convert to_get_section_table
[binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* Generic I/O error. Note that it's important that this is '-1',
217 as we still have target_xfer-related code returning hardcoded
218 '-1' on error. */
219 TARGET_XFER_E_IO = -1,
220
221 /* Transfer failed because the piece of the object requested is
222 unavailable. */
223 TARGET_XFER_E_UNAVAILABLE = -2,
224
225 /* Keep list in sync with target_xfer_error_to_string. */
226 };
227
228 #define TARGET_XFER_STATUS_ERROR_P(STATUS) ((STATUS) < TARGET_XFER_EOF)
229
230 /* Return the string form of ERR. */
231
232 extern const char *target_xfer_status_to_string (enum target_xfer_status err);
233
234 /* Enumeration of the kinds of traceframe searches that a target may
235 be able to perform. */
236
237 enum trace_find_type
238 {
239 tfind_number,
240 tfind_pc,
241 tfind_tp,
242 tfind_range,
243 tfind_outside,
244 };
245
246 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
247 DEF_VEC_P(static_tracepoint_marker_p);
248
249 typedef enum target_xfer_status
250 target_xfer_partial_ftype (struct target_ops *ops,
251 enum target_object object,
252 const char *annex,
253 gdb_byte *readbuf,
254 const gdb_byte *writebuf,
255 ULONGEST offset,
256 ULONGEST len,
257 ULONGEST *xfered_len);
258
259 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
260 OBJECT. The OFFSET, for a seekable object, specifies the
261 starting point. The ANNEX can be used to provide additional
262 data-specific information to the target.
263
264 Return the number of bytes actually transfered, or a negative error
265 code (an 'enum target_xfer_error' value) if the transfer is not
266 supported or otherwise fails. Return of a positive value less than
267 LEN indicates that no further transfer is possible. Unlike the raw
268 to_xfer_partial interface, callers of these functions do not need
269 to retry partial transfers. */
270
271 extern LONGEST target_read (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276 struct memory_read_result
277 {
278 /* First address that was read. */
279 ULONGEST begin;
280 /* Past-the-end address. */
281 ULONGEST end;
282 /* The data. */
283 gdb_byte *data;
284 };
285 typedef struct memory_read_result memory_read_result_s;
286 DEF_VEC_O(memory_read_result_s);
287
288 extern void free_memory_read_result_vector (void *);
289
290 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
291 ULONGEST offset,
292 LONGEST len);
293
294 extern LONGEST target_write (struct target_ops *ops,
295 enum target_object object,
296 const char *annex, const gdb_byte *buf,
297 ULONGEST offset, LONGEST len);
298
299 /* Similar to target_write, except that it also calls PROGRESS with
300 the number of bytes written and the opaque BATON after every
301 successful partial write (and before the first write). This is
302 useful for progress reporting and user interaction while writing
303 data. To abort the transfer, the progress callback can throw an
304 exception. */
305
306 LONGEST target_write_with_progress (struct target_ops *ops,
307 enum target_object object,
308 const char *annex, const gdb_byte *buf,
309 ULONGEST offset, LONGEST len,
310 void (*progress) (ULONGEST, void *),
311 void *baton);
312
313 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
314 be read using OPS. The return value will be -1 if the transfer
315 fails or is not supported; 0 if the object is empty; or the length
316 of the object otherwise. If a positive value is returned, a
317 sufficiently large buffer will be allocated using xmalloc and
318 returned in *BUF_P containing the contents of the object.
319
320 This method should be used for objects sufficiently small to store
321 in a single xmalloc'd buffer, when no fixed bound on the object's
322 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
323 through this function. */
324
325 extern LONGEST target_read_alloc (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, gdb_byte **buf_p);
328
329 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
330 returned as a string, allocated using xmalloc. If an error occurs
331 or the transfer is unsupported, NULL is returned. Empty objects
332 are returned as allocated but empty strings. A warning is issued
333 if the result contains any embedded NUL bytes. */
334
335 extern char *target_read_stralloc (struct target_ops *ops,
336 enum target_object object,
337 const char *annex);
338
339 /* See target_ops->to_xfer_partial. */
340 extern target_xfer_partial_ftype target_xfer_partial;
341
342 /* Wrappers to target read/write that perform memory transfers. They
343 throw an error if the memory transfer fails.
344
345 NOTE: cagney/2003-10-23: The naming schema is lifted from
346 "frame.h". The parameter order is lifted from get_frame_memory,
347 which in turn lifted it from read_memory. */
348
349 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
350 gdb_byte *buf, LONGEST len);
351 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
352 CORE_ADDR addr, int len,
353 enum bfd_endian byte_order);
354 \f
355 struct thread_info; /* fwd decl for parameter list below: */
356
357 /* The type of the callback to the to_async method. */
358
359 typedef void async_callback_ftype (enum inferior_event_type event_type,
360 void *context);
361
362 /* These defines are used to mark target_ops methods. The script
363 make-target-delegates scans these and auto-generates the base
364 method implementations. There are four macros that can be used:
365
366 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
367 does nothing. This is only valid if the method return type is
368 'void'.
369
370 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
371 'tcomplain ()'. The base method simply makes this call, which is
372 assumed not to return.
373
374 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
375 base method returns this expression's value.
376
377 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
378 make-target-delegates does not generate a base method in this case,
379 but instead uses the argument function as the base method. */
380
381 #define TARGET_DEFAULT_IGNORE()
382 #define TARGET_DEFAULT_NORETURN(ARG)
383 #define TARGET_DEFAULT_RETURN(ARG)
384 #define TARGET_DEFAULT_FUNC(ARG)
385
386 struct target_ops
387 {
388 struct target_ops *beneath; /* To the target under this one. */
389 char *to_shortname; /* Name this target type */
390 char *to_longname; /* Name for printing */
391 char *to_doc; /* Documentation. Does not include trailing
392 newline, and starts with a one-line descrip-
393 tion (probably similar to to_longname). */
394 /* Per-target scratch pad. */
395 void *to_data;
396 /* The open routine takes the rest of the parameters from the
397 command, and (if successful) pushes a new target onto the
398 stack. Targets should supply this routine, if only to provide
399 an error message. */
400 void (*to_open) (char *, int);
401 /* Old targets with a static target vector provide "to_close".
402 New re-entrant targets provide "to_xclose" and that is expected
403 to xfree everything (including the "struct target_ops"). */
404 void (*to_xclose) (struct target_ops *targ);
405 void (*to_close) (struct target_ops *);
406 void (*to_attach) (struct target_ops *ops, char *, int)
407 TARGET_DEFAULT_FUNC (find_default_attach);
408 void (*to_post_attach) (struct target_ops *, int)
409 TARGET_DEFAULT_IGNORE ();
410 void (*to_detach) (struct target_ops *ops, const char *, int)
411 TARGET_DEFAULT_IGNORE ();
412 void (*to_disconnect) (struct target_ops *, char *, int);
413 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
414 TARGET_DEFAULT_NORETURN (noprocess ());
415 ptid_t (*to_wait) (struct target_ops *,
416 ptid_t, struct target_waitstatus *, int)
417 TARGET_DEFAULT_NORETURN (noprocess ());
418 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int)
419 TARGET_DEFAULT_IGNORE ();
420 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
421 TARGET_DEFAULT_NORETURN (noprocess ());
422 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
423 TARGET_DEFAULT_NORETURN (noprocess ());
424
425 /* Transfer LEN bytes of memory between GDB address MYADDR and
426 target address MEMADDR. If WRITE, transfer them to the target, else
427 transfer them from the target. TARGET is the target from which we
428 get this function.
429
430 Return value, N, is one of the following:
431
432 0 means that we can't handle this. If errno has been set, it is the
433 error which prevented us from doing it (FIXME: What about bfd_error?).
434
435 positive (call it N) means that we have transferred N bytes
436 starting at MEMADDR. We might be able to handle more bytes
437 beyond this length, but no promises.
438
439 negative (call its absolute value N) means that we cannot
440 transfer right at MEMADDR, but we could transfer at least
441 something at MEMADDR + N.
442
443 NOTE: cagney/2004-10-01: This has been entirely superseeded by
444 to_xfer_partial and inferior inheritance. */
445
446 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
447 int len, int write,
448 struct mem_attrib *attrib,
449 struct target_ops *target);
450
451 void (*to_files_info) (struct target_ops *)
452 TARGET_DEFAULT_IGNORE ();
453 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
454 struct bp_target_info *)
455 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
456 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
457 struct bp_target_info *)
458 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
459 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int)
460 TARGET_DEFAULT_RETURN (0);
461 int (*to_ranged_break_num_registers) (struct target_ops *)
462 TARGET_DEFAULT_RETURN (-1);
463 int (*to_insert_hw_breakpoint) (struct target_ops *,
464 struct gdbarch *, struct bp_target_info *)
465 TARGET_DEFAULT_RETURN (-1);
466 int (*to_remove_hw_breakpoint) (struct target_ops *,
467 struct gdbarch *, struct bp_target_info *)
468 TARGET_DEFAULT_RETURN (-1);
469
470 /* Documentation of what the two routines below are expected to do is
471 provided with the corresponding target_* macros. */
472 int (*to_remove_watchpoint) (struct target_ops *,
473 CORE_ADDR, int, int, struct expression *)
474 TARGET_DEFAULT_RETURN (-1);
475 int (*to_insert_watchpoint) (struct target_ops *,
476 CORE_ADDR, int, int, struct expression *)
477 TARGET_DEFAULT_RETURN (-1);
478
479 int (*to_insert_mask_watchpoint) (struct target_ops *,
480 CORE_ADDR, CORE_ADDR, int)
481 TARGET_DEFAULT_RETURN (1);
482 int (*to_remove_mask_watchpoint) (struct target_ops *,
483 CORE_ADDR, CORE_ADDR, int)
484 TARGET_DEFAULT_RETURN (1);
485 int (*to_stopped_by_watchpoint) (struct target_ops *)
486 TARGET_DEFAULT_RETURN (0);
487 int to_have_steppable_watchpoint;
488 int to_have_continuable_watchpoint;
489 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
490 TARGET_DEFAULT_RETURN (0);
491 int (*to_watchpoint_addr_within_range) (struct target_ops *,
492 CORE_ADDR, CORE_ADDR, int)
493 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
494
495 /* Documentation of this routine is provided with the corresponding
496 target_* macro. */
497 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
498 CORE_ADDR, int)
499 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
500
501 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
502 CORE_ADDR, int, int,
503 struct expression *)
504 TARGET_DEFAULT_RETURN (0);
505 int (*to_masked_watch_num_registers) (struct target_ops *,
506 CORE_ADDR, CORE_ADDR)
507 TARGET_DEFAULT_RETURN (-1);
508 void (*to_terminal_init) (struct target_ops *)
509 TARGET_DEFAULT_IGNORE ();
510 void (*to_terminal_inferior) (struct target_ops *)
511 TARGET_DEFAULT_IGNORE ();
512 void (*to_terminal_ours_for_output) (struct target_ops *)
513 TARGET_DEFAULT_IGNORE ();
514 void (*to_terminal_ours) (struct target_ops *)
515 TARGET_DEFAULT_IGNORE ();
516 void (*to_terminal_save_ours) (struct target_ops *)
517 TARGET_DEFAULT_IGNORE ();
518 void (*to_terminal_info) (struct target_ops *, const char *, int)
519 TARGET_DEFAULT_FUNC (default_terminal_info);
520 void (*to_kill) (struct target_ops *)
521 TARGET_DEFAULT_NORETURN (noprocess ());
522 void (*to_load) (struct target_ops *, char *, int)
523 TARGET_DEFAULT_NORETURN (tcomplain ());
524 void (*to_create_inferior) (struct target_ops *,
525 char *, char *, char **, int);
526 void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
527 TARGET_DEFAULT_IGNORE ();
528 int (*to_insert_fork_catchpoint) (struct target_ops *, int)
529 TARGET_DEFAULT_RETURN (1);
530 int (*to_remove_fork_catchpoint) (struct target_ops *, int)
531 TARGET_DEFAULT_RETURN (1);
532 int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
533 TARGET_DEFAULT_RETURN (1);
534 int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
535 TARGET_DEFAULT_RETURN (1);
536 int (*to_follow_fork) (struct target_ops *, int, int)
537 TARGET_DEFAULT_FUNC (default_follow_fork);
538 int (*to_insert_exec_catchpoint) (struct target_ops *, int)
539 TARGET_DEFAULT_RETURN (1);
540 int (*to_remove_exec_catchpoint) (struct target_ops *, int)
541 TARGET_DEFAULT_RETURN (1);
542 int (*to_set_syscall_catchpoint) (struct target_ops *,
543 int, int, int, int, int *)
544 TARGET_DEFAULT_RETURN (1);
545 int (*to_has_exited) (struct target_ops *, int, int, int *)
546 TARGET_DEFAULT_RETURN (0);
547 void (*to_mourn_inferior) (struct target_ops *)
548 TARGET_DEFAULT_FUNC (default_mourn_inferior);
549 int (*to_can_run) (struct target_ops *);
550
551 /* Documentation of this routine is provided with the corresponding
552 target_* macro. */
553 void (*to_pass_signals) (struct target_ops *, int, unsigned char *)
554 TARGET_DEFAULT_IGNORE ();
555
556 /* Documentation of this routine is provided with the
557 corresponding target_* function. */
558 void (*to_program_signals) (struct target_ops *, int, unsigned char *)
559 TARGET_DEFAULT_IGNORE ();
560
561 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
562 void (*to_find_new_threads) (struct target_ops *)
563 TARGET_DEFAULT_IGNORE ();
564 char *(*to_pid_to_str) (struct target_ops *, ptid_t)
565 TARGET_DEFAULT_FUNC (default_pid_to_str);
566 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *)
567 TARGET_DEFAULT_RETURN (0);
568 char *(*to_thread_name) (struct target_ops *, struct thread_info *)
569 TARGET_DEFAULT_RETURN (0);
570 void (*to_stop) (struct target_ops *, ptid_t)
571 TARGET_DEFAULT_IGNORE ();
572 void (*to_rcmd) (struct target_ops *,
573 char *command, struct ui_file *output)
574 TARGET_DEFAULT_FUNC (default_rcmd);
575 char *(*to_pid_to_exec_file) (struct target_ops *, int pid)
576 TARGET_DEFAULT_RETURN (0);
577 void (*to_log_command) (struct target_ops *, const char *)
578 TARGET_DEFAULT_IGNORE ();
579 struct target_section_table *(*to_get_section_table) (struct target_ops *)
580 TARGET_DEFAULT_RETURN (0);
581 enum strata to_stratum;
582 int (*to_has_all_memory) (struct target_ops *);
583 int (*to_has_memory) (struct target_ops *);
584 int (*to_has_stack) (struct target_ops *);
585 int (*to_has_registers) (struct target_ops *);
586 int (*to_has_execution) (struct target_ops *, ptid_t);
587 int to_has_thread_control; /* control thread execution */
588 int to_attach_no_wait;
589 /* ASYNC target controls */
590 int (*to_can_async_p) (struct target_ops *)
591 TARGET_DEFAULT_FUNC (find_default_can_async_p);
592 int (*to_is_async_p) (struct target_ops *)
593 TARGET_DEFAULT_FUNC (find_default_is_async_p);
594 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
595 TARGET_DEFAULT_NORETURN (tcomplain ());
596 int (*to_supports_non_stop) (struct target_ops *);
597 /* find_memory_regions support method for gcore */
598 int (*to_find_memory_regions) (struct target_ops *,
599 find_memory_region_ftype func, void *data)
600 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
601 /* make_corefile_notes support method for gcore */
602 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *)
603 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
604 /* get_bookmark support method for bookmarks */
605 gdb_byte * (*to_get_bookmark) (struct target_ops *, char *, int)
606 TARGET_DEFAULT_NORETURN (tcomplain ());
607 /* goto_bookmark support method for bookmarks */
608 void (*to_goto_bookmark) (struct target_ops *, gdb_byte *, int)
609 TARGET_DEFAULT_NORETURN (tcomplain ());
610 /* Return the thread-local address at OFFSET in the
611 thread-local storage for the thread PTID and the shared library
612 or executable file given by OBJFILE. If that block of
613 thread-local storage hasn't been allocated yet, this function
614 may return an error. */
615 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
616 ptid_t ptid,
617 CORE_ADDR load_module_addr,
618 CORE_ADDR offset);
619
620 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
621 OBJECT. The OFFSET, for a seekable object, specifies the
622 starting point. The ANNEX can be used to provide additional
623 data-specific information to the target.
624
625 Return the transferred status, error or OK (an
626 'enum target_xfer_status' value). Save the number of bytes
627 actually transferred in *XFERED_LEN if transfer is successful
628 (TARGET_XFER_OK) or the number unavailable bytes if the requested
629 data is unavailable (TARGET_XFER_E_UNAVAILABLE). *XFERED_LEN
630 smaller than LEN does not indicate the end of the object, only
631 the end of the transfer; higher level code should continue
632 transferring if desired. This is handled in target.c.
633
634 The interface does not support a "retry" mechanism. Instead it
635 assumes that at least one byte will be transfered on each
636 successful call.
637
638 NOTE: cagney/2003-10-17: The current interface can lead to
639 fragmented transfers. Lower target levels should not implement
640 hacks, such as enlarging the transfer, in an attempt to
641 compensate for this. Instead, the target stack should be
642 extended so that it implements supply/collect methods and a
643 look-aside object cache. With that available, the lowest
644 target can safely and freely "push" data up the stack.
645
646 See target_read and target_write for more information. One,
647 and only one, of readbuf or writebuf must be non-NULL. */
648
649 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
650 enum target_object object,
651 const char *annex,
652 gdb_byte *readbuf,
653 const gdb_byte *writebuf,
654 ULONGEST offset, ULONGEST len,
655 ULONGEST *xfered_len)
656 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
657
658 /* Returns the memory map for the target. A return value of NULL
659 means that no memory map is available. If a memory address
660 does not fall within any returned regions, it's assumed to be
661 RAM. The returned memory regions should not overlap.
662
663 The order of regions does not matter; target_memory_map will
664 sort regions by starting address. For that reason, this
665 function should not be called directly except via
666 target_memory_map.
667
668 This method should not cache data; if the memory map could
669 change unexpectedly, it should be invalidated, and higher
670 layers will re-fetch it. */
671 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
672
673 /* Erases the region of flash memory starting at ADDRESS, of
674 length LENGTH.
675
676 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
677 on flash block boundaries, as reported by 'to_memory_map'. */
678 void (*to_flash_erase) (struct target_ops *,
679 ULONGEST address, LONGEST length);
680
681 /* Finishes a flash memory write sequence. After this operation
682 all flash memory should be available for writing and the result
683 of reading from areas written by 'to_flash_write' should be
684 equal to what was written. */
685 void (*to_flash_done) (struct target_ops *);
686
687 /* Describe the architecture-specific features of this target.
688 Returns the description found, or NULL if no description
689 was available. */
690 const struct target_desc *(*to_read_description) (struct target_ops *ops);
691
692 /* Build the PTID of the thread on which a given task is running,
693 based on LWP and THREAD. These values are extracted from the
694 task Private_Data section of the Ada Task Control Block, and
695 their interpretation depends on the target. */
696 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
697 long lwp, long thread)
698 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
699
700 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
701 Return 0 if *READPTR is already at the end of the buffer.
702 Return -1 if there is insufficient buffer for a whole entry.
703 Return 1 if an entry was read into *TYPEP and *VALP. */
704 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
705 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
706
707 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
708 sequence of bytes in PATTERN with length PATTERN_LEN.
709
710 The result is 1 if found, 0 if not found, and -1 if there was an error
711 requiring halting of the search (e.g. memory read error).
712 If the pattern is found the address is recorded in FOUND_ADDRP. */
713 int (*to_search_memory) (struct target_ops *ops,
714 CORE_ADDR start_addr, ULONGEST search_space_len,
715 const gdb_byte *pattern, ULONGEST pattern_len,
716 CORE_ADDR *found_addrp);
717
718 /* Can target execute in reverse? */
719 int (*to_can_execute_reverse) (struct target_ops *)
720 TARGET_DEFAULT_RETURN (0);
721
722 /* The direction the target is currently executing. Must be
723 implemented on targets that support reverse execution and async
724 mode. The default simply returns forward execution. */
725 enum exec_direction_kind (*to_execution_direction) (struct target_ops *)
726 TARGET_DEFAULT_FUNC (default_execution_direction);
727
728 /* Does this target support debugging multiple processes
729 simultaneously? */
730 int (*to_supports_multi_process) (struct target_ops *)
731 TARGET_DEFAULT_RETURN (0);
732
733 /* Does this target support enabling and disabling tracepoints while a trace
734 experiment is running? */
735 int (*to_supports_enable_disable_tracepoint) (struct target_ops *)
736 TARGET_DEFAULT_RETURN (0);
737
738 /* Does this target support disabling address space randomization? */
739 int (*to_supports_disable_randomization) (struct target_ops *);
740
741 /* Does this target support the tracenz bytecode for string collection? */
742 int (*to_supports_string_tracing) (struct target_ops *)
743 TARGET_DEFAULT_RETURN (0);
744
745 /* Does this target support evaluation of breakpoint conditions on its
746 end? */
747 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *)
748 TARGET_DEFAULT_RETURN (0);
749
750 /* Does this target support evaluation of breakpoint commands on its
751 end? */
752 int (*to_can_run_breakpoint_commands) (struct target_ops *)
753 TARGET_DEFAULT_RETURN (0);
754
755 /* Determine current architecture of thread PTID.
756
757 The target is supposed to determine the architecture of the code where
758 the target is currently stopped at (on Cell, if a target is in spu_run,
759 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
760 This is architecture used to perform decr_pc_after_break adjustment,
761 and also determines the frame architecture of the innermost frame.
762 ptrace operations need to operate according to target_gdbarch ().
763
764 The default implementation always returns target_gdbarch (). */
765 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t)
766 TARGET_DEFAULT_FUNC (default_thread_architecture);
767
768 /* Determine current address space of thread PTID.
769
770 The default implementation always returns the inferior's
771 address space. */
772 struct address_space *(*to_thread_address_space) (struct target_ops *,
773 ptid_t);
774
775 /* Target file operations. */
776
777 /* Open FILENAME on the target, using FLAGS and MODE. Return a
778 target file descriptor, or -1 if an error occurs (and set
779 *TARGET_ERRNO). */
780 int (*to_fileio_open) (struct target_ops *,
781 const char *filename, int flags, int mode,
782 int *target_errno);
783
784 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
785 Return the number of bytes written, or -1 if an error occurs
786 (and set *TARGET_ERRNO). */
787 int (*to_fileio_pwrite) (struct target_ops *,
788 int fd, const gdb_byte *write_buf, int len,
789 ULONGEST offset, int *target_errno);
790
791 /* Read up to LEN bytes FD on the target into READ_BUF.
792 Return the number of bytes read, or -1 if an error occurs
793 (and set *TARGET_ERRNO). */
794 int (*to_fileio_pread) (struct target_ops *,
795 int fd, gdb_byte *read_buf, int len,
796 ULONGEST offset, int *target_errno);
797
798 /* Close FD on the target. Return 0, or -1 if an error occurs
799 (and set *TARGET_ERRNO). */
800 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
801
802 /* Unlink FILENAME on the target. Return 0, or -1 if an error
803 occurs (and set *TARGET_ERRNO). */
804 int (*to_fileio_unlink) (struct target_ops *,
805 const char *filename, int *target_errno);
806
807 /* Read value of symbolic link FILENAME on the target. Return a
808 null-terminated string allocated via xmalloc, or NULL if an error
809 occurs (and set *TARGET_ERRNO). */
810 char *(*to_fileio_readlink) (struct target_ops *,
811 const char *filename, int *target_errno);
812
813
814 /* Implement the "info proc" command. */
815 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
816
817 /* Tracepoint-related operations. */
818
819 /* Prepare the target for a tracing run. */
820 void (*to_trace_init) (struct target_ops *)
821 TARGET_DEFAULT_NORETURN (tcomplain ());
822
823 /* Send full details of a tracepoint location to the target. */
824 void (*to_download_tracepoint) (struct target_ops *,
825 struct bp_location *location)
826 TARGET_DEFAULT_NORETURN (tcomplain ());
827
828 /* Is the target able to download tracepoint locations in current
829 state? */
830 int (*to_can_download_tracepoint) (struct target_ops *)
831 TARGET_DEFAULT_RETURN (0);
832
833 /* Send full details of a trace state variable to the target. */
834 void (*to_download_trace_state_variable) (struct target_ops *,
835 struct trace_state_variable *tsv)
836 TARGET_DEFAULT_NORETURN (tcomplain ());
837
838 /* Enable a tracepoint on the target. */
839 void (*to_enable_tracepoint) (struct target_ops *,
840 struct bp_location *location)
841 TARGET_DEFAULT_NORETURN (tcomplain ());
842
843 /* Disable a tracepoint on the target. */
844 void (*to_disable_tracepoint) (struct target_ops *,
845 struct bp_location *location)
846 TARGET_DEFAULT_NORETURN (tcomplain ());
847
848 /* Inform the target info of memory regions that are readonly
849 (such as text sections), and so it should return data from
850 those rather than look in the trace buffer. */
851 void (*to_trace_set_readonly_regions) (struct target_ops *)
852 TARGET_DEFAULT_NORETURN (tcomplain ());
853
854 /* Start a trace run. */
855 void (*to_trace_start) (struct target_ops *)
856 TARGET_DEFAULT_NORETURN (tcomplain ());
857
858 /* Get the current status of a tracing run. */
859 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts)
860 TARGET_DEFAULT_RETURN (-1);
861
862 void (*to_get_tracepoint_status) (struct target_ops *,
863 struct breakpoint *tp,
864 struct uploaded_tp *utp)
865 TARGET_DEFAULT_NORETURN (tcomplain ());
866
867 /* Stop a trace run. */
868 void (*to_trace_stop) (struct target_ops *)
869 TARGET_DEFAULT_NORETURN (tcomplain ());
870
871 /* Ask the target to find a trace frame of the given type TYPE,
872 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
873 number of the trace frame, and also the tracepoint number at
874 TPP. If no trace frame matches, return -1. May throw if the
875 operation fails. */
876 int (*to_trace_find) (struct target_ops *,
877 enum trace_find_type type, int num,
878 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
879 TARGET_DEFAULT_RETURN (-1);
880
881 /* Get the value of the trace state variable number TSV, returning
882 1 if the value is known and writing the value itself into the
883 location pointed to by VAL, else returning 0. */
884 int (*to_get_trace_state_variable_value) (struct target_ops *,
885 int tsv, LONGEST *val)
886 TARGET_DEFAULT_RETURN (0);
887
888 int (*to_save_trace_data) (struct target_ops *, const char *filename)
889 TARGET_DEFAULT_NORETURN (tcomplain ());
890
891 int (*to_upload_tracepoints) (struct target_ops *,
892 struct uploaded_tp **utpp)
893 TARGET_DEFAULT_RETURN (0);
894
895 int (*to_upload_trace_state_variables) (struct target_ops *,
896 struct uploaded_tsv **utsvp)
897 TARGET_DEFAULT_RETURN (0);
898
899 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
900 ULONGEST offset, LONGEST len)
901 TARGET_DEFAULT_NORETURN (tcomplain ());
902
903 /* Get the minimum length of instruction on which a fast tracepoint
904 may be set on the target. If this operation is unsupported,
905 return -1. If for some reason the minimum length cannot be
906 determined, return 0. */
907 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *)
908 TARGET_DEFAULT_RETURN (-1);
909
910 /* Set the target's tracing behavior in response to unexpected
911 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
912 void (*to_set_disconnected_tracing) (struct target_ops *, int val)
913 TARGET_DEFAULT_IGNORE ();
914 void (*to_set_circular_trace_buffer) (struct target_ops *, int val)
915 TARGET_DEFAULT_IGNORE ();
916 /* Set the size of trace buffer in the target. */
917 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val)
918 TARGET_DEFAULT_IGNORE ();
919
920 /* Add/change textual notes about the trace run, returning 1 if
921 successful, 0 otherwise. */
922 int (*to_set_trace_notes) (struct target_ops *,
923 const char *user, const char *notes,
924 const char *stopnotes)
925 TARGET_DEFAULT_RETURN (0);
926
927 /* Return the processor core that thread PTID was last seen on.
928 This information is updated only when:
929 - update_thread_list is called
930 - thread stops
931 If the core cannot be determined -- either for the specified
932 thread, or right now, or in this debug session, or for this
933 target -- return -1. */
934 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
935
936 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
937 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
938 a match, 0 if there's a mismatch, and -1 if an error is
939 encountered while reading memory. */
940 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
941 CORE_ADDR memaddr, ULONGEST size);
942
943 /* Return the address of the start of the Thread Information Block
944 a Windows OS specific feature. */
945 int (*to_get_tib_address) (struct target_ops *,
946 ptid_t ptid, CORE_ADDR *addr)
947 TARGET_DEFAULT_NORETURN (tcomplain ());
948
949 /* Send the new settings of write permission variables. */
950 void (*to_set_permissions) (struct target_ops *)
951 TARGET_DEFAULT_IGNORE ();
952
953 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
954 with its details. Return 1 on success, 0 on failure. */
955 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
956 struct static_tracepoint_marker *marker)
957 TARGET_DEFAULT_RETURN (0);
958
959 /* Return a vector of all tracepoints markers string id ID, or all
960 markers if ID is NULL. */
961 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid) (struct target_ops *, const char *id)
962 TARGET_DEFAULT_NORETURN (tcomplain ());
963
964 /* Return a traceframe info object describing the current
965 traceframe's contents. If the target doesn't support
966 traceframe info, return NULL. If the current traceframe is not
967 selected (the current traceframe number is -1), the target can
968 choose to return either NULL or an empty traceframe info. If
969 NULL is returned, for example in remote target, GDB will read
970 from the live inferior. If an empty traceframe info is
971 returned, for example in tfile target, which means the
972 traceframe info is available, but the requested memory is not
973 available in it. GDB will try to see if the requested memory
974 is available in the read-only sections. This method should not
975 cache data; higher layers take care of caching, invalidating,
976 and re-fetching when necessary. */
977 struct traceframe_info *(*to_traceframe_info) (struct target_ops *)
978 TARGET_DEFAULT_RETURN (0);
979
980 /* Ask the target to use or not to use agent according to USE. Return 1
981 successful, 0 otherwise. */
982 int (*to_use_agent) (struct target_ops *, int use)
983 TARGET_DEFAULT_NORETURN (tcomplain ());
984
985 /* Is the target able to use agent in current state? */
986 int (*to_can_use_agent) (struct target_ops *)
987 TARGET_DEFAULT_RETURN (0);
988
989 /* Check whether the target supports branch tracing. */
990 int (*to_supports_btrace) (struct target_ops *)
991 TARGET_DEFAULT_RETURN (0);
992
993 /* Enable branch tracing for PTID and allocate a branch trace target
994 information struct for reading and for disabling branch trace. */
995 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
996 ptid_t ptid);
997
998 /* Disable branch tracing and deallocate TINFO. */
999 void (*to_disable_btrace) (struct target_ops *,
1000 struct btrace_target_info *tinfo);
1001
1002 /* Disable branch tracing and deallocate TINFO. This function is similar
1003 to to_disable_btrace, except that it is called during teardown and is
1004 only allowed to perform actions that are safe. A counter-example would
1005 be attempting to talk to a remote target. */
1006 void (*to_teardown_btrace) (struct target_ops *,
1007 struct btrace_target_info *tinfo);
1008
1009 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1010 DATA is cleared before new trace is added.
1011 The branch trace will start with the most recent block and continue
1012 towards older blocks. */
1013 enum btrace_error (*to_read_btrace) (struct target_ops *self,
1014 VEC (btrace_block_s) **data,
1015 struct btrace_target_info *btinfo,
1016 enum btrace_read_type type);
1017
1018 /* Stop trace recording. */
1019 void (*to_stop_recording) (struct target_ops *);
1020
1021 /* Print information about the recording. */
1022 void (*to_info_record) (struct target_ops *);
1023
1024 /* Save the recorded execution trace into a file. */
1025 void (*to_save_record) (struct target_ops *, const char *filename);
1026
1027 /* Delete the recorded execution trace from the current position onwards. */
1028 void (*to_delete_record) (struct target_ops *);
1029
1030 /* Query if the record target is currently replaying. */
1031 int (*to_record_is_replaying) (struct target_ops *);
1032
1033 /* Go to the begin of the execution trace. */
1034 void (*to_goto_record_begin) (struct target_ops *);
1035
1036 /* Go to the end of the execution trace. */
1037 void (*to_goto_record_end) (struct target_ops *);
1038
1039 /* Go to a specific location in the recorded execution trace. */
1040 void (*to_goto_record) (struct target_ops *, ULONGEST insn);
1041
1042 /* Disassemble SIZE instructions in the recorded execution trace from
1043 the current position.
1044 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1045 disassemble SIZE succeeding instructions. */
1046 void (*to_insn_history) (struct target_ops *, int size, int flags);
1047
1048 /* Disassemble SIZE instructions in the recorded execution trace around
1049 FROM.
1050 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1051 disassemble SIZE instructions after FROM. */
1052 void (*to_insn_history_from) (struct target_ops *,
1053 ULONGEST from, int size, int flags);
1054
1055 /* Disassemble a section of the recorded execution trace from instruction
1056 BEGIN (inclusive) to instruction END (inclusive). */
1057 void (*to_insn_history_range) (struct target_ops *,
1058 ULONGEST begin, ULONGEST end, int flags);
1059
1060 /* Print a function trace of the recorded execution trace.
1061 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1062 succeeding functions. */
1063 void (*to_call_history) (struct target_ops *, int size, int flags);
1064
1065 /* Print a function trace of the recorded execution trace starting
1066 at function FROM.
1067 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1068 SIZE functions after FROM. */
1069 void (*to_call_history_from) (struct target_ops *,
1070 ULONGEST begin, int size, int flags);
1071
1072 /* Print a function trace of an execution trace section from function BEGIN
1073 (inclusive) to function END (inclusive). */
1074 void (*to_call_history_range) (struct target_ops *,
1075 ULONGEST begin, ULONGEST end, int flags);
1076
1077 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1078 non-empty annex. */
1079 int (*to_augmented_libraries_svr4_read) (struct target_ops *)
1080 TARGET_DEFAULT_RETURN (0);
1081
1082 /* Those unwinders are tried before any other arch unwinders. Use NULL if
1083 it is not used. */
1084 const struct frame_unwind *to_get_unwinder;
1085 const struct frame_unwind *to_get_tailcall_unwinder;
1086
1087 /* Return the number of bytes by which the PC needs to be decremented
1088 after executing a breakpoint instruction.
1089 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
1090 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
1091 struct gdbarch *gdbarch);
1092
1093 int to_magic;
1094 /* Need sub-structure for target machine related rather than comm related?
1095 */
1096 };
1097
1098 /* Magic number for checking ops size. If a struct doesn't end with this
1099 number, somebody changed the declaration but didn't change all the
1100 places that initialize one. */
1101
1102 #define OPS_MAGIC 3840
1103
1104 /* The ops structure for our "current" target process. This should
1105 never be NULL. If there is no target, it points to the dummy_target. */
1106
1107 extern struct target_ops current_target;
1108
1109 /* Define easy words for doing these operations on our current target. */
1110
1111 #define target_shortname (current_target.to_shortname)
1112 #define target_longname (current_target.to_longname)
1113
1114 /* Does whatever cleanup is required for a target that we are no
1115 longer going to be calling. This routine is automatically always
1116 called after popping the target off the target stack - the target's
1117 own methods are no longer available through the target vector.
1118 Closing file descriptors and freeing all memory allocated memory are
1119 typical things it should do. */
1120
1121 void target_close (struct target_ops *targ);
1122
1123 /* Attaches to a process on the target side. Arguments are as passed
1124 to the `attach' command by the user. This routine can be called
1125 when the target is not on the target-stack, if the target_can_run
1126 routine returns 1; in that case, it must push itself onto the stack.
1127 Upon exit, the target should be ready for normal operations, and
1128 should be ready to deliver the status of the process immediately
1129 (without waiting) to an upcoming target_wait call. */
1130
1131 void target_attach (char *, int);
1132
1133 /* Some targets don't generate traps when attaching to the inferior,
1134 or their target_attach implementation takes care of the waiting.
1135 These targets must set to_attach_no_wait. */
1136
1137 #define target_attach_no_wait \
1138 (current_target.to_attach_no_wait)
1139
1140 /* The target_attach operation places a process under debugger control,
1141 and stops the process.
1142
1143 This operation provides a target-specific hook that allows the
1144 necessary bookkeeping to be performed after an attach completes. */
1145 #define target_post_attach(pid) \
1146 (*current_target.to_post_attach) (&current_target, pid)
1147
1148 /* Takes a program previously attached to and detaches it.
1149 The program may resume execution (some targets do, some don't) and will
1150 no longer stop on signals, etc. We better not have left any breakpoints
1151 in the program or it'll die when it hits one. ARGS is arguments
1152 typed by the user (e.g. a signal to send the process). FROM_TTY
1153 says whether to be verbose or not. */
1154
1155 extern void target_detach (const char *, int);
1156
1157 /* Disconnect from the current target without resuming it (leaving it
1158 waiting for a debugger). */
1159
1160 extern void target_disconnect (char *, int);
1161
1162 /* Resume execution of the target process PTID (or a group of
1163 threads). STEP says whether to single-step or to run free; SIGGNAL
1164 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1165 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1166 PTID means `step/resume only this process id'. A wildcard PTID
1167 (all threads, or all threads of process) means `step/resume
1168 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1169 matches) resume with their 'thread->suspend.stop_signal' signal
1170 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1171 if in "no pass" state. */
1172
1173 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1174
1175 /* Wait for process pid to do something. PTID = -1 to wait for any
1176 pid to do something. Return pid of child, or -1 in case of error;
1177 store status through argument pointer STATUS. Note that it is
1178 _NOT_ OK to throw_exception() out of target_wait() without popping
1179 the debugging target from the stack; GDB isn't prepared to get back
1180 to the prompt with a debugging target but without the frame cache,
1181 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1182 options. */
1183
1184 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1185 int options);
1186
1187 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1188
1189 extern void target_fetch_registers (struct regcache *regcache, int regno);
1190
1191 /* Store at least register REGNO, or all regs if REGNO == -1.
1192 It can store as many registers as it wants to, so target_prepare_to_store
1193 must have been previously called. Calls error() if there are problems. */
1194
1195 extern void target_store_registers (struct regcache *regcache, int regs);
1196
1197 /* Get ready to modify the registers array. On machines which store
1198 individual registers, this doesn't need to do anything. On machines
1199 which store all the registers in one fell swoop, this makes sure
1200 that REGISTERS contains all the registers from the program being
1201 debugged. */
1202
1203 #define target_prepare_to_store(regcache) \
1204 (*current_target.to_prepare_to_store) (&current_target, regcache)
1205
1206 /* Determine current address space of thread PTID. */
1207
1208 struct address_space *target_thread_address_space (ptid_t);
1209
1210 /* Implement the "info proc" command. This returns one if the request
1211 was handled, and zero otherwise. It can also throw an exception if
1212 an error was encountered while attempting to handle the
1213 request. */
1214
1215 int target_info_proc (char *, enum info_proc_what);
1216
1217 /* Returns true if this target can debug multiple processes
1218 simultaneously. */
1219
1220 #define target_supports_multi_process() \
1221 (*current_target.to_supports_multi_process) (&current_target)
1222
1223 /* Returns true if this target can disable address space randomization. */
1224
1225 int target_supports_disable_randomization (void);
1226
1227 /* Returns true if this target can enable and disable tracepoints
1228 while a trace experiment is running. */
1229
1230 #define target_supports_enable_disable_tracepoint() \
1231 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1232
1233 #define target_supports_string_tracing() \
1234 (*current_target.to_supports_string_tracing) (&current_target)
1235
1236 /* Returns true if this target can handle breakpoint conditions
1237 on its end. */
1238
1239 #define target_supports_evaluation_of_breakpoint_conditions() \
1240 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1241
1242 /* Returns true if this target can handle breakpoint commands
1243 on its end. */
1244
1245 #define target_can_run_breakpoint_commands() \
1246 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1247
1248 extern int target_read_string (CORE_ADDR, char **, int, int *);
1249
1250 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1251 ssize_t len);
1252
1253 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1254 ssize_t len);
1255
1256 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1257
1258 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1259
1260 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1261 ssize_t len);
1262
1263 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1264 ssize_t len);
1265
1266 /* Fetches the target's memory map. If one is found it is sorted
1267 and returned, after some consistency checking. Otherwise, NULL
1268 is returned. */
1269 VEC(mem_region_s) *target_memory_map (void);
1270
1271 /* Erase the specified flash region. */
1272 void target_flash_erase (ULONGEST address, LONGEST length);
1273
1274 /* Finish a sequence of flash operations. */
1275 void target_flash_done (void);
1276
1277 /* Describes a request for a memory write operation. */
1278 struct memory_write_request
1279 {
1280 /* Begining address that must be written. */
1281 ULONGEST begin;
1282 /* Past-the-end address. */
1283 ULONGEST end;
1284 /* The data to write. */
1285 gdb_byte *data;
1286 /* A callback baton for progress reporting for this request. */
1287 void *baton;
1288 };
1289 typedef struct memory_write_request memory_write_request_s;
1290 DEF_VEC_O(memory_write_request_s);
1291
1292 /* Enumeration specifying different flash preservation behaviour. */
1293 enum flash_preserve_mode
1294 {
1295 flash_preserve,
1296 flash_discard
1297 };
1298
1299 /* Write several memory blocks at once. This version can be more
1300 efficient than making several calls to target_write_memory, in
1301 particular because it can optimize accesses to flash memory.
1302
1303 Moreover, this is currently the only memory access function in gdb
1304 that supports writing to flash memory, and it should be used for
1305 all cases where access to flash memory is desirable.
1306
1307 REQUESTS is the vector (see vec.h) of memory_write_request.
1308 PRESERVE_FLASH_P indicates what to do with blocks which must be
1309 erased, but not completely rewritten.
1310 PROGRESS_CB is a function that will be periodically called to provide
1311 feedback to user. It will be called with the baton corresponding
1312 to the request currently being written. It may also be called
1313 with a NULL baton, when preserved flash sectors are being rewritten.
1314
1315 The function returns 0 on success, and error otherwise. */
1316 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1317 enum flash_preserve_mode preserve_flash_p,
1318 void (*progress_cb) (ULONGEST, void *));
1319
1320 /* Print a line about the current target. */
1321
1322 #define target_files_info() \
1323 (*current_target.to_files_info) (&current_target)
1324
1325 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1326 the target machine. Returns 0 for success, and returns non-zero or
1327 throws an error (with a detailed failure reason error code and
1328 message) otherwise. */
1329
1330 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1331 struct bp_target_info *bp_tgt);
1332
1333 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1334 machine. Result is 0 for success, non-zero for error. */
1335
1336 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1337 struct bp_target_info *bp_tgt);
1338
1339 /* Initialize the terminal settings we record for the inferior,
1340 before we actually run the inferior. */
1341
1342 #define target_terminal_init() \
1343 (*current_target.to_terminal_init) (&current_target)
1344
1345 /* Put the inferior's terminal settings into effect.
1346 This is preparation for starting or resuming the inferior. */
1347
1348 extern void target_terminal_inferior (void);
1349
1350 /* Put some of our terminal settings into effect,
1351 enough to get proper results from our output,
1352 but do not change into or out of RAW mode
1353 so that no input is discarded.
1354
1355 After doing this, either terminal_ours or terminal_inferior
1356 should be called to get back to a normal state of affairs. */
1357
1358 #define target_terminal_ours_for_output() \
1359 (*current_target.to_terminal_ours_for_output) (&current_target)
1360
1361 /* Put our terminal settings into effect.
1362 First record the inferior's terminal settings
1363 so they can be restored properly later. */
1364
1365 #define target_terminal_ours() \
1366 (*current_target.to_terminal_ours) (&current_target)
1367
1368 /* Save our terminal settings.
1369 This is called from TUI after entering or leaving the curses
1370 mode. Since curses modifies our terminal this call is here
1371 to take this change into account. */
1372
1373 #define target_terminal_save_ours() \
1374 (*current_target.to_terminal_save_ours) (&current_target)
1375
1376 /* Print useful information about our terminal status, if such a thing
1377 exists. */
1378
1379 #define target_terminal_info(arg, from_tty) \
1380 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1381
1382 /* Kill the inferior process. Make it go away. */
1383
1384 extern void target_kill (void);
1385
1386 /* Load an executable file into the target process. This is expected
1387 to not only bring new code into the target process, but also to
1388 update GDB's symbol tables to match.
1389
1390 ARG contains command-line arguments, to be broken down with
1391 buildargv (). The first non-switch argument is the filename to
1392 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1393 0)), which is an offset to apply to the load addresses of FILE's
1394 sections. The target may define switches, or other non-switch
1395 arguments, as it pleases. */
1396
1397 extern void target_load (char *arg, int from_tty);
1398
1399 /* Start an inferior process and set inferior_ptid to its pid.
1400 EXEC_FILE is the file to run.
1401 ALLARGS is a string containing the arguments to the program.
1402 ENV is the environment vector to pass. Errors reported with error().
1403 On VxWorks and various standalone systems, we ignore exec_file. */
1404
1405 void target_create_inferior (char *exec_file, char *args,
1406 char **env, int from_tty);
1407
1408 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1409 notification of inferior events such as fork and vork immediately
1410 after the inferior is created. (This because of how gdb gets an
1411 inferior created via invoking a shell to do it. In such a scenario,
1412 if the shell init file has commands in it, the shell will fork and
1413 exec for each of those commands, and we will see each such fork
1414 event. Very bad.)
1415
1416 Such targets will supply an appropriate definition for this function. */
1417
1418 #define target_post_startup_inferior(ptid) \
1419 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1420
1421 /* On some targets, we can catch an inferior fork or vfork event when
1422 it occurs. These functions insert/remove an already-created
1423 catchpoint for such events. They return 0 for success, 1 if the
1424 catchpoint type is not supported and -1 for failure. */
1425
1426 #define target_insert_fork_catchpoint(pid) \
1427 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1428
1429 #define target_remove_fork_catchpoint(pid) \
1430 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1431
1432 #define target_insert_vfork_catchpoint(pid) \
1433 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1434
1435 #define target_remove_vfork_catchpoint(pid) \
1436 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1437
1438 /* If the inferior forks or vforks, this function will be called at
1439 the next resume in order to perform any bookkeeping and fiddling
1440 necessary to continue debugging either the parent or child, as
1441 requested, and releasing the other. Information about the fork
1442 or vfork event is available via get_last_target_status ().
1443 This function returns 1 if the inferior should not be resumed
1444 (i.e. there is another event pending). */
1445
1446 int target_follow_fork (int follow_child, int detach_fork);
1447
1448 /* On some targets, we can catch an inferior exec event when it
1449 occurs. These functions insert/remove an already-created
1450 catchpoint for such events. They return 0 for success, 1 if the
1451 catchpoint type is not supported and -1 for failure. */
1452
1453 #define target_insert_exec_catchpoint(pid) \
1454 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1455
1456 #define target_remove_exec_catchpoint(pid) \
1457 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1458
1459 /* Syscall catch.
1460
1461 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1462 If NEEDED is zero, it means the target can disable the mechanism to
1463 catch system calls because there are no more catchpoints of this type.
1464
1465 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1466 being requested. In this case, both TABLE_SIZE and TABLE should
1467 be ignored.
1468
1469 TABLE_SIZE is the number of elements in TABLE. It only matters if
1470 ANY_COUNT is zero.
1471
1472 TABLE is an array of ints, indexed by syscall number. An element in
1473 this array is nonzero if that syscall should be caught. This argument
1474 only matters if ANY_COUNT is zero.
1475
1476 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1477 for failure. */
1478
1479 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1480 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1481 pid, needed, any_count, \
1482 table_size, table)
1483
1484 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1485 exit code of PID, if any. */
1486
1487 #define target_has_exited(pid,wait_status,exit_status) \
1488 (*current_target.to_has_exited) (&current_target, \
1489 pid,wait_status,exit_status)
1490
1491 /* The debugger has completed a blocking wait() call. There is now
1492 some process event that must be processed. This function should
1493 be defined by those targets that require the debugger to perform
1494 cleanup or internal state changes in response to the process event. */
1495
1496 /* The inferior process has died. Do what is right. */
1497
1498 void target_mourn_inferior (void);
1499
1500 /* Does target have enough data to do a run or attach command? */
1501
1502 #define target_can_run(t) \
1503 ((t)->to_can_run) (t)
1504
1505 /* Set list of signals to be handled in the target.
1506
1507 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1508 (enum gdb_signal). For every signal whose entry in this array is
1509 non-zero, the target is allowed -but not required- to skip reporting
1510 arrival of the signal to the GDB core by returning from target_wait,
1511 and to pass the signal directly to the inferior instead.
1512
1513 However, if the target is hardware single-stepping a thread that is
1514 about to receive a signal, it needs to be reported in any case, even
1515 if mentioned in a previous target_pass_signals call. */
1516
1517 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1518
1519 /* Set list of signals the target may pass to the inferior. This
1520 directly maps to the "handle SIGNAL pass/nopass" setting.
1521
1522 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1523 number (enum gdb_signal). For every signal whose entry in this
1524 array is non-zero, the target is allowed to pass the signal to the
1525 inferior. Signals not present in the array shall be silently
1526 discarded. This does not influence whether to pass signals to the
1527 inferior as a result of a target_resume call. This is useful in
1528 scenarios where the target needs to decide whether to pass or not a
1529 signal to the inferior without GDB core involvement, such as for
1530 example, when detaching (as threads may have been suspended with
1531 pending signals not reported to GDB). */
1532
1533 extern void target_program_signals (int nsig, unsigned char *program_signals);
1534
1535 /* Check to see if a thread is still alive. */
1536
1537 extern int target_thread_alive (ptid_t ptid);
1538
1539 /* Query for new threads and add them to the thread list. */
1540
1541 extern void target_find_new_threads (void);
1542
1543 /* Make target stop in a continuable fashion. (For instance, under
1544 Unix, this should act like SIGSTOP). This function is normally
1545 used by GUIs to implement a stop button. */
1546
1547 extern void target_stop (ptid_t ptid);
1548
1549 /* Send the specified COMMAND to the target's monitor
1550 (shell,interpreter) for execution. The result of the query is
1551 placed in OUTBUF. */
1552
1553 #define target_rcmd(command, outbuf) \
1554 (*current_target.to_rcmd) (&current_target, command, outbuf)
1555
1556
1557 /* Does the target include all of memory, or only part of it? This
1558 determines whether we look up the target chain for other parts of
1559 memory if this target can't satisfy a request. */
1560
1561 extern int target_has_all_memory_1 (void);
1562 #define target_has_all_memory target_has_all_memory_1 ()
1563
1564 /* Does the target include memory? (Dummy targets don't.) */
1565
1566 extern int target_has_memory_1 (void);
1567 #define target_has_memory target_has_memory_1 ()
1568
1569 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1570 we start a process.) */
1571
1572 extern int target_has_stack_1 (void);
1573 #define target_has_stack target_has_stack_1 ()
1574
1575 /* Does the target have registers? (Exec files don't.) */
1576
1577 extern int target_has_registers_1 (void);
1578 #define target_has_registers target_has_registers_1 ()
1579
1580 /* Does the target have execution? Can we make it jump (through
1581 hoops), or pop its stack a few times? This means that the current
1582 target is currently executing; for some targets, that's the same as
1583 whether or not the target is capable of execution, but there are
1584 also targets which can be current while not executing. In that
1585 case this will become true after target_create_inferior or
1586 target_attach. */
1587
1588 extern int target_has_execution_1 (ptid_t);
1589
1590 /* Like target_has_execution_1, but always passes inferior_ptid. */
1591
1592 extern int target_has_execution_current (void);
1593
1594 #define target_has_execution target_has_execution_current ()
1595
1596 /* Default implementations for process_stratum targets. Return true
1597 if there's a selected inferior, false otherwise. */
1598
1599 extern int default_child_has_all_memory (struct target_ops *ops);
1600 extern int default_child_has_memory (struct target_ops *ops);
1601 extern int default_child_has_stack (struct target_ops *ops);
1602 extern int default_child_has_registers (struct target_ops *ops);
1603 extern int default_child_has_execution (struct target_ops *ops,
1604 ptid_t the_ptid);
1605
1606 /* Can the target support the debugger control of thread execution?
1607 Can it lock the thread scheduler? */
1608
1609 #define target_can_lock_scheduler \
1610 (current_target.to_has_thread_control & tc_schedlock)
1611
1612 /* Should the target enable async mode if it is supported? Temporary
1613 cludge until async mode is a strict superset of sync mode. */
1614 extern int target_async_permitted;
1615
1616 /* Can the target support asynchronous execution? */
1617 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1618
1619 /* Is the target in asynchronous execution mode? */
1620 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1621
1622 int target_supports_non_stop (void);
1623
1624 /* Put the target in async mode with the specified callback function. */
1625 #define target_async(CALLBACK,CONTEXT) \
1626 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1627
1628 #define target_execution_direction() \
1629 (current_target.to_execution_direction (&current_target))
1630
1631 /* Converts a process id to a string. Usually, the string just contains
1632 `process xyz', but on some systems it may contain
1633 `process xyz thread abc'. */
1634
1635 extern char *target_pid_to_str (ptid_t ptid);
1636
1637 extern char *normal_pid_to_str (ptid_t ptid);
1638
1639 /* Return a short string describing extra information about PID,
1640 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1641 is okay. */
1642
1643 #define target_extra_thread_info(TP) \
1644 (current_target.to_extra_thread_info (&current_target, TP))
1645
1646 /* Return the thread's name. A NULL result means that the target
1647 could not determine this thread's name. */
1648
1649 extern char *target_thread_name (struct thread_info *);
1650
1651 /* Attempts to find the pathname of the executable file
1652 that was run to create a specified process.
1653
1654 The process PID must be stopped when this operation is used.
1655
1656 If the executable file cannot be determined, NULL is returned.
1657
1658 Else, a pointer to a character string containing the pathname
1659 is returned. This string should be copied into a buffer by
1660 the client if the string will not be immediately used, or if
1661 it must persist. */
1662
1663 #define target_pid_to_exec_file(pid) \
1664 (current_target.to_pid_to_exec_file) (&current_target, pid)
1665
1666 /* See the to_thread_architecture description in struct target_ops. */
1667
1668 #define target_thread_architecture(ptid) \
1669 (current_target.to_thread_architecture (&current_target, ptid))
1670
1671 /*
1672 * Iterator function for target memory regions.
1673 * Calls a callback function once for each memory region 'mapped'
1674 * in the child process. Defined as a simple macro rather than
1675 * as a function macro so that it can be tested for nullity.
1676 */
1677
1678 #define target_find_memory_regions(FUNC, DATA) \
1679 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1680
1681 /*
1682 * Compose corefile .note section.
1683 */
1684
1685 #define target_make_corefile_notes(BFD, SIZE_P) \
1686 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1687
1688 /* Bookmark interfaces. */
1689 #define target_get_bookmark(ARGS, FROM_TTY) \
1690 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1691
1692 #define target_goto_bookmark(ARG, FROM_TTY) \
1693 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1694
1695 /* Hardware watchpoint interfaces. */
1696
1697 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1698 write). Only the INFERIOR_PTID task is being queried. */
1699
1700 #define target_stopped_by_watchpoint() \
1701 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1702
1703 /* Non-zero if we have steppable watchpoints */
1704
1705 #define target_have_steppable_watchpoint \
1706 (current_target.to_have_steppable_watchpoint)
1707
1708 /* Non-zero if we have continuable watchpoints */
1709
1710 #define target_have_continuable_watchpoint \
1711 (current_target.to_have_continuable_watchpoint)
1712
1713 /* Provide defaults for hardware watchpoint functions. */
1714
1715 /* If the *_hw_beakpoint functions have not been defined
1716 elsewhere use the definitions in the target vector. */
1717
1718 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1719 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1720 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1721 (including this one?). OTHERTYPE is who knows what... */
1722
1723 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1724 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1725 TYPE, CNT, OTHERTYPE);
1726
1727 /* Returns the number of debug registers needed to watch the given
1728 memory region, or zero if not supported. */
1729
1730 #define target_region_ok_for_hw_watchpoint(addr, len) \
1731 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1732 addr, len)
1733
1734
1735 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1736 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1737 COND is the expression for its condition, or NULL if there's none.
1738 Returns 0 for success, 1 if the watchpoint type is not supported,
1739 -1 for failure. */
1740
1741 #define target_insert_watchpoint(addr, len, type, cond) \
1742 (*current_target.to_insert_watchpoint) (&current_target, \
1743 addr, len, type, cond)
1744
1745 #define target_remove_watchpoint(addr, len, type, cond) \
1746 (*current_target.to_remove_watchpoint) (&current_target, \
1747 addr, len, type, cond)
1748
1749 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1750 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1751 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1752 masked watchpoints are not supported, -1 for failure. */
1753
1754 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1755
1756 /* Remove a masked watchpoint at ADDR with the mask MASK.
1757 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1758 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1759 for failure. */
1760
1761 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1762
1763 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1764 the target machine. Returns 0 for success, and returns non-zero or
1765 throws an error (with a detailed failure reason error code and
1766 message) otherwise. */
1767
1768 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1769 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1770 gdbarch, bp_tgt)
1771
1772 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1773 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1774 gdbarch, bp_tgt)
1775
1776 /* Return number of debug registers needed for a ranged breakpoint,
1777 or -1 if ranged breakpoints are not supported. */
1778
1779 extern int target_ranged_break_num_registers (void);
1780
1781 /* Return non-zero if target knows the data address which triggered this
1782 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1783 INFERIOR_PTID task is being queried. */
1784 #define target_stopped_data_address(target, addr_p) \
1785 (*target.to_stopped_data_address) (target, addr_p)
1786
1787 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1788 LENGTH bytes beginning at START. */
1789 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1790 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1791
1792 /* Return non-zero if the target is capable of using hardware to evaluate
1793 the condition expression. In this case, if the condition is false when
1794 the watched memory location changes, execution may continue without the
1795 debugger being notified.
1796
1797 Due to limitations in the hardware implementation, it may be capable of
1798 avoiding triggering the watchpoint in some cases where the condition
1799 expression is false, but may report some false positives as well.
1800 For this reason, GDB will still evaluate the condition expression when
1801 the watchpoint triggers. */
1802 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1803 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1804 addr, len, type, cond)
1805
1806 /* Return number of debug registers needed for a masked watchpoint,
1807 -1 if masked watchpoints are not supported or -2 if the given address
1808 and mask combination cannot be used. */
1809
1810 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1811
1812 /* Target can execute in reverse? */
1813 #define target_can_execute_reverse \
1814 current_target.to_can_execute_reverse (&current_target)
1815
1816 extern const struct target_desc *target_read_description (struct target_ops *);
1817
1818 #define target_get_ada_task_ptid(lwp, tid) \
1819 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1820
1821 /* Utility implementation of searching memory. */
1822 extern int simple_search_memory (struct target_ops* ops,
1823 CORE_ADDR start_addr,
1824 ULONGEST search_space_len,
1825 const gdb_byte *pattern,
1826 ULONGEST pattern_len,
1827 CORE_ADDR *found_addrp);
1828
1829 /* Main entry point for searching memory. */
1830 extern int target_search_memory (CORE_ADDR start_addr,
1831 ULONGEST search_space_len,
1832 const gdb_byte *pattern,
1833 ULONGEST pattern_len,
1834 CORE_ADDR *found_addrp);
1835
1836 /* Target file operations. */
1837
1838 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1839 target file descriptor, or -1 if an error occurs (and set
1840 *TARGET_ERRNO). */
1841 extern int target_fileio_open (const char *filename, int flags, int mode,
1842 int *target_errno);
1843
1844 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1845 Return the number of bytes written, or -1 if an error occurs
1846 (and set *TARGET_ERRNO). */
1847 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1848 ULONGEST offset, int *target_errno);
1849
1850 /* Read up to LEN bytes FD on the target into READ_BUF.
1851 Return the number of bytes read, or -1 if an error occurs
1852 (and set *TARGET_ERRNO). */
1853 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1854 ULONGEST offset, int *target_errno);
1855
1856 /* Close FD on the target. Return 0, or -1 if an error occurs
1857 (and set *TARGET_ERRNO). */
1858 extern int target_fileio_close (int fd, int *target_errno);
1859
1860 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1861 occurs (and set *TARGET_ERRNO). */
1862 extern int target_fileio_unlink (const char *filename, int *target_errno);
1863
1864 /* Read value of symbolic link FILENAME on the target. Return a
1865 null-terminated string allocated via xmalloc, or NULL if an error
1866 occurs (and set *TARGET_ERRNO). */
1867 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1868
1869 /* Read target file FILENAME. The return value will be -1 if the transfer
1870 fails or is not supported; 0 if the object is empty; or the length
1871 of the object otherwise. If a positive value is returned, a
1872 sufficiently large buffer will be allocated using xmalloc and
1873 returned in *BUF_P containing the contents of the object.
1874
1875 This method should be used for objects sufficiently small to store
1876 in a single xmalloc'd buffer, when no fixed bound on the object's
1877 size is known in advance. */
1878 extern LONGEST target_fileio_read_alloc (const char *filename,
1879 gdb_byte **buf_p);
1880
1881 /* Read target file FILENAME. The result is NUL-terminated and
1882 returned as a string, allocated using xmalloc. If an error occurs
1883 or the transfer is unsupported, NULL is returned. Empty objects
1884 are returned as allocated but empty strings. A warning is issued
1885 if the result contains any embedded NUL bytes. */
1886 extern char *target_fileio_read_stralloc (const char *filename);
1887
1888
1889 /* Tracepoint-related operations. */
1890
1891 #define target_trace_init() \
1892 (*current_target.to_trace_init) (&current_target)
1893
1894 #define target_download_tracepoint(t) \
1895 (*current_target.to_download_tracepoint) (&current_target, t)
1896
1897 #define target_can_download_tracepoint() \
1898 (*current_target.to_can_download_tracepoint) (&current_target)
1899
1900 #define target_download_trace_state_variable(tsv) \
1901 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
1902
1903 #define target_enable_tracepoint(loc) \
1904 (*current_target.to_enable_tracepoint) (&current_target, loc)
1905
1906 #define target_disable_tracepoint(loc) \
1907 (*current_target.to_disable_tracepoint) (&current_target, loc)
1908
1909 #define target_trace_start() \
1910 (*current_target.to_trace_start) (&current_target)
1911
1912 #define target_trace_set_readonly_regions() \
1913 (*current_target.to_trace_set_readonly_regions) (&current_target)
1914
1915 #define target_get_trace_status(ts) \
1916 (*current_target.to_get_trace_status) (&current_target, ts)
1917
1918 #define target_get_tracepoint_status(tp,utp) \
1919 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
1920
1921 #define target_trace_stop() \
1922 (*current_target.to_trace_stop) (&current_target)
1923
1924 #define target_trace_find(type,num,addr1,addr2,tpp) \
1925 (*current_target.to_trace_find) (&current_target, \
1926 (type), (num), (addr1), (addr2), (tpp))
1927
1928 #define target_get_trace_state_variable_value(tsv,val) \
1929 (*current_target.to_get_trace_state_variable_value) (&current_target, \
1930 (tsv), (val))
1931
1932 #define target_save_trace_data(filename) \
1933 (*current_target.to_save_trace_data) (&current_target, filename)
1934
1935 #define target_upload_tracepoints(utpp) \
1936 (*current_target.to_upload_tracepoints) (&current_target, utpp)
1937
1938 #define target_upload_trace_state_variables(utsvp) \
1939 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
1940
1941 #define target_get_raw_trace_data(buf,offset,len) \
1942 (*current_target.to_get_raw_trace_data) (&current_target, \
1943 (buf), (offset), (len))
1944
1945 #define target_get_min_fast_tracepoint_insn_len() \
1946 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
1947
1948 #define target_set_disconnected_tracing(val) \
1949 (*current_target.to_set_disconnected_tracing) (&current_target, val)
1950
1951 #define target_set_circular_trace_buffer(val) \
1952 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
1953
1954 #define target_set_trace_buffer_size(val) \
1955 (*current_target.to_set_trace_buffer_size) (&current_target, val)
1956
1957 #define target_set_trace_notes(user,notes,stopnotes) \
1958 (*current_target.to_set_trace_notes) (&current_target, \
1959 (user), (notes), (stopnotes))
1960
1961 #define target_get_tib_address(ptid, addr) \
1962 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
1963
1964 #define target_set_permissions() \
1965 (*current_target.to_set_permissions) (&current_target)
1966
1967 #define target_static_tracepoint_marker_at(addr, marker) \
1968 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
1969 addr, marker)
1970
1971 #define target_static_tracepoint_markers_by_strid(marker_id) \
1972 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
1973 marker_id)
1974
1975 #define target_traceframe_info() \
1976 (*current_target.to_traceframe_info) (&current_target)
1977
1978 #define target_use_agent(use) \
1979 (*current_target.to_use_agent) (&current_target, use)
1980
1981 #define target_can_use_agent() \
1982 (*current_target.to_can_use_agent) (&current_target)
1983
1984 #define target_augmented_libraries_svr4_read() \
1985 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
1986
1987 /* Command logging facility. */
1988
1989 #define target_log_command(p) \
1990 (*current_target.to_log_command) (&current_target, p)
1991
1992
1993 extern int target_core_of_thread (ptid_t ptid);
1994
1995 /* See to_get_unwinder in struct target_ops. */
1996 extern const struct frame_unwind *target_get_unwinder (void);
1997
1998 /* See to_get_tailcall_unwinder in struct target_ops. */
1999 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2000
2001 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2002 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2003 if there's a mismatch, and -1 if an error is encountered while
2004 reading memory. Throws an error if the functionality is found not
2005 to be supported by the current target. */
2006 int target_verify_memory (const gdb_byte *data,
2007 CORE_ADDR memaddr, ULONGEST size);
2008
2009 /* Routines for maintenance of the target structures...
2010
2011 complete_target_initialization: Finalize a target_ops by filling in
2012 any fields needed by the target implementation.
2013
2014 add_target: Add a target to the list of all possible targets.
2015
2016 push_target: Make this target the top of the stack of currently used
2017 targets, within its particular stratum of the stack. Result
2018 is 0 if now atop the stack, nonzero if not on top (maybe
2019 should warn user).
2020
2021 unpush_target: Remove this from the stack of currently used targets,
2022 no matter where it is on the list. Returns 0 if no
2023 change, 1 if removed from stack. */
2024
2025 extern void add_target (struct target_ops *);
2026
2027 extern void add_target_with_completer (struct target_ops *t,
2028 completer_ftype *completer);
2029
2030 extern void complete_target_initialization (struct target_ops *t);
2031
2032 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
2033 for maintaining backwards compatibility when renaming targets. */
2034
2035 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
2036
2037 extern void push_target (struct target_ops *);
2038
2039 extern int unpush_target (struct target_ops *);
2040
2041 extern void target_pre_inferior (int);
2042
2043 extern void target_preopen (int);
2044
2045 /* Does whatever cleanup is required to get rid of all pushed targets. */
2046 extern void pop_all_targets (void);
2047
2048 /* Like pop_all_targets, but pops only targets whose stratum is
2049 strictly above ABOVE_STRATUM. */
2050 extern void pop_all_targets_above (enum strata above_stratum);
2051
2052 extern int target_is_pushed (struct target_ops *t);
2053
2054 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2055 CORE_ADDR offset);
2056
2057 /* Struct target_section maps address ranges to file sections. It is
2058 mostly used with BFD files, but can be used without (e.g. for handling
2059 raw disks, or files not in formats handled by BFD). */
2060
2061 struct target_section
2062 {
2063 CORE_ADDR addr; /* Lowest address in section */
2064 CORE_ADDR endaddr; /* 1+highest address in section */
2065
2066 struct bfd_section *the_bfd_section;
2067
2068 /* The "owner" of the section.
2069 It can be any unique value. It is set by add_target_sections
2070 and used by remove_target_sections.
2071 For example, for executables it is a pointer to exec_bfd and
2072 for shlibs it is the so_list pointer. */
2073 void *owner;
2074 };
2075
2076 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2077
2078 struct target_section_table
2079 {
2080 struct target_section *sections;
2081 struct target_section *sections_end;
2082 };
2083
2084 /* Return the "section" containing the specified address. */
2085 struct target_section *target_section_by_addr (struct target_ops *target,
2086 CORE_ADDR addr);
2087
2088 /* Return the target section table this target (or the targets
2089 beneath) currently manipulate. */
2090
2091 extern struct target_section_table *target_get_section_table
2092 (struct target_ops *target);
2093
2094 /* From mem-break.c */
2095
2096 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2097 struct bp_target_info *);
2098
2099 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2100 struct bp_target_info *);
2101
2102 extern int default_memory_remove_breakpoint (struct gdbarch *,
2103 struct bp_target_info *);
2104
2105 extern int default_memory_insert_breakpoint (struct gdbarch *,
2106 struct bp_target_info *);
2107
2108
2109 /* From target.c */
2110
2111 extern void initialize_targets (void);
2112
2113 extern void noprocess (void) ATTRIBUTE_NORETURN;
2114
2115 extern void target_require_runnable (void);
2116
2117 extern void find_default_attach (struct target_ops *, char *, int);
2118
2119 extern void find_default_create_inferior (struct target_ops *,
2120 char *, char *, char **, int);
2121
2122 extern struct target_ops *find_target_beneath (struct target_ops *);
2123
2124 /* Find the target at STRATUM. If no target is at that stratum,
2125 return NULL. */
2126
2127 struct target_ops *find_target_at (enum strata stratum);
2128
2129 /* Read OS data object of type TYPE from the target, and return it in
2130 XML format. The result is NUL-terminated and returned as a string,
2131 allocated using xmalloc. If an error occurs or the transfer is
2132 unsupported, NULL is returned. Empty objects are returned as
2133 allocated but empty strings. */
2134
2135 extern char *target_get_osdata (const char *type);
2136
2137 \f
2138 /* Stuff that should be shared among the various remote targets. */
2139
2140 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2141 information (higher values, more information). */
2142 extern int remote_debug;
2143
2144 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2145 extern int baud_rate;
2146 /* Timeout limit for response from target. */
2147 extern int remote_timeout;
2148
2149 \f
2150
2151 /* Set the show memory breakpoints mode to show, and installs a cleanup
2152 to restore it back to the current value. */
2153 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2154
2155 extern int may_write_registers;
2156 extern int may_write_memory;
2157 extern int may_insert_breakpoints;
2158 extern int may_insert_tracepoints;
2159 extern int may_insert_fast_tracepoints;
2160 extern int may_stop;
2161
2162 extern void update_target_permissions (void);
2163
2164 \f
2165 /* Imported from machine dependent code. */
2166
2167 /* Blank target vector entries are initialized to target_ignore. */
2168 void target_ignore (void);
2169
2170 /* See to_supports_btrace in struct target_ops. */
2171 #define target_supports_btrace() \
2172 (current_target.to_supports_btrace (&current_target))
2173
2174 /* See to_enable_btrace in struct target_ops. */
2175 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2176
2177 /* See to_disable_btrace in struct target_ops. */
2178 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2179
2180 /* See to_teardown_btrace in struct target_ops. */
2181 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2182
2183 /* See to_read_btrace in struct target_ops. */
2184 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2185 struct btrace_target_info *,
2186 enum btrace_read_type);
2187
2188 /* See to_stop_recording in struct target_ops. */
2189 extern void target_stop_recording (void);
2190
2191 /* See to_info_record in struct target_ops. */
2192 extern void target_info_record (void);
2193
2194 /* See to_save_record in struct target_ops. */
2195 extern void target_save_record (const char *filename);
2196
2197 /* Query if the target supports deleting the execution log. */
2198 extern int target_supports_delete_record (void);
2199
2200 /* See to_delete_record in struct target_ops. */
2201 extern void target_delete_record (void);
2202
2203 /* See to_record_is_replaying in struct target_ops. */
2204 extern int target_record_is_replaying (void);
2205
2206 /* See to_goto_record_begin in struct target_ops. */
2207 extern void target_goto_record_begin (void);
2208
2209 /* See to_goto_record_end in struct target_ops. */
2210 extern void target_goto_record_end (void);
2211
2212 /* See to_goto_record in struct target_ops. */
2213 extern void target_goto_record (ULONGEST insn);
2214
2215 /* See to_insn_history. */
2216 extern void target_insn_history (int size, int flags);
2217
2218 /* See to_insn_history_from. */
2219 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2220
2221 /* See to_insn_history_range. */
2222 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2223
2224 /* See to_call_history. */
2225 extern void target_call_history (int size, int flags);
2226
2227 /* See to_call_history_from. */
2228 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2229
2230 /* See to_call_history_range. */
2231 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2232
2233 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2234 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2235 struct gdbarch *gdbarch);
2236
2237 /* See to_decr_pc_after_break. */
2238 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2239
2240 #endif /* !defined (TARGET_H) */