2003-10-15 Andrew Cagney <cagney@redhat.com>
[binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002 Free Software Foundation, Inc.
4 Contributed by Cygnus Support. Written by John Gilmore.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #if !defined (TARGET_H)
24 #define TARGET_H
25
26 struct objfile;
27 struct ui_file;
28 struct mem_attrib;
29
30 /* This include file defines the interface between the main part
31 of the debugger, and the part which is target-specific, or
32 specific to the communications interface between us and the
33 target.
34
35 A TARGET is an interface between the debugger and a particular
36 kind of file or process. Targets can be STACKED in STRATA,
37 so that more than one target can potentially respond to a request.
38 In particular, memory accesses will walk down the stack of targets
39 until they find a target that is interested in handling that particular
40 address. STRATA are artificial boundaries on the stack, within
41 which particular kinds of targets live. Strata exist so that
42 people don't get confused by pushing e.g. a process target and then
43 a file target, and wondering why they can't see the current values
44 of variables any more (the file target is handling them and they
45 never get to the process target). So when you push a file target,
46 it goes into the file stratum, which is always below the process
47 stratum. */
48
49 #include "bfd.h"
50 #include "symtab.h"
51 #include "dcache.h"
52 #include "memattr.h"
53
54 enum strata
55 {
56 dummy_stratum, /* The lowest of the low */
57 file_stratum, /* Executable files, etc */
58 core_stratum, /* Core dump files */
59 download_stratum, /* Downloading of remote targets */
60 process_stratum, /* Executing processes */
61 thread_stratum /* Executing threads */
62 };
63
64 enum thread_control_capabilities
65 {
66 tc_none = 0, /* Default: can't control thread execution. */
67 tc_schedlock = 1, /* Can lock the thread scheduler. */
68 tc_switch = 2 /* Can switch the running thread on demand. */
69 };
70
71 /* Stuff for target_wait. */
72
73 /* Generally, what has the program done? */
74 enum target_waitkind
75 {
76 /* The program has exited. The exit status is in value.integer. */
77 TARGET_WAITKIND_EXITED,
78
79 /* The program has stopped with a signal. Which signal is in
80 value.sig. */
81 TARGET_WAITKIND_STOPPED,
82
83 /* The program has terminated with a signal. Which signal is in
84 value.sig. */
85 TARGET_WAITKIND_SIGNALLED,
86
87 /* The program is letting us know that it dynamically loaded something
88 (e.g. it called load(2) on AIX). */
89 TARGET_WAITKIND_LOADED,
90
91 /* The program has forked. A "related" process' ID is in
92 value.related_pid. I.e., if the child forks, value.related_pid
93 is the parent's ID. */
94
95 TARGET_WAITKIND_FORKED,
96
97 /* The program has vforked. A "related" process's ID is in
98 value.related_pid. */
99
100 TARGET_WAITKIND_VFORKED,
101
102 /* The program has exec'ed a new executable file. The new file's
103 pathname is pointed to by value.execd_pathname. */
104
105 TARGET_WAITKIND_EXECD,
106
107 /* The program has entered or returned from a system call. On
108 HP-UX, this is used in the hardware watchpoint implementation.
109 The syscall's unique integer ID number is in value.syscall_id */
110
111 TARGET_WAITKIND_SYSCALL_ENTRY,
112 TARGET_WAITKIND_SYSCALL_RETURN,
113
114 /* Nothing happened, but we stopped anyway. This perhaps should be handled
115 within target_wait, but I'm not sure target_wait should be resuming the
116 inferior. */
117 TARGET_WAITKIND_SPURIOUS,
118
119 /* An event has occured, but we should wait again.
120 Remote_async_wait() returns this when there is an event
121 on the inferior, but the rest of the world is not interested in
122 it. The inferior has not stopped, but has just sent some output
123 to the console, for instance. In this case, we want to go back
124 to the event loop and wait there for another event from the
125 inferior, rather than being stuck in the remote_async_wait()
126 function. This way the event loop is responsive to other events,
127 like for instance the user typing. */
128 TARGET_WAITKIND_IGNORE
129 };
130
131 struct target_waitstatus
132 {
133 enum target_waitkind kind;
134
135 /* Forked child pid, execd pathname, exit status or signal number. */
136 union
137 {
138 int integer;
139 enum target_signal sig;
140 int related_pid;
141 char *execd_pathname;
142 int syscall_id;
143 }
144 value;
145 };
146
147 /* Possible types of events that the inferior handler will have to
148 deal with. */
149 enum inferior_event_type
150 {
151 /* There is a request to quit the inferior, abandon it. */
152 INF_QUIT_REQ,
153 /* Process a normal inferior event which will result in target_wait
154 being called. */
155 INF_REG_EVENT,
156 /* Deal with an error on the inferior. */
157 INF_ERROR,
158 /* We are called because a timer went off. */
159 INF_TIMER,
160 /* We are called to do stuff after the inferior stops. */
161 INF_EXEC_COMPLETE,
162 /* We are called to do some stuff after the inferior stops, but we
163 are expected to reenter the proceed() and
164 handle_inferior_event() functions. This is used only in case of
165 'step n' like commands. */
166 INF_EXEC_CONTINUE
167 };
168
169 /* Return the string for a signal. */
170 extern char *target_signal_to_string (enum target_signal);
171
172 /* Return the name (SIGHUP, etc.) for a signal. */
173 extern char *target_signal_to_name (enum target_signal);
174
175 /* Given a name (SIGHUP, etc.), return its signal. */
176 enum target_signal target_signal_from_name (char *);
177 \f
178
179 /* If certain kinds of activity happen, target_wait should perform
180 callbacks. */
181 /* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
182 on TARGET_ACTIVITY_FD. */
183 extern int target_activity_fd;
184 /* Returns zero to leave the inferior alone, one to interrupt it. */
185 extern int (*target_activity_function) (void);
186 \f
187 struct thread_info; /* fwd decl for parameter list below: */
188
189 struct target_ops
190 {
191 char *to_shortname; /* Name this target type */
192 char *to_longname; /* Name for printing */
193 char *to_doc; /* Documentation. Does not include trailing
194 newline, and starts with a one-line descrip-
195 tion (probably similar to to_longname). */
196 void (*to_open) (char *, int);
197 void (*to_close) (int);
198 void (*to_attach) (char *, int);
199 void (*to_post_attach) (int);
200 void (*to_detach) (char *, int);
201 void (*to_disconnect) (char *, int);
202 void (*to_resume) (ptid_t, int, enum target_signal);
203 ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
204 void (*to_post_wait) (ptid_t, int);
205 void (*to_fetch_registers) (int);
206 void (*to_store_registers) (int);
207 void (*to_prepare_to_store) (void);
208
209 /* Transfer LEN bytes of memory between GDB address MYADDR and
210 target address MEMADDR. If WRITE, transfer them to the target, else
211 transfer them from the target. TARGET is the target from which we
212 get this function.
213
214 Return value, N, is one of the following:
215
216 0 means that we can't handle this. If errno has been set, it is the
217 error which prevented us from doing it (FIXME: What about bfd_error?).
218
219 positive (call it N) means that we have transferred N bytes
220 starting at MEMADDR. We might be able to handle more bytes
221 beyond this length, but no promises.
222
223 negative (call its absolute value N) means that we cannot
224 transfer right at MEMADDR, but we could transfer at least
225 something at MEMADDR + N. */
226
227 int (*to_xfer_memory) (CORE_ADDR memaddr, char *myaddr,
228 int len, int write,
229 struct mem_attrib *attrib,
230 struct target_ops *target);
231
232 void (*to_files_info) (struct target_ops *);
233 int (*to_insert_breakpoint) (CORE_ADDR, char *);
234 int (*to_remove_breakpoint) (CORE_ADDR, char *);
235 int (*to_can_use_hw_breakpoint) (int, int, int);
236 int (*to_insert_hw_breakpoint) (CORE_ADDR, char *);
237 int (*to_remove_hw_breakpoint) (CORE_ADDR, char *);
238 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
239 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
240 int (*to_stopped_by_watchpoint) (void);
241 int to_have_continuable_watchpoint;
242 CORE_ADDR (*to_stopped_data_address) (void);
243 int (*to_region_size_ok_for_hw_watchpoint) (int);
244 void (*to_terminal_init) (void);
245 void (*to_terminal_inferior) (void);
246 void (*to_terminal_ours_for_output) (void);
247 void (*to_terminal_ours) (void);
248 void (*to_terminal_save_ours) (void);
249 void (*to_terminal_info) (char *, int);
250 void (*to_kill) (void);
251 void (*to_load) (char *, int);
252 int (*to_lookup_symbol) (char *, CORE_ADDR *);
253 void (*to_create_inferior) (char *, char *, char **);
254 void (*to_post_startup_inferior) (ptid_t);
255 void (*to_acknowledge_created_inferior) (int);
256 int (*to_insert_fork_catchpoint) (int);
257 int (*to_remove_fork_catchpoint) (int);
258 int (*to_insert_vfork_catchpoint) (int);
259 int (*to_remove_vfork_catchpoint) (int);
260 int (*to_follow_fork) (int);
261 int (*to_insert_exec_catchpoint) (int);
262 int (*to_remove_exec_catchpoint) (int);
263 int (*to_reported_exec_events_per_exec_call) (void);
264 int (*to_has_exited) (int, int, int *);
265 void (*to_mourn_inferior) (void);
266 int (*to_can_run) (void);
267 void (*to_notice_signals) (ptid_t ptid);
268 int (*to_thread_alive) (ptid_t ptid);
269 void (*to_find_new_threads) (void);
270 char *(*to_pid_to_str) (ptid_t);
271 char *(*to_extra_thread_info) (struct thread_info *);
272 void (*to_stop) (void);
273 int (*to_query) (int /*char */ , char *, char *, int *);
274 void (*to_rcmd) (char *command, struct ui_file *output);
275 struct symtab_and_line *(*to_enable_exception_callback) (enum
276 exception_event_kind,
277 int);
278 struct exception_event_record *(*to_get_current_exception_event) (void);
279 char *(*to_pid_to_exec_file) (int pid);
280 enum strata to_stratum;
281 int to_has_all_memory;
282 int to_has_memory;
283 int to_has_stack;
284 int to_has_registers;
285 int to_has_execution;
286 int to_has_thread_control; /* control thread execution */
287 struct section_table
288 *to_sections;
289 struct section_table
290 *to_sections_end;
291 /* ASYNC target controls */
292 int (*to_can_async_p) (void);
293 int (*to_is_async_p) (void);
294 void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
295 void *context);
296 int to_async_mask_value;
297 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
298 unsigned long,
299 int, int, int,
300 void *),
301 void *);
302 char * (*to_make_corefile_notes) (bfd *, int *);
303
304 /* Return the thread-local address at OFFSET in the
305 thread-local storage for the thread PTID and the shared library
306 or executable file given by OBJFILE. If that block of
307 thread-local storage hasn't been allocated yet, this function
308 may return an error. */
309 CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
310 struct objfile *objfile,
311 CORE_ADDR offset);
312
313 int to_magic;
314 /* Need sub-structure for target machine related rather than comm related?
315 */
316 };
317
318 /* Magic number for checking ops size. If a struct doesn't end with this
319 number, somebody changed the declaration but didn't change all the
320 places that initialize one. */
321
322 #define OPS_MAGIC 3840
323
324 /* The ops structure for our "current" target process. This should
325 never be NULL. If there is no target, it points to the dummy_target. */
326
327 extern struct target_ops current_target;
328
329 /* An item on the target stack. */
330
331 struct target_stack_item
332 {
333 struct target_stack_item *next;
334 struct target_ops *target_ops;
335 };
336
337 /* The target stack. */
338
339 extern struct target_stack_item *target_stack;
340
341 /* Define easy words for doing these operations on our current target. */
342
343 #define target_shortname (current_target.to_shortname)
344 #define target_longname (current_target.to_longname)
345
346 /* The open routine takes the rest of the parameters from the command,
347 and (if successful) pushes a new target onto the stack.
348 Targets should supply this routine, if only to provide an error message. */
349
350 #define target_open(name, from_tty) \
351 do { \
352 dcache_invalidate (target_dcache); \
353 (*current_target.to_open) (name, from_tty); \
354 } while (0)
355
356 /* Does whatever cleanup is required for a target that we are no longer
357 going to be calling. Argument says whether we are quitting gdb and
358 should not get hung in case of errors, or whether we want a clean
359 termination even if it takes a while. This routine is automatically
360 always called just before a routine is popped off the target stack.
361 Closing file descriptors and freeing memory are typical things it should
362 do. */
363
364 #define target_close(quitting) \
365 (*current_target.to_close) (quitting)
366
367 /* Attaches to a process on the target side. Arguments are as passed
368 to the `attach' command by the user. This routine can be called
369 when the target is not on the target-stack, if the target_can_run
370 routine returns 1; in that case, it must push itself onto the stack.
371 Upon exit, the target should be ready for normal operations, and
372 should be ready to deliver the status of the process immediately
373 (without waiting) to an upcoming target_wait call. */
374
375 #define target_attach(args, from_tty) \
376 (*current_target.to_attach) (args, from_tty)
377
378 /* The target_attach operation places a process under debugger control,
379 and stops the process.
380
381 This operation provides a target-specific hook that allows the
382 necessary bookkeeping to be performed after an attach completes. */
383 #define target_post_attach(pid) \
384 (*current_target.to_post_attach) (pid)
385
386 /* Takes a program previously attached to and detaches it.
387 The program may resume execution (some targets do, some don't) and will
388 no longer stop on signals, etc. We better not have left any breakpoints
389 in the program or it'll die when it hits one. ARGS is arguments
390 typed by the user (e.g. a signal to send the process). FROM_TTY
391 says whether to be verbose or not. */
392
393 extern void target_detach (char *, int);
394
395 /* Disconnect from the current target without resuming it (leaving it
396 waiting for a debugger). */
397
398 extern void target_disconnect (char *, int);
399
400 /* Resume execution of the target process PTID. STEP says whether to
401 single-step or to run free; SIGGNAL is the signal to be given to
402 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
403 pass TARGET_SIGNAL_DEFAULT. */
404
405 #define target_resume(ptid, step, siggnal) \
406 do { \
407 dcache_invalidate(target_dcache); \
408 (*current_target.to_resume) (ptid, step, siggnal); \
409 } while (0)
410
411 /* Wait for process pid to do something. PTID = -1 to wait for any
412 pid to do something. Return pid of child, or -1 in case of error;
413 store status through argument pointer STATUS. Note that it is
414 _NOT_ OK to throw_exception() out of target_wait() without popping
415 the debugging target from the stack; GDB isn't prepared to get back
416 to the prompt with a debugging target but without the frame cache,
417 stop_pc, etc., set up. */
418
419 #define target_wait(ptid, status) \
420 (*current_target.to_wait) (ptid, status)
421
422 /* The target_wait operation waits for a process event to occur, and
423 thereby stop the process.
424
425 On some targets, certain events may happen in sequences. gdb's
426 correct response to any single event of such a sequence may require
427 knowledge of what earlier events in the sequence have been seen.
428
429 This operation provides a target-specific hook that allows the
430 necessary bookkeeping to be performed to track such sequences. */
431
432 #define target_post_wait(ptid, status) \
433 (*current_target.to_post_wait) (ptid, status)
434
435 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
436
437 #define target_fetch_registers(regno) \
438 (*current_target.to_fetch_registers) (regno)
439
440 /* Store at least register REGNO, or all regs if REGNO == -1.
441 It can store as many registers as it wants to, so target_prepare_to_store
442 must have been previously called. Calls error() if there are problems. */
443
444 #define target_store_registers(regs) \
445 (*current_target.to_store_registers) (regs)
446
447 /* Get ready to modify the registers array. On machines which store
448 individual registers, this doesn't need to do anything. On machines
449 which store all the registers in one fell swoop, this makes sure
450 that REGISTERS contains all the registers from the program being
451 debugged. */
452
453 #define target_prepare_to_store() \
454 (*current_target.to_prepare_to_store) ()
455
456 extern DCACHE *target_dcache;
457
458 extern int do_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
459 struct mem_attrib *attrib);
460
461 extern int target_read_string (CORE_ADDR, char **, int, int *);
462
463 extern int target_read_memory (CORE_ADDR memaddr, char *myaddr, int len);
464
465 extern int target_write_memory (CORE_ADDR memaddr, char *myaddr, int len);
466
467 extern int xfer_memory (CORE_ADDR, char *, int, int,
468 struct mem_attrib *, struct target_ops *);
469
470 extern int child_xfer_memory (CORE_ADDR, char *, int, int,
471 struct mem_attrib *, struct target_ops *);
472
473 /* Make a single attempt at transfering LEN bytes. On a successful
474 transfer, the number of bytes actually transfered is returned and
475 ERR is set to 0. When a transfer fails, -1 is returned (the number
476 of bytes actually transfered is not defined) and ERR is set to a
477 non-zero error indication. */
478
479 extern int target_read_memory_partial (CORE_ADDR addr, char *buf, int len,
480 int *err);
481
482 extern int target_write_memory_partial (CORE_ADDR addr, char *buf, int len,
483 int *err);
484
485 extern char *child_pid_to_exec_file (int);
486
487 extern char *child_core_file_to_sym_file (char *);
488
489 #if defined(CHILD_POST_ATTACH)
490 extern void child_post_attach (int);
491 #endif
492
493 extern void child_post_wait (ptid_t, int);
494
495 extern void child_post_startup_inferior (ptid_t);
496
497 extern void child_acknowledge_created_inferior (int);
498
499 extern int child_insert_fork_catchpoint (int);
500
501 extern int child_remove_fork_catchpoint (int);
502
503 extern int child_insert_vfork_catchpoint (int);
504
505 extern int child_remove_vfork_catchpoint (int);
506
507 extern void child_acknowledge_created_inferior (int);
508
509 extern int child_follow_fork (int);
510
511 extern int child_insert_exec_catchpoint (int);
512
513 extern int child_remove_exec_catchpoint (int);
514
515 extern int child_reported_exec_events_per_exec_call (void);
516
517 extern int child_has_exited (int, int, int *);
518
519 extern int child_thread_alive (ptid_t);
520
521 /* From infrun.c. */
522
523 extern int inferior_has_forked (int pid, int *child_pid);
524
525 extern int inferior_has_vforked (int pid, int *child_pid);
526
527 extern int inferior_has_execd (int pid, char **execd_pathname);
528
529 /* From exec.c */
530
531 extern void print_section_info (struct target_ops *, bfd *);
532
533 /* Print a line about the current target. */
534
535 #define target_files_info() \
536 (*current_target.to_files_info) (&current_target)
537
538 /* Insert a breakpoint at address ADDR in the target machine. SAVE is
539 a pointer to memory allocated for saving the target contents. It
540 is guaranteed by the caller to be long enough to save the number of
541 breakpoint bytes indicated by BREAKPOINT_FROM_PC. Result is 0 for
542 success, or an errno value. */
543
544 #define target_insert_breakpoint(addr, save) \
545 (*current_target.to_insert_breakpoint) (addr, save)
546
547 /* Remove a breakpoint at address ADDR in the target machine.
548 SAVE is a pointer to the same save area
549 that was previously passed to target_insert_breakpoint.
550 Result is 0 for success, or an errno value. */
551
552 #define target_remove_breakpoint(addr, save) \
553 (*current_target.to_remove_breakpoint) (addr, save)
554
555 /* Initialize the terminal settings we record for the inferior,
556 before we actually run the inferior. */
557
558 #define target_terminal_init() \
559 (*current_target.to_terminal_init) ()
560
561 /* Put the inferior's terminal settings into effect.
562 This is preparation for starting or resuming the inferior. */
563
564 #define target_terminal_inferior() \
565 (*current_target.to_terminal_inferior) ()
566
567 /* Put some of our terminal settings into effect,
568 enough to get proper results from our output,
569 but do not change into or out of RAW mode
570 so that no input is discarded.
571
572 After doing this, either terminal_ours or terminal_inferior
573 should be called to get back to a normal state of affairs. */
574
575 #define target_terminal_ours_for_output() \
576 (*current_target.to_terminal_ours_for_output) ()
577
578 /* Put our terminal settings into effect.
579 First record the inferior's terminal settings
580 so they can be restored properly later. */
581
582 #define target_terminal_ours() \
583 (*current_target.to_terminal_ours) ()
584
585 /* Save our terminal settings.
586 This is called from TUI after entering or leaving the curses
587 mode. Since curses modifies our terminal this call is here
588 to take this change into account. */
589
590 #define target_terminal_save_ours() \
591 (*current_target.to_terminal_save_ours) ()
592
593 /* Print useful information about our terminal status, if such a thing
594 exists. */
595
596 #define target_terminal_info(arg, from_tty) \
597 (*current_target.to_terminal_info) (arg, from_tty)
598
599 /* Kill the inferior process. Make it go away. */
600
601 #define target_kill() \
602 (*current_target.to_kill) ()
603
604 /* Load an executable file into the target process. This is expected
605 to not only bring new code into the target process, but also to
606 update GDB's symbol tables to match. */
607
608 extern void target_load (char *arg, int from_tty);
609
610 /* Look up a symbol in the target's symbol table. NAME is the symbol
611 name. ADDRP is a CORE_ADDR * pointing to where the value of the
612 symbol should be returned. The result is 0 if successful, nonzero
613 if the symbol does not exist in the target environment. This
614 function should not call error() if communication with the target
615 is interrupted, since it is called from symbol reading, but should
616 return nonzero, possibly doing a complain(). */
617
618 #define target_lookup_symbol(name, addrp) \
619 (*current_target.to_lookup_symbol) (name, addrp)
620
621 /* Start an inferior process and set inferior_ptid to its pid.
622 EXEC_FILE is the file to run.
623 ALLARGS is a string containing the arguments to the program.
624 ENV is the environment vector to pass. Errors reported with error().
625 On VxWorks and various standalone systems, we ignore exec_file. */
626
627 #define target_create_inferior(exec_file, args, env) \
628 (*current_target.to_create_inferior) (exec_file, args, env)
629
630
631 /* Some targets (such as ttrace-based HPUX) don't allow us to request
632 notification of inferior events such as fork and vork immediately
633 after the inferior is created. (This because of how gdb gets an
634 inferior created via invoking a shell to do it. In such a scenario,
635 if the shell init file has commands in it, the shell will fork and
636 exec for each of those commands, and we will see each such fork
637 event. Very bad.)
638
639 Such targets will supply an appropriate definition for this function. */
640
641 #define target_post_startup_inferior(ptid) \
642 (*current_target.to_post_startup_inferior) (ptid)
643
644 /* On some targets, the sequence of starting up an inferior requires
645 some synchronization between gdb and the new inferior process, PID. */
646
647 #define target_acknowledge_created_inferior(pid) \
648 (*current_target.to_acknowledge_created_inferior) (pid)
649
650 /* On some targets, we can catch an inferior fork or vfork event when
651 it occurs. These functions insert/remove an already-created
652 catchpoint for such events. */
653
654 #define target_insert_fork_catchpoint(pid) \
655 (*current_target.to_insert_fork_catchpoint) (pid)
656
657 #define target_remove_fork_catchpoint(pid) \
658 (*current_target.to_remove_fork_catchpoint) (pid)
659
660 #define target_insert_vfork_catchpoint(pid) \
661 (*current_target.to_insert_vfork_catchpoint) (pid)
662
663 #define target_remove_vfork_catchpoint(pid) \
664 (*current_target.to_remove_vfork_catchpoint) (pid)
665
666 /* If the inferior forks or vforks, this function will be called at
667 the next resume in order to perform any bookkeeping and fiddling
668 necessary to continue debugging either the parent or child, as
669 requested, and releasing the other. Information about the fork
670 or vfork event is available via get_last_target_status ().
671 This function returns 1 if the inferior should not be resumed
672 (i.e. there is another event pending). */
673
674 #define target_follow_fork(follow_child) \
675 (*current_target.to_follow_fork) (follow_child)
676
677 /* On some targets, we can catch an inferior exec event when it
678 occurs. These functions insert/remove an already-created
679 catchpoint for such events. */
680
681 #define target_insert_exec_catchpoint(pid) \
682 (*current_target.to_insert_exec_catchpoint) (pid)
683
684 #define target_remove_exec_catchpoint(pid) \
685 (*current_target.to_remove_exec_catchpoint) (pid)
686
687 /* Returns the number of exec events that are reported when a process
688 invokes a flavor of the exec() system call on this target, if exec
689 events are being reported. */
690
691 #define target_reported_exec_events_per_exec_call() \
692 (*current_target.to_reported_exec_events_per_exec_call) ()
693
694 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
695 exit code of PID, if any. */
696
697 #define target_has_exited(pid,wait_status,exit_status) \
698 (*current_target.to_has_exited) (pid,wait_status,exit_status)
699
700 /* The debugger has completed a blocking wait() call. There is now
701 some process event that must be processed. This function should
702 be defined by those targets that require the debugger to perform
703 cleanup or internal state changes in response to the process event. */
704
705 /* The inferior process has died. Do what is right. */
706
707 #define target_mourn_inferior() \
708 (*current_target.to_mourn_inferior) ()
709
710 /* Does target have enough data to do a run or attach command? */
711
712 #define target_can_run(t) \
713 ((t)->to_can_run) ()
714
715 /* post process changes to signal handling in the inferior. */
716
717 #define target_notice_signals(ptid) \
718 (*current_target.to_notice_signals) (ptid)
719
720 /* Check to see if a thread is still alive. */
721
722 #define target_thread_alive(ptid) \
723 (*current_target.to_thread_alive) (ptid)
724
725 /* Query for new threads and add them to the thread list. */
726
727 #define target_find_new_threads() \
728 (*current_target.to_find_new_threads) (); \
729
730 /* Make target stop in a continuable fashion. (For instance, under
731 Unix, this should act like SIGSTOP). This function is normally
732 used by GUIs to implement a stop button. */
733
734 #define target_stop current_target.to_stop
735
736 /* Queries the target side for some information. The first argument is a
737 letter specifying the type of the query, which is used to determine who
738 should process it. The second argument is a string that specifies which
739 information is desired and the third is a buffer that carries back the
740 response from the target side. The fourth parameter is the size of the
741 output buffer supplied. */
742
743 #define target_query(query_type, query, resp_buffer, bufffer_size) \
744 (*current_target.to_query) (query_type, query, resp_buffer, bufffer_size)
745
746 /* Send the specified COMMAND to the target's monitor
747 (shell,interpreter) for execution. The result of the query is
748 placed in OUTBUF. */
749
750 #define target_rcmd(command, outbuf) \
751 (*current_target.to_rcmd) (command, outbuf)
752
753
754 /* Get the symbol information for a breakpointable routine called when
755 an exception event occurs.
756 Intended mainly for C++, and for those
757 platforms/implementations where such a callback mechanism is available,
758 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
759 different mechanisms for debugging exceptions. */
760
761 #define target_enable_exception_callback(kind, enable) \
762 (*current_target.to_enable_exception_callback) (kind, enable)
763
764 /* Get the current exception event kind -- throw or catch, etc. */
765
766 #define target_get_current_exception_event() \
767 (*current_target.to_get_current_exception_event) ()
768
769 /* Does the target include all of memory, or only part of it? This
770 determines whether we look up the target chain for other parts of
771 memory if this target can't satisfy a request. */
772
773 #define target_has_all_memory \
774 (current_target.to_has_all_memory)
775
776 /* Does the target include memory? (Dummy targets don't.) */
777
778 #define target_has_memory \
779 (current_target.to_has_memory)
780
781 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
782 we start a process.) */
783
784 #define target_has_stack \
785 (current_target.to_has_stack)
786
787 /* Does the target have registers? (Exec files don't.) */
788
789 #define target_has_registers \
790 (current_target.to_has_registers)
791
792 /* Does the target have execution? Can we make it jump (through
793 hoops), or pop its stack a few times? FIXME: If this is to work that
794 way, it needs to check whether an inferior actually exists.
795 remote-udi.c and probably other targets can be the current target
796 when the inferior doesn't actually exist at the moment. Right now
797 this just tells us whether this target is *capable* of execution. */
798
799 #define target_has_execution \
800 (current_target.to_has_execution)
801
802 /* Can the target support the debugger control of thread execution?
803 a) Can it lock the thread scheduler?
804 b) Can it switch the currently running thread? */
805
806 #define target_can_lock_scheduler \
807 (current_target.to_has_thread_control & tc_schedlock)
808
809 #define target_can_switch_threads \
810 (current_target.to_has_thread_control & tc_switch)
811
812 /* Can the target support asynchronous execution? */
813 #define target_can_async_p() (current_target.to_can_async_p ())
814
815 /* Is the target in asynchronous execution mode? */
816 #define target_is_async_p() (current_target.to_is_async_p())
817
818 /* Put the target in async mode with the specified callback function. */
819 #define target_async(CALLBACK,CONTEXT) \
820 (current_target.to_async((CALLBACK), (CONTEXT)))
821
822 /* This is to be used ONLY within call_function_by_hand(). It provides
823 a workaround, to have inferior function calls done in sychronous
824 mode, even though the target is asynchronous. After
825 target_async_mask(0) is called, calls to target_can_async_p() will
826 return FALSE , so that target_resume() will not try to start the
827 target asynchronously. After the inferior stops, we IMMEDIATELY
828 restore the previous nature of the target, by calling
829 target_async_mask(1). After that, target_can_async_p() will return
830 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
831
832 FIXME ezannoni 1999-12-13: we won't need this once we move
833 the turning async on and off to the single execution commands,
834 from where it is done currently, in remote_resume(). */
835
836 #define target_async_mask_value \
837 (current_target.to_async_mask_value)
838
839 extern int target_async_mask (int mask);
840
841 extern void target_link (char *, CORE_ADDR *);
842
843 /* Converts a process id to a string. Usually, the string just contains
844 `process xyz', but on some systems it may contain
845 `process xyz thread abc'. */
846
847 #undef target_pid_to_str
848 #define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
849
850 #ifndef target_tid_to_str
851 #define target_tid_to_str(PID) \
852 target_pid_to_str (PID)
853 extern char *normal_pid_to_str (ptid_t ptid);
854 #endif
855
856 /* Return a short string describing extra information about PID,
857 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
858 is okay. */
859
860 #define target_extra_thread_info(TP) \
861 (current_target.to_extra_thread_info (TP))
862
863 /*
864 * New Objfile Event Hook:
865 *
866 * Sometimes a GDB component wants to get notified whenever a new
867 * objfile is loaded. Mainly this is used by thread-debugging
868 * implementations that need to know when symbols for the target
869 * thread implemenation are available.
870 *
871 * The old way of doing this is to define a macro 'target_new_objfile'
872 * that points to the function that you want to be called on every
873 * objfile/shlib load.
874 *
875 * The new way is to grab the function pointer, 'target_new_objfile_hook',
876 * and point it to the function that you want to be called on every
877 * objfile/shlib load.
878 *
879 * If multiple clients are willing to be cooperative, they can each
880 * save a pointer to the previous value of target_new_objfile_hook
881 * before modifying it, and arrange for their function to call the
882 * previous function in the chain. In that way, multiple clients
883 * can receive this notification (something like with signal handlers).
884 */
885
886 extern void (*target_new_objfile_hook) (struct objfile *);
887
888 #ifndef target_pid_or_tid_to_str
889 #define target_pid_or_tid_to_str(ID) \
890 target_pid_to_str (ID)
891 #endif
892
893 /* Attempts to find the pathname of the executable file
894 that was run to create a specified process.
895
896 The process PID must be stopped when this operation is used.
897
898 If the executable file cannot be determined, NULL is returned.
899
900 Else, a pointer to a character string containing the pathname
901 is returned. This string should be copied into a buffer by
902 the client if the string will not be immediately used, or if
903 it must persist. */
904
905 #define target_pid_to_exec_file(pid) \
906 (current_target.to_pid_to_exec_file) (pid)
907
908 /*
909 * Iterator function for target memory regions.
910 * Calls a callback function once for each memory region 'mapped'
911 * in the child process. Defined as a simple macro rather than
912 * as a function macro so that it can be tested for nullity.
913 */
914
915 #define target_find_memory_regions(FUNC, DATA) \
916 (current_target.to_find_memory_regions) (FUNC, DATA)
917
918 /*
919 * Compose corefile .note section.
920 */
921
922 #define target_make_corefile_notes(BFD, SIZE_P) \
923 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
924
925 /* Thread-local values. */
926 #define target_get_thread_local_address \
927 (current_target.to_get_thread_local_address)
928 #define target_get_thread_local_address_p() \
929 (target_get_thread_local_address != NULL)
930
931 /* Hook to call target dependent code just after inferior target process has
932 started. */
933
934 #ifndef TARGET_CREATE_INFERIOR_HOOK
935 #define TARGET_CREATE_INFERIOR_HOOK(PID)
936 #endif
937
938 /* Hardware watchpoint interfaces. */
939
940 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
941 write). */
942
943 #ifndef STOPPED_BY_WATCHPOINT
944 #define STOPPED_BY_WATCHPOINT(w) \
945 (*current_target.to_stopped_by_watchpoint) ()
946 #endif
947
948 /* Non-zero if we have continuable watchpoints */
949
950 #ifndef HAVE_CONTINUABLE_WATCHPOINT
951 #define HAVE_CONTINUABLE_WATCHPOINT \
952 (current_target.to_have_continuable_watchpoint)
953 #endif
954
955 /* HP-UX supplies these operations, which respectively disable and enable
956 the memory page-protections that are used to implement hardware watchpoints
957 on that platform. See wait_for_inferior's use of these. */
958
959 #if !defined(TARGET_DISABLE_HW_WATCHPOINTS)
960 #define TARGET_DISABLE_HW_WATCHPOINTS(pid)
961 #endif
962
963 #if !defined(TARGET_ENABLE_HW_WATCHPOINTS)
964 #define TARGET_ENABLE_HW_WATCHPOINTS(pid)
965 #endif
966
967 /* Provide defaults for hardware watchpoint functions. */
968
969 /* If the *_hw_beakpoint functions have not been defined
970 elsewhere use the definitions in the target vector. */
971
972 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
973 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
974 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
975 (including this one?). OTHERTYPE is who knows what... */
976
977 #ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
978 #define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
979 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
980 #endif
981
982 #if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
983 #define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
984 (*current_target.to_region_size_ok_for_hw_watchpoint) (byte_count)
985 #endif
986
987
988 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
989 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
990 success, non-zero for failure. */
991
992 #ifndef target_insert_watchpoint
993 #define target_insert_watchpoint(addr, len, type) \
994 (*current_target.to_insert_watchpoint) (addr, len, type)
995
996 #define target_remove_watchpoint(addr, len, type) \
997 (*current_target.to_remove_watchpoint) (addr, len, type)
998 #endif
999
1000 #ifndef target_insert_hw_breakpoint
1001 #define target_insert_hw_breakpoint(addr, save) \
1002 (*current_target.to_insert_hw_breakpoint) (addr, save)
1003
1004 #define target_remove_hw_breakpoint(addr, save) \
1005 (*current_target.to_remove_hw_breakpoint) (addr, save)
1006 #endif
1007
1008 #ifndef target_stopped_data_address
1009 #define target_stopped_data_address() \
1010 (*current_target.to_stopped_data_address) ()
1011 #endif
1012
1013 /* If defined, then we need to decr pc by this much after a hardware break-
1014 point. Presumably this overrides DECR_PC_AFTER_BREAK... */
1015
1016 #ifndef DECR_PC_AFTER_HW_BREAK
1017 #define DECR_PC_AFTER_HW_BREAK 0
1018 #endif
1019
1020 /* Sometimes gdb may pick up what appears to be a valid target address
1021 from a minimal symbol, but the value really means, essentially,
1022 "This is an index into a table which is populated when the inferior
1023 is run. Therefore, do not attempt to use this as a PC." */
1024
1025 #if !defined(PC_REQUIRES_RUN_BEFORE_USE)
1026 #define PC_REQUIRES_RUN_BEFORE_USE(pc) (0)
1027 #endif
1028
1029 /* This will only be defined by a target that supports catching vfork events,
1030 such as HP-UX.
1031
1032 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1033 child process after it has exec'd, causes the parent process to resume as
1034 well. To prevent the parent from running spontaneously, such targets should
1035 define this to a function that prevents that from happening. */
1036 #if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1037 #define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1038 #endif
1039
1040 /* This will only be defined by a target that supports catching vfork events,
1041 such as HP-UX.
1042
1043 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1044 process must be resumed when it delivers its exec event, before the parent
1045 vfork event will be delivered to us. */
1046
1047 #if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1048 #define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1049 #endif
1050
1051 /* Routines for maintenance of the target structures...
1052
1053 add_target: Add a target to the list of all possible targets.
1054
1055 push_target: Make this target the top of the stack of currently used
1056 targets, within its particular stratum of the stack. Result
1057 is 0 if now atop the stack, nonzero if not on top (maybe
1058 should warn user).
1059
1060 unpush_target: Remove this from the stack of currently used targets,
1061 no matter where it is on the list. Returns 0 if no
1062 change, 1 if removed from stack.
1063
1064 pop_target: Remove the top thing on the stack of current targets. */
1065
1066 extern void add_target (struct target_ops *);
1067
1068 extern int push_target (struct target_ops *);
1069
1070 extern int unpush_target (struct target_ops *);
1071
1072 extern void target_preopen (int);
1073
1074 extern void pop_target (void);
1075
1076 /* Struct section_table maps address ranges to file sections. It is
1077 mostly used with BFD files, but can be used without (e.g. for handling
1078 raw disks, or files not in formats handled by BFD). */
1079
1080 struct section_table
1081 {
1082 CORE_ADDR addr; /* Lowest address in section */
1083 CORE_ADDR endaddr; /* 1+highest address in section */
1084
1085 sec_ptr the_bfd_section;
1086
1087 bfd *bfd; /* BFD file pointer */
1088 };
1089
1090 /* Builds a section table, given args BFD, SECTABLE_PTR, SECEND_PTR.
1091 Returns 0 if OK, 1 on error. */
1092
1093 extern int build_section_table (bfd *, struct section_table **,
1094 struct section_table **);
1095
1096 /* From mem-break.c */
1097
1098 extern int memory_remove_breakpoint (CORE_ADDR, char *);
1099
1100 extern int memory_insert_breakpoint (CORE_ADDR, char *);
1101
1102 extern int default_memory_remove_breakpoint (CORE_ADDR, char *);
1103
1104 extern int default_memory_insert_breakpoint (CORE_ADDR, char *);
1105
1106
1107 /* From target.c */
1108
1109 extern void initialize_targets (void);
1110
1111 extern void noprocess (void);
1112
1113 extern void find_default_attach (char *, int);
1114
1115 extern void find_default_create_inferior (char *, char *, char **);
1116
1117 extern struct target_ops *find_run_target (void);
1118
1119 extern struct target_ops *find_core_target (void);
1120
1121 extern struct target_ops *find_target_beneath (struct target_ops *);
1122
1123 extern int target_resize_to_sections (struct target_ops *target,
1124 int num_added);
1125
1126 extern void remove_target_sections (bfd *abfd);
1127
1128 \f
1129 /* Stuff that should be shared among the various remote targets. */
1130
1131 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1132 information (higher values, more information). */
1133 extern int remote_debug;
1134
1135 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1136 extern int baud_rate;
1137 /* Timeout limit for response from target. */
1138 extern int remote_timeout;
1139
1140 \f
1141 /* Functions for helping to write a native target. */
1142
1143 /* This is for native targets which use a unix/POSIX-style waitstatus. */
1144 extern void store_waitstatus (struct target_waitstatus *, int);
1145
1146 /* Predicate to target_signal_to_host(). Return non-zero if the enum
1147 targ_signal SIGNO has an equivalent ``host'' representation. */
1148 /* FIXME: cagney/1999-11-22: The name below was chosen in preference
1149 to the shorter target_signal_p() because it is far less ambigious.
1150 In this context ``target_signal'' refers to GDB's internal
1151 representation of the target's set of signals while ``host signal''
1152 refers to the target operating system's signal. Confused? */
1153
1154 extern int target_signal_to_host_p (enum target_signal signo);
1155
1156 /* Convert between host signal numbers and enum target_signal's.
1157 target_signal_to_host() returns 0 and prints a warning() on GDB's
1158 console if SIGNO has no equivalent host representation. */
1159 /* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1160 refering to the target operating system's signal numbering.
1161 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1162 gdb_signal'' would probably be better as it is refering to GDB's
1163 internal representation of a target operating system's signal. */
1164
1165 extern enum target_signal target_signal_from_host (int);
1166 extern int target_signal_to_host (enum target_signal);
1167
1168 /* Convert from a number used in a GDB command to an enum target_signal. */
1169 extern enum target_signal target_signal_from_command (int);
1170
1171 /* Any target can call this to switch to remote protocol (in remote.c). */
1172 extern void push_remote_target (char *name, int from_tty);
1173 \f
1174 /* Imported from machine dependent code */
1175
1176 /* Blank target vector entries are initialized to target_ignore. */
1177 void target_ignore (void);
1178
1179 #endif /* !defined (TARGET_H) */