convert to_supports_multi_process
[binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* Generic I/O error. Note that it's important that this is '-1',
217 as we still have target_xfer-related code returning hardcoded
218 '-1' on error. */
219 TARGET_XFER_E_IO = -1,
220
221 /* Transfer failed because the piece of the object requested is
222 unavailable. */
223 TARGET_XFER_E_UNAVAILABLE = -2,
224
225 /* Keep list in sync with target_xfer_error_to_string. */
226 };
227
228 #define TARGET_XFER_STATUS_ERROR_P(STATUS) ((STATUS) < TARGET_XFER_EOF)
229
230 /* Return the string form of ERR. */
231
232 extern const char *target_xfer_status_to_string (enum target_xfer_status err);
233
234 /* Enumeration of the kinds of traceframe searches that a target may
235 be able to perform. */
236
237 enum trace_find_type
238 {
239 tfind_number,
240 tfind_pc,
241 tfind_tp,
242 tfind_range,
243 tfind_outside,
244 };
245
246 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
247 DEF_VEC_P(static_tracepoint_marker_p);
248
249 typedef enum target_xfer_status
250 target_xfer_partial_ftype (struct target_ops *ops,
251 enum target_object object,
252 const char *annex,
253 gdb_byte *readbuf,
254 const gdb_byte *writebuf,
255 ULONGEST offset,
256 ULONGEST len,
257 ULONGEST *xfered_len);
258
259 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
260 OBJECT. The OFFSET, for a seekable object, specifies the
261 starting point. The ANNEX can be used to provide additional
262 data-specific information to the target.
263
264 Return the number of bytes actually transfered, or a negative error
265 code (an 'enum target_xfer_error' value) if the transfer is not
266 supported or otherwise fails. Return of a positive value less than
267 LEN indicates that no further transfer is possible. Unlike the raw
268 to_xfer_partial interface, callers of these functions do not need
269 to retry partial transfers. */
270
271 extern LONGEST target_read (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276 struct memory_read_result
277 {
278 /* First address that was read. */
279 ULONGEST begin;
280 /* Past-the-end address. */
281 ULONGEST end;
282 /* The data. */
283 gdb_byte *data;
284 };
285 typedef struct memory_read_result memory_read_result_s;
286 DEF_VEC_O(memory_read_result_s);
287
288 extern void free_memory_read_result_vector (void *);
289
290 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
291 ULONGEST offset,
292 LONGEST len);
293
294 extern LONGEST target_write (struct target_ops *ops,
295 enum target_object object,
296 const char *annex, const gdb_byte *buf,
297 ULONGEST offset, LONGEST len);
298
299 /* Similar to target_write, except that it also calls PROGRESS with
300 the number of bytes written and the opaque BATON after every
301 successful partial write (and before the first write). This is
302 useful for progress reporting and user interaction while writing
303 data. To abort the transfer, the progress callback can throw an
304 exception. */
305
306 LONGEST target_write_with_progress (struct target_ops *ops,
307 enum target_object object,
308 const char *annex, const gdb_byte *buf,
309 ULONGEST offset, LONGEST len,
310 void (*progress) (ULONGEST, void *),
311 void *baton);
312
313 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
314 be read using OPS. The return value will be -1 if the transfer
315 fails or is not supported; 0 if the object is empty; or the length
316 of the object otherwise. If a positive value is returned, a
317 sufficiently large buffer will be allocated using xmalloc and
318 returned in *BUF_P containing the contents of the object.
319
320 This method should be used for objects sufficiently small to store
321 in a single xmalloc'd buffer, when no fixed bound on the object's
322 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
323 through this function. */
324
325 extern LONGEST target_read_alloc (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, gdb_byte **buf_p);
328
329 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
330 returned as a string, allocated using xmalloc. If an error occurs
331 or the transfer is unsupported, NULL is returned. Empty objects
332 are returned as allocated but empty strings. A warning is issued
333 if the result contains any embedded NUL bytes. */
334
335 extern char *target_read_stralloc (struct target_ops *ops,
336 enum target_object object,
337 const char *annex);
338
339 /* See target_ops->to_xfer_partial. */
340 extern target_xfer_partial_ftype target_xfer_partial;
341
342 /* Wrappers to target read/write that perform memory transfers. They
343 throw an error if the memory transfer fails.
344
345 NOTE: cagney/2003-10-23: The naming schema is lifted from
346 "frame.h". The parameter order is lifted from get_frame_memory,
347 which in turn lifted it from read_memory. */
348
349 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
350 gdb_byte *buf, LONGEST len);
351 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
352 CORE_ADDR addr, int len,
353 enum bfd_endian byte_order);
354 \f
355 struct thread_info; /* fwd decl for parameter list below: */
356
357 /* The type of the callback to the to_async method. */
358
359 typedef void async_callback_ftype (enum inferior_event_type event_type,
360 void *context);
361
362 /* These defines are used to mark target_ops methods. The script
363 make-target-delegates scans these and auto-generates the base
364 method implementations. There are four macros that can be used:
365
366 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
367 does nothing. This is only valid if the method return type is
368 'void'.
369
370 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
371 'tcomplain ()'. The base method simply makes this call, which is
372 assumed not to return.
373
374 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
375 base method returns this expression's value.
376
377 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
378 make-target-delegates does not generate a base method in this case,
379 but instead uses the argument function as the base method. */
380
381 #define TARGET_DEFAULT_IGNORE()
382 #define TARGET_DEFAULT_NORETURN(ARG)
383 #define TARGET_DEFAULT_RETURN(ARG)
384 #define TARGET_DEFAULT_FUNC(ARG)
385
386 struct target_ops
387 {
388 struct target_ops *beneath; /* To the target under this one. */
389 char *to_shortname; /* Name this target type */
390 char *to_longname; /* Name for printing */
391 char *to_doc; /* Documentation. Does not include trailing
392 newline, and starts with a one-line descrip-
393 tion (probably similar to to_longname). */
394 /* Per-target scratch pad. */
395 void *to_data;
396 /* The open routine takes the rest of the parameters from the
397 command, and (if successful) pushes a new target onto the
398 stack. Targets should supply this routine, if only to provide
399 an error message. */
400 void (*to_open) (char *, int);
401 /* Old targets with a static target vector provide "to_close".
402 New re-entrant targets provide "to_xclose" and that is expected
403 to xfree everything (including the "struct target_ops"). */
404 void (*to_xclose) (struct target_ops *targ);
405 void (*to_close) (struct target_ops *);
406 void (*to_attach) (struct target_ops *ops, char *, int)
407 TARGET_DEFAULT_FUNC (find_default_attach);
408 void (*to_post_attach) (struct target_ops *, int)
409 TARGET_DEFAULT_IGNORE ();
410 void (*to_detach) (struct target_ops *ops, const char *, int)
411 TARGET_DEFAULT_IGNORE ();
412 void (*to_disconnect) (struct target_ops *, char *, int);
413 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
414 TARGET_DEFAULT_NORETURN (noprocess ());
415 ptid_t (*to_wait) (struct target_ops *,
416 ptid_t, struct target_waitstatus *, int)
417 TARGET_DEFAULT_NORETURN (noprocess ());
418 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
419 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
420 TARGET_DEFAULT_NORETURN (noprocess ());
421 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
422 TARGET_DEFAULT_NORETURN (noprocess ());
423
424 /* Transfer LEN bytes of memory between GDB address MYADDR and
425 target address MEMADDR. If WRITE, transfer them to the target, else
426 transfer them from the target. TARGET is the target from which we
427 get this function.
428
429 Return value, N, is one of the following:
430
431 0 means that we can't handle this. If errno has been set, it is the
432 error which prevented us from doing it (FIXME: What about bfd_error?).
433
434 positive (call it N) means that we have transferred N bytes
435 starting at MEMADDR. We might be able to handle more bytes
436 beyond this length, but no promises.
437
438 negative (call its absolute value N) means that we cannot
439 transfer right at MEMADDR, but we could transfer at least
440 something at MEMADDR + N.
441
442 NOTE: cagney/2004-10-01: This has been entirely superseeded by
443 to_xfer_partial and inferior inheritance. */
444
445 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
446 int len, int write,
447 struct mem_attrib *attrib,
448 struct target_ops *target);
449
450 void (*to_files_info) (struct target_ops *)
451 TARGET_DEFAULT_IGNORE ();
452 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
453 struct bp_target_info *)
454 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
455 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
456 struct bp_target_info *)
457 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
458 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int)
459 TARGET_DEFAULT_RETURN (0);
460 int (*to_ranged_break_num_registers) (struct target_ops *);
461 int (*to_insert_hw_breakpoint) (struct target_ops *,
462 struct gdbarch *, struct bp_target_info *)
463 TARGET_DEFAULT_RETURN (-1);
464 int (*to_remove_hw_breakpoint) (struct target_ops *,
465 struct gdbarch *, struct bp_target_info *)
466 TARGET_DEFAULT_RETURN (-1);
467
468 /* Documentation of what the two routines below are expected to do is
469 provided with the corresponding target_* macros. */
470 int (*to_remove_watchpoint) (struct target_ops *,
471 CORE_ADDR, int, int, struct expression *)
472 TARGET_DEFAULT_RETURN (-1);
473 int (*to_insert_watchpoint) (struct target_ops *,
474 CORE_ADDR, int, int, struct expression *)
475 TARGET_DEFAULT_RETURN (-1);
476
477 int (*to_insert_mask_watchpoint) (struct target_ops *,
478 CORE_ADDR, CORE_ADDR, int);
479 int (*to_remove_mask_watchpoint) (struct target_ops *,
480 CORE_ADDR, CORE_ADDR, int);
481 int (*to_stopped_by_watchpoint) (struct target_ops *)
482 TARGET_DEFAULT_RETURN (0);
483 int to_have_steppable_watchpoint;
484 int to_have_continuable_watchpoint;
485 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
486 TARGET_DEFAULT_RETURN (0);
487 int (*to_watchpoint_addr_within_range) (struct target_ops *,
488 CORE_ADDR, CORE_ADDR, int)
489 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
490
491 /* Documentation of this routine is provided with the corresponding
492 target_* macro. */
493 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
494 CORE_ADDR, int)
495 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
496
497 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
498 CORE_ADDR, int, int,
499 struct expression *)
500 TARGET_DEFAULT_RETURN (0);
501 int (*to_masked_watch_num_registers) (struct target_ops *,
502 CORE_ADDR, CORE_ADDR);
503 void (*to_terminal_init) (struct target_ops *)
504 TARGET_DEFAULT_IGNORE ();
505 void (*to_terminal_inferior) (struct target_ops *)
506 TARGET_DEFAULT_IGNORE ();
507 void (*to_terminal_ours_for_output) (struct target_ops *)
508 TARGET_DEFAULT_IGNORE ();
509 void (*to_terminal_ours) (struct target_ops *)
510 TARGET_DEFAULT_IGNORE ();
511 void (*to_terminal_save_ours) (struct target_ops *)
512 TARGET_DEFAULT_IGNORE ();
513 void (*to_terminal_info) (struct target_ops *, const char *, int)
514 TARGET_DEFAULT_FUNC (default_terminal_info);
515 void (*to_kill) (struct target_ops *);
516 void (*to_load) (struct target_ops *, char *, int)
517 TARGET_DEFAULT_NORETURN (tcomplain ());
518 void (*to_create_inferior) (struct target_ops *,
519 char *, char *, char **, int);
520 void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
521 TARGET_DEFAULT_IGNORE ();
522 int (*to_insert_fork_catchpoint) (struct target_ops *, int)
523 TARGET_DEFAULT_RETURN (1);
524 int (*to_remove_fork_catchpoint) (struct target_ops *, int)
525 TARGET_DEFAULT_RETURN (1);
526 int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
527 TARGET_DEFAULT_RETURN (1);
528 int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
529 TARGET_DEFAULT_RETURN (1);
530 int (*to_follow_fork) (struct target_ops *, int, int);
531 int (*to_insert_exec_catchpoint) (struct target_ops *, int)
532 TARGET_DEFAULT_RETURN (1);
533 int (*to_remove_exec_catchpoint) (struct target_ops *, int)
534 TARGET_DEFAULT_RETURN (1);
535 int (*to_set_syscall_catchpoint) (struct target_ops *,
536 int, int, int, int, int *)
537 TARGET_DEFAULT_RETURN (1);
538 int (*to_has_exited) (struct target_ops *, int, int, int *)
539 TARGET_DEFAULT_RETURN (0);
540 void (*to_mourn_inferior) (struct target_ops *);
541 int (*to_can_run) (struct target_ops *);
542
543 /* Documentation of this routine is provided with the corresponding
544 target_* macro. */
545 void (*to_pass_signals) (struct target_ops *, int, unsigned char *);
546
547 /* Documentation of this routine is provided with the
548 corresponding target_* function. */
549 void (*to_program_signals) (struct target_ops *, int, unsigned char *);
550
551 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
552 void (*to_find_new_threads) (struct target_ops *);
553 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
554 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *)
555 TARGET_DEFAULT_RETURN (0);
556 char *(*to_thread_name) (struct target_ops *, struct thread_info *)
557 TARGET_DEFAULT_RETURN (0);
558 void (*to_stop) (struct target_ops *, ptid_t);
559 void (*to_rcmd) (struct target_ops *,
560 char *command, struct ui_file *output)
561 TARGET_DEFAULT_FUNC (default_rcmd);
562 char *(*to_pid_to_exec_file) (struct target_ops *, int pid)
563 TARGET_DEFAULT_RETURN (0);
564 void (*to_log_command) (struct target_ops *, const char *)
565 TARGET_DEFAULT_IGNORE ();
566 struct target_section_table *(*to_get_section_table) (struct target_ops *);
567 enum strata to_stratum;
568 int (*to_has_all_memory) (struct target_ops *);
569 int (*to_has_memory) (struct target_ops *);
570 int (*to_has_stack) (struct target_ops *);
571 int (*to_has_registers) (struct target_ops *);
572 int (*to_has_execution) (struct target_ops *, ptid_t);
573 int to_has_thread_control; /* control thread execution */
574 int to_attach_no_wait;
575 /* ASYNC target controls */
576 int (*to_can_async_p) (struct target_ops *)
577 TARGET_DEFAULT_FUNC (find_default_can_async_p);
578 int (*to_is_async_p) (struct target_ops *)
579 TARGET_DEFAULT_FUNC (find_default_is_async_p);
580 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
581 TARGET_DEFAULT_NORETURN (tcomplain ());
582 int (*to_supports_non_stop) (struct target_ops *);
583 /* find_memory_regions support method for gcore */
584 int (*to_find_memory_regions) (struct target_ops *,
585 find_memory_region_ftype func, void *data)
586 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
587 /* make_corefile_notes support method for gcore */
588 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *)
589 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
590 /* get_bookmark support method for bookmarks */
591 gdb_byte * (*to_get_bookmark) (struct target_ops *, char *, int)
592 TARGET_DEFAULT_NORETURN (tcomplain ());
593 /* goto_bookmark support method for bookmarks */
594 void (*to_goto_bookmark) (struct target_ops *, gdb_byte *, int)
595 TARGET_DEFAULT_NORETURN (tcomplain ());
596 /* Return the thread-local address at OFFSET in the
597 thread-local storage for the thread PTID and the shared library
598 or executable file given by OBJFILE. If that block of
599 thread-local storage hasn't been allocated yet, this function
600 may return an error. */
601 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
602 ptid_t ptid,
603 CORE_ADDR load_module_addr,
604 CORE_ADDR offset);
605
606 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
607 OBJECT. The OFFSET, for a seekable object, specifies the
608 starting point. The ANNEX can be used to provide additional
609 data-specific information to the target.
610
611 Return the transferred status, error or OK (an
612 'enum target_xfer_status' value). Save the number of bytes
613 actually transferred in *XFERED_LEN if transfer is successful
614 (TARGET_XFER_OK) or the number unavailable bytes if the requested
615 data is unavailable (TARGET_XFER_E_UNAVAILABLE). *XFERED_LEN
616 smaller than LEN does not indicate the end of the object, only
617 the end of the transfer; higher level code should continue
618 transferring if desired. This is handled in target.c.
619
620 The interface does not support a "retry" mechanism. Instead it
621 assumes that at least one byte will be transfered on each
622 successful call.
623
624 NOTE: cagney/2003-10-17: The current interface can lead to
625 fragmented transfers. Lower target levels should not implement
626 hacks, such as enlarging the transfer, in an attempt to
627 compensate for this. Instead, the target stack should be
628 extended so that it implements supply/collect methods and a
629 look-aside object cache. With that available, the lowest
630 target can safely and freely "push" data up the stack.
631
632 See target_read and target_write for more information. One,
633 and only one, of readbuf or writebuf must be non-NULL. */
634
635 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
636 enum target_object object,
637 const char *annex,
638 gdb_byte *readbuf,
639 const gdb_byte *writebuf,
640 ULONGEST offset, ULONGEST len,
641 ULONGEST *xfered_len)
642 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
643
644 /* Returns the memory map for the target. A return value of NULL
645 means that no memory map is available. If a memory address
646 does not fall within any returned regions, it's assumed to be
647 RAM. The returned memory regions should not overlap.
648
649 The order of regions does not matter; target_memory_map will
650 sort regions by starting address. For that reason, this
651 function should not be called directly except via
652 target_memory_map.
653
654 This method should not cache data; if the memory map could
655 change unexpectedly, it should be invalidated, and higher
656 layers will re-fetch it. */
657 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
658
659 /* Erases the region of flash memory starting at ADDRESS, of
660 length LENGTH.
661
662 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
663 on flash block boundaries, as reported by 'to_memory_map'. */
664 void (*to_flash_erase) (struct target_ops *,
665 ULONGEST address, LONGEST length);
666
667 /* Finishes a flash memory write sequence. After this operation
668 all flash memory should be available for writing and the result
669 of reading from areas written by 'to_flash_write' should be
670 equal to what was written. */
671 void (*to_flash_done) (struct target_ops *);
672
673 /* Describe the architecture-specific features of this target.
674 Returns the description found, or NULL if no description
675 was available. */
676 const struct target_desc *(*to_read_description) (struct target_ops *ops);
677
678 /* Build the PTID of the thread on which a given task is running,
679 based on LWP and THREAD. These values are extracted from the
680 task Private_Data section of the Ada Task Control Block, and
681 their interpretation depends on the target. */
682 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
683 long lwp, long thread)
684 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
685
686 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
687 Return 0 if *READPTR is already at the end of the buffer.
688 Return -1 if there is insufficient buffer for a whole entry.
689 Return 1 if an entry was read into *TYPEP and *VALP. */
690 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
691 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
692
693 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
694 sequence of bytes in PATTERN with length PATTERN_LEN.
695
696 The result is 1 if found, 0 if not found, and -1 if there was an error
697 requiring halting of the search (e.g. memory read error).
698 If the pattern is found the address is recorded in FOUND_ADDRP. */
699 int (*to_search_memory) (struct target_ops *ops,
700 CORE_ADDR start_addr, ULONGEST search_space_len,
701 const gdb_byte *pattern, ULONGEST pattern_len,
702 CORE_ADDR *found_addrp);
703
704 /* Can target execute in reverse? */
705 int (*to_can_execute_reverse) (struct target_ops *)
706 TARGET_DEFAULT_RETURN (0);
707
708 /* The direction the target is currently executing. Must be
709 implemented on targets that support reverse execution and async
710 mode. The default simply returns forward execution. */
711 enum exec_direction_kind (*to_execution_direction) (struct target_ops *)
712 TARGET_DEFAULT_FUNC (default_execution_direction);
713
714 /* Does this target support debugging multiple processes
715 simultaneously? */
716 int (*to_supports_multi_process) (struct target_ops *)
717 TARGET_DEFAULT_RETURN (0);
718
719 /* Does this target support enabling and disabling tracepoints while a trace
720 experiment is running? */
721 int (*to_supports_enable_disable_tracepoint) (struct target_ops *);
722
723 /* Does this target support disabling address space randomization? */
724 int (*to_supports_disable_randomization) (struct target_ops *);
725
726 /* Does this target support the tracenz bytecode for string collection? */
727 int (*to_supports_string_tracing) (struct target_ops *);
728
729 /* Does this target support evaluation of breakpoint conditions on its
730 end? */
731 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *);
732
733 /* Does this target support evaluation of breakpoint commands on its
734 end? */
735 int (*to_can_run_breakpoint_commands) (struct target_ops *);
736
737 /* Determine current architecture of thread PTID.
738
739 The target is supposed to determine the architecture of the code where
740 the target is currently stopped at (on Cell, if a target is in spu_run,
741 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
742 This is architecture used to perform decr_pc_after_break adjustment,
743 and also determines the frame architecture of the innermost frame.
744 ptrace operations need to operate according to target_gdbarch ().
745
746 The default implementation always returns target_gdbarch (). */
747 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t)
748 TARGET_DEFAULT_FUNC (default_thread_architecture);
749
750 /* Determine current address space of thread PTID.
751
752 The default implementation always returns the inferior's
753 address space. */
754 struct address_space *(*to_thread_address_space) (struct target_ops *,
755 ptid_t);
756
757 /* Target file operations. */
758
759 /* Open FILENAME on the target, using FLAGS and MODE. Return a
760 target file descriptor, or -1 if an error occurs (and set
761 *TARGET_ERRNO). */
762 int (*to_fileio_open) (struct target_ops *,
763 const char *filename, int flags, int mode,
764 int *target_errno);
765
766 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
767 Return the number of bytes written, or -1 if an error occurs
768 (and set *TARGET_ERRNO). */
769 int (*to_fileio_pwrite) (struct target_ops *,
770 int fd, const gdb_byte *write_buf, int len,
771 ULONGEST offset, int *target_errno);
772
773 /* Read up to LEN bytes FD on the target into READ_BUF.
774 Return the number of bytes read, or -1 if an error occurs
775 (and set *TARGET_ERRNO). */
776 int (*to_fileio_pread) (struct target_ops *,
777 int fd, gdb_byte *read_buf, int len,
778 ULONGEST offset, int *target_errno);
779
780 /* Close FD on the target. Return 0, or -1 if an error occurs
781 (and set *TARGET_ERRNO). */
782 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
783
784 /* Unlink FILENAME on the target. Return 0, or -1 if an error
785 occurs (and set *TARGET_ERRNO). */
786 int (*to_fileio_unlink) (struct target_ops *,
787 const char *filename, int *target_errno);
788
789 /* Read value of symbolic link FILENAME on the target. Return a
790 null-terminated string allocated via xmalloc, or NULL if an error
791 occurs (and set *TARGET_ERRNO). */
792 char *(*to_fileio_readlink) (struct target_ops *,
793 const char *filename, int *target_errno);
794
795
796 /* Implement the "info proc" command. */
797 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
798
799 /* Tracepoint-related operations. */
800
801 /* Prepare the target for a tracing run. */
802 void (*to_trace_init) (struct target_ops *);
803
804 /* Send full details of a tracepoint location to the target. */
805 void (*to_download_tracepoint) (struct target_ops *,
806 struct bp_location *location);
807
808 /* Is the target able to download tracepoint locations in current
809 state? */
810 int (*to_can_download_tracepoint) (struct target_ops *);
811
812 /* Send full details of a trace state variable to the target. */
813 void (*to_download_trace_state_variable) (struct target_ops *,
814 struct trace_state_variable *tsv);
815
816 /* Enable a tracepoint on the target. */
817 void (*to_enable_tracepoint) (struct target_ops *,
818 struct bp_location *location);
819
820 /* Disable a tracepoint on the target. */
821 void (*to_disable_tracepoint) (struct target_ops *,
822 struct bp_location *location);
823
824 /* Inform the target info of memory regions that are readonly
825 (such as text sections), and so it should return data from
826 those rather than look in the trace buffer. */
827 void (*to_trace_set_readonly_regions) (struct target_ops *);
828
829 /* Start a trace run. */
830 void (*to_trace_start) (struct target_ops *);
831
832 /* Get the current status of a tracing run. */
833 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts);
834
835 void (*to_get_tracepoint_status) (struct target_ops *,
836 struct breakpoint *tp,
837 struct uploaded_tp *utp);
838
839 /* Stop a trace run. */
840 void (*to_trace_stop) (struct target_ops *);
841
842 /* Ask the target to find a trace frame of the given type TYPE,
843 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
844 number of the trace frame, and also the tracepoint number at
845 TPP. If no trace frame matches, return -1. May throw if the
846 operation fails. */
847 int (*to_trace_find) (struct target_ops *,
848 enum trace_find_type type, int num,
849 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp);
850
851 /* Get the value of the trace state variable number TSV, returning
852 1 if the value is known and writing the value itself into the
853 location pointed to by VAL, else returning 0. */
854 int (*to_get_trace_state_variable_value) (struct target_ops *,
855 int tsv, LONGEST *val);
856
857 int (*to_save_trace_data) (struct target_ops *, const char *filename);
858
859 int (*to_upload_tracepoints) (struct target_ops *,
860 struct uploaded_tp **utpp);
861
862 int (*to_upload_trace_state_variables) (struct target_ops *,
863 struct uploaded_tsv **utsvp);
864
865 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
866 ULONGEST offset, LONGEST len);
867
868 /* Get the minimum length of instruction on which a fast tracepoint
869 may be set on the target. If this operation is unsupported,
870 return -1. If for some reason the minimum length cannot be
871 determined, return 0. */
872 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *);
873
874 /* Set the target's tracing behavior in response to unexpected
875 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
876 void (*to_set_disconnected_tracing) (struct target_ops *, int val);
877 void (*to_set_circular_trace_buffer) (struct target_ops *, int val);
878 /* Set the size of trace buffer in the target. */
879 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val);
880
881 /* Add/change textual notes about the trace run, returning 1 if
882 successful, 0 otherwise. */
883 int (*to_set_trace_notes) (struct target_ops *,
884 const char *user, const char *notes,
885 const char *stopnotes);
886
887 /* Return the processor core that thread PTID was last seen on.
888 This information is updated only when:
889 - update_thread_list is called
890 - thread stops
891 If the core cannot be determined -- either for the specified
892 thread, or right now, or in this debug session, or for this
893 target -- return -1. */
894 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
895
896 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
897 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
898 a match, 0 if there's a mismatch, and -1 if an error is
899 encountered while reading memory. */
900 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
901 CORE_ADDR memaddr, ULONGEST size);
902
903 /* Return the address of the start of the Thread Information Block
904 a Windows OS specific feature. */
905 int (*to_get_tib_address) (struct target_ops *,
906 ptid_t ptid, CORE_ADDR *addr);
907
908 /* Send the new settings of write permission variables. */
909 void (*to_set_permissions) (struct target_ops *);
910
911 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
912 with its details. Return 1 on success, 0 on failure. */
913 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
914 struct static_tracepoint_marker *marker);
915
916 /* Return a vector of all tracepoints markers string id ID, or all
917 markers if ID is NULL. */
918 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
919 (struct target_ops *, const char *id);
920
921 /* Return a traceframe info object describing the current
922 traceframe's contents. If the target doesn't support
923 traceframe info, return NULL. If the current traceframe is not
924 selected (the current traceframe number is -1), the target can
925 choose to return either NULL or an empty traceframe info. If
926 NULL is returned, for example in remote target, GDB will read
927 from the live inferior. If an empty traceframe info is
928 returned, for example in tfile target, which means the
929 traceframe info is available, but the requested memory is not
930 available in it. GDB will try to see if the requested memory
931 is available in the read-only sections. This method should not
932 cache data; higher layers take care of caching, invalidating,
933 and re-fetching when necessary. */
934 struct traceframe_info *(*to_traceframe_info) (struct target_ops *);
935
936 /* Ask the target to use or not to use agent according to USE. Return 1
937 successful, 0 otherwise. */
938 int (*to_use_agent) (struct target_ops *, int use);
939
940 /* Is the target able to use agent in current state? */
941 int (*to_can_use_agent) (struct target_ops *);
942
943 /* Check whether the target supports branch tracing. */
944 int (*to_supports_btrace) (struct target_ops *)
945 TARGET_DEFAULT_RETURN (0);
946
947 /* Enable branch tracing for PTID and allocate a branch trace target
948 information struct for reading and for disabling branch trace. */
949 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
950 ptid_t ptid);
951
952 /* Disable branch tracing and deallocate TINFO. */
953 void (*to_disable_btrace) (struct target_ops *,
954 struct btrace_target_info *tinfo);
955
956 /* Disable branch tracing and deallocate TINFO. This function is similar
957 to to_disable_btrace, except that it is called during teardown and is
958 only allowed to perform actions that are safe. A counter-example would
959 be attempting to talk to a remote target. */
960 void (*to_teardown_btrace) (struct target_ops *,
961 struct btrace_target_info *tinfo);
962
963 /* Read branch trace data for the thread indicated by BTINFO into DATA.
964 DATA is cleared before new trace is added.
965 The branch trace will start with the most recent block and continue
966 towards older blocks. */
967 enum btrace_error (*to_read_btrace) (struct target_ops *self,
968 VEC (btrace_block_s) **data,
969 struct btrace_target_info *btinfo,
970 enum btrace_read_type type);
971
972 /* Stop trace recording. */
973 void (*to_stop_recording) (struct target_ops *);
974
975 /* Print information about the recording. */
976 void (*to_info_record) (struct target_ops *);
977
978 /* Save the recorded execution trace into a file. */
979 void (*to_save_record) (struct target_ops *, const char *filename);
980
981 /* Delete the recorded execution trace from the current position onwards. */
982 void (*to_delete_record) (struct target_ops *);
983
984 /* Query if the record target is currently replaying. */
985 int (*to_record_is_replaying) (struct target_ops *);
986
987 /* Go to the begin of the execution trace. */
988 void (*to_goto_record_begin) (struct target_ops *);
989
990 /* Go to the end of the execution trace. */
991 void (*to_goto_record_end) (struct target_ops *);
992
993 /* Go to a specific location in the recorded execution trace. */
994 void (*to_goto_record) (struct target_ops *, ULONGEST insn);
995
996 /* Disassemble SIZE instructions in the recorded execution trace from
997 the current position.
998 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
999 disassemble SIZE succeeding instructions. */
1000 void (*to_insn_history) (struct target_ops *, int size, int flags);
1001
1002 /* Disassemble SIZE instructions in the recorded execution trace around
1003 FROM.
1004 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1005 disassemble SIZE instructions after FROM. */
1006 void (*to_insn_history_from) (struct target_ops *,
1007 ULONGEST from, int size, int flags);
1008
1009 /* Disassemble a section of the recorded execution trace from instruction
1010 BEGIN (inclusive) to instruction END (inclusive). */
1011 void (*to_insn_history_range) (struct target_ops *,
1012 ULONGEST begin, ULONGEST end, int flags);
1013
1014 /* Print a function trace of the recorded execution trace.
1015 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1016 succeeding functions. */
1017 void (*to_call_history) (struct target_ops *, int size, int flags);
1018
1019 /* Print a function trace of the recorded execution trace starting
1020 at function FROM.
1021 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1022 SIZE functions after FROM. */
1023 void (*to_call_history_from) (struct target_ops *,
1024 ULONGEST begin, int size, int flags);
1025
1026 /* Print a function trace of an execution trace section from function BEGIN
1027 (inclusive) to function END (inclusive). */
1028 void (*to_call_history_range) (struct target_ops *,
1029 ULONGEST begin, ULONGEST end, int flags);
1030
1031 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1032 non-empty annex. */
1033 int (*to_augmented_libraries_svr4_read) (struct target_ops *);
1034
1035 /* Those unwinders are tried before any other arch unwinders. Use NULL if
1036 it is not used. */
1037 const struct frame_unwind *to_get_unwinder;
1038 const struct frame_unwind *to_get_tailcall_unwinder;
1039
1040 /* Return the number of bytes by which the PC needs to be decremented
1041 after executing a breakpoint instruction.
1042 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
1043 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
1044 struct gdbarch *gdbarch);
1045
1046 int to_magic;
1047 /* Need sub-structure for target machine related rather than comm related?
1048 */
1049 };
1050
1051 /* Magic number for checking ops size. If a struct doesn't end with this
1052 number, somebody changed the declaration but didn't change all the
1053 places that initialize one. */
1054
1055 #define OPS_MAGIC 3840
1056
1057 /* The ops structure for our "current" target process. This should
1058 never be NULL. If there is no target, it points to the dummy_target. */
1059
1060 extern struct target_ops current_target;
1061
1062 /* Define easy words for doing these operations on our current target. */
1063
1064 #define target_shortname (current_target.to_shortname)
1065 #define target_longname (current_target.to_longname)
1066
1067 /* Does whatever cleanup is required for a target that we are no
1068 longer going to be calling. This routine is automatically always
1069 called after popping the target off the target stack - the target's
1070 own methods are no longer available through the target vector.
1071 Closing file descriptors and freeing all memory allocated memory are
1072 typical things it should do. */
1073
1074 void target_close (struct target_ops *targ);
1075
1076 /* Attaches to a process on the target side. Arguments are as passed
1077 to the `attach' command by the user. This routine can be called
1078 when the target is not on the target-stack, if the target_can_run
1079 routine returns 1; in that case, it must push itself onto the stack.
1080 Upon exit, the target should be ready for normal operations, and
1081 should be ready to deliver the status of the process immediately
1082 (without waiting) to an upcoming target_wait call. */
1083
1084 void target_attach (char *, int);
1085
1086 /* Some targets don't generate traps when attaching to the inferior,
1087 or their target_attach implementation takes care of the waiting.
1088 These targets must set to_attach_no_wait. */
1089
1090 #define target_attach_no_wait \
1091 (current_target.to_attach_no_wait)
1092
1093 /* The target_attach operation places a process under debugger control,
1094 and stops the process.
1095
1096 This operation provides a target-specific hook that allows the
1097 necessary bookkeeping to be performed after an attach completes. */
1098 #define target_post_attach(pid) \
1099 (*current_target.to_post_attach) (&current_target, pid)
1100
1101 /* Takes a program previously attached to and detaches it.
1102 The program may resume execution (some targets do, some don't) and will
1103 no longer stop on signals, etc. We better not have left any breakpoints
1104 in the program or it'll die when it hits one. ARGS is arguments
1105 typed by the user (e.g. a signal to send the process). FROM_TTY
1106 says whether to be verbose or not. */
1107
1108 extern void target_detach (const char *, int);
1109
1110 /* Disconnect from the current target without resuming it (leaving it
1111 waiting for a debugger). */
1112
1113 extern void target_disconnect (char *, int);
1114
1115 /* Resume execution of the target process PTID (or a group of
1116 threads). STEP says whether to single-step or to run free; SIGGNAL
1117 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1118 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1119 PTID means `step/resume only this process id'. A wildcard PTID
1120 (all threads, or all threads of process) means `step/resume
1121 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1122 matches) resume with their 'thread->suspend.stop_signal' signal
1123 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1124 if in "no pass" state. */
1125
1126 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1127
1128 /* Wait for process pid to do something. PTID = -1 to wait for any
1129 pid to do something. Return pid of child, or -1 in case of error;
1130 store status through argument pointer STATUS. Note that it is
1131 _NOT_ OK to throw_exception() out of target_wait() without popping
1132 the debugging target from the stack; GDB isn't prepared to get back
1133 to the prompt with a debugging target but without the frame cache,
1134 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1135 options. */
1136
1137 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1138 int options);
1139
1140 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1141
1142 extern void target_fetch_registers (struct regcache *regcache, int regno);
1143
1144 /* Store at least register REGNO, or all regs if REGNO == -1.
1145 It can store as many registers as it wants to, so target_prepare_to_store
1146 must have been previously called. Calls error() if there are problems. */
1147
1148 extern void target_store_registers (struct regcache *regcache, int regs);
1149
1150 /* Get ready to modify the registers array. On machines which store
1151 individual registers, this doesn't need to do anything. On machines
1152 which store all the registers in one fell swoop, this makes sure
1153 that REGISTERS contains all the registers from the program being
1154 debugged. */
1155
1156 #define target_prepare_to_store(regcache) \
1157 (*current_target.to_prepare_to_store) (&current_target, regcache)
1158
1159 /* Determine current address space of thread PTID. */
1160
1161 struct address_space *target_thread_address_space (ptid_t);
1162
1163 /* Implement the "info proc" command. This returns one if the request
1164 was handled, and zero otherwise. It can also throw an exception if
1165 an error was encountered while attempting to handle the
1166 request. */
1167
1168 int target_info_proc (char *, enum info_proc_what);
1169
1170 /* Returns true if this target can debug multiple processes
1171 simultaneously. */
1172
1173 #define target_supports_multi_process() \
1174 (*current_target.to_supports_multi_process) (&current_target)
1175
1176 /* Returns true if this target can disable address space randomization. */
1177
1178 int target_supports_disable_randomization (void);
1179
1180 /* Returns true if this target can enable and disable tracepoints
1181 while a trace experiment is running. */
1182
1183 #define target_supports_enable_disable_tracepoint() \
1184 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1185
1186 #define target_supports_string_tracing() \
1187 (*current_target.to_supports_string_tracing) (&current_target)
1188
1189 /* Returns true if this target can handle breakpoint conditions
1190 on its end. */
1191
1192 #define target_supports_evaluation_of_breakpoint_conditions() \
1193 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1194
1195 /* Returns true if this target can handle breakpoint commands
1196 on its end. */
1197
1198 #define target_can_run_breakpoint_commands() \
1199 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1200
1201 extern int target_read_string (CORE_ADDR, char **, int, int *);
1202
1203 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1204 ssize_t len);
1205
1206 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1207 ssize_t len);
1208
1209 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1210
1211 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1212
1213 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1214 ssize_t len);
1215
1216 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1217 ssize_t len);
1218
1219 /* Fetches the target's memory map. If one is found it is sorted
1220 and returned, after some consistency checking. Otherwise, NULL
1221 is returned. */
1222 VEC(mem_region_s) *target_memory_map (void);
1223
1224 /* Erase the specified flash region. */
1225 void target_flash_erase (ULONGEST address, LONGEST length);
1226
1227 /* Finish a sequence of flash operations. */
1228 void target_flash_done (void);
1229
1230 /* Describes a request for a memory write operation. */
1231 struct memory_write_request
1232 {
1233 /* Begining address that must be written. */
1234 ULONGEST begin;
1235 /* Past-the-end address. */
1236 ULONGEST end;
1237 /* The data to write. */
1238 gdb_byte *data;
1239 /* A callback baton for progress reporting for this request. */
1240 void *baton;
1241 };
1242 typedef struct memory_write_request memory_write_request_s;
1243 DEF_VEC_O(memory_write_request_s);
1244
1245 /* Enumeration specifying different flash preservation behaviour. */
1246 enum flash_preserve_mode
1247 {
1248 flash_preserve,
1249 flash_discard
1250 };
1251
1252 /* Write several memory blocks at once. This version can be more
1253 efficient than making several calls to target_write_memory, in
1254 particular because it can optimize accesses to flash memory.
1255
1256 Moreover, this is currently the only memory access function in gdb
1257 that supports writing to flash memory, and it should be used for
1258 all cases where access to flash memory is desirable.
1259
1260 REQUESTS is the vector (see vec.h) of memory_write_request.
1261 PRESERVE_FLASH_P indicates what to do with blocks which must be
1262 erased, but not completely rewritten.
1263 PROGRESS_CB is a function that will be periodically called to provide
1264 feedback to user. It will be called with the baton corresponding
1265 to the request currently being written. It may also be called
1266 with a NULL baton, when preserved flash sectors are being rewritten.
1267
1268 The function returns 0 on success, and error otherwise. */
1269 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1270 enum flash_preserve_mode preserve_flash_p,
1271 void (*progress_cb) (ULONGEST, void *));
1272
1273 /* Print a line about the current target. */
1274
1275 #define target_files_info() \
1276 (*current_target.to_files_info) (&current_target)
1277
1278 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1279 the target machine. Returns 0 for success, and returns non-zero or
1280 throws an error (with a detailed failure reason error code and
1281 message) otherwise. */
1282
1283 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1284 struct bp_target_info *bp_tgt);
1285
1286 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1287 machine. Result is 0 for success, non-zero for error. */
1288
1289 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1290 struct bp_target_info *bp_tgt);
1291
1292 /* Initialize the terminal settings we record for the inferior,
1293 before we actually run the inferior. */
1294
1295 #define target_terminal_init() \
1296 (*current_target.to_terminal_init) (&current_target)
1297
1298 /* Put the inferior's terminal settings into effect.
1299 This is preparation for starting or resuming the inferior. */
1300
1301 extern void target_terminal_inferior (void);
1302
1303 /* Put some of our terminal settings into effect,
1304 enough to get proper results from our output,
1305 but do not change into or out of RAW mode
1306 so that no input is discarded.
1307
1308 After doing this, either terminal_ours or terminal_inferior
1309 should be called to get back to a normal state of affairs. */
1310
1311 #define target_terminal_ours_for_output() \
1312 (*current_target.to_terminal_ours_for_output) (&current_target)
1313
1314 /* Put our terminal settings into effect.
1315 First record the inferior's terminal settings
1316 so they can be restored properly later. */
1317
1318 #define target_terminal_ours() \
1319 (*current_target.to_terminal_ours) (&current_target)
1320
1321 /* Save our terminal settings.
1322 This is called from TUI after entering or leaving the curses
1323 mode. Since curses modifies our terminal this call is here
1324 to take this change into account. */
1325
1326 #define target_terminal_save_ours() \
1327 (*current_target.to_terminal_save_ours) (&current_target)
1328
1329 /* Print useful information about our terminal status, if such a thing
1330 exists. */
1331
1332 #define target_terminal_info(arg, from_tty) \
1333 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1334
1335 /* Kill the inferior process. Make it go away. */
1336
1337 extern void target_kill (void);
1338
1339 /* Load an executable file into the target process. This is expected
1340 to not only bring new code into the target process, but also to
1341 update GDB's symbol tables to match.
1342
1343 ARG contains command-line arguments, to be broken down with
1344 buildargv (). The first non-switch argument is the filename to
1345 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1346 0)), which is an offset to apply to the load addresses of FILE's
1347 sections. The target may define switches, or other non-switch
1348 arguments, as it pleases. */
1349
1350 extern void target_load (char *arg, int from_tty);
1351
1352 /* Start an inferior process and set inferior_ptid to its pid.
1353 EXEC_FILE is the file to run.
1354 ALLARGS is a string containing the arguments to the program.
1355 ENV is the environment vector to pass. Errors reported with error().
1356 On VxWorks and various standalone systems, we ignore exec_file. */
1357
1358 void target_create_inferior (char *exec_file, char *args,
1359 char **env, int from_tty);
1360
1361 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1362 notification of inferior events such as fork and vork immediately
1363 after the inferior is created. (This because of how gdb gets an
1364 inferior created via invoking a shell to do it. In such a scenario,
1365 if the shell init file has commands in it, the shell will fork and
1366 exec for each of those commands, and we will see each such fork
1367 event. Very bad.)
1368
1369 Such targets will supply an appropriate definition for this function. */
1370
1371 #define target_post_startup_inferior(ptid) \
1372 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1373
1374 /* On some targets, we can catch an inferior fork or vfork event when
1375 it occurs. These functions insert/remove an already-created
1376 catchpoint for such events. They return 0 for success, 1 if the
1377 catchpoint type is not supported and -1 for failure. */
1378
1379 #define target_insert_fork_catchpoint(pid) \
1380 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1381
1382 #define target_remove_fork_catchpoint(pid) \
1383 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1384
1385 #define target_insert_vfork_catchpoint(pid) \
1386 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1387
1388 #define target_remove_vfork_catchpoint(pid) \
1389 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1390
1391 /* If the inferior forks or vforks, this function will be called at
1392 the next resume in order to perform any bookkeeping and fiddling
1393 necessary to continue debugging either the parent or child, as
1394 requested, and releasing the other. Information about the fork
1395 or vfork event is available via get_last_target_status ().
1396 This function returns 1 if the inferior should not be resumed
1397 (i.e. there is another event pending). */
1398
1399 int target_follow_fork (int follow_child, int detach_fork);
1400
1401 /* On some targets, we can catch an inferior exec event when it
1402 occurs. These functions insert/remove an already-created
1403 catchpoint for such events. They return 0 for success, 1 if the
1404 catchpoint type is not supported and -1 for failure. */
1405
1406 #define target_insert_exec_catchpoint(pid) \
1407 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1408
1409 #define target_remove_exec_catchpoint(pid) \
1410 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1411
1412 /* Syscall catch.
1413
1414 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1415 If NEEDED is zero, it means the target can disable the mechanism to
1416 catch system calls because there are no more catchpoints of this type.
1417
1418 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1419 being requested. In this case, both TABLE_SIZE and TABLE should
1420 be ignored.
1421
1422 TABLE_SIZE is the number of elements in TABLE. It only matters if
1423 ANY_COUNT is zero.
1424
1425 TABLE is an array of ints, indexed by syscall number. An element in
1426 this array is nonzero if that syscall should be caught. This argument
1427 only matters if ANY_COUNT is zero.
1428
1429 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1430 for failure. */
1431
1432 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1433 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1434 pid, needed, any_count, \
1435 table_size, table)
1436
1437 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1438 exit code of PID, if any. */
1439
1440 #define target_has_exited(pid,wait_status,exit_status) \
1441 (*current_target.to_has_exited) (&current_target, \
1442 pid,wait_status,exit_status)
1443
1444 /* The debugger has completed a blocking wait() call. There is now
1445 some process event that must be processed. This function should
1446 be defined by those targets that require the debugger to perform
1447 cleanup or internal state changes in response to the process event. */
1448
1449 /* The inferior process has died. Do what is right. */
1450
1451 void target_mourn_inferior (void);
1452
1453 /* Does target have enough data to do a run or attach command? */
1454
1455 #define target_can_run(t) \
1456 ((t)->to_can_run) (t)
1457
1458 /* Set list of signals to be handled in the target.
1459
1460 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1461 (enum gdb_signal). For every signal whose entry in this array is
1462 non-zero, the target is allowed -but not required- to skip reporting
1463 arrival of the signal to the GDB core by returning from target_wait,
1464 and to pass the signal directly to the inferior instead.
1465
1466 However, if the target is hardware single-stepping a thread that is
1467 about to receive a signal, it needs to be reported in any case, even
1468 if mentioned in a previous target_pass_signals call. */
1469
1470 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1471
1472 /* Set list of signals the target may pass to the inferior. This
1473 directly maps to the "handle SIGNAL pass/nopass" setting.
1474
1475 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1476 number (enum gdb_signal). For every signal whose entry in this
1477 array is non-zero, the target is allowed to pass the signal to the
1478 inferior. Signals not present in the array shall be silently
1479 discarded. This does not influence whether to pass signals to the
1480 inferior as a result of a target_resume call. This is useful in
1481 scenarios where the target needs to decide whether to pass or not a
1482 signal to the inferior without GDB core involvement, such as for
1483 example, when detaching (as threads may have been suspended with
1484 pending signals not reported to GDB). */
1485
1486 extern void target_program_signals (int nsig, unsigned char *program_signals);
1487
1488 /* Check to see if a thread is still alive. */
1489
1490 extern int target_thread_alive (ptid_t ptid);
1491
1492 /* Query for new threads and add them to the thread list. */
1493
1494 extern void target_find_new_threads (void);
1495
1496 /* Make target stop in a continuable fashion. (For instance, under
1497 Unix, this should act like SIGSTOP). This function is normally
1498 used by GUIs to implement a stop button. */
1499
1500 extern void target_stop (ptid_t ptid);
1501
1502 /* Send the specified COMMAND to the target's monitor
1503 (shell,interpreter) for execution. The result of the query is
1504 placed in OUTBUF. */
1505
1506 #define target_rcmd(command, outbuf) \
1507 (*current_target.to_rcmd) (&current_target, command, outbuf)
1508
1509
1510 /* Does the target include all of memory, or only part of it? This
1511 determines whether we look up the target chain for other parts of
1512 memory if this target can't satisfy a request. */
1513
1514 extern int target_has_all_memory_1 (void);
1515 #define target_has_all_memory target_has_all_memory_1 ()
1516
1517 /* Does the target include memory? (Dummy targets don't.) */
1518
1519 extern int target_has_memory_1 (void);
1520 #define target_has_memory target_has_memory_1 ()
1521
1522 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1523 we start a process.) */
1524
1525 extern int target_has_stack_1 (void);
1526 #define target_has_stack target_has_stack_1 ()
1527
1528 /* Does the target have registers? (Exec files don't.) */
1529
1530 extern int target_has_registers_1 (void);
1531 #define target_has_registers target_has_registers_1 ()
1532
1533 /* Does the target have execution? Can we make it jump (through
1534 hoops), or pop its stack a few times? This means that the current
1535 target is currently executing; for some targets, that's the same as
1536 whether or not the target is capable of execution, but there are
1537 also targets which can be current while not executing. In that
1538 case this will become true after target_create_inferior or
1539 target_attach. */
1540
1541 extern int target_has_execution_1 (ptid_t);
1542
1543 /* Like target_has_execution_1, but always passes inferior_ptid. */
1544
1545 extern int target_has_execution_current (void);
1546
1547 #define target_has_execution target_has_execution_current ()
1548
1549 /* Default implementations for process_stratum targets. Return true
1550 if there's a selected inferior, false otherwise. */
1551
1552 extern int default_child_has_all_memory (struct target_ops *ops);
1553 extern int default_child_has_memory (struct target_ops *ops);
1554 extern int default_child_has_stack (struct target_ops *ops);
1555 extern int default_child_has_registers (struct target_ops *ops);
1556 extern int default_child_has_execution (struct target_ops *ops,
1557 ptid_t the_ptid);
1558
1559 /* Can the target support the debugger control of thread execution?
1560 Can it lock the thread scheduler? */
1561
1562 #define target_can_lock_scheduler \
1563 (current_target.to_has_thread_control & tc_schedlock)
1564
1565 /* Should the target enable async mode if it is supported? Temporary
1566 cludge until async mode is a strict superset of sync mode. */
1567 extern int target_async_permitted;
1568
1569 /* Can the target support asynchronous execution? */
1570 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1571
1572 /* Is the target in asynchronous execution mode? */
1573 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1574
1575 int target_supports_non_stop (void);
1576
1577 /* Put the target in async mode with the specified callback function. */
1578 #define target_async(CALLBACK,CONTEXT) \
1579 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1580
1581 #define target_execution_direction() \
1582 (current_target.to_execution_direction (&current_target))
1583
1584 /* Converts a process id to a string. Usually, the string just contains
1585 `process xyz', but on some systems it may contain
1586 `process xyz thread abc'. */
1587
1588 extern char *target_pid_to_str (ptid_t ptid);
1589
1590 extern char *normal_pid_to_str (ptid_t ptid);
1591
1592 /* Return a short string describing extra information about PID,
1593 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1594 is okay. */
1595
1596 #define target_extra_thread_info(TP) \
1597 (current_target.to_extra_thread_info (&current_target, TP))
1598
1599 /* Return the thread's name. A NULL result means that the target
1600 could not determine this thread's name. */
1601
1602 extern char *target_thread_name (struct thread_info *);
1603
1604 /* Attempts to find the pathname of the executable file
1605 that was run to create a specified process.
1606
1607 The process PID must be stopped when this operation is used.
1608
1609 If the executable file cannot be determined, NULL is returned.
1610
1611 Else, a pointer to a character string containing the pathname
1612 is returned. This string should be copied into a buffer by
1613 the client if the string will not be immediately used, or if
1614 it must persist. */
1615
1616 #define target_pid_to_exec_file(pid) \
1617 (current_target.to_pid_to_exec_file) (&current_target, pid)
1618
1619 /* See the to_thread_architecture description in struct target_ops. */
1620
1621 #define target_thread_architecture(ptid) \
1622 (current_target.to_thread_architecture (&current_target, ptid))
1623
1624 /*
1625 * Iterator function for target memory regions.
1626 * Calls a callback function once for each memory region 'mapped'
1627 * in the child process. Defined as a simple macro rather than
1628 * as a function macro so that it can be tested for nullity.
1629 */
1630
1631 #define target_find_memory_regions(FUNC, DATA) \
1632 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1633
1634 /*
1635 * Compose corefile .note section.
1636 */
1637
1638 #define target_make_corefile_notes(BFD, SIZE_P) \
1639 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1640
1641 /* Bookmark interfaces. */
1642 #define target_get_bookmark(ARGS, FROM_TTY) \
1643 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1644
1645 #define target_goto_bookmark(ARG, FROM_TTY) \
1646 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1647
1648 /* Hardware watchpoint interfaces. */
1649
1650 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1651 write). Only the INFERIOR_PTID task is being queried. */
1652
1653 #define target_stopped_by_watchpoint() \
1654 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1655
1656 /* Non-zero if we have steppable watchpoints */
1657
1658 #define target_have_steppable_watchpoint \
1659 (current_target.to_have_steppable_watchpoint)
1660
1661 /* Non-zero if we have continuable watchpoints */
1662
1663 #define target_have_continuable_watchpoint \
1664 (current_target.to_have_continuable_watchpoint)
1665
1666 /* Provide defaults for hardware watchpoint functions. */
1667
1668 /* If the *_hw_beakpoint functions have not been defined
1669 elsewhere use the definitions in the target vector. */
1670
1671 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1672 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1673 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1674 (including this one?). OTHERTYPE is who knows what... */
1675
1676 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1677 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1678 TYPE, CNT, OTHERTYPE);
1679
1680 /* Returns the number of debug registers needed to watch the given
1681 memory region, or zero if not supported. */
1682
1683 #define target_region_ok_for_hw_watchpoint(addr, len) \
1684 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1685 addr, len)
1686
1687
1688 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1689 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1690 COND is the expression for its condition, or NULL if there's none.
1691 Returns 0 for success, 1 if the watchpoint type is not supported,
1692 -1 for failure. */
1693
1694 #define target_insert_watchpoint(addr, len, type, cond) \
1695 (*current_target.to_insert_watchpoint) (&current_target, \
1696 addr, len, type, cond)
1697
1698 #define target_remove_watchpoint(addr, len, type, cond) \
1699 (*current_target.to_remove_watchpoint) (&current_target, \
1700 addr, len, type, cond)
1701
1702 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1703 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1704 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1705 masked watchpoints are not supported, -1 for failure. */
1706
1707 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1708
1709 /* Remove a masked watchpoint at ADDR with the mask MASK.
1710 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1711 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1712 for failure. */
1713
1714 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1715
1716 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1717 the target machine. Returns 0 for success, and returns non-zero or
1718 throws an error (with a detailed failure reason error code and
1719 message) otherwise. */
1720
1721 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1722 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1723 gdbarch, bp_tgt)
1724
1725 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1726 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1727 gdbarch, bp_tgt)
1728
1729 /* Return number of debug registers needed for a ranged breakpoint,
1730 or -1 if ranged breakpoints are not supported. */
1731
1732 extern int target_ranged_break_num_registers (void);
1733
1734 /* Return non-zero if target knows the data address which triggered this
1735 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1736 INFERIOR_PTID task is being queried. */
1737 #define target_stopped_data_address(target, addr_p) \
1738 (*target.to_stopped_data_address) (target, addr_p)
1739
1740 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1741 LENGTH bytes beginning at START. */
1742 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1743 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1744
1745 /* Return non-zero if the target is capable of using hardware to evaluate
1746 the condition expression. In this case, if the condition is false when
1747 the watched memory location changes, execution may continue without the
1748 debugger being notified.
1749
1750 Due to limitations in the hardware implementation, it may be capable of
1751 avoiding triggering the watchpoint in some cases where the condition
1752 expression is false, but may report some false positives as well.
1753 For this reason, GDB will still evaluate the condition expression when
1754 the watchpoint triggers. */
1755 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1756 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1757 addr, len, type, cond)
1758
1759 /* Return number of debug registers needed for a masked watchpoint,
1760 -1 if masked watchpoints are not supported or -2 if the given address
1761 and mask combination cannot be used. */
1762
1763 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1764
1765 /* Target can execute in reverse? */
1766 #define target_can_execute_reverse \
1767 current_target.to_can_execute_reverse (&current_target)
1768
1769 extern const struct target_desc *target_read_description (struct target_ops *);
1770
1771 #define target_get_ada_task_ptid(lwp, tid) \
1772 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1773
1774 /* Utility implementation of searching memory. */
1775 extern int simple_search_memory (struct target_ops* ops,
1776 CORE_ADDR start_addr,
1777 ULONGEST search_space_len,
1778 const gdb_byte *pattern,
1779 ULONGEST pattern_len,
1780 CORE_ADDR *found_addrp);
1781
1782 /* Main entry point for searching memory. */
1783 extern int target_search_memory (CORE_ADDR start_addr,
1784 ULONGEST search_space_len,
1785 const gdb_byte *pattern,
1786 ULONGEST pattern_len,
1787 CORE_ADDR *found_addrp);
1788
1789 /* Target file operations. */
1790
1791 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1792 target file descriptor, or -1 if an error occurs (and set
1793 *TARGET_ERRNO). */
1794 extern int target_fileio_open (const char *filename, int flags, int mode,
1795 int *target_errno);
1796
1797 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1798 Return the number of bytes written, or -1 if an error occurs
1799 (and set *TARGET_ERRNO). */
1800 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1801 ULONGEST offset, int *target_errno);
1802
1803 /* Read up to LEN bytes FD on the target into READ_BUF.
1804 Return the number of bytes read, or -1 if an error occurs
1805 (and set *TARGET_ERRNO). */
1806 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1807 ULONGEST offset, int *target_errno);
1808
1809 /* Close FD on the target. Return 0, or -1 if an error occurs
1810 (and set *TARGET_ERRNO). */
1811 extern int target_fileio_close (int fd, int *target_errno);
1812
1813 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1814 occurs (and set *TARGET_ERRNO). */
1815 extern int target_fileio_unlink (const char *filename, int *target_errno);
1816
1817 /* Read value of symbolic link FILENAME on the target. Return a
1818 null-terminated string allocated via xmalloc, or NULL if an error
1819 occurs (and set *TARGET_ERRNO). */
1820 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1821
1822 /* Read target file FILENAME. The return value will be -1 if the transfer
1823 fails or is not supported; 0 if the object is empty; or the length
1824 of the object otherwise. If a positive value is returned, a
1825 sufficiently large buffer will be allocated using xmalloc and
1826 returned in *BUF_P containing the contents of the object.
1827
1828 This method should be used for objects sufficiently small to store
1829 in a single xmalloc'd buffer, when no fixed bound on the object's
1830 size is known in advance. */
1831 extern LONGEST target_fileio_read_alloc (const char *filename,
1832 gdb_byte **buf_p);
1833
1834 /* Read target file FILENAME. The result is NUL-terminated and
1835 returned as a string, allocated using xmalloc. If an error occurs
1836 or the transfer is unsupported, NULL is returned. Empty objects
1837 are returned as allocated but empty strings. A warning is issued
1838 if the result contains any embedded NUL bytes. */
1839 extern char *target_fileio_read_stralloc (const char *filename);
1840
1841
1842 /* Tracepoint-related operations. */
1843
1844 #define target_trace_init() \
1845 (*current_target.to_trace_init) (&current_target)
1846
1847 #define target_download_tracepoint(t) \
1848 (*current_target.to_download_tracepoint) (&current_target, t)
1849
1850 #define target_can_download_tracepoint() \
1851 (*current_target.to_can_download_tracepoint) (&current_target)
1852
1853 #define target_download_trace_state_variable(tsv) \
1854 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
1855
1856 #define target_enable_tracepoint(loc) \
1857 (*current_target.to_enable_tracepoint) (&current_target, loc)
1858
1859 #define target_disable_tracepoint(loc) \
1860 (*current_target.to_disable_tracepoint) (&current_target, loc)
1861
1862 #define target_trace_start() \
1863 (*current_target.to_trace_start) (&current_target)
1864
1865 #define target_trace_set_readonly_regions() \
1866 (*current_target.to_trace_set_readonly_regions) (&current_target)
1867
1868 #define target_get_trace_status(ts) \
1869 (*current_target.to_get_trace_status) (&current_target, ts)
1870
1871 #define target_get_tracepoint_status(tp,utp) \
1872 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
1873
1874 #define target_trace_stop() \
1875 (*current_target.to_trace_stop) (&current_target)
1876
1877 #define target_trace_find(type,num,addr1,addr2,tpp) \
1878 (*current_target.to_trace_find) (&current_target, \
1879 (type), (num), (addr1), (addr2), (tpp))
1880
1881 #define target_get_trace_state_variable_value(tsv,val) \
1882 (*current_target.to_get_trace_state_variable_value) (&current_target, \
1883 (tsv), (val))
1884
1885 #define target_save_trace_data(filename) \
1886 (*current_target.to_save_trace_data) (&current_target, filename)
1887
1888 #define target_upload_tracepoints(utpp) \
1889 (*current_target.to_upload_tracepoints) (&current_target, utpp)
1890
1891 #define target_upload_trace_state_variables(utsvp) \
1892 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
1893
1894 #define target_get_raw_trace_data(buf,offset,len) \
1895 (*current_target.to_get_raw_trace_data) (&current_target, \
1896 (buf), (offset), (len))
1897
1898 #define target_get_min_fast_tracepoint_insn_len() \
1899 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
1900
1901 #define target_set_disconnected_tracing(val) \
1902 (*current_target.to_set_disconnected_tracing) (&current_target, val)
1903
1904 #define target_set_circular_trace_buffer(val) \
1905 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
1906
1907 #define target_set_trace_buffer_size(val) \
1908 (*current_target.to_set_trace_buffer_size) (&current_target, val)
1909
1910 #define target_set_trace_notes(user,notes,stopnotes) \
1911 (*current_target.to_set_trace_notes) (&current_target, \
1912 (user), (notes), (stopnotes))
1913
1914 #define target_get_tib_address(ptid, addr) \
1915 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
1916
1917 #define target_set_permissions() \
1918 (*current_target.to_set_permissions) (&current_target)
1919
1920 #define target_static_tracepoint_marker_at(addr, marker) \
1921 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
1922 addr, marker)
1923
1924 #define target_static_tracepoint_markers_by_strid(marker_id) \
1925 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
1926 marker_id)
1927
1928 #define target_traceframe_info() \
1929 (*current_target.to_traceframe_info) (&current_target)
1930
1931 #define target_use_agent(use) \
1932 (*current_target.to_use_agent) (&current_target, use)
1933
1934 #define target_can_use_agent() \
1935 (*current_target.to_can_use_agent) (&current_target)
1936
1937 #define target_augmented_libraries_svr4_read() \
1938 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
1939
1940 /* Command logging facility. */
1941
1942 #define target_log_command(p) \
1943 (*current_target.to_log_command) (&current_target, p)
1944
1945
1946 extern int target_core_of_thread (ptid_t ptid);
1947
1948 /* See to_get_unwinder in struct target_ops. */
1949 extern const struct frame_unwind *target_get_unwinder (void);
1950
1951 /* See to_get_tailcall_unwinder in struct target_ops. */
1952 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
1953
1954 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1955 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1956 if there's a mismatch, and -1 if an error is encountered while
1957 reading memory. Throws an error if the functionality is found not
1958 to be supported by the current target. */
1959 int target_verify_memory (const gdb_byte *data,
1960 CORE_ADDR memaddr, ULONGEST size);
1961
1962 /* Routines for maintenance of the target structures...
1963
1964 complete_target_initialization: Finalize a target_ops by filling in
1965 any fields needed by the target implementation.
1966
1967 add_target: Add a target to the list of all possible targets.
1968
1969 push_target: Make this target the top of the stack of currently used
1970 targets, within its particular stratum of the stack. Result
1971 is 0 if now atop the stack, nonzero if not on top (maybe
1972 should warn user).
1973
1974 unpush_target: Remove this from the stack of currently used targets,
1975 no matter where it is on the list. Returns 0 if no
1976 change, 1 if removed from stack. */
1977
1978 extern void add_target (struct target_ops *);
1979
1980 extern void add_target_with_completer (struct target_ops *t,
1981 completer_ftype *completer);
1982
1983 extern void complete_target_initialization (struct target_ops *t);
1984
1985 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
1986 for maintaining backwards compatibility when renaming targets. */
1987
1988 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
1989
1990 extern void push_target (struct target_ops *);
1991
1992 extern int unpush_target (struct target_ops *);
1993
1994 extern void target_pre_inferior (int);
1995
1996 extern void target_preopen (int);
1997
1998 /* Does whatever cleanup is required to get rid of all pushed targets. */
1999 extern void pop_all_targets (void);
2000
2001 /* Like pop_all_targets, but pops only targets whose stratum is
2002 strictly above ABOVE_STRATUM. */
2003 extern void pop_all_targets_above (enum strata above_stratum);
2004
2005 extern int target_is_pushed (struct target_ops *t);
2006
2007 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2008 CORE_ADDR offset);
2009
2010 /* Struct target_section maps address ranges to file sections. It is
2011 mostly used with BFD files, but can be used without (e.g. for handling
2012 raw disks, or files not in formats handled by BFD). */
2013
2014 struct target_section
2015 {
2016 CORE_ADDR addr; /* Lowest address in section */
2017 CORE_ADDR endaddr; /* 1+highest address in section */
2018
2019 struct bfd_section *the_bfd_section;
2020
2021 /* The "owner" of the section.
2022 It can be any unique value. It is set by add_target_sections
2023 and used by remove_target_sections.
2024 For example, for executables it is a pointer to exec_bfd and
2025 for shlibs it is the so_list pointer. */
2026 void *owner;
2027 };
2028
2029 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2030
2031 struct target_section_table
2032 {
2033 struct target_section *sections;
2034 struct target_section *sections_end;
2035 };
2036
2037 /* Return the "section" containing the specified address. */
2038 struct target_section *target_section_by_addr (struct target_ops *target,
2039 CORE_ADDR addr);
2040
2041 /* Return the target section table this target (or the targets
2042 beneath) currently manipulate. */
2043
2044 extern struct target_section_table *target_get_section_table
2045 (struct target_ops *target);
2046
2047 /* From mem-break.c */
2048
2049 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2050 struct bp_target_info *);
2051
2052 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2053 struct bp_target_info *);
2054
2055 extern int default_memory_remove_breakpoint (struct gdbarch *,
2056 struct bp_target_info *);
2057
2058 extern int default_memory_insert_breakpoint (struct gdbarch *,
2059 struct bp_target_info *);
2060
2061
2062 /* From target.c */
2063
2064 extern void initialize_targets (void);
2065
2066 extern void noprocess (void) ATTRIBUTE_NORETURN;
2067
2068 extern void target_require_runnable (void);
2069
2070 extern void find_default_attach (struct target_ops *, char *, int);
2071
2072 extern void find_default_create_inferior (struct target_ops *,
2073 char *, char *, char **, int);
2074
2075 extern struct target_ops *find_target_beneath (struct target_ops *);
2076
2077 /* Find the target at STRATUM. If no target is at that stratum,
2078 return NULL. */
2079
2080 struct target_ops *find_target_at (enum strata stratum);
2081
2082 /* Read OS data object of type TYPE from the target, and return it in
2083 XML format. The result is NUL-terminated and returned as a string,
2084 allocated using xmalloc. If an error occurs or the transfer is
2085 unsupported, NULL is returned. Empty objects are returned as
2086 allocated but empty strings. */
2087
2088 extern char *target_get_osdata (const char *type);
2089
2090 \f
2091 /* Stuff that should be shared among the various remote targets. */
2092
2093 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2094 information (higher values, more information). */
2095 extern int remote_debug;
2096
2097 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2098 extern int baud_rate;
2099 /* Timeout limit for response from target. */
2100 extern int remote_timeout;
2101
2102 \f
2103
2104 /* Set the show memory breakpoints mode to show, and installs a cleanup
2105 to restore it back to the current value. */
2106 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2107
2108 extern int may_write_registers;
2109 extern int may_write_memory;
2110 extern int may_insert_breakpoints;
2111 extern int may_insert_tracepoints;
2112 extern int may_insert_fast_tracepoints;
2113 extern int may_stop;
2114
2115 extern void update_target_permissions (void);
2116
2117 \f
2118 /* Imported from machine dependent code. */
2119
2120 /* Blank target vector entries are initialized to target_ignore. */
2121 void target_ignore (void);
2122
2123 /* See to_supports_btrace in struct target_ops. */
2124 #define target_supports_btrace() \
2125 (current_target.to_supports_btrace (&current_target))
2126
2127 /* See to_enable_btrace in struct target_ops. */
2128 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2129
2130 /* See to_disable_btrace in struct target_ops. */
2131 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2132
2133 /* See to_teardown_btrace in struct target_ops. */
2134 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2135
2136 /* See to_read_btrace in struct target_ops. */
2137 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2138 struct btrace_target_info *,
2139 enum btrace_read_type);
2140
2141 /* See to_stop_recording in struct target_ops. */
2142 extern void target_stop_recording (void);
2143
2144 /* See to_info_record in struct target_ops. */
2145 extern void target_info_record (void);
2146
2147 /* See to_save_record in struct target_ops. */
2148 extern void target_save_record (const char *filename);
2149
2150 /* Query if the target supports deleting the execution log. */
2151 extern int target_supports_delete_record (void);
2152
2153 /* See to_delete_record in struct target_ops. */
2154 extern void target_delete_record (void);
2155
2156 /* See to_record_is_replaying in struct target_ops. */
2157 extern int target_record_is_replaying (void);
2158
2159 /* See to_goto_record_begin in struct target_ops. */
2160 extern void target_goto_record_begin (void);
2161
2162 /* See to_goto_record_end in struct target_ops. */
2163 extern void target_goto_record_end (void);
2164
2165 /* See to_goto_record in struct target_ops. */
2166 extern void target_goto_record (ULONGEST insn);
2167
2168 /* See to_insn_history. */
2169 extern void target_insn_history (int size, int flags);
2170
2171 /* See to_insn_history_from. */
2172 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2173
2174 /* See to_insn_history_range. */
2175 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2176
2177 /* See to_call_history. */
2178 extern void target_call_history (int size, int flags);
2179
2180 /* See to_call_history_from. */
2181 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2182
2183 /* See to_call_history_range. */
2184 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2185
2186 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2187 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2188 struct gdbarch *gdbarch);
2189
2190 /* See to_decr_pc_after_break. */
2191 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2192
2193 #endif /* !defined (TARGET_H) */