convert to_teardown_btrace
[binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* Generic I/O error. Note that it's important that this is '-1',
217 as we still have target_xfer-related code returning hardcoded
218 '-1' on error. */
219 TARGET_XFER_E_IO = -1,
220
221 /* Transfer failed because the piece of the object requested is
222 unavailable. */
223 TARGET_XFER_E_UNAVAILABLE = -2,
224
225 /* Keep list in sync with target_xfer_error_to_string. */
226 };
227
228 #define TARGET_XFER_STATUS_ERROR_P(STATUS) ((STATUS) < TARGET_XFER_EOF)
229
230 /* Return the string form of ERR. */
231
232 extern const char *target_xfer_status_to_string (enum target_xfer_status err);
233
234 /* Enumeration of the kinds of traceframe searches that a target may
235 be able to perform. */
236
237 enum trace_find_type
238 {
239 tfind_number,
240 tfind_pc,
241 tfind_tp,
242 tfind_range,
243 tfind_outside,
244 };
245
246 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
247 DEF_VEC_P(static_tracepoint_marker_p);
248
249 typedef enum target_xfer_status
250 target_xfer_partial_ftype (struct target_ops *ops,
251 enum target_object object,
252 const char *annex,
253 gdb_byte *readbuf,
254 const gdb_byte *writebuf,
255 ULONGEST offset,
256 ULONGEST len,
257 ULONGEST *xfered_len);
258
259 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
260 OBJECT. The OFFSET, for a seekable object, specifies the
261 starting point. The ANNEX can be used to provide additional
262 data-specific information to the target.
263
264 Return the number of bytes actually transfered, or a negative error
265 code (an 'enum target_xfer_error' value) if the transfer is not
266 supported or otherwise fails. Return of a positive value less than
267 LEN indicates that no further transfer is possible. Unlike the raw
268 to_xfer_partial interface, callers of these functions do not need
269 to retry partial transfers. */
270
271 extern LONGEST target_read (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276 struct memory_read_result
277 {
278 /* First address that was read. */
279 ULONGEST begin;
280 /* Past-the-end address. */
281 ULONGEST end;
282 /* The data. */
283 gdb_byte *data;
284 };
285 typedef struct memory_read_result memory_read_result_s;
286 DEF_VEC_O(memory_read_result_s);
287
288 extern void free_memory_read_result_vector (void *);
289
290 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
291 ULONGEST offset,
292 LONGEST len);
293
294 extern LONGEST target_write (struct target_ops *ops,
295 enum target_object object,
296 const char *annex, const gdb_byte *buf,
297 ULONGEST offset, LONGEST len);
298
299 /* Similar to target_write, except that it also calls PROGRESS with
300 the number of bytes written and the opaque BATON after every
301 successful partial write (and before the first write). This is
302 useful for progress reporting and user interaction while writing
303 data. To abort the transfer, the progress callback can throw an
304 exception. */
305
306 LONGEST target_write_with_progress (struct target_ops *ops,
307 enum target_object object,
308 const char *annex, const gdb_byte *buf,
309 ULONGEST offset, LONGEST len,
310 void (*progress) (ULONGEST, void *),
311 void *baton);
312
313 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
314 be read using OPS. The return value will be -1 if the transfer
315 fails or is not supported; 0 if the object is empty; or the length
316 of the object otherwise. If a positive value is returned, a
317 sufficiently large buffer will be allocated using xmalloc and
318 returned in *BUF_P containing the contents of the object.
319
320 This method should be used for objects sufficiently small to store
321 in a single xmalloc'd buffer, when no fixed bound on the object's
322 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
323 through this function. */
324
325 extern LONGEST target_read_alloc (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, gdb_byte **buf_p);
328
329 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
330 returned as a string, allocated using xmalloc. If an error occurs
331 or the transfer is unsupported, NULL is returned. Empty objects
332 are returned as allocated but empty strings. A warning is issued
333 if the result contains any embedded NUL bytes. */
334
335 extern char *target_read_stralloc (struct target_ops *ops,
336 enum target_object object,
337 const char *annex);
338
339 /* See target_ops->to_xfer_partial. */
340 extern target_xfer_partial_ftype target_xfer_partial;
341
342 /* Wrappers to target read/write that perform memory transfers. They
343 throw an error if the memory transfer fails.
344
345 NOTE: cagney/2003-10-23: The naming schema is lifted from
346 "frame.h". The parameter order is lifted from get_frame_memory,
347 which in turn lifted it from read_memory. */
348
349 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
350 gdb_byte *buf, LONGEST len);
351 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
352 CORE_ADDR addr, int len,
353 enum bfd_endian byte_order);
354 \f
355 struct thread_info; /* fwd decl for parameter list below: */
356
357 /* The type of the callback to the to_async method. */
358
359 typedef void async_callback_ftype (enum inferior_event_type event_type,
360 void *context);
361
362 /* These defines are used to mark target_ops methods. The script
363 make-target-delegates scans these and auto-generates the base
364 method implementations. There are four macros that can be used:
365
366 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
367 does nothing. This is only valid if the method return type is
368 'void'.
369
370 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
371 'tcomplain ()'. The base method simply makes this call, which is
372 assumed not to return.
373
374 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
375 base method returns this expression's value.
376
377 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
378 make-target-delegates does not generate a base method in this case,
379 but instead uses the argument function as the base method. */
380
381 #define TARGET_DEFAULT_IGNORE()
382 #define TARGET_DEFAULT_NORETURN(ARG)
383 #define TARGET_DEFAULT_RETURN(ARG)
384 #define TARGET_DEFAULT_FUNC(ARG)
385
386 struct target_ops
387 {
388 struct target_ops *beneath; /* To the target under this one. */
389 char *to_shortname; /* Name this target type */
390 char *to_longname; /* Name for printing */
391 char *to_doc; /* Documentation. Does not include trailing
392 newline, and starts with a one-line descrip-
393 tion (probably similar to to_longname). */
394 /* Per-target scratch pad. */
395 void *to_data;
396 /* The open routine takes the rest of the parameters from the
397 command, and (if successful) pushes a new target onto the
398 stack. Targets should supply this routine, if only to provide
399 an error message. */
400 void (*to_open) (char *, int);
401 /* Old targets with a static target vector provide "to_close".
402 New re-entrant targets provide "to_xclose" and that is expected
403 to xfree everything (including the "struct target_ops"). */
404 void (*to_xclose) (struct target_ops *targ);
405 void (*to_close) (struct target_ops *);
406 void (*to_attach) (struct target_ops *ops, char *, int)
407 TARGET_DEFAULT_FUNC (find_default_attach);
408 void (*to_post_attach) (struct target_ops *, int)
409 TARGET_DEFAULT_IGNORE ();
410 void (*to_detach) (struct target_ops *ops, const char *, int)
411 TARGET_DEFAULT_IGNORE ();
412 void (*to_disconnect) (struct target_ops *, char *, int);
413 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
414 TARGET_DEFAULT_NORETURN (noprocess ());
415 ptid_t (*to_wait) (struct target_ops *,
416 ptid_t, struct target_waitstatus *, int)
417 TARGET_DEFAULT_NORETURN (noprocess ());
418 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int)
419 TARGET_DEFAULT_IGNORE ();
420 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
421 TARGET_DEFAULT_NORETURN (noprocess ());
422 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
423 TARGET_DEFAULT_NORETURN (noprocess ());
424
425 /* Transfer LEN bytes of memory between GDB address MYADDR and
426 target address MEMADDR. If WRITE, transfer them to the target, else
427 transfer them from the target. TARGET is the target from which we
428 get this function.
429
430 Return value, N, is one of the following:
431
432 0 means that we can't handle this. If errno has been set, it is the
433 error which prevented us from doing it (FIXME: What about bfd_error?).
434
435 positive (call it N) means that we have transferred N bytes
436 starting at MEMADDR. We might be able to handle more bytes
437 beyond this length, but no promises.
438
439 negative (call its absolute value N) means that we cannot
440 transfer right at MEMADDR, but we could transfer at least
441 something at MEMADDR + N.
442
443 NOTE: cagney/2004-10-01: This has been entirely superseeded by
444 to_xfer_partial and inferior inheritance. */
445
446 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
447 int len, int write,
448 struct mem_attrib *attrib,
449 struct target_ops *target);
450
451 void (*to_files_info) (struct target_ops *)
452 TARGET_DEFAULT_IGNORE ();
453 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
454 struct bp_target_info *)
455 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
456 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
457 struct bp_target_info *)
458 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
459 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int)
460 TARGET_DEFAULT_RETURN (0);
461 int (*to_ranged_break_num_registers) (struct target_ops *)
462 TARGET_DEFAULT_RETURN (-1);
463 int (*to_insert_hw_breakpoint) (struct target_ops *,
464 struct gdbarch *, struct bp_target_info *)
465 TARGET_DEFAULT_RETURN (-1);
466 int (*to_remove_hw_breakpoint) (struct target_ops *,
467 struct gdbarch *, struct bp_target_info *)
468 TARGET_DEFAULT_RETURN (-1);
469
470 /* Documentation of what the two routines below are expected to do is
471 provided with the corresponding target_* macros. */
472 int (*to_remove_watchpoint) (struct target_ops *,
473 CORE_ADDR, int, int, struct expression *)
474 TARGET_DEFAULT_RETURN (-1);
475 int (*to_insert_watchpoint) (struct target_ops *,
476 CORE_ADDR, int, int, struct expression *)
477 TARGET_DEFAULT_RETURN (-1);
478
479 int (*to_insert_mask_watchpoint) (struct target_ops *,
480 CORE_ADDR, CORE_ADDR, int)
481 TARGET_DEFAULT_RETURN (1);
482 int (*to_remove_mask_watchpoint) (struct target_ops *,
483 CORE_ADDR, CORE_ADDR, int)
484 TARGET_DEFAULT_RETURN (1);
485 int (*to_stopped_by_watchpoint) (struct target_ops *)
486 TARGET_DEFAULT_RETURN (0);
487 int to_have_steppable_watchpoint;
488 int to_have_continuable_watchpoint;
489 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
490 TARGET_DEFAULT_RETURN (0);
491 int (*to_watchpoint_addr_within_range) (struct target_ops *,
492 CORE_ADDR, CORE_ADDR, int)
493 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
494
495 /* Documentation of this routine is provided with the corresponding
496 target_* macro. */
497 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
498 CORE_ADDR, int)
499 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
500
501 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
502 CORE_ADDR, int, int,
503 struct expression *)
504 TARGET_DEFAULT_RETURN (0);
505 int (*to_masked_watch_num_registers) (struct target_ops *,
506 CORE_ADDR, CORE_ADDR)
507 TARGET_DEFAULT_RETURN (-1);
508 void (*to_terminal_init) (struct target_ops *)
509 TARGET_DEFAULT_IGNORE ();
510 void (*to_terminal_inferior) (struct target_ops *)
511 TARGET_DEFAULT_IGNORE ();
512 void (*to_terminal_ours_for_output) (struct target_ops *)
513 TARGET_DEFAULT_IGNORE ();
514 void (*to_terminal_ours) (struct target_ops *)
515 TARGET_DEFAULT_IGNORE ();
516 void (*to_terminal_save_ours) (struct target_ops *)
517 TARGET_DEFAULT_IGNORE ();
518 void (*to_terminal_info) (struct target_ops *, const char *, int)
519 TARGET_DEFAULT_FUNC (default_terminal_info);
520 void (*to_kill) (struct target_ops *)
521 TARGET_DEFAULT_NORETURN (noprocess ());
522 void (*to_load) (struct target_ops *, char *, int)
523 TARGET_DEFAULT_NORETURN (tcomplain ());
524 void (*to_create_inferior) (struct target_ops *,
525 char *, char *, char **, int);
526 void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
527 TARGET_DEFAULT_IGNORE ();
528 int (*to_insert_fork_catchpoint) (struct target_ops *, int)
529 TARGET_DEFAULT_RETURN (1);
530 int (*to_remove_fork_catchpoint) (struct target_ops *, int)
531 TARGET_DEFAULT_RETURN (1);
532 int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
533 TARGET_DEFAULT_RETURN (1);
534 int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
535 TARGET_DEFAULT_RETURN (1);
536 int (*to_follow_fork) (struct target_ops *, int, int)
537 TARGET_DEFAULT_FUNC (default_follow_fork);
538 int (*to_insert_exec_catchpoint) (struct target_ops *, int)
539 TARGET_DEFAULT_RETURN (1);
540 int (*to_remove_exec_catchpoint) (struct target_ops *, int)
541 TARGET_DEFAULT_RETURN (1);
542 int (*to_set_syscall_catchpoint) (struct target_ops *,
543 int, int, int, int, int *)
544 TARGET_DEFAULT_RETURN (1);
545 int (*to_has_exited) (struct target_ops *, int, int, int *)
546 TARGET_DEFAULT_RETURN (0);
547 void (*to_mourn_inferior) (struct target_ops *)
548 TARGET_DEFAULT_FUNC (default_mourn_inferior);
549 int (*to_can_run) (struct target_ops *);
550
551 /* Documentation of this routine is provided with the corresponding
552 target_* macro. */
553 void (*to_pass_signals) (struct target_ops *, int, unsigned char *)
554 TARGET_DEFAULT_IGNORE ();
555
556 /* Documentation of this routine is provided with the
557 corresponding target_* function. */
558 void (*to_program_signals) (struct target_ops *, int, unsigned char *)
559 TARGET_DEFAULT_IGNORE ();
560
561 int (*to_thread_alive) (struct target_ops *, ptid_t ptid)
562 TARGET_DEFAULT_RETURN (0);
563 void (*to_find_new_threads) (struct target_ops *)
564 TARGET_DEFAULT_IGNORE ();
565 char *(*to_pid_to_str) (struct target_ops *, ptid_t)
566 TARGET_DEFAULT_FUNC (default_pid_to_str);
567 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *)
568 TARGET_DEFAULT_RETURN (0);
569 char *(*to_thread_name) (struct target_ops *, struct thread_info *)
570 TARGET_DEFAULT_RETURN (0);
571 void (*to_stop) (struct target_ops *, ptid_t)
572 TARGET_DEFAULT_IGNORE ();
573 void (*to_rcmd) (struct target_ops *,
574 char *command, struct ui_file *output)
575 TARGET_DEFAULT_FUNC (default_rcmd);
576 char *(*to_pid_to_exec_file) (struct target_ops *, int pid)
577 TARGET_DEFAULT_RETURN (0);
578 void (*to_log_command) (struct target_ops *, const char *)
579 TARGET_DEFAULT_IGNORE ();
580 struct target_section_table *(*to_get_section_table) (struct target_ops *)
581 TARGET_DEFAULT_RETURN (0);
582 enum strata to_stratum;
583 int (*to_has_all_memory) (struct target_ops *);
584 int (*to_has_memory) (struct target_ops *);
585 int (*to_has_stack) (struct target_ops *);
586 int (*to_has_registers) (struct target_ops *);
587 int (*to_has_execution) (struct target_ops *, ptid_t);
588 int to_has_thread_control; /* control thread execution */
589 int to_attach_no_wait;
590 /* ASYNC target controls */
591 int (*to_can_async_p) (struct target_ops *)
592 TARGET_DEFAULT_FUNC (find_default_can_async_p);
593 int (*to_is_async_p) (struct target_ops *)
594 TARGET_DEFAULT_FUNC (find_default_is_async_p);
595 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
596 TARGET_DEFAULT_NORETURN (tcomplain ());
597 int (*to_supports_non_stop) (struct target_ops *);
598 /* find_memory_regions support method for gcore */
599 int (*to_find_memory_regions) (struct target_ops *,
600 find_memory_region_ftype func, void *data)
601 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
602 /* make_corefile_notes support method for gcore */
603 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *)
604 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
605 /* get_bookmark support method for bookmarks */
606 gdb_byte * (*to_get_bookmark) (struct target_ops *, char *, int)
607 TARGET_DEFAULT_NORETURN (tcomplain ());
608 /* goto_bookmark support method for bookmarks */
609 void (*to_goto_bookmark) (struct target_ops *, gdb_byte *, int)
610 TARGET_DEFAULT_NORETURN (tcomplain ());
611 /* Return the thread-local address at OFFSET in the
612 thread-local storage for the thread PTID and the shared library
613 or executable file given by OBJFILE. If that block of
614 thread-local storage hasn't been allocated yet, this function
615 may return an error. */
616 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
617 ptid_t ptid,
618 CORE_ADDR load_module_addr,
619 CORE_ADDR offset);
620
621 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
622 OBJECT. The OFFSET, for a seekable object, specifies the
623 starting point. The ANNEX can be used to provide additional
624 data-specific information to the target.
625
626 Return the transferred status, error or OK (an
627 'enum target_xfer_status' value). Save the number of bytes
628 actually transferred in *XFERED_LEN if transfer is successful
629 (TARGET_XFER_OK) or the number unavailable bytes if the requested
630 data is unavailable (TARGET_XFER_E_UNAVAILABLE). *XFERED_LEN
631 smaller than LEN does not indicate the end of the object, only
632 the end of the transfer; higher level code should continue
633 transferring if desired. This is handled in target.c.
634
635 The interface does not support a "retry" mechanism. Instead it
636 assumes that at least one byte will be transfered on each
637 successful call.
638
639 NOTE: cagney/2003-10-17: The current interface can lead to
640 fragmented transfers. Lower target levels should not implement
641 hacks, such as enlarging the transfer, in an attempt to
642 compensate for this. Instead, the target stack should be
643 extended so that it implements supply/collect methods and a
644 look-aside object cache. With that available, the lowest
645 target can safely and freely "push" data up the stack.
646
647 See target_read and target_write for more information. One,
648 and only one, of readbuf or writebuf must be non-NULL. */
649
650 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
651 enum target_object object,
652 const char *annex,
653 gdb_byte *readbuf,
654 const gdb_byte *writebuf,
655 ULONGEST offset, ULONGEST len,
656 ULONGEST *xfered_len)
657 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
658
659 /* Returns the memory map for the target. A return value of NULL
660 means that no memory map is available. If a memory address
661 does not fall within any returned regions, it's assumed to be
662 RAM. The returned memory regions should not overlap.
663
664 The order of regions does not matter; target_memory_map will
665 sort regions by starting address. For that reason, this
666 function should not be called directly except via
667 target_memory_map.
668
669 This method should not cache data; if the memory map could
670 change unexpectedly, it should be invalidated, and higher
671 layers will re-fetch it. */
672 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *)
673 TARGET_DEFAULT_RETURN (0);
674
675 /* Erases the region of flash memory starting at ADDRESS, of
676 length LENGTH.
677
678 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
679 on flash block boundaries, as reported by 'to_memory_map'. */
680 void (*to_flash_erase) (struct target_ops *,
681 ULONGEST address, LONGEST length)
682 TARGET_DEFAULT_NORETURN (tcomplain ());
683
684 /* Finishes a flash memory write sequence. After this operation
685 all flash memory should be available for writing and the result
686 of reading from areas written by 'to_flash_write' should be
687 equal to what was written. */
688 void (*to_flash_done) (struct target_ops *)
689 TARGET_DEFAULT_NORETURN (tcomplain ());
690
691 /* Describe the architecture-specific features of this target.
692 Returns the description found, or NULL if no description
693 was available. */
694 const struct target_desc *(*to_read_description) (struct target_ops *ops);
695
696 /* Build the PTID of the thread on which a given task is running,
697 based on LWP and THREAD. These values are extracted from the
698 task Private_Data section of the Ada Task Control Block, and
699 their interpretation depends on the target. */
700 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
701 long lwp, long thread)
702 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
703
704 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
705 Return 0 if *READPTR is already at the end of the buffer.
706 Return -1 if there is insufficient buffer for a whole entry.
707 Return 1 if an entry was read into *TYPEP and *VALP. */
708 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
709 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
710 TARGET_DEFAULT_FUNC (default_auxv_parse);
711
712 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
713 sequence of bytes in PATTERN with length PATTERN_LEN.
714
715 The result is 1 if found, 0 if not found, and -1 if there was an error
716 requiring halting of the search (e.g. memory read error).
717 If the pattern is found the address is recorded in FOUND_ADDRP. */
718 int (*to_search_memory) (struct target_ops *ops,
719 CORE_ADDR start_addr, ULONGEST search_space_len,
720 const gdb_byte *pattern, ULONGEST pattern_len,
721 CORE_ADDR *found_addrp)
722 TARGET_DEFAULT_FUNC (default_search_memory);
723
724 /* Can target execute in reverse? */
725 int (*to_can_execute_reverse) (struct target_ops *)
726 TARGET_DEFAULT_RETURN (0);
727
728 /* The direction the target is currently executing. Must be
729 implemented on targets that support reverse execution and async
730 mode. The default simply returns forward execution. */
731 enum exec_direction_kind (*to_execution_direction) (struct target_ops *)
732 TARGET_DEFAULT_FUNC (default_execution_direction);
733
734 /* Does this target support debugging multiple processes
735 simultaneously? */
736 int (*to_supports_multi_process) (struct target_ops *)
737 TARGET_DEFAULT_RETURN (0);
738
739 /* Does this target support enabling and disabling tracepoints while a trace
740 experiment is running? */
741 int (*to_supports_enable_disable_tracepoint) (struct target_ops *)
742 TARGET_DEFAULT_RETURN (0);
743
744 /* Does this target support disabling address space randomization? */
745 int (*to_supports_disable_randomization) (struct target_ops *);
746
747 /* Does this target support the tracenz bytecode for string collection? */
748 int (*to_supports_string_tracing) (struct target_ops *)
749 TARGET_DEFAULT_RETURN (0);
750
751 /* Does this target support evaluation of breakpoint conditions on its
752 end? */
753 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *)
754 TARGET_DEFAULT_RETURN (0);
755
756 /* Does this target support evaluation of breakpoint commands on its
757 end? */
758 int (*to_can_run_breakpoint_commands) (struct target_ops *)
759 TARGET_DEFAULT_RETURN (0);
760
761 /* Determine current architecture of thread PTID.
762
763 The target is supposed to determine the architecture of the code where
764 the target is currently stopped at (on Cell, if a target is in spu_run,
765 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
766 This is architecture used to perform decr_pc_after_break adjustment,
767 and also determines the frame architecture of the innermost frame.
768 ptrace operations need to operate according to target_gdbarch ().
769
770 The default implementation always returns target_gdbarch (). */
771 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t)
772 TARGET_DEFAULT_FUNC (default_thread_architecture);
773
774 /* Determine current address space of thread PTID.
775
776 The default implementation always returns the inferior's
777 address space. */
778 struct address_space *(*to_thread_address_space) (struct target_ops *,
779 ptid_t);
780
781 /* Target file operations. */
782
783 /* Open FILENAME on the target, using FLAGS and MODE. Return a
784 target file descriptor, or -1 if an error occurs (and set
785 *TARGET_ERRNO). */
786 int (*to_fileio_open) (struct target_ops *,
787 const char *filename, int flags, int mode,
788 int *target_errno);
789
790 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
791 Return the number of bytes written, or -1 if an error occurs
792 (and set *TARGET_ERRNO). */
793 int (*to_fileio_pwrite) (struct target_ops *,
794 int fd, const gdb_byte *write_buf, int len,
795 ULONGEST offset, int *target_errno);
796
797 /* Read up to LEN bytes FD on the target into READ_BUF.
798 Return the number of bytes read, or -1 if an error occurs
799 (and set *TARGET_ERRNO). */
800 int (*to_fileio_pread) (struct target_ops *,
801 int fd, gdb_byte *read_buf, int len,
802 ULONGEST offset, int *target_errno);
803
804 /* Close FD on the target. Return 0, or -1 if an error occurs
805 (and set *TARGET_ERRNO). */
806 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
807
808 /* Unlink FILENAME on the target. Return 0, or -1 if an error
809 occurs (and set *TARGET_ERRNO). */
810 int (*to_fileio_unlink) (struct target_ops *,
811 const char *filename, int *target_errno);
812
813 /* Read value of symbolic link FILENAME on the target. Return a
814 null-terminated string allocated via xmalloc, or NULL if an error
815 occurs (and set *TARGET_ERRNO). */
816 char *(*to_fileio_readlink) (struct target_ops *,
817 const char *filename, int *target_errno);
818
819
820 /* Implement the "info proc" command. */
821 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
822
823 /* Tracepoint-related operations. */
824
825 /* Prepare the target for a tracing run. */
826 void (*to_trace_init) (struct target_ops *)
827 TARGET_DEFAULT_NORETURN (tcomplain ());
828
829 /* Send full details of a tracepoint location to the target. */
830 void (*to_download_tracepoint) (struct target_ops *,
831 struct bp_location *location)
832 TARGET_DEFAULT_NORETURN (tcomplain ());
833
834 /* Is the target able to download tracepoint locations in current
835 state? */
836 int (*to_can_download_tracepoint) (struct target_ops *)
837 TARGET_DEFAULT_RETURN (0);
838
839 /* Send full details of a trace state variable to the target. */
840 void (*to_download_trace_state_variable) (struct target_ops *,
841 struct trace_state_variable *tsv)
842 TARGET_DEFAULT_NORETURN (tcomplain ());
843
844 /* Enable a tracepoint on the target. */
845 void (*to_enable_tracepoint) (struct target_ops *,
846 struct bp_location *location)
847 TARGET_DEFAULT_NORETURN (tcomplain ());
848
849 /* Disable a tracepoint on the target. */
850 void (*to_disable_tracepoint) (struct target_ops *,
851 struct bp_location *location)
852 TARGET_DEFAULT_NORETURN (tcomplain ());
853
854 /* Inform the target info of memory regions that are readonly
855 (such as text sections), and so it should return data from
856 those rather than look in the trace buffer. */
857 void (*to_trace_set_readonly_regions) (struct target_ops *)
858 TARGET_DEFAULT_NORETURN (tcomplain ());
859
860 /* Start a trace run. */
861 void (*to_trace_start) (struct target_ops *)
862 TARGET_DEFAULT_NORETURN (tcomplain ());
863
864 /* Get the current status of a tracing run. */
865 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts)
866 TARGET_DEFAULT_RETURN (-1);
867
868 void (*to_get_tracepoint_status) (struct target_ops *,
869 struct breakpoint *tp,
870 struct uploaded_tp *utp)
871 TARGET_DEFAULT_NORETURN (tcomplain ());
872
873 /* Stop a trace run. */
874 void (*to_trace_stop) (struct target_ops *)
875 TARGET_DEFAULT_NORETURN (tcomplain ());
876
877 /* Ask the target to find a trace frame of the given type TYPE,
878 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
879 number of the trace frame, and also the tracepoint number at
880 TPP. If no trace frame matches, return -1. May throw if the
881 operation fails. */
882 int (*to_trace_find) (struct target_ops *,
883 enum trace_find_type type, int num,
884 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
885 TARGET_DEFAULT_RETURN (-1);
886
887 /* Get the value of the trace state variable number TSV, returning
888 1 if the value is known and writing the value itself into the
889 location pointed to by VAL, else returning 0. */
890 int (*to_get_trace_state_variable_value) (struct target_ops *,
891 int tsv, LONGEST *val)
892 TARGET_DEFAULT_RETURN (0);
893
894 int (*to_save_trace_data) (struct target_ops *, const char *filename)
895 TARGET_DEFAULT_NORETURN (tcomplain ());
896
897 int (*to_upload_tracepoints) (struct target_ops *,
898 struct uploaded_tp **utpp)
899 TARGET_DEFAULT_RETURN (0);
900
901 int (*to_upload_trace_state_variables) (struct target_ops *,
902 struct uploaded_tsv **utsvp)
903 TARGET_DEFAULT_RETURN (0);
904
905 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
906 ULONGEST offset, LONGEST len)
907 TARGET_DEFAULT_NORETURN (tcomplain ());
908
909 /* Get the minimum length of instruction on which a fast tracepoint
910 may be set on the target. If this operation is unsupported,
911 return -1. If for some reason the minimum length cannot be
912 determined, return 0. */
913 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *)
914 TARGET_DEFAULT_RETURN (-1);
915
916 /* Set the target's tracing behavior in response to unexpected
917 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
918 void (*to_set_disconnected_tracing) (struct target_ops *, int val)
919 TARGET_DEFAULT_IGNORE ();
920 void (*to_set_circular_trace_buffer) (struct target_ops *, int val)
921 TARGET_DEFAULT_IGNORE ();
922 /* Set the size of trace buffer in the target. */
923 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val)
924 TARGET_DEFAULT_IGNORE ();
925
926 /* Add/change textual notes about the trace run, returning 1 if
927 successful, 0 otherwise. */
928 int (*to_set_trace_notes) (struct target_ops *,
929 const char *user, const char *notes,
930 const char *stopnotes)
931 TARGET_DEFAULT_RETURN (0);
932
933 /* Return the processor core that thread PTID was last seen on.
934 This information is updated only when:
935 - update_thread_list is called
936 - thread stops
937 If the core cannot be determined -- either for the specified
938 thread, or right now, or in this debug session, or for this
939 target -- return -1. */
940 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid)
941 TARGET_DEFAULT_RETURN (-1);
942
943 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
944 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
945 a match, 0 if there's a mismatch, and -1 if an error is
946 encountered while reading memory. */
947 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
948 CORE_ADDR memaddr, ULONGEST size)
949 TARGET_DEFAULT_NORETURN (tcomplain ());
950
951 /* Return the address of the start of the Thread Information Block
952 a Windows OS specific feature. */
953 int (*to_get_tib_address) (struct target_ops *,
954 ptid_t ptid, CORE_ADDR *addr)
955 TARGET_DEFAULT_NORETURN (tcomplain ());
956
957 /* Send the new settings of write permission variables. */
958 void (*to_set_permissions) (struct target_ops *)
959 TARGET_DEFAULT_IGNORE ();
960
961 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
962 with its details. Return 1 on success, 0 on failure. */
963 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
964 struct static_tracepoint_marker *marker)
965 TARGET_DEFAULT_RETURN (0);
966
967 /* Return a vector of all tracepoints markers string id ID, or all
968 markers if ID is NULL. */
969 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid) (struct target_ops *, const char *id)
970 TARGET_DEFAULT_NORETURN (tcomplain ());
971
972 /* Return a traceframe info object describing the current
973 traceframe's contents. If the target doesn't support
974 traceframe info, return NULL. If the current traceframe is not
975 selected (the current traceframe number is -1), the target can
976 choose to return either NULL or an empty traceframe info. If
977 NULL is returned, for example in remote target, GDB will read
978 from the live inferior. If an empty traceframe info is
979 returned, for example in tfile target, which means the
980 traceframe info is available, but the requested memory is not
981 available in it. GDB will try to see if the requested memory
982 is available in the read-only sections. This method should not
983 cache data; higher layers take care of caching, invalidating,
984 and re-fetching when necessary. */
985 struct traceframe_info *(*to_traceframe_info) (struct target_ops *)
986 TARGET_DEFAULT_RETURN (0);
987
988 /* Ask the target to use or not to use agent according to USE. Return 1
989 successful, 0 otherwise. */
990 int (*to_use_agent) (struct target_ops *, int use)
991 TARGET_DEFAULT_NORETURN (tcomplain ());
992
993 /* Is the target able to use agent in current state? */
994 int (*to_can_use_agent) (struct target_ops *)
995 TARGET_DEFAULT_RETURN (0);
996
997 /* Check whether the target supports branch tracing. */
998 int (*to_supports_btrace) (struct target_ops *)
999 TARGET_DEFAULT_RETURN (0);
1000
1001 /* Enable branch tracing for PTID and allocate a branch trace target
1002 information struct for reading and for disabling branch trace. */
1003 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
1004 ptid_t ptid);
1005
1006 /* Disable branch tracing and deallocate TINFO. */
1007 void (*to_disable_btrace) (struct target_ops *,
1008 struct btrace_target_info *tinfo)
1009 TARGET_DEFAULT_NORETURN (tcomplain ());
1010
1011 /* Disable branch tracing and deallocate TINFO. This function is similar
1012 to to_disable_btrace, except that it is called during teardown and is
1013 only allowed to perform actions that are safe. A counter-example would
1014 be attempting to talk to a remote target. */
1015 void (*to_teardown_btrace) (struct target_ops *,
1016 struct btrace_target_info *tinfo)
1017 TARGET_DEFAULT_NORETURN (tcomplain ());
1018
1019 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1020 DATA is cleared before new trace is added.
1021 The branch trace will start with the most recent block and continue
1022 towards older blocks. */
1023 enum btrace_error (*to_read_btrace) (struct target_ops *self,
1024 VEC (btrace_block_s) **data,
1025 struct btrace_target_info *btinfo,
1026 enum btrace_read_type type);
1027
1028 /* Stop trace recording. */
1029 void (*to_stop_recording) (struct target_ops *);
1030
1031 /* Print information about the recording. */
1032 void (*to_info_record) (struct target_ops *);
1033
1034 /* Save the recorded execution trace into a file. */
1035 void (*to_save_record) (struct target_ops *, const char *filename)
1036 TARGET_DEFAULT_NORETURN (tcomplain ());
1037
1038 /* Delete the recorded execution trace from the current position onwards. */
1039 void (*to_delete_record) (struct target_ops *)
1040 TARGET_DEFAULT_NORETURN (tcomplain ());
1041
1042 /* Query if the record target is currently replaying. */
1043 int (*to_record_is_replaying) (struct target_ops *)
1044 TARGET_DEFAULT_RETURN (0);
1045
1046 /* Go to the begin of the execution trace. */
1047 void (*to_goto_record_begin) (struct target_ops *)
1048 TARGET_DEFAULT_NORETURN (tcomplain ());
1049
1050 /* Go to the end of the execution trace. */
1051 void (*to_goto_record_end) (struct target_ops *)
1052 TARGET_DEFAULT_NORETURN (tcomplain ());
1053
1054 /* Go to a specific location in the recorded execution trace. */
1055 void (*to_goto_record) (struct target_ops *, ULONGEST insn)
1056 TARGET_DEFAULT_NORETURN (tcomplain ());
1057
1058 /* Disassemble SIZE instructions in the recorded execution trace from
1059 the current position.
1060 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1061 disassemble SIZE succeeding instructions. */
1062 void (*to_insn_history) (struct target_ops *, int size, int flags)
1063 TARGET_DEFAULT_NORETURN (tcomplain ());
1064
1065 /* Disassemble SIZE instructions in the recorded execution trace around
1066 FROM.
1067 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1068 disassemble SIZE instructions after FROM. */
1069 void (*to_insn_history_from) (struct target_ops *,
1070 ULONGEST from, int size, int flags)
1071 TARGET_DEFAULT_NORETURN (tcomplain ());
1072
1073 /* Disassemble a section of the recorded execution trace from instruction
1074 BEGIN (inclusive) to instruction END (inclusive). */
1075 void (*to_insn_history_range) (struct target_ops *,
1076 ULONGEST begin, ULONGEST end, int flags)
1077 TARGET_DEFAULT_NORETURN (tcomplain ());
1078
1079 /* Print a function trace of the recorded execution trace.
1080 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1081 succeeding functions. */
1082 void (*to_call_history) (struct target_ops *, int size, int flags)
1083 TARGET_DEFAULT_NORETURN (tcomplain ());
1084
1085 /* Print a function trace of the recorded execution trace starting
1086 at function FROM.
1087 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1088 SIZE functions after FROM. */
1089 void (*to_call_history_from) (struct target_ops *,
1090 ULONGEST begin, int size, int flags)
1091 TARGET_DEFAULT_NORETURN (tcomplain ());
1092
1093 /* Print a function trace of an execution trace section from function BEGIN
1094 (inclusive) to function END (inclusive). */
1095 void (*to_call_history_range) (struct target_ops *,
1096 ULONGEST begin, ULONGEST end, int flags)
1097 TARGET_DEFAULT_NORETURN (tcomplain ());
1098
1099 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1100 non-empty annex. */
1101 int (*to_augmented_libraries_svr4_read) (struct target_ops *)
1102 TARGET_DEFAULT_RETURN (0);
1103
1104 /* Those unwinders are tried before any other arch unwinders. Use NULL if
1105 it is not used. */
1106 const struct frame_unwind *to_get_unwinder;
1107 const struct frame_unwind *to_get_tailcall_unwinder;
1108
1109 /* Return the number of bytes by which the PC needs to be decremented
1110 after executing a breakpoint instruction.
1111 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
1112 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
1113 struct gdbarch *gdbarch);
1114
1115 int to_magic;
1116 /* Need sub-structure for target machine related rather than comm related?
1117 */
1118 };
1119
1120 /* Magic number for checking ops size. If a struct doesn't end with this
1121 number, somebody changed the declaration but didn't change all the
1122 places that initialize one. */
1123
1124 #define OPS_MAGIC 3840
1125
1126 /* The ops structure for our "current" target process. This should
1127 never be NULL. If there is no target, it points to the dummy_target. */
1128
1129 extern struct target_ops current_target;
1130
1131 /* Define easy words for doing these operations on our current target. */
1132
1133 #define target_shortname (current_target.to_shortname)
1134 #define target_longname (current_target.to_longname)
1135
1136 /* Does whatever cleanup is required for a target that we are no
1137 longer going to be calling. This routine is automatically always
1138 called after popping the target off the target stack - the target's
1139 own methods are no longer available through the target vector.
1140 Closing file descriptors and freeing all memory allocated memory are
1141 typical things it should do. */
1142
1143 void target_close (struct target_ops *targ);
1144
1145 /* Attaches to a process on the target side. Arguments are as passed
1146 to the `attach' command by the user. This routine can be called
1147 when the target is not on the target-stack, if the target_can_run
1148 routine returns 1; in that case, it must push itself onto the stack.
1149 Upon exit, the target should be ready for normal operations, and
1150 should be ready to deliver the status of the process immediately
1151 (without waiting) to an upcoming target_wait call. */
1152
1153 void target_attach (char *, int);
1154
1155 /* Some targets don't generate traps when attaching to the inferior,
1156 or their target_attach implementation takes care of the waiting.
1157 These targets must set to_attach_no_wait. */
1158
1159 #define target_attach_no_wait \
1160 (current_target.to_attach_no_wait)
1161
1162 /* The target_attach operation places a process under debugger control,
1163 and stops the process.
1164
1165 This operation provides a target-specific hook that allows the
1166 necessary bookkeeping to be performed after an attach completes. */
1167 #define target_post_attach(pid) \
1168 (*current_target.to_post_attach) (&current_target, pid)
1169
1170 /* Takes a program previously attached to and detaches it.
1171 The program may resume execution (some targets do, some don't) and will
1172 no longer stop on signals, etc. We better not have left any breakpoints
1173 in the program or it'll die when it hits one. ARGS is arguments
1174 typed by the user (e.g. a signal to send the process). FROM_TTY
1175 says whether to be verbose or not. */
1176
1177 extern void target_detach (const char *, int);
1178
1179 /* Disconnect from the current target without resuming it (leaving it
1180 waiting for a debugger). */
1181
1182 extern void target_disconnect (char *, int);
1183
1184 /* Resume execution of the target process PTID (or a group of
1185 threads). STEP says whether to single-step or to run free; SIGGNAL
1186 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1187 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1188 PTID means `step/resume only this process id'. A wildcard PTID
1189 (all threads, or all threads of process) means `step/resume
1190 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1191 matches) resume with their 'thread->suspend.stop_signal' signal
1192 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1193 if in "no pass" state. */
1194
1195 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1196
1197 /* Wait for process pid to do something. PTID = -1 to wait for any
1198 pid to do something. Return pid of child, or -1 in case of error;
1199 store status through argument pointer STATUS. Note that it is
1200 _NOT_ OK to throw_exception() out of target_wait() without popping
1201 the debugging target from the stack; GDB isn't prepared to get back
1202 to the prompt with a debugging target but without the frame cache,
1203 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1204 options. */
1205
1206 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1207 int options);
1208
1209 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1210
1211 extern void target_fetch_registers (struct regcache *regcache, int regno);
1212
1213 /* Store at least register REGNO, or all regs if REGNO == -1.
1214 It can store as many registers as it wants to, so target_prepare_to_store
1215 must have been previously called. Calls error() if there are problems. */
1216
1217 extern void target_store_registers (struct regcache *regcache, int regs);
1218
1219 /* Get ready to modify the registers array. On machines which store
1220 individual registers, this doesn't need to do anything. On machines
1221 which store all the registers in one fell swoop, this makes sure
1222 that REGISTERS contains all the registers from the program being
1223 debugged. */
1224
1225 #define target_prepare_to_store(regcache) \
1226 (*current_target.to_prepare_to_store) (&current_target, regcache)
1227
1228 /* Determine current address space of thread PTID. */
1229
1230 struct address_space *target_thread_address_space (ptid_t);
1231
1232 /* Implement the "info proc" command. This returns one if the request
1233 was handled, and zero otherwise. It can also throw an exception if
1234 an error was encountered while attempting to handle the
1235 request. */
1236
1237 int target_info_proc (char *, enum info_proc_what);
1238
1239 /* Returns true if this target can debug multiple processes
1240 simultaneously. */
1241
1242 #define target_supports_multi_process() \
1243 (*current_target.to_supports_multi_process) (&current_target)
1244
1245 /* Returns true if this target can disable address space randomization. */
1246
1247 int target_supports_disable_randomization (void);
1248
1249 /* Returns true if this target can enable and disable tracepoints
1250 while a trace experiment is running. */
1251
1252 #define target_supports_enable_disable_tracepoint() \
1253 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1254
1255 #define target_supports_string_tracing() \
1256 (*current_target.to_supports_string_tracing) (&current_target)
1257
1258 /* Returns true if this target can handle breakpoint conditions
1259 on its end. */
1260
1261 #define target_supports_evaluation_of_breakpoint_conditions() \
1262 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1263
1264 /* Returns true if this target can handle breakpoint commands
1265 on its end. */
1266
1267 #define target_can_run_breakpoint_commands() \
1268 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1269
1270 extern int target_read_string (CORE_ADDR, char **, int, int *);
1271
1272 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1273 ssize_t len);
1274
1275 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1276 ssize_t len);
1277
1278 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1279
1280 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1281
1282 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1283 ssize_t len);
1284
1285 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1286 ssize_t len);
1287
1288 /* Fetches the target's memory map. If one is found it is sorted
1289 and returned, after some consistency checking. Otherwise, NULL
1290 is returned. */
1291 VEC(mem_region_s) *target_memory_map (void);
1292
1293 /* Erase the specified flash region. */
1294 void target_flash_erase (ULONGEST address, LONGEST length);
1295
1296 /* Finish a sequence of flash operations. */
1297 void target_flash_done (void);
1298
1299 /* Describes a request for a memory write operation. */
1300 struct memory_write_request
1301 {
1302 /* Begining address that must be written. */
1303 ULONGEST begin;
1304 /* Past-the-end address. */
1305 ULONGEST end;
1306 /* The data to write. */
1307 gdb_byte *data;
1308 /* A callback baton for progress reporting for this request. */
1309 void *baton;
1310 };
1311 typedef struct memory_write_request memory_write_request_s;
1312 DEF_VEC_O(memory_write_request_s);
1313
1314 /* Enumeration specifying different flash preservation behaviour. */
1315 enum flash_preserve_mode
1316 {
1317 flash_preserve,
1318 flash_discard
1319 };
1320
1321 /* Write several memory blocks at once. This version can be more
1322 efficient than making several calls to target_write_memory, in
1323 particular because it can optimize accesses to flash memory.
1324
1325 Moreover, this is currently the only memory access function in gdb
1326 that supports writing to flash memory, and it should be used for
1327 all cases where access to flash memory is desirable.
1328
1329 REQUESTS is the vector (see vec.h) of memory_write_request.
1330 PRESERVE_FLASH_P indicates what to do with blocks which must be
1331 erased, but not completely rewritten.
1332 PROGRESS_CB is a function that will be periodically called to provide
1333 feedback to user. It will be called with the baton corresponding
1334 to the request currently being written. It may also be called
1335 with a NULL baton, when preserved flash sectors are being rewritten.
1336
1337 The function returns 0 on success, and error otherwise. */
1338 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1339 enum flash_preserve_mode preserve_flash_p,
1340 void (*progress_cb) (ULONGEST, void *));
1341
1342 /* Print a line about the current target. */
1343
1344 #define target_files_info() \
1345 (*current_target.to_files_info) (&current_target)
1346
1347 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1348 the target machine. Returns 0 for success, and returns non-zero or
1349 throws an error (with a detailed failure reason error code and
1350 message) otherwise. */
1351
1352 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1353 struct bp_target_info *bp_tgt);
1354
1355 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1356 machine. Result is 0 for success, non-zero for error. */
1357
1358 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1359 struct bp_target_info *bp_tgt);
1360
1361 /* Initialize the terminal settings we record for the inferior,
1362 before we actually run the inferior. */
1363
1364 #define target_terminal_init() \
1365 (*current_target.to_terminal_init) (&current_target)
1366
1367 /* Put the inferior's terminal settings into effect.
1368 This is preparation for starting or resuming the inferior. */
1369
1370 extern void target_terminal_inferior (void);
1371
1372 /* Put some of our terminal settings into effect,
1373 enough to get proper results from our output,
1374 but do not change into or out of RAW mode
1375 so that no input is discarded.
1376
1377 After doing this, either terminal_ours or terminal_inferior
1378 should be called to get back to a normal state of affairs. */
1379
1380 #define target_terminal_ours_for_output() \
1381 (*current_target.to_terminal_ours_for_output) (&current_target)
1382
1383 /* Put our terminal settings into effect.
1384 First record the inferior's terminal settings
1385 so they can be restored properly later. */
1386
1387 #define target_terminal_ours() \
1388 (*current_target.to_terminal_ours) (&current_target)
1389
1390 /* Save our terminal settings.
1391 This is called from TUI after entering or leaving the curses
1392 mode. Since curses modifies our terminal this call is here
1393 to take this change into account. */
1394
1395 #define target_terminal_save_ours() \
1396 (*current_target.to_terminal_save_ours) (&current_target)
1397
1398 /* Print useful information about our terminal status, if such a thing
1399 exists. */
1400
1401 #define target_terminal_info(arg, from_tty) \
1402 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1403
1404 /* Kill the inferior process. Make it go away. */
1405
1406 extern void target_kill (void);
1407
1408 /* Load an executable file into the target process. This is expected
1409 to not only bring new code into the target process, but also to
1410 update GDB's symbol tables to match.
1411
1412 ARG contains command-line arguments, to be broken down with
1413 buildargv (). The first non-switch argument is the filename to
1414 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1415 0)), which is an offset to apply to the load addresses of FILE's
1416 sections. The target may define switches, or other non-switch
1417 arguments, as it pleases. */
1418
1419 extern void target_load (char *arg, int from_tty);
1420
1421 /* Start an inferior process and set inferior_ptid to its pid.
1422 EXEC_FILE is the file to run.
1423 ALLARGS is a string containing the arguments to the program.
1424 ENV is the environment vector to pass. Errors reported with error().
1425 On VxWorks and various standalone systems, we ignore exec_file. */
1426
1427 void target_create_inferior (char *exec_file, char *args,
1428 char **env, int from_tty);
1429
1430 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1431 notification of inferior events such as fork and vork immediately
1432 after the inferior is created. (This because of how gdb gets an
1433 inferior created via invoking a shell to do it. In such a scenario,
1434 if the shell init file has commands in it, the shell will fork and
1435 exec for each of those commands, and we will see each such fork
1436 event. Very bad.)
1437
1438 Such targets will supply an appropriate definition for this function. */
1439
1440 #define target_post_startup_inferior(ptid) \
1441 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1442
1443 /* On some targets, we can catch an inferior fork or vfork event when
1444 it occurs. These functions insert/remove an already-created
1445 catchpoint for such events. They return 0 for success, 1 if the
1446 catchpoint type is not supported and -1 for failure. */
1447
1448 #define target_insert_fork_catchpoint(pid) \
1449 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1450
1451 #define target_remove_fork_catchpoint(pid) \
1452 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1453
1454 #define target_insert_vfork_catchpoint(pid) \
1455 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1456
1457 #define target_remove_vfork_catchpoint(pid) \
1458 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1459
1460 /* If the inferior forks or vforks, this function will be called at
1461 the next resume in order to perform any bookkeeping and fiddling
1462 necessary to continue debugging either the parent or child, as
1463 requested, and releasing the other. Information about the fork
1464 or vfork event is available via get_last_target_status ().
1465 This function returns 1 if the inferior should not be resumed
1466 (i.e. there is another event pending). */
1467
1468 int target_follow_fork (int follow_child, int detach_fork);
1469
1470 /* On some targets, we can catch an inferior exec event when it
1471 occurs. These functions insert/remove an already-created
1472 catchpoint for such events. They return 0 for success, 1 if the
1473 catchpoint type is not supported and -1 for failure. */
1474
1475 #define target_insert_exec_catchpoint(pid) \
1476 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1477
1478 #define target_remove_exec_catchpoint(pid) \
1479 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1480
1481 /* Syscall catch.
1482
1483 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1484 If NEEDED is zero, it means the target can disable the mechanism to
1485 catch system calls because there are no more catchpoints of this type.
1486
1487 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1488 being requested. In this case, both TABLE_SIZE and TABLE should
1489 be ignored.
1490
1491 TABLE_SIZE is the number of elements in TABLE. It only matters if
1492 ANY_COUNT is zero.
1493
1494 TABLE is an array of ints, indexed by syscall number. An element in
1495 this array is nonzero if that syscall should be caught. This argument
1496 only matters if ANY_COUNT is zero.
1497
1498 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1499 for failure. */
1500
1501 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1502 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1503 pid, needed, any_count, \
1504 table_size, table)
1505
1506 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1507 exit code of PID, if any. */
1508
1509 #define target_has_exited(pid,wait_status,exit_status) \
1510 (*current_target.to_has_exited) (&current_target, \
1511 pid,wait_status,exit_status)
1512
1513 /* The debugger has completed a blocking wait() call. There is now
1514 some process event that must be processed. This function should
1515 be defined by those targets that require the debugger to perform
1516 cleanup or internal state changes in response to the process event. */
1517
1518 /* The inferior process has died. Do what is right. */
1519
1520 void target_mourn_inferior (void);
1521
1522 /* Does target have enough data to do a run or attach command? */
1523
1524 #define target_can_run(t) \
1525 ((t)->to_can_run) (t)
1526
1527 /* Set list of signals to be handled in the target.
1528
1529 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1530 (enum gdb_signal). For every signal whose entry in this array is
1531 non-zero, the target is allowed -but not required- to skip reporting
1532 arrival of the signal to the GDB core by returning from target_wait,
1533 and to pass the signal directly to the inferior instead.
1534
1535 However, if the target is hardware single-stepping a thread that is
1536 about to receive a signal, it needs to be reported in any case, even
1537 if mentioned in a previous target_pass_signals call. */
1538
1539 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1540
1541 /* Set list of signals the target may pass to the inferior. This
1542 directly maps to the "handle SIGNAL pass/nopass" setting.
1543
1544 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1545 number (enum gdb_signal). For every signal whose entry in this
1546 array is non-zero, the target is allowed to pass the signal to the
1547 inferior. Signals not present in the array shall be silently
1548 discarded. This does not influence whether to pass signals to the
1549 inferior as a result of a target_resume call. This is useful in
1550 scenarios where the target needs to decide whether to pass or not a
1551 signal to the inferior without GDB core involvement, such as for
1552 example, when detaching (as threads may have been suspended with
1553 pending signals not reported to GDB). */
1554
1555 extern void target_program_signals (int nsig, unsigned char *program_signals);
1556
1557 /* Check to see if a thread is still alive. */
1558
1559 extern int target_thread_alive (ptid_t ptid);
1560
1561 /* Query for new threads and add them to the thread list. */
1562
1563 extern void target_find_new_threads (void);
1564
1565 /* Make target stop in a continuable fashion. (For instance, under
1566 Unix, this should act like SIGSTOP). This function is normally
1567 used by GUIs to implement a stop button. */
1568
1569 extern void target_stop (ptid_t ptid);
1570
1571 /* Send the specified COMMAND to the target's monitor
1572 (shell,interpreter) for execution. The result of the query is
1573 placed in OUTBUF. */
1574
1575 #define target_rcmd(command, outbuf) \
1576 (*current_target.to_rcmd) (&current_target, command, outbuf)
1577
1578
1579 /* Does the target include all of memory, or only part of it? This
1580 determines whether we look up the target chain for other parts of
1581 memory if this target can't satisfy a request. */
1582
1583 extern int target_has_all_memory_1 (void);
1584 #define target_has_all_memory target_has_all_memory_1 ()
1585
1586 /* Does the target include memory? (Dummy targets don't.) */
1587
1588 extern int target_has_memory_1 (void);
1589 #define target_has_memory target_has_memory_1 ()
1590
1591 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1592 we start a process.) */
1593
1594 extern int target_has_stack_1 (void);
1595 #define target_has_stack target_has_stack_1 ()
1596
1597 /* Does the target have registers? (Exec files don't.) */
1598
1599 extern int target_has_registers_1 (void);
1600 #define target_has_registers target_has_registers_1 ()
1601
1602 /* Does the target have execution? Can we make it jump (through
1603 hoops), or pop its stack a few times? This means that the current
1604 target is currently executing; for some targets, that's the same as
1605 whether or not the target is capable of execution, but there are
1606 also targets which can be current while not executing. In that
1607 case this will become true after target_create_inferior or
1608 target_attach. */
1609
1610 extern int target_has_execution_1 (ptid_t);
1611
1612 /* Like target_has_execution_1, but always passes inferior_ptid. */
1613
1614 extern int target_has_execution_current (void);
1615
1616 #define target_has_execution target_has_execution_current ()
1617
1618 /* Default implementations for process_stratum targets. Return true
1619 if there's a selected inferior, false otherwise. */
1620
1621 extern int default_child_has_all_memory (struct target_ops *ops);
1622 extern int default_child_has_memory (struct target_ops *ops);
1623 extern int default_child_has_stack (struct target_ops *ops);
1624 extern int default_child_has_registers (struct target_ops *ops);
1625 extern int default_child_has_execution (struct target_ops *ops,
1626 ptid_t the_ptid);
1627
1628 /* Can the target support the debugger control of thread execution?
1629 Can it lock the thread scheduler? */
1630
1631 #define target_can_lock_scheduler \
1632 (current_target.to_has_thread_control & tc_schedlock)
1633
1634 /* Should the target enable async mode if it is supported? Temporary
1635 cludge until async mode is a strict superset of sync mode. */
1636 extern int target_async_permitted;
1637
1638 /* Can the target support asynchronous execution? */
1639 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1640
1641 /* Is the target in asynchronous execution mode? */
1642 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1643
1644 int target_supports_non_stop (void);
1645
1646 /* Put the target in async mode with the specified callback function. */
1647 #define target_async(CALLBACK,CONTEXT) \
1648 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1649
1650 #define target_execution_direction() \
1651 (current_target.to_execution_direction (&current_target))
1652
1653 /* Converts a process id to a string. Usually, the string just contains
1654 `process xyz', but on some systems it may contain
1655 `process xyz thread abc'. */
1656
1657 extern char *target_pid_to_str (ptid_t ptid);
1658
1659 extern char *normal_pid_to_str (ptid_t ptid);
1660
1661 /* Return a short string describing extra information about PID,
1662 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1663 is okay. */
1664
1665 #define target_extra_thread_info(TP) \
1666 (current_target.to_extra_thread_info (&current_target, TP))
1667
1668 /* Return the thread's name. A NULL result means that the target
1669 could not determine this thread's name. */
1670
1671 extern char *target_thread_name (struct thread_info *);
1672
1673 /* Attempts to find the pathname of the executable file
1674 that was run to create a specified process.
1675
1676 The process PID must be stopped when this operation is used.
1677
1678 If the executable file cannot be determined, NULL is returned.
1679
1680 Else, a pointer to a character string containing the pathname
1681 is returned. This string should be copied into a buffer by
1682 the client if the string will not be immediately used, or if
1683 it must persist. */
1684
1685 #define target_pid_to_exec_file(pid) \
1686 (current_target.to_pid_to_exec_file) (&current_target, pid)
1687
1688 /* See the to_thread_architecture description in struct target_ops. */
1689
1690 #define target_thread_architecture(ptid) \
1691 (current_target.to_thread_architecture (&current_target, ptid))
1692
1693 /*
1694 * Iterator function for target memory regions.
1695 * Calls a callback function once for each memory region 'mapped'
1696 * in the child process. Defined as a simple macro rather than
1697 * as a function macro so that it can be tested for nullity.
1698 */
1699
1700 #define target_find_memory_regions(FUNC, DATA) \
1701 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1702
1703 /*
1704 * Compose corefile .note section.
1705 */
1706
1707 #define target_make_corefile_notes(BFD, SIZE_P) \
1708 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1709
1710 /* Bookmark interfaces. */
1711 #define target_get_bookmark(ARGS, FROM_TTY) \
1712 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1713
1714 #define target_goto_bookmark(ARG, FROM_TTY) \
1715 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1716
1717 /* Hardware watchpoint interfaces. */
1718
1719 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1720 write). Only the INFERIOR_PTID task is being queried. */
1721
1722 #define target_stopped_by_watchpoint() \
1723 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1724
1725 /* Non-zero if we have steppable watchpoints */
1726
1727 #define target_have_steppable_watchpoint \
1728 (current_target.to_have_steppable_watchpoint)
1729
1730 /* Non-zero if we have continuable watchpoints */
1731
1732 #define target_have_continuable_watchpoint \
1733 (current_target.to_have_continuable_watchpoint)
1734
1735 /* Provide defaults for hardware watchpoint functions. */
1736
1737 /* If the *_hw_beakpoint functions have not been defined
1738 elsewhere use the definitions in the target vector. */
1739
1740 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1741 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1742 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1743 (including this one?). OTHERTYPE is who knows what... */
1744
1745 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1746 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1747 TYPE, CNT, OTHERTYPE);
1748
1749 /* Returns the number of debug registers needed to watch the given
1750 memory region, or zero if not supported. */
1751
1752 #define target_region_ok_for_hw_watchpoint(addr, len) \
1753 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1754 addr, len)
1755
1756
1757 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1758 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1759 COND is the expression for its condition, or NULL if there's none.
1760 Returns 0 for success, 1 if the watchpoint type is not supported,
1761 -1 for failure. */
1762
1763 #define target_insert_watchpoint(addr, len, type, cond) \
1764 (*current_target.to_insert_watchpoint) (&current_target, \
1765 addr, len, type, cond)
1766
1767 #define target_remove_watchpoint(addr, len, type, cond) \
1768 (*current_target.to_remove_watchpoint) (&current_target, \
1769 addr, len, type, cond)
1770
1771 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1772 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1773 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1774 masked watchpoints are not supported, -1 for failure. */
1775
1776 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1777
1778 /* Remove a masked watchpoint at ADDR with the mask MASK.
1779 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1780 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1781 for failure. */
1782
1783 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1784
1785 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1786 the target machine. Returns 0 for success, and returns non-zero or
1787 throws an error (with a detailed failure reason error code and
1788 message) otherwise. */
1789
1790 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1791 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1792 gdbarch, bp_tgt)
1793
1794 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1795 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1796 gdbarch, bp_tgt)
1797
1798 /* Return number of debug registers needed for a ranged breakpoint,
1799 or -1 if ranged breakpoints are not supported. */
1800
1801 extern int target_ranged_break_num_registers (void);
1802
1803 /* Return non-zero if target knows the data address which triggered this
1804 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1805 INFERIOR_PTID task is being queried. */
1806 #define target_stopped_data_address(target, addr_p) \
1807 (*target.to_stopped_data_address) (target, addr_p)
1808
1809 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1810 LENGTH bytes beginning at START. */
1811 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1812 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1813
1814 /* Return non-zero if the target is capable of using hardware to evaluate
1815 the condition expression. In this case, if the condition is false when
1816 the watched memory location changes, execution may continue without the
1817 debugger being notified.
1818
1819 Due to limitations in the hardware implementation, it may be capable of
1820 avoiding triggering the watchpoint in some cases where the condition
1821 expression is false, but may report some false positives as well.
1822 For this reason, GDB will still evaluate the condition expression when
1823 the watchpoint triggers. */
1824 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1825 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1826 addr, len, type, cond)
1827
1828 /* Return number of debug registers needed for a masked watchpoint,
1829 -1 if masked watchpoints are not supported or -2 if the given address
1830 and mask combination cannot be used. */
1831
1832 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1833
1834 /* Target can execute in reverse? */
1835 #define target_can_execute_reverse \
1836 current_target.to_can_execute_reverse (&current_target)
1837
1838 extern const struct target_desc *target_read_description (struct target_ops *);
1839
1840 #define target_get_ada_task_ptid(lwp, tid) \
1841 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1842
1843 /* Utility implementation of searching memory. */
1844 extern int simple_search_memory (struct target_ops* ops,
1845 CORE_ADDR start_addr,
1846 ULONGEST search_space_len,
1847 const gdb_byte *pattern,
1848 ULONGEST pattern_len,
1849 CORE_ADDR *found_addrp);
1850
1851 /* Main entry point for searching memory. */
1852 extern int target_search_memory (CORE_ADDR start_addr,
1853 ULONGEST search_space_len,
1854 const gdb_byte *pattern,
1855 ULONGEST pattern_len,
1856 CORE_ADDR *found_addrp);
1857
1858 /* Target file operations. */
1859
1860 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1861 target file descriptor, or -1 if an error occurs (and set
1862 *TARGET_ERRNO). */
1863 extern int target_fileio_open (const char *filename, int flags, int mode,
1864 int *target_errno);
1865
1866 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1867 Return the number of bytes written, or -1 if an error occurs
1868 (and set *TARGET_ERRNO). */
1869 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1870 ULONGEST offset, int *target_errno);
1871
1872 /* Read up to LEN bytes FD on the target into READ_BUF.
1873 Return the number of bytes read, or -1 if an error occurs
1874 (and set *TARGET_ERRNO). */
1875 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1876 ULONGEST offset, int *target_errno);
1877
1878 /* Close FD on the target. Return 0, or -1 if an error occurs
1879 (and set *TARGET_ERRNO). */
1880 extern int target_fileio_close (int fd, int *target_errno);
1881
1882 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1883 occurs (and set *TARGET_ERRNO). */
1884 extern int target_fileio_unlink (const char *filename, int *target_errno);
1885
1886 /* Read value of symbolic link FILENAME on the target. Return a
1887 null-terminated string allocated via xmalloc, or NULL if an error
1888 occurs (and set *TARGET_ERRNO). */
1889 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1890
1891 /* Read target file FILENAME. The return value will be -1 if the transfer
1892 fails or is not supported; 0 if the object is empty; or the length
1893 of the object otherwise. If a positive value is returned, a
1894 sufficiently large buffer will be allocated using xmalloc and
1895 returned in *BUF_P containing the contents of the object.
1896
1897 This method should be used for objects sufficiently small to store
1898 in a single xmalloc'd buffer, when no fixed bound on the object's
1899 size is known in advance. */
1900 extern LONGEST target_fileio_read_alloc (const char *filename,
1901 gdb_byte **buf_p);
1902
1903 /* Read target file FILENAME. The result is NUL-terminated and
1904 returned as a string, allocated using xmalloc. If an error occurs
1905 or the transfer is unsupported, NULL is returned. Empty objects
1906 are returned as allocated but empty strings. A warning is issued
1907 if the result contains any embedded NUL bytes. */
1908 extern char *target_fileio_read_stralloc (const char *filename);
1909
1910
1911 /* Tracepoint-related operations. */
1912
1913 #define target_trace_init() \
1914 (*current_target.to_trace_init) (&current_target)
1915
1916 #define target_download_tracepoint(t) \
1917 (*current_target.to_download_tracepoint) (&current_target, t)
1918
1919 #define target_can_download_tracepoint() \
1920 (*current_target.to_can_download_tracepoint) (&current_target)
1921
1922 #define target_download_trace_state_variable(tsv) \
1923 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
1924
1925 #define target_enable_tracepoint(loc) \
1926 (*current_target.to_enable_tracepoint) (&current_target, loc)
1927
1928 #define target_disable_tracepoint(loc) \
1929 (*current_target.to_disable_tracepoint) (&current_target, loc)
1930
1931 #define target_trace_start() \
1932 (*current_target.to_trace_start) (&current_target)
1933
1934 #define target_trace_set_readonly_regions() \
1935 (*current_target.to_trace_set_readonly_regions) (&current_target)
1936
1937 #define target_get_trace_status(ts) \
1938 (*current_target.to_get_trace_status) (&current_target, ts)
1939
1940 #define target_get_tracepoint_status(tp,utp) \
1941 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
1942
1943 #define target_trace_stop() \
1944 (*current_target.to_trace_stop) (&current_target)
1945
1946 #define target_trace_find(type,num,addr1,addr2,tpp) \
1947 (*current_target.to_trace_find) (&current_target, \
1948 (type), (num), (addr1), (addr2), (tpp))
1949
1950 #define target_get_trace_state_variable_value(tsv,val) \
1951 (*current_target.to_get_trace_state_variable_value) (&current_target, \
1952 (tsv), (val))
1953
1954 #define target_save_trace_data(filename) \
1955 (*current_target.to_save_trace_data) (&current_target, filename)
1956
1957 #define target_upload_tracepoints(utpp) \
1958 (*current_target.to_upload_tracepoints) (&current_target, utpp)
1959
1960 #define target_upload_trace_state_variables(utsvp) \
1961 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
1962
1963 #define target_get_raw_trace_data(buf,offset,len) \
1964 (*current_target.to_get_raw_trace_data) (&current_target, \
1965 (buf), (offset), (len))
1966
1967 #define target_get_min_fast_tracepoint_insn_len() \
1968 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
1969
1970 #define target_set_disconnected_tracing(val) \
1971 (*current_target.to_set_disconnected_tracing) (&current_target, val)
1972
1973 #define target_set_circular_trace_buffer(val) \
1974 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
1975
1976 #define target_set_trace_buffer_size(val) \
1977 (*current_target.to_set_trace_buffer_size) (&current_target, val)
1978
1979 #define target_set_trace_notes(user,notes,stopnotes) \
1980 (*current_target.to_set_trace_notes) (&current_target, \
1981 (user), (notes), (stopnotes))
1982
1983 #define target_get_tib_address(ptid, addr) \
1984 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
1985
1986 #define target_set_permissions() \
1987 (*current_target.to_set_permissions) (&current_target)
1988
1989 #define target_static_tracepoint_marker_at(addr, marker) \
1990 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
1991 addr, marker)
1992
1993 #define target_static_tracepoint_markers_by_strid(marker_id) \
1994 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
1995 marker_id)
1996
1997 #define target_traceframe_info() \
1998 (*current_target.to_traceframe_info) (&current_target)
1999
2000 #define target_use_agent(use) \
2001 (*current_target.to_use_agent) (&current_target, use)
2002
2003 #define target_can_use_agent() \
2004 (*current_target.to_can_use_agent) (&current_target)
2005
2006 #define target_augmented_libraries_svr4_read() \
2007 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
2008
2009 /* Command logging facility. */
2010
2011 #define target_log_command(p) \
2012 (*current_target.to_log_command) (&current_target, p)
2013
2014
2015 extern int target_core_of_thread (ptid_t ptid);
2016
2017 /* See to_get_unwinder in struct target_ops. */
2018 extern const struct frame_unwind *target_get_unwinder (void);
2019
2020 /* See to_get_tailcall_unwinder in struct target_ops. */
2021 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2022
2023 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2024 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2025 if there's a mismatch, and -1 if an error is encountered while
2026 reading memory. Throws an error if the functionality is found not
2027 to be supported by the current target. */
2028 int target_verify_memory (const gdb_byte *data,
2029 CORE_ADDR memaddr, ULONGEST size);
2030
2031 /* Routines for maintenance of the target structures...
2032
2033 complete_target_initialization: Finalize a target_ops by filling in
2034 any fields needed by the target implementation.
2035
2036 add_target: Add a target to the list of all possible targets.
2037
2038 push_target: Make this target the top of the stack of currently used
2039 targets, within its particular stratum of the stack. Result
2040 is 0 if now atop the stack, nonzero if not on top (maybe
2041 should warn user).
2042
2043 unpush_target: Remove this from the stack of currently used targets,
2044 no matter where it is on the list. Returns 0 if no
2045 change, 1 if removed from stack. */
2046
2047 extern void add_target (struct target_ops *);
2048
2049 extern void add_target_with_completer (struct target_ops *t,
2050 completer_ftype *completer);
2051
2052 extern void complete_target_initialization (struct target_ops *t);
2053
2054 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
2055 for maintaining backwards compatibility when renaming targets. */
2056
2057 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
2058
2059 extern void push_target (struct target_ops *);
2060
2061 extern int unpush_target (struct target_ops *);
2062
2063 extern void target_pre_inferior (int);
2064
2065 extern void target_preopen (int);
2066
2067 /* Does whatever cleanup is required to get rid of all pushed targets. */
2068 extern void pop_all_targets (void);
2069
2070 /* Like pop_all_targets, but pops only targets whose stratum is
2071 strictly above ABOVE_STRATUM. */
2072 extern void pop_all_targets_above (enum strata above_stratum);
2073
2074 extern int target_is_pushed (struct target_ops *t);
2075
2076 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2077 CORE_ADDR offset);
2078
2079 /* Struct target_section maps address ranges to file sections. It is
2080 mostly used with BFD files, but can be used without (e.g. for handling
2081 raw disks, or files not in formats handled by BFD). */
2082
2083 struct target_section
2084 {
2085 CORE_ADDR addr; /* Lowest address in section */
2086 CORE_ADDR endaddr; /* 1+highest address in section */
2087
2088 struct bfd_section *the_bfd_section;
2089
2090 /* The "owner" of the section.
2091 It can be any unique value. It is set by add_target_sections
2092 and used by remove_target_sections.
2093 For example, for executables it is a pointer to exec_bfd and
2094 for shlibs it is the so_list pointer. */
2095 void *owner;
2096 };
2097
2098 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2099
2100 struct target_section_table
2101 {
2102 struct target_section *sections;
2103 struct target_section *sections_end;
2104 };
2105
2106 /* Return the "section" containing the specified address. */
2107 struct target_section *target_section_by_addr (struct target_ops *target,
2108 CORE_ADDR addr);
2109
2110 /* Return the target section table this target (or the targets
2111 beneath) currently manipulate. */
2112
2113 extern struct target_section_table *target_get_section_table
2114 (struct target_ops *target);
2115
2116 /* From mem-break.c */
2117
2118 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2119 struct bp_target_info *);
2120
2121 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2122 struct bp_target_info *);
2123
2124 extern int default_memory_remove_breakpoint (struct gdbarch *,
2125 struct bp_target_info *);
2126
2127 extern int default_memory_insert_breakpoint (struct gdbarch *,
2128 struct bp_target_info *);
2129
2130
2131 /* From target.c */
2132
2133 extern void initialize_targets (void);
2134
2135 extern void noprocess (void) ATTRIBUTE_NORETURN;
2136
2137 extern void target_require_runnable (void);
2138
2139 extern void find_default_attach (struct target_ops *, char *, int);
2140
2141 extern void find_default_create_inferior (struct target_ops *,
2142 char *, char *, char **, int);
2143
2144 extern struct target_ops *find_target_beneath (struct target_ops *);
2145
2146 /* Find the target at STRATUM. If no target is at that stratum,
2147 return NULL. */
2148
2149 struct target_ops *find_target_at (enum strata stratum);
2150
2151 /* Read OS data object of type TYPE from the target, and return it in
2152 XML format. The result is NUL-terminated and returned as a string,
2153 allocated using xmalloc. If an error occurs or the transfer is
2154 unsupported, NULL is returned. Empty objects are returned as
2155 allocated but empty strings. */
2156
2157 extern char *target_get_osdata (const char *type);
2158
2159 \f
2160 /* Stuff that should be shared among the various remote targets. */
2161
2162 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2163 information (higher values, more information). */
2164 extern int remote_debug;
2165
2166 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2167 extern int baud_rate;
2168 /* Timeout limit for response from target. */
2169 extern int remote_timeout;
2170
2171 \f
2172
2173 /* Set the show memory breakpoints mode to show, and installs a cleanup
2174 to restore it back to the current value. */
2175 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2176
2177 extern int may_write_registers;
2178 extern int may_write_memory;
2179 extern int may_insert_breakpoints;
2180 extern int may_insert_tracepoints;
2181 extern int may_insert_fast_tracepoints;
2182 extern int may_stop;
2183
2184 extern void update_target_permissions (void);
2185
2186 \f
2187 /* Imported from machine dependent code. */
2188
2189 /* Blank target vector entries are initialized to target_ignore. */
2190 void target_ignore (void);
2191
2192 /* See to_supports_btrace in struct target_ops. */
2193 #define target_supports_btrace() \
2194 (current_target.to_supports_btrace (&current_target))
2195
2196 /* See to_enable_btrace in struct target_ops. */
2197 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2198
2199 /* See to_disable_btrace in struct target_ops. */
2200 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2201
2202 /* See to_teardown_btrace in struct target_ops. */
2203 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2204
2205 /* See to_read_btrace in struct target_ops. */
2206 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2207 struct btrace_target_info *,
2208 enum btrace_read_type);
2209
2210 /* See to_stop_recording in struct target_ops. */
2211 extern void target_stop_recording (void);
2212
2213 /* See to_info_record in struct target_ops. */
2214 extern void target_info_record (void);
2215
2216 /* See to_save_record in struct target_ops. */
2217 extern void target_save_record (const char *filename);
2218
2219 /* Query if the target supports deleting the execution log. */
2220 extern int target_supports_delete_record (void);
2221
2222 /* See to_delete_record in struct target_ops. */
2223 extern void target_delete_record (void);
2224
2225 /* See to_record_is_replaying in struct target_ops. */
2226 extern int target_record_is_replaying (void);
2227
2228 /* See to_goto_record_begin in struct target_ops. */
2229 extern void target_goto_record_begin (void);
2230
2231 /* See to_goto_record_end in struct target_ops. */
2232 extern void target_goto_record_end (void);
2233
2234 /* See to_goto_record in struct target_ops. */
2235 extern void target_goto_record (ULONGEST insn);
2236
2237 /* See to_insn_history. */
2238 extern void target_insn_history (int size, int flags);
2239
2240 /* See to_insn_history_from. */
2241 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2242
2243 /* See to_insn_history_range. */
2244 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2245
2246 /* See to_call_history. */
2247 extern void target_call_history (int size, int flags);
2248
2249 /* See to_call_history_from. */
2250 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2251
2252 /* See to_call_history_range. */
2253 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2254
2255 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2256 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2257 struct gdbarch *gdbarch);
2258
2259 /* See to_decr_pc_after_break. */
2260 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2261
2262 #endif /* !defined (TARGET_H) */