means that no memory map is available. If a memory address
657 does not fall within any returned regions, it's assumed to be
658 RAM. The returned memory regions should not overlap.
659
660 The order of regions does not matter; target_memory_map will
661 sort regions by starting address. For that reason, this
662 function should not be called directly except via
663 target_memory_map.
664
665 This method should not cache data; if the memory map could
666 change unexpectedly, it should be invalidated, and higher
667 layers will re-fetch it. */
668 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
669
670 /* Erases the region of flash memory starting at ADDRESS, of
671 length LENGTH.
672
673 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
674 on flash block boundaries, as reported by 'to_memory_map'. */
675 void (*to_flash_erase) (struct target_ops *,
676 ULONGEST address, LONGEST length);
677
678 /* Finishes a flash memory write sequence. After this operation
679 all flash memory should be available for writing and the result
680 of reading from areas written by 'to_flash_write' should be
681 equal to what was written. */
682 void (*to_flash_done) (struct target_ops *);
683
684 /* Describe the architecture-specific features of this target.
685 Returns the description found, or NULL if no description
686 was available. */
687 const struct target_desc *(*to_read_description) (struct target_ops *ops);
688
689 /* Build the PTID of the thread on which a given task is running,
690 based on LWP and THREAD. These values are extracted from the
691 task Private_Data section of the Ada Task Control Block, and
692 their interpretation depends on the target. */
693 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
694 long lwp, long thread)
695 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
696
697 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
698 Return 0 if *READPTR is already at the end of the buffer.
699 Return -1 if there is insufficient buffer for a whole entry.
700 Return 1 if an entry was read into *TYPEP and *VALP. */
701 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
702 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
703
704 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
705 sequence of bytes in PATTERN with length PATTERN_LEN.
706
707 The result is 1 if found, 0 if not found, and -1 if there was an error
708 requiring halting of the search (e.g. memory read error).
709 If the pattern is found the address is recorded in FOUND_ADDRP. */
710 int (*to_search_memory) (struct target_ops *ops,
711 CORE_ADDR start_addr, ULONGEST search_space_len,
712 const gdb_byte *pattern, ULONGEST pattern_len,
713 CORE_ADDR *found_addrp);
714
715 /* Can target execute in reverse? */
716 int (*to_can_execute_reverse) (struct target_ops *)
717 TARGET_DEFAULT_RETURN (0);
718
719 /* The direction the target is currently executing. Must be
720 implemented on targets that support reverse execution and async
721 mode. The default simply returns forward execution. */
722 enum exec_direction_kind (*to_execution_direction) (struct target_ops *)
723 TARGET_DEFAULT_FUNC (default_execution_direction);
724
725 /* Does this target support debugging multiple processes
726 simultaneously? */
727 int (*to_supports_multi_process) (struct target_ops *)
728 TARGET_DEFAULT_RETURN (0);
729
730 /* Does this target support enabling and disabling tracepoints while a trace
731 experiment is running? */
732 int (*to_supports_enable_disable_tracepoint) (struct target_ops *)
733 TARGET_DEFAULT_RETURN (0);
734
735 /* Does this target support disabling address space randomization? */
736 int (*to_supports_disable_randomization) (struct target_ops *);
737
738 /* Does this target support the tracenz bytecode for string collection? */
739 int (*to_supports_string_tracing) (struct target_ops *)
740 TARGET_DEFAULT_RETURN (0);
741
742 /* Does this target support evaluation of breakpoint conditions on its
743 end? */
744 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *)
745 TARGET_DEFAULT_RETURN (0);
746
747 /* Does this target support evaluation of breakpoint commands on its
748 end? */
749 int (*to_can_run_breakpoint_commands) (struct target_ops *)
750 TARGET_DEFAULT_RETURN (0);
751
752 /* Determine current architecture of thread PTID.
753
754 The target is supposed to determine the architecture of the code where
755 the target is currently stopped at (on Cell, if a target is in spu_run,
756 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
757 This is architecture used to perform decr_pc_after_break adjustment,
758 and also determines the frame architecture of the innermost frame.
759 ptrace operations need to operate according to target_gdbarch ().
760
761 The default implementation always returns target_gdbarch (). */
762 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t)
763 TARGET_DEFAULT_FUNC (default_thread_architecture);
764
765 /* Determine current address space of thread PTID.
766
767 The default implementation always returns the inferior's
768 address space. */
769 struct address_space *(*to_thread_address_space) (struct target_ops *,
770 ptid_t);
771
772 /* Target file operations. */
773
774 /* Open FILENAME on the target, using FLAGS and MODE. Return a
775 target file descriptor, or -1 if an error occurs (and set
776 *TARGET_ERRNO). */
777 int (*to_fileio_open) (struct target_ops *,
778 const char *filename, int flags, int mode,
779 int *target_errno);
780
781 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
782 Return the number of bytes written, or -1 if an error occurs
783 (and set *TARGET_ERRNO). */
784 int (*to_fileio_pwrite) (struct target_ops *,
785 int fd, const gdb_byte *write_buf, int len,
786 ULONGEST offset, int *target_errno);
787
788 /* Read up to LEN bytes FD on the target into READ_BUF.
789 Return the number of bytes read, or -1 if an error occurs
790 (and set *TARGET_ERRNO). */
791 int (*to_fileio_pread) (struct target_ops *,
792 int fd, gdb_byte *read_buf, int len,
793 ULONGEST offset, int *target_errno);
794
795 /* Close FD on the target. Return 0, or -1 if an error occurs
796 (and set *TARGET_ERRNO). */
797 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
798
799 /* Unlink FILENAME on the target. Return 0, or -1 if an error
800 occurs (and set *TARGET_ERRNO). */
801 int (*to_fileio_unlink) (struct target_ops *,
802 const char *filename, int *target_errno);
803
804 /* Read value of symbolic link FILENAME on the target. Return a
805 null-terminated string allocated via xmalloc, or NULL if an error
806 occurs (and set *TARGET_ERRNO). */
807 char *(*to_fileio_readlink) (struct target_ops *,
808 const char *filename, int *target_errno);
809
810
811 /* Implement the "info proc" command. */
812 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
813
814 /* Tracepoint-related operations. */
815
816 /* Prepare the target for a tracing run. */
817 void (*to_trace_init) (struct target_ops *)
818 TARGET_DEFAULT_NORETURN (tcomplain ());
819
820 /* Send full details of a tracepoint location to the target. */
821 void (*to_download_tracepoint) (struct target_ops *,
822 struct bp_location *location)
823 TARGET_DEFAULT_NORETURN (tcomplain ());
824
825 /* Is the target able to download tracepoint locations in current
826 state? */
827 int (*to_can_download_tracepoint) (struct target_ops *)
828 TARGET_DEFAULT_RETURN (0);
829
830 /* Send full details of a trace state variable to the target. */
831 void (*to_download_trace_state_variable) (struct target_ops *,
832 struct trace_state_variable *tsv)
833 TARGET_DEFAULT_NORETURN (tcomplain ());
834
835 /* Enable a tracepoint on the target. */
836 void (*to_enable_tracepoint) (struct target_ops *,
837 struct bp_location *location)
838 TARGET_DEFAULT_NORETURN (tcomplain ());
839
840 /* Disable a tracepoint on the target. */
841 void (*to_disable_tracepoint) (struct target_ops *,
842 struct bp_location *location)
843 TARGET_DEFAULT_NORETURN (tcomplain ());
844
845 /* Inform the target info of memory regions that are readonly
846 (such as text sections), and so it should return data from
847 those rather than look in the trace buffer. */
848 void (*to_trace_set_readonly_regions) (struct target_ops *)
849 TARGET_DEFAULT_NORETURN (tcomplain ());
850
851 /* Start a trace run. */
852 void (*to_trace_start) (struct target_ops *)
853 TARGET_DEFAULT_NORETURN (tcomplain ());
854
855 /* Get the current status of a tracing run. */
856 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts)
857 TARGET_DEFAULT_RETURN (-1);
858
859 void (*to_get_tracepoint_status) (struct target_ops *,
860 struct breakpoint *tp,
861 struct uploaded_tp *utp)
862 TARGET_DEFAULT_NORETURN (tcomplain ());
863
864 /* Stop a trace run. */
865 void (*to_trace_stop) (struct target_ops *)
866 TARGET_DEFAULT_NORETURN (tcomplain ());
867
868 /* Ask the target to find a trace frame of the given type TYPE,
869 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
870 number of the trace frame, and also the tracepoint number at
871 TPP. If no trace frame matches, return -1. May throw if the
872 operation fails. */
873 int (*to_trace_find) (struct target_ops *,
874 enum trace_find_type type, int num,
875 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
876 TARGET_DEFAULT_RETURN (-1);
877
878 /* Get the value of the trace state variable number TSV, returning
879 1 if the value is known and writing the value itself into the
880 location pointed to by VAL, else returning 0. */
881 int (*to_get_trace_state_variable_value) (struct target_ops *,
882 int tsv, LONGEST *val)
883 TARGET_DEFAULT_RETURN (0);
884
885 int (*to_save_trace_data) (struct target_ops *, const char *filename)
886 TARGET_DEFAULT_NORETURN (tcomplain ());
887
888 int (*to_upload_tracepoints) (struct target_ops *,
889 struct uploaded_tp **utpp)
890 TARGET_DEFAULT_RETURN (0);
891
892 int (*to_upload_trace_state_variables) (struct target_ops *,
893 struct uploaded_tsv **utsvp)
894 TARGET_DEFAULT_RETURN (0);
895
896 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
897 ULONGEST offset, LONGEST len)
898 TARGET_DEFAULT_NORETURN (tcomplain ());
899
900 /* Get the minimum length of instruction on which a fast tracepoint
901 may be set on the target. If this operation is unsupported,
902 return -1. If for some reason the minimum length cannot be
903 determined, return 0. */
904 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *)
905 TARGET_DEFAULT_RETURN (-1);
906
907 /* Set the target's tracing behavior in response to unexpected
908 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
909 void (*to_set_disconnected_tracing) (struct target_ops *, int val)
910 TARGET_DEFAULT_IGNORE ();
911 void (*to_set_circular_trace_buffer) (struct target_ops *, int val)
912 TARGET_DEFAULT_IGNORE ();
913 /* Set the size of trace buffer in the target. */
914 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val)
915 TARGET_DEFAULT_IGNORE ();
916
917 /* Add/change textual notes about the trace run, returning 1 if
918 successful, 0 otherwise. */
919 int (*to_set_trace_notes) (struct target_ops *,
920 const char *user, const char *notes,
921 const char *stopnotes)
922 TARGET_DEFAULT_RETURN (0);
923
924 /* Return the processor core that thread PTID was last seen on.
925 This information is updated only when:
926 - update_thread_list is called
927 - thread stops
928 If the core cannot be determined -- either for the specified
929 thread, or right now, or in this debug session, or for this
930 target -- return -1. */
931 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
932
933 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
934 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
935 a match, 0 if there's a mismatch, and -1 if an error is
936 encountered while reading memory. */
937 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
938 CORE_ADDR memaddr, ULONGEST size);
939
940 /* Return the address of the start of the Thread Information Block
941 a Windows OS specific feature. */
942 int (*to_get_tib_address) (struct target_ops *,
943 ptid_t ptid, CORE_ADDR *addr)
944 TARGET_DEFAULT_NORETURN (tcomplain ());
945
946 /* Send the new settings of write permission variables. */
947 void (*to_set_permissions) (struct target_ops *)
948 TARGET_DEFAULT_IGNORE ();
949
950 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
951 with its details. Return 1 on success, 0 on failure. */
952 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
953 struct static_tracepoint_marker *marker)
954 TARGET_DEFAULT_RETURN (0);
955
956 /* Return a vector of all tracepoints markers string id ID, or all
957 markers if ID is NULL. */
958 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid) (struct target_ops *, const char *id)
959 TARGET_DEFAULT_NORETURN (tcomplain ());
960
961 /* Return a traceframe info object describing the current
962 traceframe's contents. If the target doesn't support
963 traceframe info, return NULL. If the current traceframe is not
964 selected (the current traceframe number is -1), the target can
965 choose to return either NULL or an empty traceframe info. If
966 NULL is returned, for example in remote target, GDB will read
967 from the live inferior. If an empty traceframe info is
968 returned, for example in tfile target, which means the
969 traceframe info is available, but the requested memory is not
970 available in it. GDB will try to see if the requested memory
971 is available in the read-only sections. This method should not
972 cache data; higher layers take care of caching, invalidating,
973 and re-fetching when necessary. */
974 struct traceframe_info *(*to_traceframe_info) (struct target_ops *)
975 TARGET_DEFAULT_RETURN (0);
976
977 /* Ask the target to use or not to use agent according to USE. Return 1
978 successful, 0 otherwise. */
979 int (*to_use_agent) (struct target_ops *, int use)
980 TARGET_DEFAULT_NORETURN (tcomplain ());
981
982 /* Is the target able to use agent in current state? */
983 int (*to_can_use_agent) (struct target_ops *)
984 TARGET_DEFAULT_RETURN (0);
985
986 /* Check whether the target supports branch tracing. */
987 int (*to_supports_btrace) (struct target_ops *)
988 TARGET_DEFAULT_RETURN (0);
989
990 /* Enable branch tracing for PTID and allocate a branch trace target
991 information struct for reading and for disabling branch trace. */
992 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
993 ptid_t ptid);
994
995 /* Disable branch tracing and deallocate TINFO. */
996 void (*to_disable_btrace) (struct target_ops *,
997 struct btrace_target_info *tinfo);
998
999 /* Disable branch tracing and deallocate TINFO. This function is similar
1000 to to_disable_btrace, except that it is called during teardown and is
1001 only allowed to perform actions that are safe. A counter-example would
1002 be attempting to talk to a remote target. */
1003 void (*to_teardown_btrace) (struct target_ops *,
1004 struct btrace_target_info *tinfo);
1005
1006 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1007 DATA is cleared before new trace is added.
1008 The branch trace will start with the most recent block and continue
1009 towards older blocks. */
1010 enum btrace_error (*to_read_btrace) (struct target_ops *self,
1011 VEC (btrace_block_s) **data,
1012 struct btrace_target_info *btinfo,
1013 enum btrace_read_type type);
1014
1015 /* Stop trace recording. */
1016 void (*to_stop_recording) (struct target_ops *);
1017
1018 /* Print information about the recording. */
1019 void (*to_info_record) (struct target_ops *);
1020
1021 /* Save the recorded execution trace into a file. */
1022 void (*to_save_record) (struct target_ops *, const char *filename);
1023
1024 /* Delete the recorded execution trace from the current position onwards. */
1025 void (*to_delete_record) (struct target_ops *);
1026
1027 /* Query if the record target is currently replaying. */
1028 int (*to_record_is_replaying) (struct target_ops *);
1029
1030 /* Go to the begin of the execution trace. */
1031 void (*to_goto_record_begin) (struct target_ops *);
1032
1033 /* Go to the end of the execution trace. */
1034 void (*to_goto_record_end) (struct target_ops *);
1035
1036 /* Go to a specific location in the recorded execution trace. */
1037 void (*to_goto_record) (struct target_ops *, ULONGEST insn);
1038
1039 /* Disassemble SIZE instructions in the recorded execution trace from
1040 the current position.
1041 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1042 disassemble SIZE succeeding instructions. */
1043 void (*to_insn_history) (struct target_ops *, int size, int flags);
1044
1045 /* Disassemble SIZE instructions in the recorded execution trace around
1046 FROM.
1047 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1048 disassemble SIZE instructions after FROM. */
1049 void (*to_insn_history_from) (struct target_ops *,
1050 ULONGEST from, int size, int flags);
1051
1052 /* Disassemble a section of the recorded execution trace from instruction
1053 BEGIN (inclusive) to instruction END (inclusive). */
1054 void (*to_insn_history_range) (struct target_ops *,
1055 ULONGEST begin, ULONGEST end, int flags);
1056
1057 /* Print a function trace of the recorded execution trace.
1058 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1059 succeeding functions. */
1060 void (*to_call_history) (struct target_ops *, int size, int flags);
1061
1062 /* Print a function trace of the recorded execution trace starting
1063 at function FROM.
1064 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1065 SIZE functions after FROM. */
1066 void (*to_call_history_from) (struct target_ops *,
1067 ULONGEST begin, int size, int flags);
1068
1069 /* Print a function trace of an execution trace section from function BEGIN
1070 (inclusive) to function END (inclusive). */
1071 void (*to_call_history_range) (struct target_ops *,
1072 ULONGEST begin, ULONGEST end, int flags);
1073
1074 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1075 non-empty annex. */
1076 int (*to_augmented_libraries_svr4_read) (struct target_ops *)
1077 TARGET_DEFAULT_RETURN (0);
1078
1079 /* Those unwinders are tried before any other arch unwinders. Use NULL if
1080 it is not used. */
1081 const struct frame_unwind *to_get_unwinder;
1082 const struct frame_unwind *to_get_tailcall_unwinder;
1083
1084 /* Return the number of bytes by which the PC needs to be decremented
1085 after executing a breakpoint instruction.
1086 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
1087 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
1088 struct gdbarch *gdbarch);
1089
1090 int to_magic;
1091 /* Need sub-structure for target machine related rather than comm related?
1092 */
1093 };
1094
1095 /* Magic number for checking ops size. If a struct doesn't end with this
1096 number, somebody changed the declaration but didn't change all the
1097 places that initialize one. */
1098
1099 #define OPS_MAGIC 3840
1100
1101 /* The ops structure for our "current" target process. This should
1102 never be NULL. If there is no target, it points to the dummy_target. */
1103
1104 extern struct target_ops current_target;
1105
1106 /* Define easy words for doing these operations on our current target. */
1107
1108 #define target_shortname (current_target.to_shortname)
1109 #define target_longname (current_target.to_longname)
1110
1111 /* Does whatever cleanup is required for a target that we are no
1112 longer going to be calling. This routine is automatically always
1113 called after popping the target off the target stack - the target's
1114 own methods are no longer available through the target vector.
1115 Closing file descriptors and freeing all memory allocated memory are
1116 typical things it should do. */
1117
1118 void target_close (struct target_ops *targ);
1119
1120 /* Attaches to a process on the target side. Arguments are as passed
1121 to the `attach' command by the user. This routine can be called
1122 when the target is not on the target-stack, if the target_can_run
1123 routine returns 1; in that case, it must push itself onto the stack.
1124 Upon exit, the target should be ready for normal operations, and
1125 should be ready to deliver the status of the process immediately
1126 (without waiting) to an upcoming target_wait call. */
1127
1128 void target_attach (char *, int);
1129
1130 /* Some targets don't generate traps when attaching to the inferior,
1131 or their target_attach implementation takes care of the waiting.
1132 These targets must set to_attach_no_wait. */
1133
1134 #define target_attach_no_wait \
1135 (current_target.to_attach_no_wait)
1136
1137 /* The target_attach operation places a process under debugger control,
1138 and stops the process.
1139
1140 This operation provides a target-specific hook that allows the
1141 necessary bookkeeping to be performed after an attach completes. */
1142 #define target_post_attach(pid) \
1143 (*current_target.to_post_attach) (&current_target, pid)
1144
1145 /* Takes a program previously attached to and detaches it.
1146 The program may resume execution (some targets do, some don't) and will
1147 no longer stop on signals, etc. We better not have left any breakpoints
1148 in the program or it'll die when it hits one. ARGS is arguments
1149 typed by the user (e.g. a signal to send the process). FROM_TTY
1150 says whether to be verbose or not. */
1151
1152 extern void target_detach (const char *, int);
1153
1154 /* Disconnect from the current target without resuming it (leaving it
1155 waiting for a debugger). */
1156
1157 extern void target_disconnect (char *, int);
1158
1159 /* Resume execution of the target process PTID (or a group of
1160 threads). STEP says whether to single-step or to run free; SIGGNAL
1161 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1162 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1163 PTID means `step/resume only this process id'. A wildcard PTID
1164 (all threads, or all threads of process) means `step/resume
1165 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1166 matches) resume with their 'thread->suspend.stop_signal' signal
1167 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1168 if in "no pass" state. */
1169
1170 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1171
1172 /* Wait for process pid to do something. PTID = -1 to wait for any
1173 pid to do something. Return pid of child, or -1 in case of error;
1174 store status through argument pointer STATUS. Note that it is
1175 _NOT_ OK to throw_exception() out of target_wait() without popping
1176 the debugging target from the stack; GDB isn't prepared to get back
1177 to the prompt with a debugging target but without the frame cache,
1178 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1179 options. */
1180
1181 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1182 int options);
1183
1184 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1185
1186 extern void target_fetch_registers (struct regcache *regcache, int regno);
1187
1188 /* Store at least register REGNO, or all regs if REGNO == -1.
1189 It can store as many registers as it wants to, so target_prepare_to_store
1190 must have been previously called. Calls error() if there are problems. */
1191
1192 extern void target_store_registers (struct regcache *regcache, int regs);
1193
1194 /* Get ready to modify the registers array. On machines which store
1195 individual registers, this doesn't need to do anything. On machines
1196 which store all the registers in one fell swoop, this makes sure
1197 that REGISTERS contains all the registers from the program being
1198 debugged. */
1199
1200 #define target_prepare_to_store(regcache) \
1201 (*current_target.to_prepare_to_store) (&current_target, regcache)
1202
1203 /* Determine current address space of thread PTID. */
1204
1205 struct address_space *target_thread_address_space (ptid_t);
1206
1207 /* Implement the "info proc" command. This returns one if the request
1208 was handled, and zero otherwise. It can also throw an exception if
1209 an error was encountered while attempting to handle the
1210 request. */
1211
1212 int target_info_proc (char *, enum info_proc_what);
1213
1214 /* Returns true if this target can debug multiple processes
1215 simultaneously. */
1216
1217 #define target_supports_multi_process() \
1218 (*current_target.to_supports_multi_process) (&current_target)
1219
1220 /* Returns true if this target can disable address space randomization. */
1221
1222 int target_supports_disable_randomization (void);
1223
1224 /* Returns true if this target can enable and disable tracepoints
1225 while a trace experiment is running. */
1226
1227 #define target_supports_enable_disable_tracepoint() \
1228 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1229
1230 #define target_supports_string_tracing() \
1231 (*current_target.to_supports_string_tracing) (&current_target)
1232
1233 /* Returns true if this target can handle breakpoint conditions
1234 on its end. */
1235
1236 #define target_supports_evaluation_of_breakpoint_conditions() \
1237 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1238
1239 /* Returns true if this target can handle breakpoint commands
1240 on its end. */
1241
1242 #define target_can_run_breakpoint_commands() \
1243 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1244
1245 extern int target_read_string (CORE_ADDR, char **, int, int *);
1246
1247 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1248 ssize_t len);
1249
1250 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1251 ssize_t len);
1252
1253 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1254
1255 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1256
1257 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1258 ssize_t len);
1259
1260 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1261 ssize_t len);
1262
1263 /* Fetches the target's memory map. If one is found it is sorted
1264 and returned, after some consistency checking. Otherwise, NULL
1265 is returned. */
1266 VEC(mem_region_s) *target_memory_map (void);
1267
1268 /* Erase the specified flash region. */
1269 void target_flash_erase (ULONGEST address, LONGEST length);
1270
1271 /* Finish a sequence of flash operations. */
1272 void target_flash_done (void);
1273
1274 /* Describes a request for a memory write operation. */
1275 struct memory_write_request
1276 {
1277 /* Begining address that must be written. */
1278 ULONGEST begin;
1279 /* Past-the-end address. */
1280 ULONGEST end;
1281 /* The data to write. */
1282 gdb_byte *data;
1283 /* A callback baton for progress reporting for this request. */
1284 void *baton;
1285 };
1286 typedef struct memory_write_request memory_write_request_s;
1287 DEF_VEC_O(memory_write_request_s);
1288
1289 /* Enumeration specifying different flash preservation behaviour. */
1290 enum flash_preserve_mode
1291 {
1292 flash_preserve,
1293 flash_discard
1294 };
1295
1296 /* Write several memory blocks at once. This version can be more
1297 efficient than making several calls to target_write_memory, in
1298 particular because it can optimize accesses to flash memory.
1299
1300 Moreover, this is currently the only memory access function in gdb
1301 that supports writing to flash memory, and it should be used for
1302 all cases where access to flash memory is desirable.
1303
1304 REQUESTS is the vector (see vec.h) of memory_write_request.
1305 PRESERVE_FLASH_P indicates what to do with blocks which must be
1306 erased, but not completely rewritten.
1307 PROGRESS_CB is a function that will be periodically called to provide
1308 feedback to user. It will be called with the baton corresponding
1309 to the request currently being written. It may also be called
1310 with a NULL baton, when preserved flash sectors are being rewritten.
1311
1312 The function returns 0 on success, and error otherwise. */
1313 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1314 enum flash_preserve_mode preserve_flash_p,
1315 void (*progress_cb) (ULONGEST, void *));
1316
1317 /* Print a line about the current target. */
1318
1319 #define target_files_info() \
1320 (*current_target.to_files_info) (&current_target)
1321
1322 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1323 the target machine. Returns 0 for success, and returns non-zero or
1324 throws an error (with a detailed failure reason error code and
1325 message) otherwise. */
1326
1327 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1328 struct bp_target_info *bp_tgt);
1329
1330 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1331 machine. Result is 0 for success, non-zero for error. */
1332
1333 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1334 struct bp_target_info *bp_tgt);
1335
1336 /* Initialize the terminal settings we record for the inferior,
1337 before we actually run the inferior. */
1338
1339 #define target_terminal_init() \
1340 (*current_target.to_terminal_init) (&current_target)
1341
1342 /* Put the inferior's terminal settings into effect.
1343 This is preparation for starting or resuming the inferior. */
1344
1345 extern void target_terminal_inferior (void);
1346
1347 /* Put some of our terminal settings into effect,
1348 enough to get proper results from our output,
1349 but do not change into or out of RAW mode
1350 so that no input is discarded.
1351
1352 After doing this, either terminal_ours or terminal_inferior
1353 should be called to get back to a normal state of affairs. */
1354
1355 #define target_terminal_ours_for_output() \
1356 (*current_target.to_terminal_ours_for_output) (&current_target)
1357
1358 /* Put our terminal settings into effect.
1359 First record the inferior's terminal settings
1360 so they can be restored properly later. */
1361
1362 #define target_terminal_ours() \
1363 (*current_target.to_terminal_ours) (&current_target)
1364
1365 /* Save our terminal settings.
1366 This is called from TUI after entering or leaving the curses
1367 mode. Since curses modifies our terminal this call is here
1368 to take this change into account. */
1369
1370 #define target_terminal_save_ours() \
1371 (*current_target.to_terminal_save_ours) (&current_target)
1372
1373 /* Print useful information about our terminal status, if such a thing
1374 exists. */
1375
1376 #define target_terminal_info(arg, from_tty) \
1377 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1378
1379 /* Kill the inferior process. Make it go away. */
1380
1381 extern void target_kill (void);
1382
1383 /* Load an executable file into the target process. This is expected
1384 to not only bring new code into the target process, but also to
1385 update GDB's symbol tables to match.
1386
1387 ARG contains command-line arguments, to be broken down with
1388 buildargv (). The first non-switch argument is the filename to
1389 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1390 0)), which is an offset to apply to the load addresses of FILE's
1391 sections. The target may define switches, or other non-switch
1392 arguments, as it pleases. */
1393
1394 extern void target_load (char *arg, int from_tty);
1395
1396 /* Start an inferior process and set inferior_ptid to its pid.
1397 EXEC_FILE is the file to run.
1398 ALLARGS is a string containing the arguments to the program.
1399 ENV is the environment vector to pass. Errors reported with error().
1400 On VxWorks and various standalone systems, we ignore exec_file. */
1401
1402 void target_create_inferior (char *exec_file, char *args,
1403 char **env, int from_tty);
1404
1405 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1406 notification of inferior events such as fork and vork immediately
1407 after the inferior is created. (This because of how gdb gets an
1408 inferior created via invoking a shell to do it. In such a scenario,
1409 if the shell init file has commands in it, the shell will fork and
1410 exec for each of those commands, and we will see each such fork
1411 event. Very bad.)
1412
1413 Such targets will supply an appropriate definition for this function. */
1414
1415 #define target_post_startup_inferior(ptid) \
1416 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1417
1418 /* On some targets, we can catch an inferior fork or vfork event when
1419 it occurs. These functions insert/remove an already-created
1420 catchpoint for such events. They return 0 for success, 1 if the
1421 catchpoint type is not supported and -1 for failure. */
1422
1423 #define target_insert_fork_catchpoint(pid) \
1424 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1425
1426 #define target_remove_fork_catchpoint(pid) \
1427 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1428
1429 #define target_insert_vfork_catchpoint(pid) \
1430 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1431
1432 #define target_remove_vfork_catchpoint(pid) \
1433 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1434
1435 /* If the inferior forks or vforks, this function will be called at
1436 the next resume in order to perform any bookkeeping and fiddling
1437 necessary to continue debugging either the parent or child, as
1438 requested, and releasing the other. Information about the fork
1439 or vfork event is available via get_last_target_status ().
1440 This function returns 1 if the inferior should not be resumed
1441 (i.e. there is another event pending). */
1442
1443 int target_follow_fork (int follow_child, int detach_fork);
1444
1445 /* On some targets, we can catch an inferior exec event when it
1446 occurs. These functions insert/remove an already-created
1447 catchpoint for such events. They return 0 for success, 1 if the
1448 catchpoint type is not supported and -1 for failure. */
1449
1450 #define target_insert_exec_catchpoint(pid) \
1451 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1452
1453 #define target_remove_exec_catchpoint(pid) \
1454 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1455
1456 /* Syscall catch.
1457
1458 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1459 If NEEDED is zero, it means the target can disable the mechanism to
1460 catch system calls because there are no more catchpoints of this type.
1461
1462 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1463 being requested. In this case, both TABLE_SIZE and TABLE should
1464 be ignored.
1465
1466 TABLE_SIZE is the number of elements in TABLE. It only matters if
1467 ANY_COUNT is zero.
1468
1469 TABLE is an array of ints, indexed by syscall number. An element in
1470 this array is nonzero if that syscall should be caught. This argument
1471 only matters if ANY_COUNT is zero.
1472
1473 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1474 for failure. */
1475
1476 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1477 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1478 pid, needed, any_count, \
1479 table_size, table)
1480
1481 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1482 exit code of PID, if any. */
1483
1484 #define target_has_exited(pid,wait_status,exit_status) \
1485 (*current_target.to_has_exited) (&current_target, \
1486 pid,wait_status,exit_status)
1487
1488 /* The debugger has completed a blocking wait() call. There is now
1489 some process event that must be processed. This function should
1490 be defined by those targets that require the debugger to perform
1491 cleanup or internal state changes in response to the process event. */
1492
1493 /* The inferior process has died. Do what is right. */
1494
1495 void target_mourn_inferior (void);
1496
1497 /* Does target have enough data to do a run or attach command? */
1498
1499 #define target_can_run(t) \
1500 ((t)->to_can_run) (t)
1501
1502 /* Set list of signals to be handled in the target.
1503
1504 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1505 (enum gdb_signal). For every signal whose entry in this array is
1506 non-zero, the target is allowed -but not required- to skip reporting
1507 arrival of the signal to the GDB core by returning from target_wait,
1508 and to pass the signal directly to the inferior instead.
1509
1510 However, if the target is hardware single-stepping a thread that is
1511 about to receive a signal, it needs to be reported in any case, even
1512 if mentioned in a previous target_pass_signals call. */
1513
1514 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1515
1516 /* Set list of signals the target may pass to the inferior. This
1517 directly maps to the "handle SIGNAL pass/nopass" setting.
1518
1519 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1520 number (enum gdb_signal). For every signal whose entry in this
1521 array is non-zero, the target is allowed to pass the signal to the
1522 inferior. Signals not present in the array shall be silently
1523 discarded. This does not influence whether to pass signals to the
1524 inferior as a result of a target_resume call. This is useful in
1525 scenarios where the target needs to decide whether to pass or not a
1526 signal to the inferior without GDB core involvement, such as for
1527 example, when detaching (as threads may have been suspended with
1528 pending signals not reported to GDB). */
1529
1530 extern void target_program_signals (int nsig, unsigned char *program_signals);
1531
1532 /* Check to see if a thread is still alive. */
1533
1534 extern int target_thread_alive (ptid_t ptid);
1535
1536 /* Query for new threads and add them to the thread list. */
1537
1538 extern void target_find_new_threads (void);
1539
1540 /* Make target stop in a continuable fashion. (For instance, under
1541 Unix, this should act like SIGSTOP). This function is normally
1542 used by GUIs to implement a stop button. */
1543
1544 extern void target_stop (ptid_t ptid);
1545
1546 /* Send the specified COMMAND to the target's monitor
1547 (shell,interpreter) for execution. The result of the query is
1548 placed in OUTBUF. */
1549
1550 #define target_rcmd(command, outbuf) \
1551 (*current_target.to_rcmd) (&current_target, command, outbuf)
1552
1553
1554 /* Does the target include all of memory, or only part of it? This
1555 determines whether we look up the target chain for other parts of
1556 memory if this target can't satisfy a request. */
1557
1558 extern int target_has_all_memory_1 (void);
1559 #define target_has_all_memory target_has_all_memory_1 ()
1560
1561 /* Does the target include memory? (Dummy targets don't.) */
1562
1563 extern int target_has_memory_1 (void);
1564 #define target_has_memory target_has_memory_1 ()
1565
1566 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1567 we start a process.) */
1568
1569 extern int target_has_stack_1 (void);
1570 #define target_has_stack target_has_stack_1 ()
1571
1572 /* Does the target have registers? (Exec files don't.) */
1573
1574 extern int target_has_registers_1 (void);
1575 #define target_has_registers target_has_registers_1 ()
1576
1577 /* Does the target have execution? Can we make it jump (through
1578 hoops), or pop its stack a few times? This means that the current
1579 target is currently executing; for some targets, that's the same as
1580 whether or not the target is capable of execution, but there are
1581 also targets which can be current while not executing. In that
1582 case this will become true after target_create_inferior or
1583 target_attach. */
1584
1585 extern int target_has_execution_1 (ptid_t);
1586
1587 /* Like target_has_execution_1, but always passes inferior_ptid. */
1588
1589 extern int target_has_execution_current (void);
1590
1591 #define target_has_execution target_has_execution_current ()
1592
1593 /* Default implementations for process_stratum targets. Return true
1594 if there's a selected inferior, false otherwise. */
1595
1596 extern int default_child_has_all_memory (struct target_ops *ops);
1597 extern int default_child_has_memory (struct target_ops *ops);
1598 extern int default_child_has_stack (struct target_ops *ops);
1599 extern int default_child_has_registers (struct target_ops *ops);
1600 extern int default_child_has_execution (struct target_ops *ops,
1601 ptid_t the_ptid);
1602
1603 /* Can the target support the debugger control of thread execution?
1604 Can it lock the thread scheduler? */
1605
1606 #define target_can_lock_scheduler \
1607 (current_target.to_has_thread_control & tc_schedlock)
1608
1609 /* Should the target enable async mode if it is supported? Temporary
1610 cludge until async mode is a strict superset of sync mode. */
1611 extern int target_async_permitted;
1612
1613 /* Can the target support asynchronous execution? */
1614 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1615
1616 /* Is the target in asynchronous execution mode? */
1617 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1618
1619 int target_supports_non_stop (void);
1620
1621 /* Put the target in async mode with the specified callback function. */
1622 #define target_async(CALLBACK,CONTEXT) \
1623 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1624
1625 #define target_execution_direction() \
1626 (current_target.to_execution_direction (&current_target))
1627
1628 /* Converts a process id to a string. Usually, the string just contains
1629 `process xyz', but on some systems it may contain
1630 `process xyz thread abc'. */
1631
1632 extern char *target_pid_to_str (ptid_t ptid);
1633
1634 extern char *normal_pid_to_str (ptid_t ptid);
1635
1636 /* Return a short string describing extra information about PID,
1637 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1638 is okay. */
1639
1640 #define target_extra_thread_info(TP) \
1641 (current_target.to_extra_thread_info (&current_target, TP))
1642
1643 /* Return the thread's name. A NULL result means that the target
1644 could not determine this thread's name. */
1645
1646 extern char *target_thread_name (struct thread_info *);
1647
1648 /* Attempts to find the pathname of the executable file
1649 that was run to create a specified process.
1650
1651 The process PID must be stopped when this operation is used.
1652
1653 If the executable file cannot be determined, NULL is returned.
1654
1655 Else, a pointer to a character string containing the pathname
1656 is returned. This string should be copied into a buffer by
1657 the client if the string will not be immediately used, or if
1658 it must persist. */
1659
1660 #define target_pid_to_exec_file(pid) \
1661 (current_target.to_pid_to_exec_file) (&current_target, pid)
1662
1663 /* See the to_thread_architecture description in struct target_ops. */
1664
1665 #define target_thread_architecture(ptid) \
1666 (current_target.to_thread_architecture (&current_target, ptid))
1667
1668 /*
1669 * Iterator function for target memory regions.
1670 * Calls a callback function once for each memory region 'mapped'
1671 * in the child process. Defined as a simple macro rather than
1672 * as a function macro so that it can be tested for nullity.
1673 */
1674
1675 #define target_find_memory_regions(FUNC, DATA) \
1676 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1677
1678 /*
1679 * Compose corefile .note section.
1680 */
1681
1682 #define target_make_corefile_notes(BFD, SIZE_P) \
1683 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1684
1685 /* Bookmark interfaces. */
1686 #define target_get_bookmark(ARGS, FROM_TTY) \
1687 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1688
1689 #define target_goto_bookmark(ARG, FROM_TTY) \
1690 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1691
1692 /* Hardware watchpoint interfaces. */
1693
1694 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1695 write). Only the INFERIOR_PTID task is being queried. */
1696
1697 #define target_stopped_by_watchpoint() \
1698 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1699
1700 /* Non-zero if we have steppable watchpoints */
1701
1702 #define target_have_steppable_watchpoint \
1703 (current_target.to_have_steppable_watchpoint)
1704
1705 /* Non-zero if we have continuable watchpoints */
1706
1707 #define target_have_continuable_watchpoint \
1708 (current_target.to_have_continuable_watchpoint)
1709
1710 /* Provide defaults for hardware watchpoint functions. */
1711
1712 /* If the *_hw_beakpoint functions have not been defined
1713 elsewhere use the definitions in the target vector. */
1714
1715 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1716 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1717 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1718 (including this one?). OTHERTYPE is who knows what... */
1719
1720 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1721 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1722 TYPE, CNT, OTHERTYPE);
1723
1724 /* Returns the number of debug registers needed to watch the given
1725 memory region, or zero if not supported. */
1726
1727 #define target_region_ok_for_hw_watchpoint(addr, len) \
1728 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1729 addr, len)
1730
1731
1732 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1733 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1734 COND is the expression for its condition, or NULL if there's none.
1735 Returns 0 for success, 1 if the watchpoint type is not supported,
1736 -1 for failure. */
1737
1738 #define target_insert_watchpoint(addr, len, type, cond) \
1739 (*current_target.to_insert_watchpoint) (&current_target, \
1740 addr, len, type, cond)
1741
1742 #define target_remove_watchpoint(addr, len, type, cond) \
1743 (*current_target.to_remove_watchpoint) (&current_target, \
1744 addr, len, type, cond)
1745
1746 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1747 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1748 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1749 masked watchpoints are not supported, -1 for failure. */
1750
1751 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1752
1753 /* Remove a masked watchpoint at ADDR with the mask MASK.
1754 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1755 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1756 for failure. */
1757
1758 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1759
1760 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1761 the target machine. Returns 0 for success, and returns non-zero or
1762 throws an error (with a detailed failure reason error code and
1763 message) otherwise. */
1764
1765 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1766 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1767 gdbarch, bp_tgt)
1768
1769 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1770 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1771 gdbarch, bp_tgt)
1772
1773 /* Return number of debug registers needed for a ranged breakpoint,
1774 or -1 if ranged breakpoints are not supported. */
1775
1776 extern int target_ranged_break_num_registers (void);
1777
1778 /* Return non-zero if target knows the data address which triggered this
1779 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1780 INFERIOR_PTID task is being queried. */
1781 #define target_stopped_data_address(target, addr_p) \
1782 (*target.to_stopped_data_address) (target, addr_p)
1783
1784 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1785 LENGTH bytes beginning at START. */
1786 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1787 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1788
1789 /* Return non-zero if the target is capable of using hardware to evaluate
1790 the condition expression. In this case, if the condition is false when
1791 the watched memory location changes, execution may continue without the
1792 debugger being notified.
1793
1794 Due to limitations in the hardware implementation, it may be capable of
1795 avoiding triggering the watchpoint in some cases where the condition
1796 expression is false, but may report some false positives as well.
1797 For this reason, GDB will still evaluate the condition expression when
1798 the watchpoint triggers. */
1799 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1800 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1801 addr, len, type, cond)
1802
1803 /* Return number of debug registers needed for a masked watchpoint,
1804 -1 if masked watchpoints are not supported or -2 if the given address
1805 and mask combination cannot be used. */
1806
1807 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1808
1809 /* Target can execute in reverse? */
1810 #define target_can_execute_reverse \
1811 current_target.to_can_execute_reverse (&current_target)
1812
1813 extern const struct target_desc *target_read_description (struct target_ops *);
1814
1815 #define target_get_ada_task_ptid(lwp, tid) \
1816 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1817
1818 /* Utility implementation of searching memory. */
1819 extern int simple_search_memory (struct target_ops* ops,
1820 CORE_ADDR start_addr,
1821 ULONGEST search_space_len,
1822 const gdb_byte *pattern,
1823 ULONGEST pattern_len,
1824 CORE_ADDR *found_addrp);
1825
1826 /* Main entry point for searching memory. */
1827 extern int target_search_memory (CORE_ADDR start_addr,
1828 ULONGEST search_space_len,
1829 const gdb_byte *pattern,
1830 ULONGEST pattern_len,
1831 CORE_ADDR *found_addrp);
1832
1833 /* Target file operations. */
1834
1835 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1836 target file descriptor, or -1 if an error occurs (and set
1837 *TARGET_ERRNO). */
1838 extern int target_fileio_open (const char *filename, int flags, int mode,
1839 int *target_errno);
1840
1841 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1842 Return the number of bytes written, or -1 if an error occurs
1843 (and set *TARGET_ERRNO). */
1844 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1845 ULONGEST offset, int *target_errno);
1846
1847 /* Read up to LEN bytes FD on the target into READ_BUF.
1848 Return the number of bytes read, or -1 if an error occurs
1849 (and set *TARGET_ERRNO). */
1850 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1851 ULONGEST offset, int *target_errno);
1852
1853 /* Close FD on the target. Return 0, or -1 if an error occurs
1854 (and set *TARGET_ERRNO). */
1855 extern int target_fileio_close (int fd, int *target_errno);
1856
1857 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1858 occurs (and set *TARGET_ERRNO). */
1859 extern int target_fileio_unlink (const char *filename, int *target_errno);
1860
1861 /* Read value of symbolic link FILENAME on the target. Return a
1862 null-terminated string allocated via xmalloc, or NULL if an error
1863 occurs (and set *TARGET_ERRNO). */
1864 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1865
1866 /* Read target file FILENAME. The return value will be -1 if the transfer
1867 fails or is not supported; 0 if the object is empty; or the length
1868 of the object otherwise. If a positive value is returned, a
1869 sufficiently large buffer will be allocated using xmalloc and
1870 returned in *BUF_P containing the contents of the object.
1871
1872 This method should be used for objects sufficiently small to store
1873 in a single xmalloc'd buffer, when no fixed bound on the object's
1874 size is known in advance. */
1875 extern LONGEST target_fileio_read_alloc (const char *filename,
1876 gdb_byte **buf_p);
1877
1878 /* Read target file FILENAME. The result is NUL-terminated and
1879 returned as a string, allocated using xmalloc. If an error occurs
1880 or the transfer is unsupported, NULL is returned. Empty objects
1881 are returned as allocated but empty strings. A warning is issued
1882 if the result contains any embedded NUL bytes. */
1883 extern char *target_fileio_read_stralloc (const char *filename);
1884
1885
1886 /* Tracepoint-related operations. */
1887
1888 #define target_trace_init() \
1889 (*current_target.to_trace_init) (&current_target)
1890
1891 #define target_download_tracepoint(t) \
1892 (*current_target.to_download_tracepoint) (&current_target, t)
1893
1894 #define target_can_download_tracepoint() \
1895 (*current_target.to_can_download_tracepoint) (&current_target)
1896
1897 #define target_download_trace_state_variable(tsv) \
1898 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
1899
1900 #define target_enable_tracepoint(loc) \
1901 (*current_target.to_enable_tracepoint) (&current_target, loc)
1902
1903 #define target_disable_tracepoint(loc) \
1904 (*current_target.to_disable_tracepoint) (&current_target, loc)
1905
1906 #define target_trace_start() \
1907 (*current_target.to_trace_start) (&current_target)
1908
1909 #define target_trace_set_readonly_regions() \
1910 (*current_target.to_trace_set_readonly_regions) (&current_target)
1911
1912 #define target_get_trace_status(ts) \
1913 (*current_target.to_get_trace_status) (&current_target, ts)
1914
1915 #define target_get_tracepoint_status(tp,utp) \
1916 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
1917
1918 #define target_trace_stop() \
1919 (*current_target.to_trace_stop) (&current_target)
1920
1921 #define target_trace_find(type,num,addr1,addr2,tpp) \
1922 (*current_target.to_trace_find) (&current_target, \
1923 (type), (num), (addr1), (addr2), (tpp))
1924
1925 #define target_get_trace_state_variable_value(tsv,val) \
1926 (*current_target.to_get_trace_state_variable_value) (&current_target, \
1927 (tsv), (val))
1928
1929 #define target_save_trace_data(filename) \
1930 (*current_target.to_save_trace_data) (&current_target, filename)
1931
1932 #define target_upload_tracepoints(utpp) \
1933 (*current_target.to_upload_tracepoints) (&current_target, utpp)
1934
1935 #define target_upload_trace_state_variables(utsvp) \
1936 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
1937
1938 #define target_get_raw_trace_data(buf,offset,len) \
1939 (*current_target.to_get_raw_trace_data) (&current_target, \
1940 (buf), (offset), (len))
1941
1942 #define target_get_min_fast_tracepoint_insn_len() \
1943 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
1944
1945 #define target_set_disconnected_tracing(val) \
1946 (*current_target.to_set_disconnected_tracing) (&current_target, val)
1947
1948 #define target_set_circular_trace_buffer(val) \
1949 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
1950
1951 #define target_set_trace_buffer_size(val) \
1952 (*current_target.to_set_trace_buffer_size) (&current_target, val)
1953
1954 #define target_set_trace_notes(user,notes,stopnotes) \
1955 (*current_target.to_set_trace_notes) (&current_target, \
1956 (user), (notes), (stopnotes))
1957
1958 #define target_get_tib_address(ptid, addr) \
1959 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
1960
1961 #define target_set_permissions() \
1962 (*current_target.to_set_permissions) (&current_target)
1963
1964 #define target_static_tracepoint_marker_at(addr, marker) \
1965 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
1966 addr, marker)
1967
1968 #define target_static_tracepoint_markers_by_strid(marker_id) \
1969 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
1970 marker_id)
1971
1972 #define target_traceframe_info() \
1973 (*current_target.to_traceframe_info) (&current_target)
1974
1975 #define target_use_agent(use) \
1976 (*current_target.to_use_agent) (&current_target, use)
1977
1978 #define target_can_use_agent() \
1979 (*current_target.to_can_use_agent) (&current_target)
1980
1981 #define target_augmented_libraries_svr4_read() \
1982 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
1983
1984 /* Command logging facility. */
1985
1986 #define target_log_command(p) \
1987 (*current_target.to_log_command) (&current_target, p)
1988
1989
1990 extern int target_core_of_thread (ptid_t ptid);
1991
1992 /* See to_get_unwinder in struct target_ops. */
1993 extern const struct frame_unwind *target_get_unwinder (void);
1994
1995 /* See to_get_tailcall_unwinder in struct target_ops. */
1996 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
1997
1998 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1999 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2000 if there's a mismatch, and -1 if an error is encountered while
2001 reading memory. Throws an error if the functionality is found not
2002 to be supported by the current target. */
2003 int target_verify_memory (const gdb_byte *data,
2004 CORE_ADDR memaddr, ULONGEST size);
2005
2006 /* Routines for maintenance of the target structures...
2007
2008 complete_target_initialization: Finalize a target_ops by filling in
2009 any fields needed by the target implementation.
2010
2011 add_target: Add a target to the list of all possible targets.
2012
2013 push_target: Make this target the top of the stack of currently used
2014 targets, within its particular stratum of the stack. Result
2015 is 0 if now atop the stack, nonzero if not on top (maybe
2016 should warn user).
2017
2018 unpush_target: Remove this from the stack of currently used targets,
2019 no matter where it is on the list. Returns 0 if no
2020 change, 1 if removed from stack. */
2021
2022 extern void add_target (struct target_ops *);
2023
2024 extern void add_target_with_completer (struct target_ops *t,
2025 completer_ftype *completer);
2026
2027 extern void complete_target_initialization (struct target_ops *t);
2028
2029 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
2030 for maintaining backwards compatibility when renaming targets. */
2031
2032 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
2033
2034 extern void push_target (struct target_ops *);
2035
2036 extern int unpush_target (struct target_ops *);
2037
2038 extern void target_pre_inferior (int);
2039
2040 extern void target_preopen (int);
2041
2042 /* Does whatever cleanup is required to get rid of all pushed targets. */
2043 extern void pop_all_targets (void);
2044
2045 /* Like pop_all_targets, but pops only targets whose stratum is
2046 strictly above ABOVE_STRATUM. */
2047 extern void pop_all_targets_above (enum strata above_stratum);
2048
2049 extern int target_is_pushed (struct target_ops *t);
2050
2051 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2052 CORE_ADDR offset);
2053
2054 /* Struct target_section maps address ranges to file sections. It is
2055 mostly used with BFD files, but can be used without (e.g. for handling
2056 raw disks, or files not in formats handled by BFD). */
2057
2058 struct target_section
2059 {
2060 CORE_ADDR addr; /* Lowest address in section */
2061 CORE_ADDR endaddr; /* 1+highest address in section */
2062
2063 struct bfd_section *the_bfd_section;
2064
2065 /* The "owner" of the section.
2066 It can be any unique value. It is set by add_target_sections
2067 and used by remove_target_sections.
2068 For example, for executables it is a pointer to exec_bfd and
2069 for shlibs it is the so_list pointer. */
2070 void *owner;
2071 };
2072
2073 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2074
2075 struct target_section_table
2076 {
2077 struct target_section *sections;
2078 struct target_section *sections_end;
2079 };
2080
2081 /* Return the "section" containing the specified address. */
2082 struct target_section *target_section_by_addr (struct target_ops *target,
2083 CORE_ADDR addr);
2084
2085 /* Return the target section table this target (or the targets
2086 beneath) currently manipulate. */
2087
2088 extern struct target_section_table *target_get_section_table
2089 (struct target_ops *target);
2090
2091 /* From mem-break.c */
2092
2093 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2094 struct bp_target_info *);
2095
2096 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2097 struct bp_target_info *);
2098
2099 extern int default_memory_remove_breakpoint (struct gdbarch *,
2100 struct bp_target_info *);
2101
2102 extern int default_memory_insert_breakpoint (struct gdbarch *,
2103 struct bp_target_info *);
2104
2105
2106 /* From target.c */
2107
2108 extern void initialize_targets (void);
2109
2110 extern void noprocess (void) ATTRIBUTE_NORETURN;
2111
2112 extern void target_require_runnable (void);
2113
2114 extern void find_default_attach (struct target_ops *, char *, int);
2115
2116 extern void find_default_create_inferior (struct target_ops *,
2117 char *, char *, char **, int);
2118
2119 extern struct target_ops *find_target_beneath (struct target_ops *);
2120
2121 /* Find the target at STRATUM. If no target is at that stratum,
2122 return NULL. */
2123
2124 struct target_ops *find_target_at (enum strata stratum);
2125
2126 /* Read OS data object of type TYPE from the target, and return it in
2127 XML format. The result is NUL-terminated and returned as a string,
2128 allocated using xmalloc. If an error occurs or the transfer is
2129 unsupported, NULL is returned. Empty objects are returned as
2130 allocated but empty strings. */
2131
2132 extern char *target_get_osdata (const char *type);
2133
2134 \f
2135 /* Stuff that should be shared among the various remote targets. */
2136
2137 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2138 information (higher values, more information). */
2139 extern int remote_debug;
2140
2141 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2142 extern int baud_rate;
2143 /* Timeout limit for response from target. */
2144 extern int remote_timeout;
2145
2146 \f
2147
2148 /* Set the show memory breakpoints mode to show, and installs a cleanup
2149 to restore it back to the current value. */
2150 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2151
2152 extern int may_write_registers;
2153 extern int may_write_memory;
2154 extern int may_insert_breakpoints;
2155 extern int may_insert_tracepoints;
2156 extern int may_insert_fast_tracepoints;
2157 extern int may_stop;
2158
2159 extern void update_target_permissions (void);
2160
2161 \f
2162 /* Imported from machine dependent code. */
2163
2164 /* Blank target vector entries are initialized to target_ignore. */
2165 void target_ignore (void);
2166
2167 /* See to_supports_btrace in struct target_ops. */
2168 #define target_supports_btrace() \
2169 (current_target.to_supports_btrace (&current_target))
2170
2171 /* See to_enable_btrace in struct target_ops. */
2172 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2173
2174 /* See to_disable_btrace in struct target_ops. */
2175 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2176
2177 /* See to_teardown_btrace in struct target_ops. */
2178 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2179
2180 /* See to_read_btrace in struct target_ops. */
2181 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2182 struct btrace_target_info *,
2183 enum btrace_read_type);
2184
2185 /* See to_stop_recording in struct target_ops. */
2186 extern void target_stop_recording (void);
2187
2188 /* See to_info_record in struct target_ops. */
2189 extern void target_info_record (void);
2190
2191 /* See to_save_record in struct target_ops. */
2192 extern void target_save_record (const char *filename);
2193
2194 /* Query if the target supports deleting the execution log. */
2195 extern int target_supports_delete_record (void);
2196
2197 /* See to_delete_record in struct target_ops. */
2198 extern void target_delete_record (void);
2199
2200 /* See to_record_is_replaying in struct target_ops. */
2201 extern int target_record_is_replaying (void);
2202
2203 /* See to_goto_record_begin in struct target_ops. */
2204 extern void target_goto_record_begin (void);
2205
2206 /* See to_goto_record_end in struct target_ops. */
2207 extern void target_goto_record_end (void);
2208
2209 /* See to_goto_record in struct target_ops. */
2210 extern void target_goto_record (ULONGEST insn);
2211
2212 /* See to_insn_history. */
2213 extern void target_insn_history (int size, int flags);
2214
2215 /* See to_insn_history_from. */
2216 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2217
2218 /* See to_insn_history_range. */
2219 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2220
2221 /* See to_call_history. */
2222 extern void target_call_history (int size, int flags);
2223
2224 /* See to_call_history_from. */
2225 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2226
2227 /* See to_call_history_range. */
2228 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2229
2230 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2231 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2232 struct gdbarch *gdbarch);
2233
2234 /* See to_decr_pc_after_break. */
2235 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2236
2237 #endif /* !defined (TARGET_H) */