Remove path name from test case
[binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2023 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct trace_state_variable;
33 struct trace_status;
34 struct uploaded_tsv;
35 struct uploaded_tp;
36 struct static_tracepoint_marker;
37 struct traceframe_info;
38 struct expression;
39 struct dcache_struct;
40 struct inferior;
41
42 /* Define const gdb_byte using one identifier, to make it easy for
43 make-target-delegates.py to parse. */
44 typedef const gdb_byte const_gdb_byte;
45
46 #include "infrun.h"
47 #include "breakpoint.h"
48 #include "gdbsupport/scoped_restore.h"
49 #include "gdbsupport/refcounted-object.h"
50 #include "target-section.h"
51
52 /* This include file defines the interface between the main part
53 of the debugger, and the part which is target-specific, or
54 specific to the communications interface between us and the
55 target.
56
57 A TARGET is an interface between the debugger and a particular
58 kind of file or process. Targets can be STACKED in STRATA,
59 so that more than one target can potentially respond to a request.
60 In particular, memory accesses will walk down the stack of targets
61 until they find a target that is interested in handling that particular
62 address. STRATA are artificial boundaries on the stack, within
63 which particular kinds of targets live. Strata exist so that
64 people don't get confused by pushing e.g. a process target and then
65 a file target, and wondering why they can't see the current values
66 of variables any more (the file target is handling them and they
67 never get to the process target). So when you push a file target,
68 it goes into the file stratum, which is always below the process
69 stratum.
70
71 Note that rather than allow an empty stack, we always have the
72 dummy target at the bottom stratum, so we can call the target
73 methods without checking them. */
74
75 #include "target/target.h"
76 #include "target/resume.h"
77 #include "target/wait.h"
78 #include "target/waitstatus.h"
79 #include "bfd.h"
80 #include "symtab.h"
81 #include "memattr.h"
82 #include "gdbsupport/gdb_signals.h"
83 #include "btrace.h"
84 #include "record.h"
85 #include "command.h"
86 #include "disasm-flags.h"
87 #include "tracepoint.h"
88 #include "gdbsupport/fileio.h"
89 #include "gdbsupport/x86-xstate.h"
90
91 #include "gdbsupport/break-common.h"
92
93 enum strata
94 {
95 dummy_stratum, /* The lowest of the low */
96 file_stratum, /* Executable files, etc */
97 process_stratum, /* Executing processes or core dump files */
98 thread_stratum, /* Executing threads */
99 record_stratum, /* Support record debugging */
100 arch_stratum, /* Architecture overrides */
101 debug_stratum /* Target debug. Must be last. */
102 };
103
104 enum thread_control_capabilities
105 {
106 tc_none = 0, /* Default: can't control thread execution. */
107 tc_schedlock = 1, /* Can lock the thread scheduler. */
108 };
109
110 /* The structure below stores information about a system call.
111 It is basically used in the "catch syscall" command, and in
112 every function that gives information about a system call.
113
114 It's also good to mention that its fields represent everything
115 that we currently know about a syscall in GDB. */
116 struct syscall
117 {
118 /* The syscall number. */
119 int number;
120
121 /* The syscall name. */
122 const char *name;
123 };
124
125 /* Return a pretty printed form of TARGET_OPTIONS. */
126 extern std::string target_options_to_string (target_wait_flags target_options);
127
128 /* Possible types of events that the inferior handler will have to
129 deal with. */
130 enum inferior_event_type
131 {
132 /* Process a normal inferior event which will result in target_wait
133 being called. */
134 INF_REG_EVENT,
135 /* We are called to do stuff after the inferior stops. */
136 INF_EXEC_COMPLETE,
137 };
138 \f
139 /* Target objects which can be transfered using target_read,
140 target_write, et cetera. */
141
142 enum target_object
143 {
144 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
145 TARGET_OBJECT_AVR,
146 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
147 TARGET_OBJECT_MEMORY,
148 /* Memory, avoiding GDB's data cache and trusting the executable.
149 Target implementations of to_xfer_partial never need to handle
150 this object, and most callers should not use it. */
151 TARGET_OBJECT_RAW_MEMORY,
152 /* Memory known to be part of the target's stack. This is cached even
153 if it is not in a region marked as such, since it is known to be
154 "normal" RAM. */
155 TARGET_OBJECT_STACK_MEMORY,
156 /* Memory known to be part of the target code. This is cached even
157 if it is not in a region marked as such. */
158 TARGET_OBJECT_CODE_MEMORY,
159 /* Kernel Unwind Table. See "ia64-tdep.c". */
160 TARGET_OBJECT_UNWIND_TABLE,
161 /* Transfer auxilliary vector. */
162 TARGET_OBJECT_AUXV,
163 /* StackGhost cookie. See "sparc-tdep.c". */
164 TARGET_OBJECT_WCOOKIE,
165 /* Target memory map in XML format. */
166 TARGET_OBJECT_MEMORY_MAP,
167 /* Flash memory. This object can be used to write contents to
168 a previously erased flash memory. Using it without erasing
169 flash can have unexpected results. Addresses are physical
170 address on target, and not relative to flash start. */
171 TARGET_OBJECT_FLASH,
172 /* Available target-specific features, e.g. registers and coprocessors.
173 See "target-descriptions.c". ANNEX should never be empty. */
174 TARGET_OBJECT_AVAILABLE_FEATURES,
175 /* Currently loaded libraries, in XML format. */
176 TARGET_OBJECT_LIBRARIES,
177 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
178 TARGET_OBJECT_LIBRARIES_SVR4,
179 /* Currently loaded libraries specific to AIX systems, in XML format. */
180 TARGET_OBJECT_LIBRARIES_AIX,
181 /* Get OS specific data. The ANNEX specifies the type (running
182 processes, etc.). The data being transfered is expected to follow
183 the DTD specified in features/osdata.dtd. */
184 TARGET_OBJECT_OSDATA,
185 /* Extra signal info. Usually the contents of `siginfo_t' on unix
186 platforms. */
187 TARGET_OBJECT_SIGNAL_INFO,
188 /* The list of threads that are being debugged. */
189 TARGET_OBJECT_THREADS,
190 /* Collected static trace data. */
191 TARGET_OBJECT_STATIC_TRACE_DATA,
192 /* Traceframe info, in XML format. */
193 TARGET_OBJECT_TRACEFRAME_INFO,
194 /* Load maps for FDPIC systems. */
195 TARGET_OBJECT_FDPIC,
196 /* Darwin dynamic linker info data. */
197 TARGET_OBJECT_DARWIN_DYLD_INFO,
198 /* OpenVMS Unwind Information Block. */
199 TARGET_OBJECT_OPENVMS_UIB,
200 /* Branch trace data, in XML format. */
201 TARGET_OBJECT_BTRACE,
202 /* Branch trace configuration, in XML format. */
203 TARGET_OBJECT_BTRACE_CONF,
204 /* The pathname of the executable file that was run to create
205 a specified process. ANNEX should be a string representation
206 of the process ID of the process in question, in hexadecimal
207 format. */
208 TARGET_OBJECT_EXEC_FILE,
209 /* FreeBSD virtual memory mappings. */
210 TARGET_OBJECT_FREEBSD_VMMAP,
211 /* FreeBSD process strings. */
212 TARGET_OBJECT_FREEBSD_PS_STRINGS,
213 /* Possible future objects: TARGET_OBJECT_FILE, ... */
214 };
215
216 /* Possible values returned by target_xfer_partial, etc. */
217
218 enum target_xfer_status
219 {
220 /* Some bytes are transferred. */
221 TARGET_XFER_OK = 1,
222
223 /* No further transfer is possible. */
224 TARGET_XFER_EOF = 0,
225
226 /* The piece of the object requested is unavailable. */
227 TARGET_XFER_UNAVAILABLE = 2,
228
229 /* Generic I/O error. Note that it's important that this is '-1',
230 as we still have target_xfer-related code returning hardcoded
231 '-1' on error. */
232 TARGET_XFER_E_IO = -1,
233
234 /* Keep list in sync with target_xfer_status_to_string. */
235 };
236
237 /* Return the string form of STATUS. */
238
239 extern const char *
240 target_xfer_status_to_string (enum target_xfer_status status);
241
242 typedef enum target_xfer_status
243 target_xfer_partial_ftype (struct target_ops *ops,
244 enum target_object object,
245 const char *annex,
246 gdb_byte *readbuf,
247 const gdb_byte *writebuf,
248 ULONGEST offset,
249 ULONGEST len,
250 ULONGEST *xfered_len);
251
252 enum target_xfer_status
253 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
254 const gdb_byte *writebuf, ULONGEST memaddr,
255 LONGEST len, ULONGEST *xfered_len);
256
257 /* Request that OPS transfer up to LEN addressable units of the target's
258 OBJECT. When reading from a memory object, the size of an addressable unit
259 is architecture dependent and can be found using
260 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
261 byte long. BUF should point to a buffer large enough to hold the read data,
262 taking into account the addressable unit size. The OFFSET, for a seekable
263 object, specifies the starting point. The ANNEX can be used to provide
264 additional data-specific information to the target.
265
266 Return the number of addressable units actually transferred, or a negative
267 error code (an 'enum target_xfer_error' value) if the transfer is not
268 supported or otherwise fails. Return of a positive value less than
269 LEN indicates that no further transfer is possible. Unlike the raw
270 to_xfer_partial interface, callers of these functions do not need
271 to retry partial transfers. */
272
273 extern LONGEST target_read (struct target_ops *ops,
274 enum target_object object,
275 const char *annex, gdb_byte *buf,
276 ULONGEST offset, LONGEST len);
277
278 struct memory_read_result
279 {
280 memory_read_result (ULONGEST begin_, ULONGEST end_,
281 gdb::unique_xmalloc_ptr<gdb_byte> &&data_)
282 : begin (begin_),
283 end (end_),
284 data (std::move (data_))
285 {
286 }
287
288 ~memory_read_result () = default;
289
290 memory_read_result (memory_read_result &&other) = default;
291
292 DISABLE_COPY_AND_ASSIGN (memory_read_result);
293
294 /* First address that was read. */
295 ULONGEST begin;
296 /* Past-the-end address. */
297 ULONGEST end;
298 /* The data. */
299 gdb::unique_xmalloc_ptr<gdb_byte> data;
300 };
301
302 extern std::vector<memory_read_result> read_memory_robust
303 (struct target_ops *ops, const ULONGEST offset, const LONGEST len);
304
305 /* Request that OPS transfer up to LEN addressable units from BUF to the
306 target's OBJECT. When writing to a memory object, the addressable unit
307 size is architecture dependent and can be found using
308 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
309 byte long. The OFFSET, for a seekable object, specifies the starting point.
310 The ANNEX can be used to provide additional data-specific information to
311 the target.
312
313 Return the number of addressable units actually transferred, or a negative
314 error code (an 'enum target_xfer_status' value) if the transfer is not
315 supported or otherwise fails. Return of a positive value less than
316 LEN indicates that no further transfer is possible. Unlike the raw
317 to_xfer_partial interface, callers of these functions do not need to
318 retry partial transfers. */
319
320 extern LONGEST target_write (struct target_ops *ops,
321 enum target_object object,
322 const char *annex, const gdb_byte *buf,
323 ULONGEST offset, LONGEST len);
324
325 /* Similar to target_write, except that it also calls PROGRESS with
326 the number of bytes written and the opaque BATON after every
327 successful partial write (and before the first write). This is
328 useful for progress reporting and user interaction while writing
329 data. To abort the transfer, the progress callback can throw an
330 exception. */
331
332 LONGEST target_write_with_progress (struct target_ops *ops,
333 enum target_object object,
334 const char *annex, const gdb_byte *buf,
335 ULONGEST offset, LONGEST len,
336 void (*progress) (ULONGEST, void *),
337 void *baton);
338
339 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will be read
340 using OPS. The return value will be uninstantiated if the transfer fails or
341 is not supported.
342
343 This method should be used for objects sufficiently small to store
344 in a single xmalloc'd buffer, when no fixed bound on the object's
345 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
346 through this function. */
347
348 extern gdb::optional<gdb::byte_vector> target_read_alloc
349 (struct target_ops *ops, enum target_object object, const char *annex);
350
351 /* Read OBJECT/ANNEX using OPS. The result is a NUL-terminated character vector
352 (therefore usable as a NUL-terminated string). If an error occurs or the
353 transfer is unsupported, the return value will be uninstantiated. Empty
354 objects are returned as allocated but empty strings. Therefore, on success,
355 the returned vector is guaranteed to have at least one element. A warning is
356 issued if the result contains any embedded NUL bytes. */
357
358 extern gdb::optional<gdb::char_vector> target_read_stralloc
359 (struct target_ops *ops, enum target_object object, const char *annex);
360
361 /* See target_ops->to_xfer_partial. */
362 extern target_xfer_partial_ftype target_xfer_partial;
363
364 /* Wrappers to target read/write that perform memory transfers. They
365 throw an error if the memory transfer fails.
366
367 NOTE: cagney/2003-10-23: The naming schema is lifted from
368 "frame.h". The parameter order is lifted from get_frame_memory,
369 which in turn lifted it from read_memory. */
370
371 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
372 gdb_byte *buf, LONGEST len);
373 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
374 CORE_ADDR addr, int len,
375 enum bfd_endian byte_order);
376 \f
377 struct thread_info; /* fwd decl for parameter list below: */
378
379 /* The type of the callback to the to_async method. */
380
381 typedef void async_callback_ftype (enum inferior_event_type event_type,
382 void *context);
383
384 /* Normally target debug printing is purely type-based. However,
385 sometimes it is necessary to override the debug printing on a
386 per-argument basis. This macro can be used, attribute-style, to
387 name the target debug printing function for a particular method
388 argument. FUNC is the name of the function. The macro's
389 definition is empty because it is only used by the
390 make-target-delegates script. */
391
392 #define TARGET_DEBUG_PRINTER(FUNC)
393
394 /* These defines are used to mark target_ops methods. The script
395 make-target-delegates scans these and auto-generates the base
396 method implementations. There are four macros that can be used:
397
398 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
399 does nothing. This is only valid if the method return type is
400 'void'.
401
402 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
403 'tcomplain ()'. The base method simply makes this call, which is
404 assumed not to return.
405
406 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
407 base method returns this expression's value.
408
409 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
410 make-target-delegates does not generate a base method in this case,
411 but instead uses the argument function as the base method. */
412
413 #define TARGET_DEFAULT_IGNORE()
414 #define TARGET_DEFAULT_NORETURN(ARG)
415 #define TARGET_DEFAULT_RETURN(ARG)
416 #define TARGET_DEFAULT_FUNC(ARG)
417
418 /* Each target that can be activated with "target TARGET_NAME" passes
419 the address of one of these objects to add_target, which uses the
420 object's address as unique identifier, and registers the "target
421 TARGET_NAME" command using SHORTNAME as target name. */
422
423 struct target_info
424 {
425 /* Name of this target. */
426 const char *shortname;
427
428 /* Name for printing. */
429 const char *longname;
430
431 /* Documentation. Does not include trailing newline, and starts
432 with a one-line description (probably similar to longname). */
433 const char *doc;
434 };
435
436 struct target_ops
437 : public refcounted_object
438 {
439 /* Return this target's stratum. */
440 virtual strata stratum () const = 0;
441
442 /* To the target under this one. */
443 target_ops *beneath () const;
444
445 /* Free resources associated with the target. Note that singleton
446 targets, like e.g., native targets, are global objects, not
447 heap allocated, and are thus only deleted on GDB exit. The
448 main teardown entry point is the "close" method, below. */
449 virtual ~target_ops () {}
450
451 /* Return a reference to this target's unique target_info
452 object. */
453 virtual const target_info &info () const = 0;
454
455 /* Name this target type. */
456 const char *shortname () const
457 { return info ().shortname; }
458
459 const char *longname () const
460 { return info ().longname; }
461
462 /* Close the target. This is where the target can handle
463 teardown. Heap-allocated targets should delete themselves
464 before returning. */
465 virtual void close ();
466
467 /* Attaches to a process on the target side. Arguments are as
468 passed to the `attach' command by the user. This routine can
469 be called when the target is not on the target-stack, if the
470 target_ops::can_run method returns 1; in that case, it must push
471 itself onto the stack. Upon exit, the target should be ready
472 for normal operations, and should be ready to deliver the
473 status of the process immediately (without waiting) to an
474 upcoming target_wait call. */
475 virtual bool can_attach ();
476 virtual void attach (const char *, int);
477 virtual void post_attach (int)
478 TARGET_DEFAULT_IGNORE ();
479
480 /* Detaches from the inferior. Note that on targets that support
481 async execution (i.e., targets where it is possible to detach
482 from programs with threads running), the target is responsible
483 for removing breakpoints from the program before the actual
484 detach, otherwise the program dies when it hits one. */
485 virtual void detach (inferior *, int)
486 TARGET_DEFAULT_IGNORE ();
487
488 virtual void disconnect (const char *, int)
489 TARGET_DEFAULT_NORETURN (tcomplain ());
490 virtual void resume (ptid_t,
491 int TARGET_DEBUG_PRINTER (target_debug_print_step),
492 enum gdb_signal)
493 TARGET_DEFAULT_NORETURN (noprocess ());
494
495 /* Ensure that all resumed threads are committed to the target.
496
497 See the description of
498 process_stratum_target::commit_resumed_state for more
499 details. */
500 virtual void commit_resumed ()
501 TARGET_DEFAULT_IGNORE ();
502
503 /* See target_wait's description. Note that implementations of
504 this method must not assume that inferior_ptid on entry is
505 pointing at the thread or inferior that ends up reporting an
506 event. The reported event could be for some other thread in
507 the current inferior or even for a different process of the
508 current target. inferior_ptid may also be null_ptid on
509 entry. */
510 virtual ptid_t wait (ptid_t, struct target_waitstatus *,
511 target_wait_flags options)
512 TARGET_DEFAULT_FUNC (default_target_wait);
513 virtual void fetch_registers (struct regcache *, int)
514 TARGET_DEFAULT_IGNORE ();
515 virtual void store_registers (struct regcache *, int)
516 TARGET_DEFAULT_NORETURN (noprocess ());
517 virtual void prepare_to_store (struct regcache *)
518 TARGET_DEFAULT_NORETURN (noprocess ());
519
520 virtual void files_info ()
521 TARGET_DEFAULT_IGNORE ();
522 virtual int insert_breakpoint (struct gdbarch *,
523 struct bp_target_info *)
524 TARGET_DEFAULT_NORETURN (noprocess ());
525 virtual int remove_breakpoint (struct gdbarch *,
526 struct bp_target_info *,
527 enum remove_bp_reason)
528 TARGET_DEFAULT_NORETURN (noprocess ());
529
530 /* Returns true if the target stopped because it executed a
531 software breakpoint. This is necessary for correct background
532 execution / non-stop mode operation, and for correct PC
533 adjustment on targets where the PC needs to be adjusted when a
534 software breakpoint triggers. In these modes, by the time GDB
535 processes a breakpoint event, the breakpoint may already be
536 done from the target, so GDB needs to be able to tell whether
537 it should ignore the event and whether it should adjust the PC.
538 See adjust_pc_after_break. */
539 virtual bool stopped_by_sw_breakpoint ()
540 TARGET_DEFAULT_RETURN (false);
541 /* Returns true if the above method is supported. */
542 virtual bool supports_stopped_by_sw_breakpoint ()
543 TARGET_DEFAULT_RETURN (false);
544
545 /* Returns true if the target stopped for a hardware breakpoint.
546 Likewise, if the target supports hardware breakpoints, this
547 method is necessary for correct background execution / non-stop
548 mode operation. Even though hardware breakpoints do not
549 require PC adjustment, GDB needs to be able to tell whether the
550 hardware breakpoint event is a delayed event for a breakpoint
551 that is already gone and should thus be ignored. */
552 virtual bool stopped_by_hw_breakpoint ()
553 TARGET_DEFAULT_RETURN (false);
554 /* Returns true if the above method is supported. */
555 virtual bool supports_stopped_by_hw_breakpoint ()
556 TARGET_DEFAULT_RETURN (false);
557
558 virtual int can_use_hw_breakpoint (enum bptype, int, int)
559 TARGET_DEFAULT_RETURN (0);
560 virtual int ranged_break_num_registers ()
561 TARGET_DEFAULT_RETURN (-1);
562 virtual int insert_hw_breakpoint (struct gdbarch *,
563 struct bp_target_info *)
564 TARGET_DEFAULT_RETURN (-1);
565 virtual int remove_hw_breakpoint (struct gdbarch *,
566 struct bp_target_info *)
567 TARGET_DEFAULT_RETURN (-1);
568
569 /* Documentation of what the two routines below are expected to do is
570 provided with the corresponding target_* macros. */
571 virtual int remove_watchpoint (CORE_ADDR, int,
572 enum target_hw_bp_type, struct expression *)
573 TARGET_DEFAULT_RETURN (-1);
574 virtual int insert_watchpoint (CORE_ADDR, int,
575 enum target_hw_bp_type, struct expression *)
576 TARGET_DEFAULT_RETURN (-1);
577
578 virtual int insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
579 enum target_hw_bp_type)
580 TARGET_DEFAULT_RETURN (1);
581 virtual int remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
582 enum target_hw_bp_type)
583 TARGET_DEFAULT_RETURN (1);
584 virtual bool stopped_by_watchpoint ()
585 TARGET_DEFAULT_RETURN (false);
586 virtual bool have_steppable_watchpoint ()
587 TARGET_DEFAULT_RETURN (false);
588 virtual bool stopped_data_address (CORE_ADDR *)
589 TARGET_DEFAULT_RETURN (false);
590 virtual bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int)
591 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
592
593 /* Documentation of this routine is provided with the corresponding
594 target_* macro. */
595 virtual int region_ok_for_hw_watchpoint (CORE_ADDR, int)
596 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
597
598 virtual bool can_accel_watchpoint_condition (CORE_ADDR, int, int,
599 struct expression *)
600 TARGET_DEFAULT_RETURN (false);
601 virtual int masked_watch_num_registers (CORE_ADDR, CORE_ADDR)
602 TARGET_DEFAULT_RETURN (-1);
603
604 /* Return 1 for sure target can do single step. Return -1 for
605 unknown. Return 0 for target can't do. */
606 virtual int can_do_single_step ()
607 TARGET_DEFAULT_RETURN (-1);
608
609 virtual bool supports_terminal_ours ()
610 TARGET_DEFAULT_RETURN (false);
611 virtual void terminal_init ()
612 TARGET_DEFAULT_IGNORE ();
613 virtual void terminal_inferior ()
614 TARGET_DEFAULT_IGNORE ();
615 virtual void terminal_save_inferior ()
616 TARGET_DEFAULT_IGNORE ();
617 virtual void terminal_ours_for_output ()
618 TARGET_DEFAULT_IGNORE ();
619 virtual void terminal_ours ()
620 TARGET_DEFAULT_IGNORE ();
621 virtual void terminal_info (const char *, int)
622 TARGET_DEFAULT_FUNC (default_terminal_info);
623 virtual void kill ()
624 TARGET_DEFAULT_NORETURN (noprocess ());
625 virtual void load (const char *, int)
626 TARGET_DEFAULT_NORETURN (tcomplain ());
627 /* Start an inferior process and set inferior_ptid to its pid.
628 EXEC_FILE is the file to run.
629 ALLARGS is a string containing the arguments to the program.
630 ENV is the environment vector to pass. Errors reported with error().
631 On VxWorks and various standalone systems, we ignore exec_file. */
632 virtual bool can_create_inferior ();
633 virtual void create_inferior (const char *, const std::string &,
634 char **, int);
635 virtual int insert_fork_catchpoint (int)
636 TARGET_DEFAULT_RETURN (1);
637 virtual int remove_fork_catchpoint (int)
638 TARGET_DEFAULT_RETURN (1);
639 virtual int insert_vfork_catchpoint (int)
640 TARGET_DEFAULT_RETURN (1);
641 virtual int remove_vfork_catchpoint (int)
642 TARGET_DEFAULT_RETURN (1);
643 virtual void follow_fork (inferior *, ptid_t, target_waitkind, bool, bool)
644 TARGET_DEFAULT_FUNC (default_follow_fork);
645
646 /* Add CHILD_PTID to the thread list, after handling a
647 TARGET_WAITKIND_THREAD_CLONE event for the clone parent. The
648 parent is inferior_ptid. */
649 virtual void follow_clone (ptid_t child_ptid)
650 TARGET_DEFAULT_FUNC (default_follow_clone);
651
652 virtual int insert_exec_catchpoint (int)
653 TARGET_DEFAULT_RETURN (1);
654 virtual int remove_exec_catchpoint (int)
655 TARGET_DEFAULT_RETURN (1);
656 virtual void follow_exec (inferior *, ptid_t, const char *)
657 TARGET_DEFAULT_IGNORE ();
658 virtual int set_syscall_catchpoint (int, bool, int,
659 gdb::array_view<const int>)
660 TARGET_DEFAULT_RETURN (1);
661 virtual void mourn_inferior ()
662 TARGET_DEFAULT_FUNC (default_mourn_inferior);
663
664 /* Note that can_run is special and can be invoked on an unpushed
665 target. Targets defining this method must also define
666 to_can_async_p and to_supports_non_stop. */
667 virtual bool can_run ();
668
669 /* Documentation of this routine is provided with the corresponding
670 target_* macro. */
671 virtual void pass_signals (gdb::array_view<const unsigned char> TARGET_DEBUG_PRINTER (target_debug_print_signals))
672 TARGET_DEFAULT_IGNORE ();
673
674 /* Documentation of this routine is provided with the
675 corresponding target_* function. */
676 virtual void program_signals (gdb::array_view<const unsigned char> TARGET_DEBUG_PRINTER (target_debug_print_signals))
677 TARGET_DEFAULT_IGNORE ();
678
679 virtual bool thread_alive (ptid_t ptid)
680 TARGET_DEFAULT_RETURN (false);
681 virtual void update_thread_list ()
682 TARGET_DEFAULT_IGNORE ();
683 virtual std::string pid_to_str (ptid_t)
684 TARGET_DEFAULT_FUNC (default_pid_to_str);
685 virtual const char *extra_thread_info (thread_info *)
686 TARGET_DEFAULT_RETURN (NULL);
687 virtual const char *thread_name (thread_info *)
688 TARGET_DEFAULT_RETURN (NULL);
689 virtual thread_info *thread_handle_to_thread_info (const gdb_byte *,
690 int,
691 inferior *inf)
692 TARGET_DEFAULT_RETURN (NULL);
693 /* See target_thread_info_to_thread_handle. */
694 virtual gdb::array_view<const_gdb_byte> thread_info_to_thread_handle (struct thread_info *)
695 TARGET_DEFAULT_RETURN (gdb::array_view<const gdb_byte> ());
696 virtual void stop (ptid_t)
697 TARGET_DEFAULT_IGNORE ();
698 virtual void interrupt ()
699 TARGET_DEFAULT_IGNORE ();
700 virtual void pass_ctrlc ()
701 TARGET_DEFAULT_FUNC (default_target_pass_ctrlc);
702 virtual void rcmd (const char *command, struct ui_file *output)
703 TARGET_DEFAULT_FUNC (default_rcmd);
704 virtual const char *pid_to_exec_file (int pid)
705 TARGET_DEFAULT_RETURN (NULL);
706 virtual void log_command (const char *)
707 TARGET_DEFAULT_IGNORE ();
708 virtual const std::vector<target_section> *get_section_table ()
709 TARGET_DEFAULT_RETURN (default_get_section_table ());
710
711 /* Provide default values for all "must have" methods. */
712 virtual bool has_all_memory () { return false; }
713 virtual bool has_memory () { return false; }
714 virtual bool has_stack () { return false; }
715 virtual bool has_registers () { return false; }
716 virtual bool has_execution (inferior *inf) { return false; }
717
718 /* Control thread execution. */
719 virtual thread_control_capabilities get_thread_control_capabilities ()
720 TARGET_DEFAULT_RETURN (tc_none);
721 virtual bool attach_no_wait ()
722 TARGET_DEFAULT_RETURN (0);
723 /* This method must be implemented in some situations. See the
724 comment on 'can_run'. */
725 virtual bool can_async_p ()
726 TARGET_DEFAULT_RETURN (false);
727 virtual bool is_async_p ()
728 TARGET_DEFAULT_RETURN (false);
729 virtual void async (bool)
730 TARGET_DEFAULT_NORETURN (tcomplain ());
731 virtual int async_wait_fd ()
732 TARGET_DEFAULT_NORETURN (noprocess ());
733 /* Return true if the target has pending events to report to the
734 core. If true, then GDB avoids resuming the target until all
735 pending events are consumed, so that multiple resumptions can
736 be coalesced as an optimization. Most targets can't tell
737 whether they have pending events without calling target_wait,
738 so we default to returning false. The only downside is that a
739 potential optimization is missed. */
740 virtual bool has_pending_events ()
741 TARGET_DEFAULT_RETURN (false);
742 virtual void thread_events (int)
743 TARGET_DEFAULT_IGNORE ();
744 /* Returns true if the target supports setting thread options
745 OPTIONS, false otherwise. */
746 virtual bool supports_set_thread_options (gdb_thread_options options)
747 TARGET_DEFAULT_RETURN (false);
748 /* This method must be implemented in some situations. See the
749 comment on 'can_run'. */
750 virtual bool supports_non_stop ()
751 TARGET_DEFAULT_RETURN (false);
752 /* Return true if the target operates in non-stop mode even with
753 "set non-stop off". */
754 virtual bool always_non_stop_p ()
755 TARGET_DEFAULT_RETURN (false);
756 /* find_memory_regions support method for gcore */
757 virtual int find_memory_regions (find_memory_region_ftype func, void *data)
758 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
759 /* make_corefile_notes support method for gcore */
760 virtual gdb::unique_xmalloc_ptr<char> make_corefile_notes (bfd *, int *)
761 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
762 /* get_bookmark support method for bookmarks */
763 virtual gdb_byte *get_bookmark (const char *, int)
764 TARGET_DEFAULT_NORETURN (tcomplain ());
765 /* goto_bookmark support method for bookmarks */
766 virtual void goto_bookmark (const gdb_byte *, int)
767 TARGET_DEFAULT_NORETURN (tcomplain ());
768 /* Return the thread-local address at OFFSET in the
769 thread-local storage for the thread PTID and the shared library
770 or executable file given by LOAD_MODULE_ADDR. If that block of
771 thread-local storage hasn't been allocated yet, this function
772 may throw an error. LOAD_MODULE_ADDR may be zero for statically
773 linked multithreaded inferiors. */
774 virtual CORE_ADDR get_thread_local_address (ptid_t ptid,
775 CORE_ADDR load_module_addr,
776 CORE_ADDR offset)
777 TARGET_DEFAULT_NORETURN (generic_tls_error ());
778
779 /* Request that OPS transfer up to LEN addressable units of the target's
780 OBJECT. When reading from a memory object, the size of an addressable
781 unit is architecture dependent and can be found using
782 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is
783 1 byte long. The OFFSET, for a seekable object, specifies the
784 starting point. The ANNEX can be used to provide additional
785 data-specific information to the target.
786
787 Return the transferred status, error or OK (an
788 'enum target_xfer_status' value). Save the number of addressable units
789 actually transferred in *XFERED_LEN if transfer is successful
790 (TARGET_XFER_OK) or the number unavailable units if the requested
791 data is unavailable (TARGET_XFER_UNAVAILABLE). *XFERED_LEN
792 smaller than LEN does not indicate the end of the object, only
793 the end of the transfer; higher level code should continue
794 transferring if desired. This is handled in target.c.
795
796 The interface does not support a "retry" mechanism. Instead it
797 assumes that at least one addressable unit will be transfered on each
798 successful call.
799
800 NOTE: cagney/2003-10-17: The current interface can lead to
801 fragmented transfers. Lower target levels should not implement
802 hacks, such as enlarging the transfer, in an attempt to
803 compensate for this. Instead, the target stack should be
804 extended so that it implements supply/collect methods and a
805 look-aside object cache. With that available, the lowest
806 target can safely and freely "push" data up the stack.
807
808 See target_read and target_write for more information. One,
809 and only one, of readbuf or writebuf must be non-NULL. */
810
811 virtual enum target_xfer_status xfer_partial (enum target_object object,
812 const char *annex,
813 gdb_byte *readbuf,
814 const gdb_byte *writebuf,
815 ULONGEST offset, ULONGEST len,
816 ULONGEST *xfered_len)
817 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
818
819 /* Return the limit on the size of any single memory transfer
820 for the target. */
821
822 virtual ULONGEST get_memory_xfer_limit ()
823 TARGET_DEFAULT_RETURN (ULONGEST_MAX);
824
825 /* Returns the memory map for the target. A return value of NULL
826 means that no memory map is available. If a memory address
827 does not fall within any returned regions, it's assumed to be
828 RAM. The returned memory regions should not overlap.
829
830 The order of regions does not matter; target_memory_map will
831 sort regions by starting address. For that reason, this
832 function should not be called directly except via
833 target_memory_map.
834
835 This method should not cache data; if the memory map could
836 change unexpectedly, it should be invalidated, and higher
837 layers will re-fetch it. */
838 virtual std::vector<mem_region> memory_map ()
839 TARGET_DEFAULT_RETURN (std::vector<mem_region> ());
840
841 /* Erases the region of flash memory starting at ADDRESS, of
842 length LENGTH.
843
844 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
845 on flash block boundaries, as reported by 'to_memory_map'. */
846 virtual void flash_erase (ULONGEST address, LONGEST length)
847 TARGET_DEFAULT_NORETURN (tcomplain ());
848
849 /* Finishes a flash memory write sequence. After this operation
850 all flash memory should be available for writing and the result
851 of reading from areas written by 'to_flash_write' should be
852 equal to what was written. */
853 virtual void flash_done ()
854 TARGET_DEFAULT_NORETURN (tcomplain ());
855
856 /* Describe the architecture-specific features of the current
857 inferior.
858
859 Returns the description found, or nullptr if no description was
860 available.
861
862 If some target features differ between threads, the description
863 returned by read_description (and the resulting gdbarch) won't
864 accurately describe all threads. In this case, the
865 thread_architecture method can be used to obtain gdbarches that
866 accurately describe each thread. */
867 virtual const struct target_desc *read_description ()
868 TARGET_DEFAULT_RETURN (NULL);
869
870 /* Build the PTID of the thread on which a given task is running,
871 based on LWP and THREAD. These values are extracted from the
872 task Private_Data section of the Ada Task Control Block, and
873 their interpretation depends on the target. */
874 virtual ptid_t get_ada_task_ptid (long lwp, ULONGEST thread)
875 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
876
877 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
878 Return 0 if *READPTR is already at the end of the buffer.
879 Return -1 if there is insufficient buffer for a whole entry.
880 Return 1 if an entry was read into *TYPEP and *VALP. */
881 virtual int auxv_parse (const gdb_byte **readptr,
882 const gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
883 TARGET_DEFAULT_FUNC (default_auxv_parse);
884
885 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
886 sequence of bytes in PATTERN with length PATTERN_LEN.
887
888 The result is 1 if found, 0 if not found, and -1 if there was an error
889 requiring halting of the search (e.g. memory read error).
890 If the pattern is found the address is recorded in FOUND_ADDRP. */
891 virtual int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
892 const gdb_byte *pattern, ULONGEST pattern_len,
893 CORE_ADDR *found_addrp)
894 TARGET_DEFAULT_FUNC (default_search_memory);
895
896 /* Can target execute in reverse? */
897 virtual bool can_execute_reverse ()
898 TARGET_DEFAULT_RETURN (false);
899
900 /* The direction the target is currently executing. Must be
901 implemented on targets that support reverse execution and async
902 mode. The default simply returns forward execution. */
903 virtual enum exec_direction_kind execution_direction ()
904 TARGET_DEFAULT_FUNC (default_execution_direction);
905
906 /* Does this target support debugging multiple processes
907 simultaneously? */
908 virtual bool supports_multi_process ()
909 TARGET_DEFAULT_RETURN (false);
910
911 /* Does this target support enabling and disabling tracepoints while a trace
912 experiment is running? */
913 virtual bool supports_enable_disable_tracepoint ()
914 TARGET_DEFAULT_RETURN (false);
915
916 /* Does this target support disabling address space randomization? */
917 virtual bool supports_disable_randomization ()
918 TARGET_DEFAULT_FUNC (find_default_supports_disable_randomization);
919
920 /* Does this target support the tracenz bytecode for string collection? */
921 virtual bool supports_string_tracing ()
922 TARGET_DEFAULT_RETURN (false);
923
924 /* Does this target support evaluation of breakpoint conditions on its
925 end? */
926 virtual bool supports_evaluation_of_breakpoint_conditions ()
927 TARGET_DEFAULT_RETURN (false);
928
929 /* Does this target support native dumpcore API? */
930 virtual bool supports_dumpcore ()
931 TARGET_DEFAULT_RETURN (false);
932
933 /* Generate the core file with native target API. */
934 virtual void dumpcore (const char *filename)
935 TARGET_DEFAULT_IGNORE ();
936
937 /* Does this target support evaluation of breakpoint commands on its
938 end? */
939 virtual bool can_run_breakpoint_commands ()
940 TARGET_DEFAULT_RETURN (false);
941
942 /* Determine current architecture of thread PTID.
943
944 The target is supposed to determine the architecture of the code where
945 the target is currently stopped at. The architecture information is
946 used to perform decr_pc_after_break adjustment, and also to determine
947 the frame architecture of the innermost frame. ptrace operations need to
948 operate according to the current inferior's gdbarch. */
949 virtual struct gdbarch *thread_architecture (ptid_t)
950 TARGET_DEFAULT_RETURN (NULL);
951
952 /* Determine current address space of thread PTID. */
953 virtual struct address_space *thread_address_space (ptid_t)
954 TARGET_DEFAULT_RETURN (NULL);
955
956 /* Target file operations. */
957
958 /* Return true if the filesystem seen by the current inferior
959 is the local filesystem, false otherwise. */
960 virtual bool filesystem_is_local ()
961 TARGET_DEFAULT_RETURN (true);
962
963 /* Open FILENAME on the target, in the filesystem as seen by INF,
964 using FLAGS and MODE. If INF is NULL, use the filesystem seen
965 by the debugger (GDB or, for remote targets, the remote stub).
966 If WARN_IF_SLOW is nonzero, print a warning message if the file
967 is being accessed over a link that may be slow. Return a
968 target file descriptor, or -1 if an error occurs (and set
969 *TARGET_ERRNO). */
970 virtual int fileio_open (struct inferior *inf, const char *filename,
971 int flags, int mode, int warn_if_slow,
972 fileio_error *target_errno);
973
974 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
975 Return the number of bytes written, or -1 if an error occurs
976 (and set *TARGET_ERRNO). */
977 virtual int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
978 ULONGEST offset, fileio_error *target_errno);
979
980 /* Read up to LEN bytes FD on the target into READ_BUF.
981 Return the number of bytes read, or -1 if an error occurs
982 (and set *TARGET_ERRNO). */
983 virtual int fileio_pread (int fd, gdb_byte *read_buf, int len,
984 ULONGEST offset, fileio_error *target_errno);
985
986 /* Get information about the file opened as FD and put it in
987 SB. Return 0 on success, or -1 if an error occurs (and set
988 *TARGET_ERRNO). */
989 virtual int fileio_fstat (int fd, struct stat *sb, fileio_error *target_errno);
990
991 /* Close FD on the target. Return 0, or -1 if an error occurs
992 (and set *TARGET_ERRNO). */
993 virtual int fileio_close (int fd, fileio_error *target_errno);
994
995 /* Unlink FILENAME on the target, in the filesystem as seen by
996 INF. If INF is NULL, use the filesystem seen by the debugger
997 (GDB or, for remote targets, the remote stub). Return 0, or
998 -1 if an error occurs (and set *TARGET_ERRNO). */
999 virtual int fileio_unlink (struct inferior *inf,
1000 const char *filename,
1001 fileio_error *target_errno);
1002
1003 /* Read value of symbolic link FILENAME on the target, in the
1004 filesystem as seen by INF. If INF is NULL, use the filesystem
1005 seen by the debugger (GDB or, for remote targets, the remote
1006 stub). Return a string, or an empty optional if an error
1007 occurs (and set *TARGET_ERRNO). */
1008 virtual gdb::optional<std::string> fileio_readlink (struct inferior *inf,
1009 const char *filename,
1010 fileio_error *target_errno);
1011
1012 /* Implement the "info proc" command. Returns true if the target
1013 actually implemented the command, false otherwise. */
1014 virtual bool info_proc (const char *, enum info_proc_what);
1015
1016 /* Tracepoint-related operations. */
1017
1018 /* Prepare the target for a tracing run. */
1019 virtual void trace_init ()
1020 TARGET_DEFAULT_NORETURN (tcomplain ());
1021
1022 /* Send full details of a tracepoint location to the target. */
1023 virtual void download_tracepoint (struct bp_location *location)
1024 TARGET_DEFAULT_NORETURN (tcomplain ());
1025
1026 /* Is the target able to download tracepoint locations in current
1027 state? */
1028 virtual bool can_download_tracepoint ()
1029 TARGET_DEFAULT_RETURN (false);
1030
1031 /* Send full details of a trace state variable to the target. */
1032 virtual void download_trace_state_variable (const trace_state_variable &tsv)
1033 TARGET_DEFAULT_NORETURN (tcomplain ());
1034
1035 /* Enable a tracepoint on the target. */
1036 virtual void enable_tracepoint (struct bp_location *location)
1037 TARGET_DEFAULT_NORETURN (tcomplain ());
1038
1039 /* Disable a tracepoint on the target. */
1040 virtual void disable_tracepoint (struct bp_location *location)
1041 TARGET_DEFAULT_NORETURN (tcomplain ());
1042
1043 /* Inform the target info of memory regions that are readonly
1044 (such as text sections), and so it should return data from
1045 those rather than look in the trace buffer. */
1046 virtual void trace_set_readonly_regions ()
1047 TARGET_DEFAULT_NORETURN (tcomplain ());
1048
1049 /* Start a trace run. */
1050 virtual void trace_start ()
1051 TARGET_DEFAULT_NORETURN (tcomplain ());
1052
1053 /* Get the current status of a tracing run. */
1054 virtual int get_trace_status (struct trace_status *ts)
1055 TARGET_DEFAULT_RETURN (-1);
1056
1057 virtual void get_tracepoint_status (tracepoint *tp,
1058 struct uploaded_tp *utp)
1059 TARGET_DEFAULT_NORETURN (tcomplain ());
1060
1061 /* Stop a trace run. */
1062 virtual void trace_stop ()
1063 TARGET_DEFAULT_NORETURN (tcomplain ());
1064
1065 /* Ask the target to find a trace frame of the given type TYPE,
1066 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
1067 number of the trace frame, and also the tracepoint number at
1068 TPP. If no trace frame matches, return -1. May throw if the
1069 operation fails. */
1070 virtual int trace_find (enum trace_find_type type, int num,
1071 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
1072 TARGET_DEFAULT_RETURN (-1);
1073
1074 /* Get the value of the trace state variable number TSV, returning
1075 1 if the value is known and writing the value itself into the
1076 location pointed to by VAL, else returning 0. */
1077 virtual bool get_trace_state_variable_value (int tsv, LONGEST *val)
1078 TARGET_DEFAULT_RETURN (false);
1079
1080 virtual int save_trace_data (const char *filename)
1081 TARGET_DEFAULT_NORETURN (tcomplain ());
1082
1083 virtual int upload_tracepoints (struct uploaded_tp **utpp)
1084 TARGET_DEFAULT_RETURN (0);
1085
1086 virtual int upload_trace_state_variables (struct uploaded_tsv **utsvp)
1087 TARGET_DEFAULT_RETURN (0);
1088
1089 virtual LONGEST get_raw_trace_data (gdb_byte *buf,
1090 ULONGEST offset, LONGEST len)
1091 TARGET_DEFAULT_NORETURN (tcomplain ());
1092
1093 /* Get the minimum length of instruction on which a fast tracepoint
1094 may be set on the target. If this operation is unsupported,
1095 return -1. If for some reason the minimum length cannot be
1096 determined, return 0. */
1097 virtual int get_min_fast_tracepoint_insn_len ()
1098 TARGET_DEFAULT_RETURN (-1);
1099
1100 /* Set the target's tracing behavior in response to unexpected
1101 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
1102 virtual void set_disconnected_tracing (int val)
1103 TARGET_DEFAULT_IGNORE ();
1104 virtual void set_circular_trace_buffer (int val)
1105 TARGET_DEFAULT_IGNORE ();
1106 /* Set the size of trace buffer in the target. */
1107 virtual void set_trace_buffer_size (LONGEST val)
1108 TARGET_DEFAULT_IGNORE ();
1109
1110 /* Add/change textual notes about the trace run, returning true if
1111 successful, false otherwise. */
1112 virtual bool set_trace_notes (const char *user, const char *notes,
1113 const char *stopnotes)
1114 TARGET_DEFAULT_RETURN (false);
1115
1116 /* Return the processor core that thread PTID was last seen on.
1117 This information is updated only when:
1118 - update_thread_list is called
1119 - thread stops
1120 If the core cannot be determined -- either for the specified
1121 thread, or right now, or in this debug session, or for this
1122 target -- return -1. */
1123 virtual int core_of_thread (ptid_t ptid)
1124 TARGET_DEFAULT_RETURN (-1);
1125
1126 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
1127 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
1128 a match, 0 if there's a mismatch, and -1 if an error is
1129 encountered while reading memory. */
1130 virtual int verify_memory (const gdb_byte *data,
1131 CORE_ADDR memaddr, ULONGEST size)
1132 TARGET_DEFAULT_FUNC (default_verify_memory);
1133
1134 /* Return the address of the start of the Thread Information Block
1135 a Windows OS specific feature. */
1136 virtual bool get_tib_address (ptid_t ptid, CORE_ADDR *addr)
1137 TARGET_DEFAULT_NORETURN (tcomplain ());
1138
1139 /* Send the new settings of write permission variables. */
1140 virtual void set_permissions ()
1141 TARGET_DEFAULT_IGNORE ();
1142
1143 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
1144 with its details. Return true on success, false on failure. */
1145 virtual bool static_tracepoint_marker_at (CORE_ADDR,
1146 static_tracepoint_marker *marker)
1147 TARGET_DEFAULT_RETURN (false);
1148
1149 /* Return a vector of all tracepoints markers string id ID, or all
1150 markers if ID is NULL. */
1151 virtual std::vector<static_tracepoint_marker>
1152 static_tracepoint_markers_by_strid (const char *id)
1153 TARGET_DEFAULT_NORETURN (tcomplain ());
1154
1155 /* Return a traceframe info object describing the current
1156 traceframe's contents. This method should not cache data;
1157 higher layers take care of caching, invalidating, and
1158 re-fetching when necessary. */
1159 virtual traceframe_info_up traceframe_info ()
1160 TARGET_DEFAULT_NORETURN (tcomplain ());
1161
1162 /* Ask the target to use or not to use agent according to USE.
1163 Return true if successful, false otherwise. */
1164 virtual bool use_agent (bool use)
1165 TARGET_DEFAULT_NORETURN (tcomplain ());
1166
1167 /* Is the target able to use agent in current state? */
1168 virtual bool can_use_agent ()
1169 TARGET_DEFAULT_RETURN (false);
1170
1171 /* Enable branch tracing for TP using CONF configuration.
1172 Return a branch trace target information struct for reading and for
1173 disabling branch trace. */
1174 virtual struct btrace_target_info *enable_btrace (thread_info *tp,
1175 const struct btrace_config *conf)
1176 TARGET_DEFAULT_NORETURN (tcomplain ());
1177
1178 /* Disable branch tracing and deallocate TINFO. */
1179 virtual void disable_btrace (struct btrace_target_info *tinfo)
1180 TARGET_DEFAULT_NORETURN (tcomplain ());
1181
1182 /* Disable branch tracing and deallocate TINFO. This function is similar
1183 to to_disable_btrace, except that it is called during teardown and is
1184 only allowed to perform actions that are safe. A counter-example would
1185 be attempting to talk to a remote target. */
1186 virtual void teardown_btrace (struct btrace_target_info *tinfo)
1187 TARGET_DEFAULT_NORETURN (tcomplain ());
1188
1189 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1190 DATA is cleared before new trace is added. */
1191 virtual enum btrace_error read_btrace (struct btrace_data *data,
1192 struct btrace_target_info *btinfo,
1193 enum btrace_read_type type)
1194 TARGET_DEFAULT_NORETURN (tcomplain ());
1195
1196 /* Get the branch trace configuration. */
1197 virtual const struct btrace_config *btrace_conf (const struct btrace_target_info *)
1198 TARGET_DEFAULT_RETURN (NULL);
1199
1200 /* Current recording method. */
1201 virtual enum record_method record_method (ptid_t ptid)
1202 TARGET_DEFAULT_RETURN (RECORD_METHOD_NONE);
1203
1204 /* Stop trace recording. */
1205 virtual void stop_recording ()
1206 TARGET_DEFAULT_IGNORE ();
1207
1208 /* Print information about the recording. */
1209 virtual void info_record ()
1210 TARGET_DEFAULT_IGNORE ();
1211
1212 /* Save the recorded execution trace into a file. */
1213 virtual void save_record (const char *filename)
1214 TARGET_DEFAULT_NORETURN (tcomplain ());
1215
1216 /* Delete the recorded execution trace from the current position
1217 onwards. */
1218 virtual bool supports_delete_record ()
1219 TARGET_DEFAULT_RETURN (false);
1220 virtual void delete_record ()
1221 TARGET_DEFAULT_NORETURN (tcomplain ());
1222
1223 /* Query if the record target is currently replaying PTID. */
1224 virtual bool record_is_replaying (ptid_t ptid)
1225 TARGET_DEFAULT_RETURN (false);
1226
1227 /* Query if the record target will replay PTID if it were resumed in
1228 execution direction DIR. */
1229 virtual bool record_will_replay (ptid_t ptid, int dir)
1230 TARGET_DEFAULT_RETURN (false);
1231
1232 /* Stop replaying. */
1233 virtual void record_stop_replaying ()
1234 TARGET_DEFAULT_IGNORE ();
1235
1236 /* Go to the begin of the execution trace. */
1237 virtual void goto_record_begin ()
1238 TARGET_DEFAULT_NORETURN (tcomplain ());
1239
1240 /* Go to the end of the execution trace. */
1241 virtual void goto_record_end ()
1242 TARGET_DEFAULT_NORETURN (tcomplain ());
1243
1244 /* Go to a specific location in the recorded execution trace. */
1245 virtual void goto_record (ULONGEST insn)
1246 TARGET_DEFAULT_NORETURN (tcomplain ());
1247
1248 /* Disassemble SIZE instructions in the recorded execution trace from
1249 the current position.
1250 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1251 disassemble SIZE succeeding instructions. */
1252 virtual void insn_history (int size, gdb_disassembly_flags flags)
1253 TARGET_DEFAULT_NORETURN (tcomplain ());
1254
1255 /* Disassemble SIZE instructions in the recorded execution trace around
1256 FROM.
1257 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1258 disassemble SIZE instructions after FROM. */
1259 virtual void insn_history_from (ULONGEST from, int size,
1260 gdb_disassembly_flags flags)
1261 TARGET_DEFAULT_NORETURN (tcomplain ());
1262
1263 /* Disassemble a section of the recorded execution trace from instruction
1264 BEGIN (inclusive) to instruction END (inclusive). */
1265 virtual void insn_history_range (ULONGEST begin, ULONGEST end,
1266 gdb_disassembly_flags flags)
1267 TARGET_DEFAULT_NORETURN (tcomplain ());
1268
1269 /* Print a function trace of the recorded execution trace.
1270 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1271 succeeding functions. */
1272 virtual void call_history (int size, record_print_flags flags)
1273 TARGET_DEFAULT_NORETURN (tcomplain ());
1274
1275 /* Print a function trace of the recorded execution trace starting
1276 at function FROM.
1277 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1278 SIZE functions after FROM. */
1279 virtual void call_history_from (ULONGEST begin, int size, record_print_flags flags)
1280 TARGET_DEFAULT_NORETURN (tcomplain ());
1281
1282 /* Print a function trace of an execution trace section from function BEGIN
1283 (inclusive) to function END (inclusive). */
1284 virtual void call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
1285 TARGET_DEFAULT_NORETURN (tcomplain ());
1286
1287 /* True if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1288 non-empty annex. */
1289 virtual bool augmented_libraries_svr4_read ()
1290 TARGET_DEFAULT_RETURN (false);
1291
1292 /* Those unwinders are tried before any other arch unwinders. If
1293 SELF doesn't have unwinders, it should delegate to the
1294 "beneath" target. */
1295 virtual const struct frame_unwind *get_unwinder ()
1296 TARGET_DEFAULT_RETURN (NULL);
1297
1298 virtual const struct frame_unwind *get_tailcall_unwinder ()
1299 TARGET_DEFAULT_RETURN (NULL);
1300
1301 /* Prepare to generate a core file. */
1302 virtual void prepare_to_generate_core ()
1303 TARGET_DEFAULT_IGNORE ();
1304
1305 /* Cleanup after generating a core file. */
1306 virtual void done_generating_core ()
1307 TARGET_DEFAULT_IGNORE ();
1308
1309 /* Returns true if the target supports memory tagging, false otherwise. */
1310 virtual bool supports_memory_tagging ()
1311 TARGET_DEFAULT_RETURN (false);
1312
1313 /* Return the allocated memory tags of type TYPE associated with
1314 [ADDRESS, ADDRESS + LEN) in TAGS.
1315
1316 LEN is the number of bytes in the memory range. TAGS is a vector of
1317 bytes containing the tags found in the above memory range.
1318
1319 It is up to the architecture/target to interpret the bytes in the TAGS
1320 vector and read the tags appropriately.
1321
1322 Returns true if fetching the tags succeeded and false otherwise. */
1323 virtual bool fetch_memtags (CORE_ADDR address, size_t len,
1324 gdb::byte_vector &tags, int type)
1325 TARGET_DEFAULT_NORETURN (tcomplain ());
1326
1327 /* Write the allocation tags of type TYPE contained in TAGS to the memory
1328 range [ADDRESS, ADDRESS + LEN).
1329
1330 LEN is the number of bytes in the memory range. TAGS is a vector of
1331 bytes containing the tags to be stored to the memory range.
1332
1333 It is up to the architecture/target to interpret the bytes in the TAGS
1334 vector and store them appropriately.
1335
1336 Returns true if storing the tags succeeded and false otherwise. */
1337 virtual bool store_memtags (CORE_ADDR address, size_t len,
1338 const gdb::byte_vector &tags, int type)
1339 TARGET_DEFAULT_NORETURN (tcomplain ());
1340
1341 /* Return the x86 XSAVE extended state area layout. */
1342 virtual x86_xsave_layout fetch_x86_xsave_layout ()
1343 TARGET_DEFAULT_RETURN (x86_xsave_layout ());
1344 };
1345
1346 /* Deleter for std::unique_ptr. See comments in
1347 target_ops::~target_ops and target_ops::close about heap-allocated
1348 targets. */
1349 struct target_ops_deleter
1350 {
1351 void operator() (target_ops *target)
1352 {
1353 target->close ();
1354 }
1355 };
1356
1357 /* A unique pointer for target_ops. */
1358 typedef std::unique_ptr<target_ops, target_ops_deleter> target_ops_up;
1359
1360 /* A policy class to interface gdb::ref_ptr with target_ops. */
1361
1362 struct target_ops_ref_policy
1363 {
1364 static void incref (target_ops *t)
1365 {
1366 t->incref ();
1367 }
1368
1369 /* Decrement the reference count on T, and, if the reference count
1370 reaches zero, close the target. */
1371 static void decref (target_ops *t);
1372 };
1373
1374 /* A gdb::ref_ptr pointer to a target_ops. */
1375 typedef gdb::ref_ptr<target_ops, target_ops_ref_policy> target_ops_ref;
1376
1377 /* Native target backends call this once at initialization time to
1378 inform the core about which is the target that can respond to "run"
1379 or "attach". Note: native targets are always singletons. */
1380 extern void set_native_target (target_ops *target);
1381
1382 /* Get the registered native target, if there's one. Otherwise return
1383 NULL. */
1384 extern target_ops *get_native_target ();
1385
1386 /* Type that manages a target stack. See description of target stacks
1387 and strata at the top of the file. */
1388
1389 class target_stack
1390 {
1391 public:
1392 target_stack () = default;
1393 DISABLE_COPY_AND_ASSIGN (target_stack);
1394
1395 /* Push a new target into the stack of the existing target
1396 accessors, possibly superseding some existing accessor. */
1397 void push (target_ops *t);
1398
1399 /* Remove a target from the stack, wherever it may be. Return true
1400 if it was removed, false otherwise. */
1401 bool unpush (target_ops *t);
1402
1403 /* Returns true if T is pushed on the target stack. */
1404 bool is_pushed (const target_ops *t) const
1405 { return at (t->stratum ()) == t; }
1406
1407 /* Return the target at STRATUM. */
1408 target_ops *at (strata stratum) const { return m_stack[stratum].get (); }
1409
1410 /* Return the target at the top of the stack. */
1411 target_ops *top () const { return at (m_top); }
1412
1413 /* Find the next target down the stack from the specified target. */
1414 target_ops *find_beneath (const target_ops *t) const;
1415
1416 private:
1417 /* The stratum of the top target. */
1418 enum strata m_top {};
1419
1420 /* The stack, represented as an array, with one slot per stratum.
1421 If no target is pushed at some stratum, the corresponding slot is
1422 null. */
1423 std::array<target_ops_ref, (int) debug_stratum + 1> m_stack;
1424 };
1425
1426 /* Return the dummy target. */
1427 extern target_ops *get_dummy_target ();
1428
1429 /* Define easy words for doing these operations on our current target. */
1430
1431 extern const char *target_shortname ();
1432
1433 /* Find the correct target to use for "attach". If a target on the
1434 current stack supports attaching, then it is returned. Otherwise,
1435 the default run target is returned. */
1436
1437 extern struct target_ops *find_attach_target (void);
1438
1439 /* Find the correct target to use for "run". If a target on the
1440 current stack supports creating a new inferior, then it is
1441 returned. Otherwise, the default run target is returned. */
1442
1443 extern struct target_ops *find_run_target (void);
1444
1445 /* Some targets don't generate traps when attaching to the inferior,
1446 or their target_attach implementation takes care of the waiting.
1447 These targets must set to_attach_no_wait. */
1448
1449 extern bool target_attach_no_wait ();
1450
1451 /* The target_attach operation places a process under debugger control,
1452 and stops the process.
1453
1454 This operation provides a target-specific hook that allows the
1455 necessary bookkeeping to be performed after an attach completes. */
1456
1457 extern void target_post_attach (int pid);
1458
1459 /* Display a message indicating we're about to attach to a given
1460 process. */
1461
1462 extern void target_announce_attach (int from_tty, int pid);
1463
1464 /* Display a message indicating we're about to detach from the current
1465 inferior process. */
1466
1467 extern void target_announce_detach (int from_tty);
1468
1469 /* Takes a program previously attached to and detaches it.
1470 The program may resume execution (some targets do, some don't) and will
1471 no longer stop on signals, etc. We better not have left any breakpoints
1472 in the program or it'll die when it hits one. FROM_TTY says whether to be
1473 verbose or not. */
1474
1475 extern void target_detach (inferior *inf, int from_tty);
1476
1477 /* Disconnect from the current target without resuming it (leaving it
1478 waiting for a debugger). */
1479
1480 extern void target_disconnect (const char *, int);
1481
1482 /* Resume execution (or prepare for execution) of the current thread
1483 (INFERIOR_PTID), while optionally letting other threads of the
1484 current process or all processes run free.
1485
1486 STEP says whether to hardware single-step the current thread or to
1487 let it run free; SIGNAL is the signal to be given to the current
1488 thread, or GDB_SIGNAL_0 for no signal. The caller may not pass
1489 GDB_SIGNAL_DEFAULT.
1490
1491 SCOPE_PTID indicates the resumption scope. I.e., which threads
1492 (other than the current) run free. If resuming a single thread,
1493 SCOPE_PTID is the same thread as the current thread. A wildcard
1494 SCOPE_PTID (all threads, or all threads of process) lets threads
1495 other than the current (for which the wildcard SCOPE_PTID matches)
1496 resume with their 'thread->suspend.stop_signal' signal (usually
1497 GDB_SIGNAL_0) if it is in "pass" state, or with no signal if in "no
1498 pass" state. Note neither STEP nor SIGNAL apply to any thread
1499 other than the current.
1500
1501 In order to efficiently handle batches of resumption requests,
1502 targets may implement this method such that it records the
1503 resumption request, but defers the actual resumption to the
1504 target_commit_resume method implementation. See
1505 target_commit_resume below. */
1506 extern void target_resume (ptid_t scope_ptid,
1507 int step, enum gdb_signal signal);
1508
1509 /* Ensure that all resumed threads are committed to the target.
1510
1511 See the description of process_stratum_target::commit_resumed_state
1512 for more details. */
1513 extern void target_commit_resumed ();
1514
1515 /* For target_read_memory see target/target.h. */
1516
1517 /* The default target_ops::to_wait implementation. */
1518
1519 extern ptid_t default_target_wait (struct target_ops *ops,
1520 ptid_t ptid,
1521 struct target_waitstatus *status,
1522 target_wait_flags options);
1523
1524 /* Return true if the target has pending events to report to the core.
1525 See target_ops::has_pending_events(). */
1526
1527 extern bool target_has_pending_events ();
1528
1529 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1530
1531 extern void target_fetch_registers (struct regcache *regcache, int regno);
1532
1533 /* Store at least register REGNO, or all regs if REGNO == -1.
1534 It can store as many registers as it wants to, so target_prepare_to_store
1535 must have been previously called. Calls error() if there are problems. */
1536
1537 extern void target_store_registers (struct regcache *regcache, int regs);
1538
1539 /* Get ready to modify the registers array. On machines which store
1540 individual registers, this doesn't need to do anything. On machines
1541 which store all the registers in one fell swoop, this makes sure
1542 that REGISTERS contains all the registers from the program being
1543 debugged. */
1544
1545 extern void target_prepare_to_store (regcache *regcache);
1546
1547 /* Determine current address space of thread PTID. */
1548
1549 struct address_space *target_thread_address_space (ptid_t);
1550
1551 /* Implement the "info proc" command. This returns one if the request
1552 was handled, and zero otherwise. It can also throw an exception if
1553 an error was encountered while attempting to handle the
1554 request. */
1555
1556 int target_info_proc (const char *, enum info_proc_what);
1557
1558 /* Returns true if this target can disable address space randomization. */
1559
1560 int target_supports_disable_randomization (void);
1561
1562 /* Returns true if this target can enable and disable tracepoints
1563 while a trace experiment is running. */
1564
1565 extern bool target_supports_enable_disable_tracepoint ();
1566
1567 extern bool target_supports_string_tracing ();
1568
1569 /* Returns true if this target can handle breakpoint conditions
1570 on its end. */
1571
1572 extern bool target_supports_evaluation_of_breakpoint_conditions ();
1573
1574 /* Does this target support dumpcore API? */
1575
1576 extern bool target_supports_dumpcore ();
1577
1578 /* Generate the core file with target API. */
1579
1580 extern void target_dumpcore (const char *filename);
1581
1582 /* Returns true if this target can handle breakpoint commands
1583 on its end. */
1584
1585 extern bool target_can_run_breakpoint_commands ();
1586
1587 /* For target_read_memory see target/target.h. */
1588
1589 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1590 ssize_t len);
1591
1592 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1593
1594 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1595
1596 /* For target_write_memory see target/target.h. */
1597
1598 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1599 ssize_t len);
1600
1601 /* Fetches the target's memory map. If one is found it is sorted
1602 and returned, after some consistency checking. Otherwise, NULL
1603 is returned. */
1604 std::vector<mem_region> target_memory_map (void);
1605
1606 /* Erases all flash memory regions on the target. */
1607 void flash_erase_command (const char *cmd, int from_tty);
1608
1609 /* Erase the specified flash region. */
1610 void target_flash_erase (ULONGEST address, LONGEST length);
1611
1612 /* Finish a sequence of flash operations. */
1613 void target_flash_done (void);
1614
1615 /* Describes a request for a memory write operation. */
1616 struct memory_write_request
1617 {
1618 memory_write_request (ULONGEST begin_, ULONGEST end_,
1619 gdb_byte *data_ = nullptr, void *baton_ = nullptr)
1620 : begin (begin_), end (end_), data (data_), baton (baton_)
1621 {}
1622
1623 /* Begining address that must be written. */
1624 ULONGEST begin;
1625 /* Past-the-end address. */
1626 ULONGEST end;
1627 /* The data to write. */
1628 gdb_byte *data;
1629 /* A callback baton for progress reporting for this request. */
1630 void *baton;
1631 };
1632
1633 /* Enumeration specifying different flash preservation behaviour. */
1634 enum flash_preserve_mode
1635 {
1636 flash_preserve,
1637 flash_discard
1638 };
1639
1640 /* Write several memory blocks at once. This version can be more
1641 efficient than making several calls to target_write_memory, in
1642 particular because it can optimize accesses to flash memory.
1643
1644 Moreover, this is currently the only memory access function in gdb
1645 that supports writing to flash memory, and it should be used for
1646 all cases where access to flash memory is desirable.
1647
1648 REQUESTS is the vector of memory_write_request.
1649 PRESERVE_FLASH_P indicates what to do with blocks which must be
1650 erased, but not completely rewritten.
1651 PROGRESS_CB is a function that will be periodically called to provide
1652 feedback to user. It will be called with the baton corresponding
1653 to the request currently being written. It may also be called
1654 with a NULL baton, when preserved flash sectors are being rewritten.
1655
1656 The function returns 0 on success, and error otherwise. */
1657 int target_write_memory_blocks
1658 (const std::vector<memory_write_request> &requests,
1659 enum flash_preserve_mode preserve_flash_p,
1660 void (*progress_cb) (ULONGEST, void *));
1661
1662 /* Print a line about the current target. */
1663
1664 extern void target_files_info ();
1665
1666 /* Insert a breakpoint at address BP_TGT->placed_address in
1667 the target machine. Returns 0 for success, and returns non-zero or
1668 throws an error (with a detailed failure reason error code and
1669 message) otherwise. */
1670
1671 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1672 struct bp_target_info *bp_tgt);
1673
1674 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1675 machine. Result is 0 for success, non-zero for error. */
1676
1677 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1678 struct bp_target_info *bp_tgt,
1679 enum remove_bp_reason reason);
1680
1681 /* Return true if the target stack has a non-default
1682 "terminal_ours" method. */
1683
1684 extern bool target_supports_terminal_ours (void);
1685
1686 /* Kill the inferior process. Make it go away. */
1687
1688 extern void target_kill (void);
1689
1690 /* Load an executable file into the target process. This is expected
1691 to not only bring new code into the target process, but also to
1692 update GDB's symbol tables to match.
1693
1694 ARG contains command-line arguments, to be broken down with
1695 buildargv (). The first non-switch argument is the filename to
1696 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1697 0)), which is an offset to apply to the load addresses of FILE's
1698 sections. The target may define switches, or other non-switch
1699 arguments, as it pleases. */
1700
1701 extern void target_load (const char *arg, int from_tty);
1702
1703 /* On some targets, we can catch an inferior fork or vfork event when
1704 it occurs. These functions insert/remove an already-created
1705 catchpoint for such events. They return 0 for success, 1 if the
1706 catchpoint type is not supported and -1 for failure. */
1707
1708 extern int target_insert_fork_catchpoint (int pid);
1709
1710 extern int target_remove_fork_catchpoint (int pid);
1711
1712 extern int target_insert_vfork_catchpoint (int pid);
1713
1714 extern int target_remove_vfork_catchpoint (int pid);
1715
1716 /* Call the follow_fork method on the current target stack.
1717
1718 This function is called when the inferior forks or vforks, to perform any
1719 bookkeeping and fiddling necessary to continue debugging either the parent,
1720 the child or both. */
1721
1722 void target_follow_fork (inferior *inf, ptid_t child_ptid,
1723 target_waitkind fork_kind, bool follow_child,
1724 bool detach_fork);
1725
1726 /* Handle the target-specific bookkeeping required when the inferior makes an
1727 exec call.
1728
1729 The current inferior at the time of the call is the inferior that did the
1730 exec. FOLLOW_INF is the inferior in which execution continues post-exec.
1731 If "follow-exec-mode" is "same", FOLLOW_INF is the same as the current
1732 inferior, meaning that execution continues with the same inferior. If
1733 "follow-exec-mode" is "new", FOLLOW_INF is a different inferior, meaning
1734 that execution continues in a new inferior.
1735
1736 On exit, the target must leave FOLLOW_INF as the current inferior. */
1737
1738 void target_follow_exec (inferior *follow_inf, ptid_t ptid,
1739 const char *execd_pathname);
1740
1741 /* On some targets, we can catch an inferior exec event when it
1742 occurs. These functions insert/remove an already-created
1743 catchpoint for such events. They return 0 for success, 1 if the
1744 catchpoint type is not supported and -1 for failure. */
1745
1746 extern int target_insert_exec_catchpoint (int pid);
1747
1748 extern int target_remove_exec_catchpoint (int pid);
1749
1750 /* Syscall catch.
1751
1752 NEEDED is true if any syscall catch (of any kind) is requested.
1753 If NEEDED is false, it means the target can disable the mechanism to
1754 catch system calls because there are no more catchpoints of this type.
1755
1756 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1757 being requested. In this case, SYSCALL_COUNTS should be ignored.
1758
1759 SYSCALL_COUNTS is an array of ints, indexed by syscall number. An
1760 element in this array is nonzero if that syscall should be caught.
1761 This argument only matters if ANY_COUNT is zero.
1762
1763 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1764 for failure. */
1765
1766 extern int target_set_syscall_catchpoint
1767 (int pid, bool needed, int any_count,
1768 gdb::array_view<const int> syscall_counts);
1769
1770 /* The debugger has completed a blocking wait() call. There is now
1771 some process event that must be processed. This function should
1772 be defined by those targets that require the debugger to perform
1773 cleanup or internal state changes in response to the process event. */
1774
1775 /* For target_mourn_inferior see target/target.h. */
1776
1777 /* Does target have enough data to do a run or attach command? */
1778
1779 extern int target_can_run ();
1780
1781 /* Set list of signals to be handled in the target.
1782
1783 PASS_SIGNALS is an array indexed by target signal number
1784 (enum gdb_signal). For every signal whose entry in this array is
1785 non-zero, the target is allowed -but not required- to skip reporting
1786 arrival of the signal to the GDB core by returning from target_wait,
1787 and to pass the signal directly to the inferior instead.
1788
1789 However, if the target is hardware single-stepping a thread that is
1790 about to receive a signal, it needs to be reported in any case, even
1791 if mentioned in a previous target_pass_signals call. */
1792
1793 extern void target_pass_signals
1794 (gdb::array_view<const unsigned char> pass_signals);
1795
1796 /* Set list of signals the target may pass to the inferior. This
1797 directly maps to the "handle SIGNAL pass/nopass" setting.
1798
1799 PROGRAM_SIGNALS is an array indexed by target signal
1800 number (enum gdb_signal). For every signal whose entry in this
1801 array is non-zero, the target is allowed to pass the signal to the
1802 inferior. Signals not present in the array shall be silently
1803 discarded. This does not influence whether to pass signals to the
1804 inferior as a result of a target_resume call. This is useful in
1805 scenarios where the target needs to decide whether to pass or not a
1806 signal to the inferior without GDB core involvement, such as for
1807 example, when detaching (as threads may have been suspended with
1808 pending signals not reported to GDB). */
1809
1810 extern void target_program_signals
1811 (gdb::array_view<const unsigned char> program_signals);
1812
1813 /* Check to see if a thread is still alive. */
1814
1815 extern int target_thread_alive (ptid_t ptid);
1816
1817 /* Sync the target's threads with GDB's thread list. */
1818
1819 extern void target_update_thread_list (void);
1820
1821 /* Make target stop in a continuable fashion. (For instance, under
1822 Unix, this should act like SIGSTOP). Note that this function is
1823 asynchronous: it does not wait for the target to become stopped
1824 before returning. If this is the behavior you want please use
1825 target_stop_and_wait. */
1826
1827 extern void target_stop (ptid_t ptid);
1828
1829 /* Interrupt the target. Unlike target_stop, this does not specify
1830 which thread/process reports the stop. For most target this acts
1831 like raising a SIGINT, though that's not absolutely required. This
1832 function is asynchronous. */
1833
1834 extern void target_interrupt ();
1835
1836 /* Pass a ^C, as determined to have been pressed by checking the quit
1837 flag, to the target, as if the user had typed the ^C on the
1838 inferior's controlling terminal while the inferior was in the
1839 foreground. Remote targets may take the opportunity to detect the
1840 remote side is not responding and offer to disconnect. */
1841
1842 extern void target_pass_ctrlc (void);
1843
1844 /* The default target_ops::to_pass_ctrlc implementation. Simply calls
1845 target_interrupt. */
1846 extern void default_target_pass_ctrlc (struct target_ops *ops);
1847
1848 /* Send the specified COMMAND to the target's monitor
1849 (shell,interpreter) for execution. The result of the query is
1850 placed in OUTBUF. */
1851
1852 extern void target_rcmd (const char *command, struct ui_file *outbuf);
1853
1854 /* Does the target include memory? (Dummy targets don't.) */
1855
1856 extern int target_has_memory ();
1857
1858 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1859 we start a process.) */
1860
1861 extern int target_has_stack ();
1862
1863 /* Does the target have registers? (Exec files don't.) */
1864
1865 extern int target_has_registers ();
1866
1867 /* Does the target have execution? Can we make it jump (through
1868 hoops), or pop its stack a few times? This means that the current
1869 target is currently executing; for some targets, that's the same as
1870 whether or not the target is capable of execution, but there are
1871 also targets which can be current while not executing. In that
1872 case this will become true after to_create_inferior or
1873 to_attach. INF is the inferior to use; nullptr means to use the
1874 current inferior. */
1875
1876 extern bool target_has_execution (inferior *inf = nullptr);
1877
1878 /* Can the target support the debugger control of thread execution?
1879 Can it lock the thread scheduler? */
1880
1881 extern bool target_can_lock_scheduler ();
1882
1883 /* Controls whether async mode is permitted. */
1884 extern bool target_async_permitted;
1885
1886 /* Can the target support asynchronous execution? */
1887 extern bool target_can_async_p ();
1888
1889 /* An overload of the above that can be called when the target is not yet
1890 pushed, this calls TARGET::can_async_p directly. */
1891 extern bool target_can_async_p (struct target_ops *target);
1892
1893 /* Is the target in asynchronous execution mode? */
1894 extern bool target_is_async_p ();
1895
1896 /* Enables/disabled async target events. */
1897 extern void target_async (bool enable);
1898
1899 /* Enables/disables thread create and exit events. */
1900 extern void target_thread_events (int enable);
1901
1902 /* Returns true if the target supports setting thread options
1903 OPTIONS. */
1904 extern bool target_supports_set_thread_options (gdb_thread_options options);
1905
1906 /* Whether support for controlling the target backends always in
1907 non-stop mode is enabled. */
1908 extern enum auto_boolean target_non_stop_enabled;
1909
1910 /* Is the target in non-stop mode? Some targets control the inferior
1911 in non-stop mode even with "set non-stop off". Always true if "set
1912 non-stop" is on. */
1913 extern bool target_is_non_stop_p ();
1914
1915 /* Return true if at least one inferior has a non-stop target. */
1916 extern bool exists_non_stop_target ();
1917
1918 extern exec_direction_kind target_execution_direction ();
1919
1920 /* Converts a process id to a string. Usually, the string just contains
1921 `process xyz', but on some systems it may contain
1922 `process xyz thread abc'. */
1923
1924 extern std::string target_pid_to_str (ptid_t ptid);
1925
1926 extern std::string normal_pid_to_str (ptid_t ptid);
1927
1928 /* Return a short string describing extra information about PID,
1929 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1930 is okay. */
1931
1932 extern const char *target_extra_thread_info (thread_info *tp);
1933
1934 /* Return the thread's name, or NULL if the target is unable to determine it.
1935 The returned value must not be freed by the caller.
1936
1937 You likely don't want to call this function, but use the thread_name
1938 function instead, which prefers the user-given thread name, if set. */
1939
1940 extern const char *target_thread_name (struct thread_info *);
1941
1942 /* Given a pointer to a thread library specific thread handle and
1943 its length, return a pointer to the corresponding thread_info struct. */
1944
1945 extern struct thread_info *target_thread_handle_to_thread_info
1946 (const gdb_byte *thread_handle, int handle_len, struct inferior *inf);
1947
1948 /* Given a thread, return the thread handle, a target-specific sequence of
1949 bytes which serves as a thread identifier within the program being
1950 debugged. */
1951 extern gdb::array_view<const gdb_byte> target_thread_info_to_thread_handle
1952 (struct thread_info *);
1953
1954 /* Attempts to find the pathname of the executable file
1955 that was run to create a specified process.
1956
1957 The process PID must be stopped when this operation is used.
1958
1959 If the executable file cannot be determined, NULL is returned.
1960
1961 Else, a pointer to a character string containing the pathname
1962 is returned. This string should be copied into a buffer by
1963 the client if the string will not be immediately used, or if
1964 it must persist. */
1965
1966 extern const char *target_pid_to_exec_file (int pid);
1967
1968 /* See the to_thread_architecture description in struct target_ops. */
1969
1970 extern gdbarch *target_thread_architecture (ptid_t ptid);
1971
1972 /*
1973 * Iterator function for target memory regions.
1974 * Calls a callback function once for each memory region 'mapped'
1975 * in the child process. Defined as a simple macro rather than
1976 * as a function macro so that it can be tested for nullity.
1977 */
1978
1979 extern int target_find_memory_regions (find_memory_region_ftype func,
1980 void *data);
1981
1982 /*
1983 * Compose corefile .note section.
1984 */
1985
1986 extern gdb::unique_xmalloc_ptr<char> target_make_corefile_notes (bfd *bfd,
1987 int *size_p);
1988
1989 /* Bookmark interfaces. */
1990 extern gdb_byte *target_get_bookmark (const char *args, int from_tty);
1991
1992 extern void target_goto_bookmark (const gdb_byte *arg, int from_tty);
1993
1994 /* Hardware watchpoint interfaces. */
1995
1996 /* GDB's current model is that there are three "kinds" of watchpoints,
1997 with respect to when they trigger and how you can move past them.
1998
1999 Those are: continuable, steppable, and non-steppable.
2000
2001 Continuable watchpoints are like x86's -- those trigger after the
2002 memory access's side effects are fully committed to memory. I.e.,
2003 they trap with the PC pointing at the next instruction already.
2004 Continuing past such a watchpoint is doable by just normally
2005 continuing, hence the name.
2006
2007 Both steppable and non-steppable watchpoints trap before the memory
2008 access. I.e, the PC points at the instruction that is accessing
2009 the memory. So GDB needs to single-step once past the current
2010 instruction in order to make the access effective and check whether
2011 the instruction's side effects change the watched expression.
2012
2013 Now, in order to step past that instruction, depending on
2014 architecture and target, you can have two situations:
2015
2016 - steppable watchpoints: you can single-step with the watchpoint
2017 still armed, and the watchpoint won't trigger again.
2018
2019 - non-steppable watchpoints: if you try to single-step with the
2020 watchpoint still armed, you'd trap the watchpoint again and the
2021 thread wouldn't make any progress. So GDB needs to temporarily
2022 remove the watchpoint in order to step past it.
2023
2024 If your target/architecture does not signal that it has either
2025 steppable or non-steppable watchpoints via either
2026 target_have_steppable_watchpoint or
2027 gdbarch_have_nonsteppable_watchpoint, GDB assumes continuable
2028 watchpoints. */
2029
2030 /* Returns true if we were stopped by a hardware watchpoint (memory read or
2031 write). Only the INFERIOR_PTID task is being queried. */
2032
2033 extern bool target_stopped_by_watchpoint ();
2034
2035 /* Returns true if the target stopped because it executed a
2036 software breakpoint instruction. */
2037
2038 extern bool target_stopped_by_sw_breakpoint ();
2039
2040 extern bool target_supports_stopped_by_sw_breakpoint ();
2041
2042 extern bool target_stopped_by_hw_breakpoint ();
2043
2044 extern bool target_supports_stopped_by_hw_breakpoint ();
2045
2046 /* True if we have steppable watchpoints */
2047
2048 extern bool target_have_steppable_watchpoint ();
2049
2050 /* Provide defaults for hardware watchpoint functions. */
2051
2052 /* If the *_hw_breakpoint functions have not been defined
2053 elsewhere use the definitions in the target vector. */
2054
2055 /* Returns positive if we can set a hardware watchpoint of type TYPE.
2056 Returns negative if the target doesn't have enough hardware debug
2057 registers available. Return zero if hardware watchpoint of type
2058 TYPE isn't supported. TYPE is one of bp_hardware_watchpoint,
2059 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
2060 CNT is the number of such watchpoints used so far, including this
2061 one. OTHERTYPE is the number of watchpoints of other types than
2062 this one used so far. */
2063
2064 extern int target_can_use_hardware_watchpoint (bptype type, int cnt,
2065 int othertype);
2066
2067 /* Returns the number of debug registers needed to watch the given
2068 memory region, or zero if not supported. */
2069
2070 extern int target_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len);
2071
2072 extern int target_can_do_single_step ();
2073
2074 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
2075 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
2076 COND is the expression for its condition, or NULL if there's none.
2077 Returns 0 for success, 1 if the watchpoint type is not supported,
2078 -1 for failure. */
2079
2080 extern int target_insert_watchpoint (CORE_ADDR addr, int len,
2081 target_hw_bp_type type, expression *cond);
2082
2083 extern int target_remove_watchpoint (CORE_ADDR addr, int len,
2084 target_hw_bp_type type, expression *cond);
2085
2086 /* Insert a new masked watchpoint at ADDR using the mask MASK.
2087 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
2088 or hw_access for an access watchpoint. Returns 0 for success, 1 if
2089 masked watchpoints are not supported, -1 for failure. */
2090
2091 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
2092 enum target_hw_bp_type);
2093
2094 /* Remove a masked watchpoint at ADDR with the mask MASK.
2095 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
2096 or hw_access for an access watchpoint. Returns 0 for success, non-zero
2097 for failure. */
2098
2099 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
2100 enum target_hw_bp_type);
2101
2102 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
2103 the target machine. Returns 0 for success, and returns non-zero or
2104 throws an error (with a detailed failure reason error code and
2105 message) otherwise. */
2106
2107 extern int target_insert_hw_breakpoint (gdbarch *gdbarch,
2108 bp_target_info *bp_tgt);
2109
2110 extern int target_remove_hw_breakpoint (gdbarch *gdbarch,
2111 bp_target_info *bp_tgt);
2112
2113 /* Return number of debug registers needed for a ranged breakpoint,
2114 or -1 if ranged breakpoints are not supported. */
2115
2116 extern int target_ranged_break_num_registers (void);
2117
2118 /* Return non-zero if target knows the data address which triggered this
2119 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
2120 INFERIOR_PTID task is being queried. */
2121 #define target_stopped_data_address(target, addr_p) \
2122 (target)->stopped_data_address (addr_p)
2123
2124 /* Return non-zero if ADDR is within the range of a watchpoint spanning
2125 LENGTH bytes beginning at START. */
2126 #define target_watchpoint_addr_within_range(target, addr, start, length) \
2127 (target)->watchpoint_addr_within_range (addr, start, length)
2128
2129 /* Return non-zero if the target is capable of using hardware to evaluate
2130 the condition expression. In this case, if the condition is false when
2131 the watched memory location changes, execution may continue without the
2132 debugger being notified.
2133
2134 Due to limitations in the hardware implementation, it may be capable of
2135 avoiding triggering the watchpoint in some cases where the condition
2136 expression is false, but may report some false positives as well.
2137 For this reason, GDB will still evaluate the condition expression when
2138 the watchpoint triggers. */
2139
2140 extern bool target_can_accel_watchpoint_condition (CORE_ADDR addr, int len,
2141 int type, expression *cond);
2142
2143 /* Return number of debug registers needed for a masked watchpoint,
2144 -1 if masked watchpoints are not supported or -2 if the given address
2145 and mask combination cannot be used. */
2146
2147 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
2148
2149 /* Target can execute in reverse? */
2150
2151 extern bool target_can_execute_reverse ();
2152
2153 extern const struct target_desc *target_read_description (struct target_ops *);
2154
2155 extern ptid_t target_get_ada_task_ptid (long lwp, ULONGEST tid);
2156
2157 /* Main entry point for searching memory. */
2158 extern int target_search_memory (CORE_ADDR start_addr,
2159 ULONGEST search_space_len,
2160 const gdb_byte *pattern,
2161 ULONGEST pattern_len,
2162 CORE_ADDR *found_addrp);
2163
2164 /* Target file operations. */
2165
2166 /* Return true if the filesystem seen by the current inferior
2167 is the local filesystem, zero otherwise. */
2168
2169 extern bool target_filesystem_is_local ();
2170
2171 /* Open FILENAME on the target, in the filesystem as seen by INF,
2172 using FLAGS and MODE. If INF is NULL, use the filesystem seen by
2173 the debugger (GDB or, for remote targets, the remote stub). Return
2174 a target file descriptor, or -1 if an error occurs (and set
2175 *TARGET_ERRNO). If WARN_IF_SLOW is true, print a warning message
2176 if the file is being accessed over a link that may be slow. */
2177 extern int target_fileio_open (struct inferior *inf,
2178 const char *filename, int flags,
2179 int mode, bool warn_if_slow,
2180 fileio_error *target_errno);
2181
2182 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2183 Return the number of bytes written, or -1 if an error occurs
2184 (and set *TARGET_ERRNO). */
2185 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2186 ULONGEST offset, fileio_error *target_errno);
2187
2188 /* Read up to LEN bytes FD on the target into READ_BUF.
2189 Return the number of bytes read, or -1 if an error occurs
2190 (and set *TARGET_ERRNO). */
2191 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2192 ULONGEST offset, fileio_error *target_errno);
2193
2194 /* Get information about the file opened as FD on the target
2195 and put it in SB. Return 0 on success, or -1 if an error
2196 occurs (and set *TARGET_ERRNO). */
2197 extern int target_fileio_fstat (int fd, struct stat *sb,
2198 fileio_error *target_errno);
2199
2200 /* Close FD on the target. Return 0, or -1 if an error occurs
2201 (and set *TARGET_ERRNO). */
2202 extern int target_fileio_close (int fd, fileio_error *target_errno);
2203
2204 /* Unlink FILENAME on the target, in the filesystem as seen by INF.
2205 If INF is NULL, use the filesystem seen by the debugger (GDB or,
2206 for remote targets, the remote stub). Return 0, or -1 if an error
2207 occurs (and set *TARGET_ERRNO). */
2208 extern int target_fileio_unlink (struct inferior *inf,
2209 const char *filename,
2210 fileio_error *target_errno);
2211
2212 /* Read value of symbolic link FILENAME on the target, in the
2213 filesystem as seen by INF. If INF is NULL, use the filesystem seen
2214 by the debugger (GDB or, for remote targets, the remote stub).
2215 Return a null-terminated string allocated via xmalloc, or NULL if
2216 an error occurs (and set *TARGET_ERRNO). */
2217 extern gdb::optional<std::string> target_fileio_readlink
2218 (struct inferior *inf, const char *filename, fileio_error *target_errno);
2219
2220 /* Read target file FILENAME, in the filesystem as seen by INF. If
2221 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2222 remote targets, the remote stub). The return value will be -1 if
2223 the transfer fails or is not supported; 0 if the object is empty;
2224 or the length of the object otherwise. If a positive value is
2225 returned, a sufficiently large buffer will be allocated using
2226 xmalloc and returned in *BUF_P containing the contents of the
2227 object.
2228
2229 This method should be used for objects sufficiently small to store
2230 in a single xmalloc'd buffer, when no fixed bound on the object's
2231 size is known in advance. */
2232 extern LONGEST target_fileio_read_alloc (struct inferior *inf,
2233 const char *filename,
2234 gdb_byte **buf_p);
2235
2236 /* Read target file FILENAME, in the filesystem as seen by INF. If
2237 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2238 remote targets, the remote stub). The result is NUL-terminated and
2239 returned as a string, allocated using xmalloc. If an error occurs
2240 or the transfer is unsupported, NULL is returned. Empty objects
2241 are returned as allocated but empty strings. A warning is issued
2242 if the result contains any embedded NUL bytes. */
2243 extern gdb::unique_xmalloc_ptr<char> target_fileio_read_stralloc
2244 (struct inferior *inf, const char *filename);
2245
2246 /* Invalidate the target associated with open handles that were open
2247 on target TARG, since we're about to close (and maybe destroy) the
2248 target. The handles remain open from the client's perspective, but
2249 trying to do anything with them other than closing them will fail
2250 with EIO. */
2251 extern void fileio_handles_invalidate_target (target_ops *targ);
2252
2253 /* Tracepoint-related operations. */
2254
2255 extern void target_trace_init ();
2256
2257 extern void target_download_tracepoint (bp_location *location);
2258
2259 extern bool target_can_download_tracepoint ();
2260
2261 extern void target_download_trace_state_variable (const trace_state_variable &tsv);
2262
2263 extern void target_enable_tracepoint (bp_location *loc);
2264
2265 extern void target_disable_tracepoint (bp_location *loc);
2266
2267 extern void target_trace_start ();
2268
2269 extern void target_trace_set_readonly_regions ();
2270
2271 extern int target_get_trace_status (trace_status *ts);
2272
2273 extern void target_get_tracepoint_status (tracepoint *tp, uploaded_tp *utp);
2274
2275 extern void target_trace_stop ();
2276
2277 extern int target_trace_find (trace_find_type type, int num, CORE_ADDR addr1,
2278 CORE_ADDR addr2, int *tpp);
2279
2280 extern bool target_get_trace_state_variable_value (int tsv, LONGEST *val);
2281
2282 extern int target_save_trace_data (const char *filename);
2283
2284 extern int target_upload_tracepoints (uploaded_tp **utpp);
2285
2286 extern int target_upload_trace_state_variables (uploaded_tsv **utsvp);
2287
2288 extern LONGEST target_get_raw_trace_data (gdb_byte *buf, ULONGEST offset,
2289 LONGEST len);
2290
2291 extern int target_get_min_fast_tracepoint_insn_len ();
2292
2293 extern void target_set_disconnected_tracing (int val);
2294
2295 extern void target_set_circular_trace_buffer (int val);
2296
2297 extern void target_set_trace_buffer_size (LONGEST val);
2298
2299 extern bool target_set_trace_notes (const char *user, const char *notes,
2300 const char *stopnotes);
2301
2302 extern bool target_get_tib_address (ptid_t ptid, CORE_ADDR *addr);
2303
2304 extern void target_set_permissions ();
2305
2306 extern bool target_static_tracepoint_marker_at
2307 (CORE_ADDR addr, static_tracepoint_marker *marker);
2308
2309 extern std::vector<static_tracepoint_marker>
2310 target_static_tracepoint_markers_by_strid (const char *marker_id);
2311
2312 extern traceframe_info_up target_traceframe_info ();
2313
2314 extern bool target_use_agent (bool use);
2315
2316 extern bool target_can_use_agent ();
2317
2318 extern bool target_augmented_libraries_svr4_read ();
2319
2320 extern bool target_supports_memory_tagging ();
2321
2322 extern bool target_fetch_memtags (CORE_ADDR address, size_t len,
2323 gdb::byte_vector &tags, int type);
2324
2325 extern bool target_store_memtags (CORE_ADDR address, size_t len,
2326 const gdb::byte_vector &tags, int type);
2327
2328 extern x86_xsave_layout target_fetch_x86_xsave_layout ();
2329
2330 /* Command logging facility. */
2331
2332 extern void target_log_command (const char *p);
2333
2334 extern int target_core_of_thread (ptid_t ptid);
2335
2336 /* See to_get_unwinder in struct target_ops. */
2337 extern const struct frame_unwind *target_get_unwinder (void);
2338
2339 /* See to_get_tailcall_unwinder in struct target_ops. */
2340 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2341
2342 /* This implements basic memory verification, reading target memory
2343 and performing the comparison here (as opposed to accelerated
2344 verification making use of the qCRC packet, for example). */
2345
2346 extern int simple_verify_memory (struct target_ops* ops,
2347 const gdb_byte *data,
2348 CORE_ADDR memaddr, ULONGEST size);
2349
2350 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2351 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2352 if there's a mismatch, and -1 if an error is encountered while
2353 reading memory. Throws an error if the functionality is found not
2354 to be supported by the current target. */
2355 int target_verify_memory (const gdb_byte *data,
2356 CORE_ADDR memaddr, ULONGEST size);
2357
2358 /* Routines for maintenance of the target structures...
2359
2360 add_target: Add a target to the list of all possible targets.
2361 This only makes sense for targets that should be activated using
2362 the "target TARGET_NAME ..." command.
2363
2364 push_target: Make this target the top of the stack of currently used
2365 targets, within its particular stratum of the stack. Result
2366 is 0 if now atop the stack, nonzero if not on top (maybe
2367 should warn user).
2368
2369 unpush_target: Remove this from the stack of currently used targets,
2370 no matter where it is on the list. Returns 0 if no
2371 change, 1 if removed from stack. */
2372
2373 /* Type of callback called when the user activates a target with
2374 "target TARGET_NAME". The callback routine takes the rest of the
2375 parameters from the command, and (if successful) pushes a new
2376 target onto the stack. */
2377 typedef void target_open_ftype (const char *args, int from_tty);
2378
2379 /* Add the target described by INFO to the list of possible targets
2380 and add a new command 'target $(INFO->shortname)'. Set COMPLETER
2381 as the command's completer if not NULL. */
2382
2383 extern void add_target (const target_info &info,
2384 target_open_ftype *func,
2385 completer_ftype *completer = NULL);
2386
2387 /* Adds a command ALIAS for the target described by INFO and marks it
2388 deprecated. This is useful for maintaining backwards compatibility
2389 when renaming targets. */
2390
2391 extern void add_deprecated_target_alias (const target_info &info,
2392 const char *alias);
2393
2394 /* A unique_ptr helper to unpush a target. */
2395
2396 struct target_unpusher
2397 {
2398 void operator() (struct target_ops *ops) const;
2399 };
2400
2401 /* A unique_ptr that unpushes a target on destruction. */
2402
2403 typedef std::unique_ptr<struct target_ops, target_unpusher> target_unpush_up;
2404
2405 extern void target_pre_inferior (int);
2406
2407 extern void target_preopen (int);
2408
2409 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2410 CORE_ADDR offset);
2411
2412 /* Return the "section" containing the specified address. */
2413 const struct target_section *target_section_by_addr (struct target_ops *target,
2414 CORE_ADDR addr);
2415
2416 /* Return the target section table this target (or the targets
2417 beneath) currently manipulate. */
2418
2419 extern const std::vector<target_section> *target_get_section_table
2420 (struct target_ops *target);
2421
2422 /* Default implementation of get_section_table for dummy_target. */
2423
2424 extern const std::vector<target_section> *default_get_section_table ();
2425
2426 /* From mem-break.c */
2427
2428 extern int memory_remove_breakpoint (struct target_ops *,
2429 struct gdbarch *, struct bp_target_info *,
2430 enum remove_bp_reason);
2431
2432 extern int memory_insert_breakpoint (struct target_ops *,
2433 struct gdbarch *, struct bp_target_info *);
2434
2435 /* Convenience template use to add memory breakpoints support to a
2436 target. */
2437
2438 template <typename BaseTarget>
2439 struct memory_breakpoint_target : public BaseTarget
2440 {
2441 int insert_breakpoint (struct gdbarch *gdbarch,
2442 struct bp_target_info *bp_tgt) override
2443 { return memory_insert_breakpoint (this, gdbarch, bp_tgt); }
2444
2445 int remove_breakpoint (struct gdbarch *gdbarch,
2446 struct bp_target_info *bp_tgt,
2447 enum remove_bp_reason reason) override
2448 { return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason); }
2449 };
2450
2451 /* Check whether the memory at the breakpoint's placed address still
2452 contains the expected breakpoint instruction. */
2453
2454 extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
2455 struct bp_target_info *bp_tgt);
2456
2457 extern int default_memory_remove_breakpoint (struct gdbarch *,
2458 struct bp_target_info *);
2459
2460 extern int default_memory_insert_breakpoint (struct gdbarch *,
2461 struct bp_target_info *);
2462
2463
2464 /* From target.c */
2465
2466 extern void initialize_targets (void);
2467
2468 extern void noprocess (void) ATTRIBUTE_NORETURN;
2469
2470 extern void target_require_runnable (void);
2471
2472 /* Find the target at STRATUM. If no target is at that stratum,
2473 return NULL. */
2474
2475 struct target_ops *find_target_at (enum strata stratum);
2476
2477 /* Read OS data object of type TYPE from the target, and return it in XML
2478 format. The return value follows the same rules as target_read_stralloc. */
2479
2480 extern gdb::optional<gdb::char_vector> target_get_osdata (const char *type);
2481
2482 /* Stuff that should be shared among the various remote targets. */
2483
2484
2485 /* Timeout limit for response from target. */
2486 extern int remote_timeout;
2487
2488 \f
2489
2490 /* Set the show memory breakpoints mode to show, and return a
2491 scoped_restore to restore it back to the current value. */
2492 extern scoped_restore_tmpl<int>
2493 make_scoped_restore_show_memory_breakpoints (int show);
2494
2495 /* True if we should trust readonly sections from the
2496 executable when reading memory. */
2497 extern bool trust_readonly;
2498
2499 extern bool may_write_registers;
2500 extern bool may_write_memory;
2501 extern bool may_insert_breakpoints;
2502 extern bool may_insert_tracepoints;
2503 extern bool may_insert_fast_tracepoints;
2504 extern bool may_stop;
2505
2506 extern void update_target_permissions (void);
2507
2508 \f
2509 /* Imported from machine dependent code. */
2510
2511 /* See to_enable_btrace in struct target_ops. */
2512 extern struct btrace_target_info *
2513 target_enable_btrace (thread_info *tp, const struct btrace_config *);
2514
2515 /* See to_disable_btrace in struct target_ops. */
2516 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2517
2518 /* See to_teardown_btrace in struct target_ops. */
2519 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2520
2521 /* See to_read_btrace in struct target_ops. */
2522 extern enum btrace_error target_read_btrace (struct btrace_data *,
2523 struct btrace_target_info *,
2524 enum btrace_read_type);
2525
2526 /* See to_btrace_conf in struct target_ops. */
2527 extern const struct btrace_config *
2528 target_btrace_conf (const struct btrace_target_info *);
2529
2530 /* See to_stop_recording in struct target_ops. */
2531 extern void target_stop_recording (void);
2532
2533 /* See to_save_record in struct target_ops. */
2534 extern void target_save_record (const char *filename);
2535
2536 /* Query if the target supports deleting the execution log. */
2537 extern int target_supports_delete_record (void);
2538
2539 /* See to_delete_record in struct target_ops. */
2540 extern void target_delete_record (void);
2541
2542 /* See to_record_method. */
2543 extern enum record_method target_record_method (ptid_t ptid);
2544
2545 /* See to_record_is_replaying in struct target_ops. */
2546 extern int target_record_is_replaying (ptid_t ptid);
2547
2548 /* See to_record_will_replay in struct target_ops. */
2549 extern int target_record_will_replay (ptid_t ptid, int dir);
2550
2551 /* See to_record_stop_replaying in struct target_ops. */
2552 extern void target_record_stop_replaying (void);
2553
2554 /* See to_goto_record_begin in struct target_ops. */
2555 extern void target_goto_record_begin (void);
2556
2557 /* See to_goto_record_end in struct target_ops. */
2558 extern void target_goto_record_end (void);
2559
2560 /* See to_goto_record in struct target_ops. */
2561 extern void target_goto_record (ULONGEST insn);
2562
2563 /* See to_insn_history. */
2564 extern void target_insn_history (int size, gdb_disassembly_flags flags);
2565
2566 /* See to_insn_history_from. */
2567 extern void target_insn_history_from (ULONGEST from, int size,
2568 gdb_disassembly_flags flags);
2569
2570 /* See to_insn_history_range. */
2571 extern void target_insn_history_range (ULONGEST begin, ULONGEST end,
2572 gdb_disassembly_flags flags);
2573
2574 /* See to_call_history. */
2575 extern void target_call_history (int size, record_print_flags flags);
2576
2577 /* See to_call_history_from. */
2578 extern void target_call_history_from (ULONGEST begin, int size,
2579 record_print_flags flags);
2580
2581 /* See to_call_history_range. */
2582 extern void target_call_history_range (ULONGEST begin, ULONGEST end,
2583 record_print_flags flags);
2584
2585 /* See to_prepare_to_generate_core. */
2586 extern void target_prepare_to_generate_core (void);
2587
2588 /* See to_done_generating_core. */
2589 extern void target_done_generating_core (void);
2590
2591 #endif /* !defined (TARGET_H) */