import gdb-1999-12-06 snapshot
[binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2 Copyright 1990, 91, 92, 93, 94, 1999 Free Software Foundation, Inc.
3 Contributed by Cygnus Support. Written by John Gilmore.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 /* This include file defines the interface between the main part
26 of the debugger, and the part which is target-specific, or
27 specific to the communications interface between us and the
28 target.
29
30 A TARGET is an interface between the debugger and a particular
31 kind of file or process. Targets can be STACKED in STRATA,
32 so that more than one target can potentially respond to a request.
33 In particular, memory accesses will walk down the stack of targets
34 until they find a target that is interested in handling that particular
35 address. STRATA are artificial boundaries on the stack, within
36 which particular kinds of targets live. Strata exist so that
37 people don't get confused by pushing e.g. a process target and then
38 a file target, and wondering why they can't see the current values
39 of variables any more (the file target is handling them and they
40 never get to the process target). So when you push a file target,
41 it goes into the file stratum, which is always below the process
42 stratum. */
43
44 #include "bfd.h"
45 #include "symtab.h"
46
47 enum strata
48 {
49 dummy_stratum, /* The lowest of the low */
50 file_stratum, /* Executable files, etc */
51 core_stratum, /* Core dump files */
52 download_stratum, /* Downloading of remote targets */
53 process_stratum, /* Executing processes */
54 thread_stratum /* Executing threads */
55 };
56
57 enum thread_control_capabilities
58 {
59 tc_none = 0, /* Default: can't control thread execution. */
60 tc_schedlock = 1, /* Can lock the thread scheduler. */
61 tc_switch = 2 /* Can switch the running thread on demand. */
62 };
63
64 /* Stuff for target_wait. */
65
66 /* Generally, what has the program done? */
67 enum target_waitkind
68 {
69 /* The program has exited. The exit status is in value.integer. */
70 TARGET_WAITKIND_EXITED,
71
72 /* The program has stopped with a signal. Which signal is in value.sig. */
73 TARGET_WAITKIND_STOPPED,
74
75 /* The program has terminated with a signal. Which signal is in
76 value.sig. */
77 TARGET_WAITKIND_SIGNALLED,
78
79 /* The program is letting us know that it dynamically loaded something
80 (e.g. it called load(2) on AIX). */
81 TARGET_WAITKIND_LOADED,
82
83 /* The program has forked. A "related" process' ID is in value.related_pid.
84 I.e., if the child forks, value.related_pid is the parent's ID.
85 */
86 TARGET_WAITKIND_FORKED,
87
88 /* The program has vforked. A "related" process's ID is in value.related_pid.
89 */
90 TARGET_WAITKIND_VFORKED,
91
92 /* The program has exec'ed a new executable file. The new file's pathname
93 is pointed to by value.execd_pathname.
94 */
95 TARGET_WAITKIND_EXECD,
96
97 /* The program has entered or returned from a system call. On HP-UX, this
98 is used in the hardware watchpoint implementation. The syscall's unique
99 integer ID number is in value.syscall_id;
100 */
101 TARGET_WAITKIND_SYSCALL_ENTRY,
102 TARGET_WAITKIND_SYSCALL_RETURN,
103
104 /* Nothing happened, but we stopped anyway. This perhaps should be handled
105 within target_wait, but I'm not sure target_wait should be resuming the
106 inferior. */
107 TARGET_WAITKIND_SPURIOUS
108 };
109
110 /* The numbering of these signals is chosen to match traditional unix
111 signals (insofar as various unices use the same numbers, anyway).
112 It is also the numbering of the GDB remote protocol. Other remote
113 protocols, if they use a different numbering, should make sure to
114 translate appropriately.
115
116 Since these numbers have actually made it out into other software
117 (stubs, etc.), you mustn't disturb the assigned numbering. If you
118 need to add new signals here, add them to the end of the explicitly
119 numbered signals.
120
121 This is based strongly on Unix/POSIX signals for several reasons:
122 (1) This set of signals represents a widely-accepted attempt to
123 represent events of this sort in a portable fashion, (2) we want a
124 signal to make it from wait to child_wait to the user intact, (3) many
125 remote protocols use a similar encoding. However, it is
126 recognized that this set of signals has limitations (such as not
127 distinguishing between various kinds of SIGSEGV, or not
128 distinguishing hitting a breakpoint from finishing a single step).
129 So in the future we may get around this either by adding additional
130 signals for breakpoint, single-step, etc., or by adding signal
131 codes; the latter seems more in the spirit of what BSD, System V,
132 etc. are doing to address these issues. */
133
134 /* For an explanation of what each signal means, see
135 target_signal_to_string. */
136
137 enum target_signal
138 {
139 /* Used some places (e.g. stop_signal) to record the concept that
140 there is no signal. */
141 TARGET_SIGNAL_0 = 0,
142 TARGET_SIGNAL_FIRST = 0,
143 TARGET_SIGNAL_HUP = 1,
144 TARGET_SIGNAL_INT = 2,
145 TARGET_SIGNAL_QUIT = 3,
146 TARGET_SIGNAL_ILL = 4,
147 TARGET_SIGNAL_TRAP = 5,
148 TARGET_SIGNAL_ABRT = 6,
149 TARGET_SIGNAL_EMT = 7,
150 TARGET_SIGNAL_FPE = 8,
151 TARGET_SIGNAL_KILL = 9,
152 TARGET_SIGNAL_BUS = 10,
153 TARGET_SIGNAL_SEGV = 11,
154 TARGET_SIGNAL_SYS = 12,
155 TARGET_SIGNAL_PIPE = 13,
156 TARGET_SIGNAL_ALRM = 14,
157 TARGET_SIGNAL_TERM = 15,
158 TARGET_SIGNAL_URG = 16,
159 TARGET_SIGNAL_STOP = 17,
160 TARGET_SIGNAL_TSTP = 18,
161 TARGET_SIGNAL_CONT = 19,
162 TARGET_SIGNAL_CHLD = 20,
163 TARGET_SIGNAL_TTIN = 21,
164 TARGET_SIGNAL_TTOU = 22,
165 TARGET_SIGNAL_IO = 23,
166 TARGET_SIGNAL_XCPU = 24,
167 TARGET_SIGNAL_XFSZ = 25,
168 TARGET_SIGNAL_VTALRM = 26,
169 TARGET_SIGNAL_PROF = 27,
170 TARGET_SIGNAL_WINCH = 28,
171 TARGET_SIGNAL_LOST = 29,
172 TARGET_SIGNAL_USR1 = 30,
173 TARGET_SIGNAL_USR2 = 31,
174 TARGET_SIGNAL_PWR = 32,
175 /* Similar to SIGIO. Perhaps they should have the same number. */
176 TARGET_SIGNAL_POLL = 33,
177 TARGET_SIGNAL_WIND = 34,
178 TARGET_SIGNAL_PHONE = 35,
179 TARGET_SIGNAL_WAITING = 36,
180 TARGET_SIGNAL_LWP = 37,
181 TARGET_SIGNAL_DANGER = 38,
182 TARGET_SIGNAL_GRANT = 39,
183 TARGET_SIGNAL_RETRACT = 40,
184 TARGET_SIGNAL_MSG = 41,
185 TARGET_SIGNAL_SOUND = 42,
186 TARGET_SIGNAL_SAK = 43,
187 TARGET_SIGNAL_PRIO = 44,
188 TARGET_SIGNAL_REALTIME_33 = 45,
189 TARGET_SIGNAL_REALTIME_34 = 46,
190 TARGET_SIGNAL_REALTIME_35 = 47,
191 TARGET_SIGNAL_REALTIME_36 = 48,
192 TARGET_SIGNAL_REALTIME_37 = 49,
193 TARGET_SIGNAL_REALTIME_38 = 50,
194 TARGET_SIGNAL_REALTIME_39 = 51,
195 TARGET_SIGNAL_REALTIME_40 = 52,
196 TARGET_SIGNAL_REALTIME_41 = 53,
197 TARGET_SIGNAL_REALTIME_42 = 54,
198 TARGET_SIGNAL_REALTIME_43 = 55,
199 TARGET_SIGNAL_REALTIME_44 = 56,
200 TARGET_SIGNAL_REALTIME_45 = 57,
201 TARGET_SIGNAL_REALTIME_46 = 58,
202 TARGET_SIGNAL_REALTIME_47 = 59,
203 TARGET_SIGNAL_REALTIME_48 = 60,
204 TARGET_SIGNAL_REALTIME_49 = 61,
205 TARGET_SIGNAL_REALTIME_50 = 62,
206 TARGET_SIGNAL_REALTIME_51 = 63,
207 TARGET_SIGNAL_REALTIME_52 = 64,
208 TARGET_SIGNAL_REALTIME_53 = 65,
209 TARGET_SIGNAL_REALTIME_54 = 66,
210 TARGET_SIGNAL_REALTIME_55 = 67,
211 TARGET_SIGNAL_REALTIME_56 = 68,
212 TARGET_SIGNAL_REALTIME_57 = 69,
213 TARGET_SIGNAL_REALTIME_58 = 70,
214 TARGET_SIGNAL_REALTIME_59 = 71,
215 TARGET_SIGNAL_REALTIME_60 = 72,
216 TARGET_SIGNAL_REALTIME_61 = 73,
217 TARGET_SIGNAL_REALTIME_62 = 74,
218 TARGET_SIGNAL_REALTIME_63 = 75,
219
220 /* Used internally by Solaris threads. See signal(5) on Solaris. */
221 TARGET_SIGNAL_CANCEL = 76,
222
223 /* Yes, this pains me, too. But LynxOS didn't have SIG32, and now
224 Linux does, and we can't disturb the numbering, since it's part
225 of the protocol. Note that in some GDB's TARGET_SIGNAL_REALTIME_32
226 is number 76. */
227 TARGET_SIGNAL_REALTIME_32,
228
229 #if defined(MACH) || defined(__MACH__)
230 /* Mach exceptions */
231 TARGET_EXC_BAD_ACCESS,
232 TARGET_EXC_BAD_INSTRUCTION,
233 TARGET_EXC_ARITHMETIC,
234 TARGET_EXC_EMULATION,
235 TARGET_EXC_SOFTWARE,
236 TARGET_EXC_BREAKPOINT,
237 #endif
238 TARGET_SIGNAL_INFO,
239
240 /* Some signal we don't know about. */
241 TARGET_SIGNAL_UNKNOWN,
242
243 /* Use whatever signal we use when one is not specifically specified
244 (for passing to proceed and so on). */
245 TARGET_SIGNAL_DEFAULT,
246
247 /* Last and unused enum value, for sizing arrays, etc. */
248 TARGET_SIGNAL_LAST
249 };
250
251 struct target_waitstatus
252 {
253 enum target_waitkind kind;
254
255 /* Forked child pid, execd pathname, exit status or signal number. */
256 union
257 {
258 int integer;
259 enum target_signal sig;
260 int related_pid;
261 char *execd_pathname;
262 int syscall_id;
263 }
264 value;
265 };
266
267 /* Possible types of events that the inferior handler will have to
268 deal with. */
269 enum inferior_event_type
270 {
271 /* There is a request to quit the inferior, abandon it. */
272 INF_QUIT_REQ,
273 /* Process a normal inferior event which will result in target_wait
274 being called. */
275 INF_REG_EVENT,
276 /* Deal with an error on the inferior. */
277 INF_ERROR,
278 /* We are called because a timer went off. */
279 INF_TIMER,
280 /* We are called to do stuff after the inferior stops. */
281 INF_EXEC_COMPLETE,
282 /* We are called to do some stuff after the inferior stops, but we
283 are expected to reenter the proceed() and
284 handle_inferior_event() functions. This is used only in case of
285 'step n' like commands. */
286 INF_EXEC_CONTINUE
287 };
288
289 /* Return the string for a signal. */
290 extern char *target_signal_to_string PARAMS ((enum target_signal));
291
292 /* Return the name (SIGHUP, etc.) for a signal. */
293 extern char *target_signal_to_name PARAMS ((enum target_signal));
294
295 /* Given a name (SIGHUP, etc.), return its signal. */
296 enum target_signal target_signal_from_name PARAMS ((char *));
297 \f
298
299 /* If certain kinds of activity happen, target_wait should perform
300 callbacks. */
301 /* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
302 on TARGET_ACTIVITY_FD. */
303 extern int target_activity_fd;
304 /* Returns zero to leave the inferior alone, one to interrupt it. */
305 extern int (*target_activity_function) PARAMS ((void));
306 \f
307 struct target_ops
308 {
309 char *to_shortname; /* Name this target type */
310 char *to_longname; /* Name for printing */
311 char *to_doc; /* Documentation. Does not include trailing
312 newline, and starts with a one-line descrip-
313 tion (probably similar to to_longname). */
314 void (*to_open) PARAMS ((char *, int));
315 void (*to_close) PARAMS ((int));
316 void (*to_attach) PARAMS ((char *, int));
317 void (*to_post_attach) PARAMS ((int));
318 void (*to_require_attach) PARAMS ((char *, int));
319 void (*to_detach) PARAMS ((char *, int));
320 void (*to_require_detach) PARAMS ((int, char *, int));
321 void (*to_resume) PARAMS ((int, int, enum target_signal));
322 int (*to_wait) PARAMS ((int, struct target_waitstatus *));
323 void (*to_post_wait) PARAMS ((int, int));
324 void (*to_fetch_registers) PARAMS ((int));
325 void (*to_store_registers) PARAMS ((int));
326 void (*to_prepare_to_store) PARAMS ((void));
327
328 /* Transfer LEN bytes of memory between GDB address MYADDR and
329 target address MEMADDR. If WRITE, transfer them to the target, else
330 transfer them from the target. TARGET is the target from which we
331 get this function.
332
333 Return value, N, is one of the following:
334
335 0 means that we can't handle this. If errno has been set, it is the
336 error which prevented us from doing it (FIXME: What about bfd_error?).
337
338 positive (call it N) means that we have transferred N bytes
339 starting at MEMADDR. We might be able to handle more bytes
340 beyond this length, but no promises.
341
342 negative (call its absolute value N) means that we cannot
343 transfer right at MEMADDR, but we could transfer at least
344 something at MEMADDR + N. */
345
346 int (*to_xfer_memory) PARAMS ((CORE_ADDR memaddr, char *myaddr,
347 int len, int write,
348 struct target_ops * target));
349
350 #if 0
351 /* Enable this after 4.12. */
352
353 /* Search target memory. Start at STARTADDR and take LEN bytes of
354 target memory, and them with MASK, and compare to DATA. If they
355 match, set *ADDR_FOUND to the address we found it at, store the data
356 we found at LEN bytes starting at DATA_FOUND, and return. If
357 not, add INCREMENT to the search address and keep trying until
358 the search address is outside of the range [LORANGE,HIRANGE).
359
360 If we don't find anything, set *ADDR_FOUND to (CORE_ADDR)0 and return. */
361 void (*to_search) PARAMS ((int len, char *data, char *mask,
362 CORE_ADDR startaddr, int increment,
363 CORE_ADDR lorange, CORE_ADDR hirange,
364 CORE_ADDR * addr_found, char *data_found));
365
366 #define target_search(len, data, mask, startaddr, increment, lorange, hirange, addr_found, data_found) \
367 (*current_target.to_search) (len, data, mask, startaddr, increment, \
368 lorange, hirange, addr_found, data_found)
369 #endif /* 0 */
370
371 void (*to_files_info) PARAMS ((struct target_ops *));
372 int (*to_insert_breakpoint) PARAMS ((CORE_ADDR, char *));
373 int (*to_remove_breakpoint) PARAMS ((CORE_ADDR, char *));
374 void (*to_terminal_init) PARAMS ((void));
375 void (*to_terminal_inferior) PARAMS ((void));
376 void (*to_terminal_ours_for_output) PARAMS ((void));
377 void (*to_terminal_ours) PARAMS ((void));
378 void (*to_terminal_info) PARAMS ((char *, int));
379 void (*to_kill) PARAMS ((void));
380 void (*to_load) PARAMS ((char *, int));
381 int (*to_lookup_symbol) PARAMS ((char *, CORE_ADDR *));
382 void (*to_create_inferior) PARAMS ((char *, char *, char **));
383 void (*to_post_startup_inferior) PARAMS ((int));
384 void (*to_acknowledge_created_inferior) PARAMS ((int));
385 void (*to_clone_and_follow_inferior) PARAMS ((int, int *));
386 void (*to_post_follow_inferior_by_clone) PARAMS ((void));
387 int (*to_insert_fork_catchpoint) PARAMS ((int));
388 int (*to_remove_fork_catchpoint) PARAMS ((int));
389 int (*to_insert_vfork_catchpoint) PARAMS ((int));
390 int (*to_remove_vfork_catchpoint) PARAMS ((int));
391 int (*to_has_forked) PARAMS ((int, int *));
392 int (*to_has_vforked) PARAMS ((int, int *));
393 int (*to_can_follow_vfork_prior_to_exec) PARAMS ((void));
394 void (*to_post_follow_vfork) PARAMS ((int, int, int, int));
395 int (*to_insert_exec_catchpoint) PARAMS ((int));
396 int (*to_remove_exec_catchpoint) PARAMS ((int));
397 int (*to_has_execd) PARAMS ((int, char **));
398 int (*to_reported_exec_events_per_exec_call) PARAMS ((void));
399 int (*to_has_syscall_event) PARAMS ((int, enum target_waitkind *, int *));
400 int (*to_has_exited) PARAMS ((int, int, int *));
401 void (*to_mourn_inferior) PARAMS ((void));
402 int (*to_can_run) PARAMS ((void));
403 void (*to_notice_signals) PARAMS ((int pid));
404 int (*to_thread_alive) PARAMS ((int pid));
405 void (*to_find_new_threads) PARAMS ((void));
406 void (*to_stop) PARAMS ((void));
407 int (*to_query) PARAMS ((int /*char */ , char *, char *, int *));
408 void (*to_rcmd) (char *command, struct gdb_file *output);
409 struct symtab_and_line *(*to_enable_exception_callback) PARAMS ((enum exception_event_kind, int));
410 struct exception_event_record *(*to_get_current_exception_event) PARAMS ((void));
411 char *(*to_pid_to_exec_file) PARAMS ((int pid));
412 char *(*to_core_file_to_sym_file) PARAMS ((char *));
413 enum strata to_stratum;
414 struct target_ops
415 *DONT_USE; /* formerly to_next */
416 int to_has_all_memory;
417 int to_has_memory;
418 int to_has_stack;
419 int to_has_registers;
420 int to_has_execution;
421 int to_has_thread_control; /* control thread execution */
422 struct section_table
423 *to_sections;
424 struct section_table
425 *to_sections_end;
426 /* ASYNC target controls */
427 int (*to_can_async_p) (void);
428 int (*to_is_async_p) (void);
429 void (*to_async) (void (*cb) (enum inferior_event_type, void *context), void *context);
430 int to_magic;
431 /* Need sub-structure for target machine related rather than comm related? */
432 };
433
434 /* Magic number for checking ops size. If a struct doesn't end with this
435 number, somebody changed the declaration but didn't change all the
436 places that initialize one. */
437
438 #define OPS_MAGIC 3840
439
440 /* The ops structure for our "current" target process. This should
441 never be NULL. If there is no target, it points to the dummy_target. */
442
443 extern struct target_ops current_target;
444
445 /* An item on the target stack. */
446
447 struct target_stack_item
448 {
449 struct target_stack_item *next;
450 struct target_ops *target_ops;
451 };
452
453 /* The target stack. */
454
455 extern struct target_stack_item *target_stack;
456
457 /* Define easy words for doing these operations on our current target. */
458
459 #define target_shortname (current_target.to_shortname)
460 #define target_longname (current_target.to_longname)
461
462 /* The open routine takes the rest of the parameters from the command,
463 and (if successful) pushes a new target onto the stack.
464 Targets should supply this routine, if only to provide an error message. */
465 #define target_open(name, from_tty) \
466 (*current_target.to_open) (name, from_tty)
467
468 /* Does whatever cleanup is required for a target that we are no longer
469 going to be calling. Argument says whether we are quitting gdb and
470 should not get hung in case of errors, or whether we want a clean
471 termination even if it takes a while. This routine is automatically
472 always called just before a routine is popped off the target stack.
473 Closing file descriptors and freeing memory are typical things it should
474 do. */
475
476 #define target_close(quitting) \
477 (*current_target.to_close) (quitting)
478
479 /* Attaches to a process on the target side. Arguments are as passed
480 to the `attach' command by the user. This routine can be called
481 when the target is not on the target-stack, if the target_can_run
482 routine returns 1; in that case, it must push itself onto the stack.
483 Upon exit, the target should be ready for normal operations, and
484 should be ready to deliver the status of the process immediately
485 (without waiting) to an upcoming target_wait call. */
486
487 #define target_attach(args, from_tty) \
488 (*current_target.to_attach) (args, from_tty)
489
490 /* The target_attach operation places a process under debugger control,
491 and stops the process.
492
493 This operation provides a target-specific hook that allows the
494 necessary bookkeeping to be performed after an attach completes.
495 */
496 #define target_post_attach(pid) \
497 (*current_target.to_post_attach) (pid)
498
499 /* Attaches to a process on the target side, if not already attached.
500 (If already attached, takes no action.)
501
502 This operation can be used to follow the child process of a fork.
503 On some targets, such child processes of an original inferior process
504 are automatically under debugger control, and thus do not require an
505 actual attach operation. */
506
507 #define target_require_attach(args, from_tty) \
508 (*current_target.to_require_attach) (args, from_tty)
509
510 /* Takes a program previously attached to and detaches it.
511 The program may resume execution (some targets do, some don't) and will
512 no longer stop on signals, etc. We better not have left any breakpoints
513 in the program or it'll die when it hits one. ARGS is arguments
514 typed by the user (e.g. a signal to send the process). FROM_TTY
515 says whether to be verbose or not. */
516
517 extern void
518 target_detach PARAMS ((char *, int));
519
520 /* Detaches from a process on the target side, if not already dettached.
521 (If already detached, takes no action.)
522
523 This operation can be used to follow the parent process of a fork.
524 On some targets, such child processes of an original inferior process
525 are automatically under debugger control, and thus do require an actual
526 detach operation.
527
528 PID is the process id of the child to detach from.
529 ARGS is arguments typed by the user (e.g. a signal to send the process).
530 FROM_TTY says whether to be verbose or not. */
531
532 #define target_require_detach(pid, args, from_tty) \
533 (*current_target.to_require_detach) (pid, args, from_tty)
534
535 /* Resume execution of the target process PID. STEP says whether to
536 single-step or to run free; SIGGNAL is the signal to be given to
537 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
538 pass TARGET_SIGNAL_DEFAULT. */
539
540 #define target_resume(pid, step, siggnal) \
541 (*current_target.to_resume) (pid, step, siggnal)
542
543 /* Wait for process pid to do something. Pid = -1 to wait for any pid
544 to do something. Return pid of child, or -1 in case of error;
545 store status through argument pointer STATUS. Note that it is
546 *not* OK to return_to_top_level out of target_wait without popping
547 the debugging target from the stack; GDB isn't prepared to get back
548 to the prompt with a debugging target but without the frame cache,
549 stop_pc, etc., set up. */
550
551 #define target_wait(pid, status) \
552 (*current_target.to_wait) (pid, status)
553
554 /* The target_wait operation waits for a process event to occur, and
555 thereby stop the process.
556
557 On some targets, certain events may happen in sequences. gdb's
558 correct response to any single event of such a sequence may require
559 knowledge of what earlier events in the sequence have been seen.
560
561 This operation provides a target-specific hook that allows the
562 necessary bookkeeping to be performed to track such sequences.
563 */
564
565 #define target_post_wait(pid, status) \
566 (*current_target.to_post_wait) (pid, status)
567
568 /* Fetch register REGNO, or all regs if regno == -1. No result. */
569
570 #define target_fetch_registers(regno) \
571 (*current_target.to_fetch_registers) (regno)
572
573 /* Store at least register REGNO, or all regs if REGNO == -1.
574 It can store as many registers as it wants to, so target_prepare_to_store
575 must have been previously called. Calls error() if there are problems. */
576
577 #define target_store_registers(regs) \
578 (*current_target.to_store_registers) (regs)
579
580 /* Get ready to modify the registers array. On machines which store
581 individual registers, this doesn't need to do anything. On machines
582 which store all the registers in one fell swoop, this makes sure
583 that REGISTERS contains all the registers from the program being
584 debugged. */
585
586 #define target_prepare_to_store() \
587 (*current_target.to_prepare_to_store) ()
588
589 extern int target_read_string PARAMS ((CORE_ADDR, char **, int, int *));
590
591 extern int
592 target_read_memory PARAMS ((CORE_ADDR memaddr, char *myaddr, int len));
593
594 extern int
595 target_read_memory_section PARAMS ((CORE_ADDR memaddr, char *myaddr, int len,
596 asection * bfd_section));
597
598 extern int
599 target_write_memory PARAMS ((CORE_ADDR, char *, int));
600
601 extern int
602 xfer_memory PARAMS ((CORE_ADDR, char *, int, int, struct target_ops *));
603
604 extern int
605 child_xfer_memory PARAMS ((CORE_ADDR, char *, int, int, struct target_ops *));
606
607 /* Make a single attempt at transfering LEN bytes. On a successful
608 transfer, the number of bytes actually transfered is returned and
609 ERR is set to 0. When a transfer fails, -1 is returned (the number
610 of bytes actually transfered is not defined) and ERR is set to a
611 non-zero error indication. */
612
613 extern int target_read_memory_partial (CORE_ADDR addr, char *buf, int len, int *err);
614
615 extern int target_write_memory_partial (CORE_ADDR addr, char *buf, int len, int *err);
616
617 extern char *
618 child_pid_to_exec_file PARAMS ((int));
619
620 extern char *
621 child_core_file_to_sym_file PARAMS ((char *));
622
623 #if defined(CHILD_POST_ATTACH)
624 extern void
625 child_post_attach PARAMS ((int));
626 #endif
627
628 extern void
629 child_post_wait PARAMS ((int, int));
630
631 extern void
632 child_post_startup_inferior PARAMS ((int));
633
634 extern void
635 child_acknowledge_created_inferior PARAMS ((int));
636
637 extern void
638 child_clone_and_follow_inferior PARAMS ((int, int *));
639
640 extern void
641 child_post_follow_inferior_by_clone PARAMS ((void));
642
643 extern int
644 child_insert_fork_catchpoint PARAMS ((int));
645
646 extern int
647 child_remove_fork_catchpoint PARAMS ((int));
648
649 extern int
650 child_insert_vfork_catchpoint PARAMS ((int));
651
652 extern int
653 child_remove_vfork_catchpoint PARAMS ((int));
654
655 extern int
656 child_has_forked PARAMS ((int, int *));
657
658 extern int
659 child_has_vforked PARAMS ((int, int *));
660
661 extern void
662 child_acknowledge_created_inferior PARAMS ((int));
663
664 extern int
665 child_can_follow_vfork_prior_to_exec PARAMS ((void));
666
667 extern void
668 child_post_follow_vfork PARAMS ((int, int, int, int));
669
670 extern int
671 child_insert_exec_catchpoint PARAMS ((int));
672
673 extern int
674 child_remove_exec_catchpoint PARAMS ((int));
675
676 extern int
677 child_has_execd PARAMS ((int, char **));
678
679 extern int
680 child_reported_exec_events_per_exec_call PARAMS ((void));
681
682 extern int
683 child_has_syscall_event PARAMS ((int, enum target_waitkind *, int *));
684
685 extern int
686 child_has_exited PARAMS ((int, int, int *));
687
688 extern int
689 child_thread_alive PARAMS ((int));
690
691 /* From exec.c */
692
693 extern void
694 print_section_info PARAMS ((struct target_ops *, bfd *));
695
696 /* Print a line about the current target. */
697
698 #define target_files_info() \
699 (*current_target.to_files_info) (&current_target)
700
701 /* Insert a breakpoint at address ADDR in the target machine.
702 SAVE is a pointer to memory allocated for saving the
703 target contents. It is guaranteed by the caller to be long enough
704 to save "sizeof BREAKPOINT" bytes. Result is 0 for success, or
705 an errno value. */
706
707 #define target_insert_breakpoint(addr, save) \
708 (*current_target.to_insert_breakpoint) (addr, save)
709
710 /* Remove a breakpoint at address ADDR in the target machine.
711 SAVE is a pointer to the same save area
712 that was previously passed to target_insert_breakpoint.
713 Result is 0 for success, or an errno value. */
714
715 #define target_remove_breakpoint(addr, save) \
716 (*current_target.to_remove_breakpoint) (addr, save)
717
718 /* Initialize the terminal settings we record for the inferior,
719 before we actually run the inferior. */
720
721 #define target_terminal_init() \
722 (*current_target.to_terminal_init) ()
723
724 /* Put the inferior's terminal settings into effect.
725 This is preparation for starting or resuming the inferior. */
726
727 #define target_terminal_inferior() \
728 (*current_target.to_terminal_inferior) ()
729
730 /* Put some of our terminal settings into effect,
731 enough to get proper results from our output,
732 but do not change into or out of RAW mode
733 so that no input is discarded.
734
735 After doing this, either terminal_ours or terminal_inferior
736 should be called to get back to a normal state of affairs. */
737
738 #define target_terminal_ours_for_output() \
739 (*current_target.to_terminal_ours_for_output) ()
740
741 /* Put our terminal settings into effect.
742 First record the inferior's terminal settings
743 so they can be restored properly later. */
744
745 #define target_terminal_ours() \
746 (*current_target.to_terminal_ours) ()
747
748 /* Print useful information about our terminal status, if such a thing
749 exists. */
750
751 #define target_terminal_info(arg, from_tty) \
752 (*current_target.to_terminal_info) (arg, from_tty)
753
754 /* Kill the inferior process. Make it go away. */
755
756 #define target_kill() \
757 (*current_target.to_kill) ()
758
759 /* Load an executable file into the target process. This is expected to
760 not only bring new code into the target process, but also to update
761 GDB's symbol tables to match. */
762
763 extern void target_load (char *arg, int from_tty);
764
765 /* Look up a symbol in the target's symbol table. NAME is the symbol
766 name. ADDRP is a CORE_ADDR * pointing to where the value of the symbol
767 should be returned. The result is 0 if successful, nonzero if the
768 symbol does not exist in the target environment. This function should
769 not call error() if communication with the target is interrupted, since
770 it is called from symbol reading, but should return nonzero, possibly
771 doing a complain(). */
772
773 #define target_lookup_symbol(name, addrp) \
774 (*current_target.to_lookup_symbol) (name, addrp)
775
776 /* Start an inferior process and set inferior_pid to its pid.
777 EXEC_FILE is the file to run.
778 ALLARGS is a string containing the arguments to the program.
779 ENV is the environment vector to pass. Errors reported with error().
780 On VxWorks and various standalone systems, we ignore exec_file. */
781
782 #define target_create_inferior(exec_file, args, env) \
783 (*current_target.to_create_inferior) (exec_file, args, env)
784
785
786 /* Some targets (such as ttrace-based HPUX) don't allow us to request
787 notification of inferior events such as fork and vork immediately
788 after the inferior is created. (This because of how gdb gets an
789 inferior created via invoking a shell to do it. In such a scenario,
790 if the shell init file has commands in it, the shell will fork and
791 exec for each of those commands, and we will see each such fork
792 event. Very bad.)
793
794 Such targets will supply an appropriate definition for this function.
795 */
796 #define target_post_startup_inferior(pid) \
797 (*current_target.to_post_startup_inferior) (pid)
798
799 /* On some targets, the sequence of starting up an inferior requires
800 some synchronization between gdb and the new inferior process, PID.
801 */
802 #define target_acknowledge_created_inferior(pid) \
803 (*current_target.to_acknowledge_created_inferior) (pid)
804
805 /* An inferior process has been created via a fork() or similar
806 system call. This function will clone the debugger, then ensure
807 that CHILD_PID is attached to by that debugger.
808
809 FOLLOWED_CHILD is set TRUE on return *for the clone debugger only*,
810 and FALSE otherwise. (The original and clone debuggers can use this
811 to determine which they are, if need be.)
812
813 (This is not a terribly useful feature without a GUI to prevent
814 the two debuggers from competing for shell input.)
815 */
816 #define target_clone_and_follow_inferior(child_pid,followed_child) \
817 (*current_target.to_clone_and_follow_inferior) (child_pid, followed_child)
818
819 /* This operation is intended to be used as the last in a sequence of
820 steps taken when following both parent and child of a fork. This
821 is used by a clone of the debugger, which will follow the child.
822
823 The original debugger has detached from this process, and the
824 clone has attached to it.
825
826 On some targets, this requires a bit of cleanup to make it work
827 correctly.
828 */
829 #define target_post_follow_inferior_by_clone() \
830 (*current_target.to_post_follow_inferior_by_clone) ()
831
832 /* On some targets, we can catch an inferior fork or vfork event when it
833 occurs. These functions insert/remove an already-created catchpoint for
834 such events.
835 */
836 #define target_insert_fork_catchpoint(pid) \
837 (*current_target.to_insert_fork_catchpoint) (pid)
838
839 #define target_remove_fork_catchpoint(pid) \
840 (*current_target.to_remove_fork_catchpoint) (pid)
841
842 #define target_insert_vfork_catchpoint(pid) \
843 (*current_target.to_insert_vfork_catchpoint) (pid)
844
845 #define target_remove_vfork_catchpoint(pid) \
846 (*current_target.to_remove_vfork_catchpoint) (pid)
847
848 /* Returns TRUE if PID has invoked the fork() system call. And,
849 also sets CHILD_PID to the process id of the other ("child")
850 inferior process that was created by that call.
851 */
852 #define target_has_forked(pid,child_pid) \
853 (*current_target.to_has_forked) (pid,child_pid)
854
855 /* Returns TRUE if PID has invoked the vfork() system call. And,
856 also sets CHILD_PID to the process id of the other ("child")
857 inferior process that was created by that call.
858 */
859 #define target_has_vforked(pid,child_pid) \
860 (*current_target.to_has_vforked) (pid,child_pid)
861
862 /* Some platforms (such as pre-10.20 HP-UX) don't allow us to do
863 anything to a vforked child before it subsequently calls exec().
864 On such platforms, we say that the debugger cannot "follow" the
865 child until it has vforked.
866
867 This function should be defined to return 1 by those targets
868 which can allow the debugger to immediately follow a vforked
869 child, and 0 if they cannot.
870 */
871 #define target_can_follow_vfork_prior_to_exec() \
872 (*current_target.to_can_follow_vfork_prior_to_exec) ()
873
874 /* An inferior process has been created via a vfork() system call.
875 The debugger has followed the parent, the child, or both. The
876 process of setting up for that follow may have required some
877 target-specific trickery to track the sequence of reported events.
878 If so, this function should be defined by those targets that
879 require the debugger to perform cleanup or initialization after
880 the vfork follow.
881 */
882 #define target_post_follow_vfork(parent_pid,followed_parent,child_pid,followed_child) \
883 (*current_target.to_post_follow_vfork) (parent_pid,followed_parent,child_pid,followed_child)
884
885 /* On some targets, we can catch an inferior exec event when it
886 occurs. These functions insert/remove an already-created catchpoint
887 for such events.
888 */
889 #define target_insert_exec_catchpoint(pid) \
890 (*current_target.to_insert_exec_catchpoint) (pid)
891
892 #define target_remove_exec_catchpoint(pid) \
893 (*current_target.to_remove_exec_catchpoint) (pid)
894
895 /* Returns TRUE if PID has invoked a flavor of the exec() system call.
896 And, also sets EXECD_PATHNAME to the pathname of the executable file
897 that was passed to exec(), and is now being executed.
898 */
899 #define target_has_execd(pid,execd_pathname) \
900 (*current_target.to_has_execd) (pid,execd_pathname)
901
902 /* Returns the number of exec events that are reported when a process
903 invokes a flavor of the exec() system call on this target, if exec
904 events are being reported.
905 */
906 #define target_reported_exec_events_per_exec_call() \
907 (*current_target.to_reported_exec_events_per_exec_call) ()
908
909 /* Returns TRUE if PID has reported a syscall event. And, also sets
910 KIND to the appropriate TARGET_WAITKIND_, and sets SYSCALL_ID to
911 the unique integer ID of the syscall.
912 */
913 #define target_has_syscall_event(pid,kind,syscall_id) \
914 (*current_target.to_has_syscall_event) (pid,kind,syscall_id)
915
916 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
917 exit code of PID, if any.
918 */
919 #define target_has_exited(pid,wait_status,exit_status) \
920 (*current_target.to_has_exited) (pid,wait_status,exit_status)
921
922 /* The debugger has completed a blocking wait() call. There is now
923 some process event that must be processed. This function should
924 be defined by those targets that require the debugger to perform
925 cleanup or internal state changes in response to the process event.
926 */
927
928 /* The inferior process has died. Do what is right. */
929
930 #define target_mourn_inferior() \
931 (*current_target.to_mourn_inferior) ()
932
933 /* Does target have enough data to do a run or attach command? */
934
935 #define target_can_run(t) \
936 ((t)->to_can_run) ()
937
938 /* post process changes to signal handling in the inferior. */
939
940 #define target_notice_signals(pid) \
941 (*current_target.to_notice_signals) (pid)
942
943 /* Check to see if a thread is still alive. */
944
945 #define target_thread_alive(pid) \
946 (*current_target.to_thread_alive) (pid)
947
948 /* Query for new threads and add them to the thread list. */
949
950 #define target_find_new_threads() \
951 do { \
952 if (current_target.to_find_new_threads) \
953 (*current_target.to_find_new_threads) (); \
954 } while (0);
955
956 /* Make target stop in a continuable fashion. (For instance, under Unix, this
957 should act like SIGSTOP). This function is normally used by GUIs to
958 implement a stop button. */
959
960 #define target_stop current_target.to_stop
961
962 /* Queries the target side for some information. The first argument is a
963 letter specifying the type of the query, which is used to determine who
964 should process it. The second argument is a string that specifies which
965 information is desired and the third is a buffer that carries back the
966 response from the target side. The fourth parameter is the size of the
967 output buffer supplied. */
968
969 #define target_query(query_type, query, resp_buffer, bufffer_size) \
970 (*current_target.to_query) (query_type, query, resp_buffer, bufffer_size)
971
972 /* Send the specified COMMAND to the target's monitor
973 (shell,interpreter) for execution. The result of the query is
974 placed in OUTBUF. */
975
976 #define target_rcmd(command, outbuf) \
977 (*current_target.to_rcmd) (command, outbuf)
978
979
980 /* Get the symbol information for a breakpointable routine called when
981 an exception event occurs.
982 Intended mainly for C++, and for those
983 platforms/implementations where such a callback mechanism is available,
984 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
985 different mechanisms for debugging exceptions. */
986
987 #define target_enable_exception_callback(kind, enable) \
988 (*current_target.to_enable_exception_callback) (kind, enable)
989
990 /* Get the current exception event kind -- throw or catch, etc. */
991
992 #define target_get_current_exception_event() \
993 (*current_target.to_get_current_exception_event) ()
994
995 /* Pointer to next target in the chain, e.g. a core file and an exec file. */
996
997 #define target_next \
998 (current_target.to_next)
999
1000 /* Does the target include all of memory, or only part of it? This
1001 determines whether we look up the target chain for other parts of
1002 memory if this target can't satisfy a request. */
1003
1004 #define target_has_all_memory \
1005 (current_target.to_has_all_memory)
1006
1007 /* Does the target include memory? (Dummy targets don't.) */
1008
1009 #define target_has_memory \
1010 (current_target.to_has_memory)
1011
1012 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1013 we start a process.) */
1014
1015 #define target_has_stack \
1016 (current_target.to_has_stack)
1017
1018 /* Does the target have registers? (Exec files don't.) */
1019
1020 #define target_has_registers \
1021 (current_target.to_has_registers)
1022
1023 /* Does the target have execution? Can we make it jump (through
1024 hoops), or pop its stack a few times? FIXME: If this is to work that
1025 way, it needs to check whether an inferior actually exists.
1026 remote-udi.c and probably other targets can be the current target
1027 when the inferior doesn't actually exist at the moment. Right now
1028 this just tells us whether this target is *capable* of execution. */
1029
1030 #define target_has_execution \
1031 (current_target.to_has_execution)
1032
1033 /* Can the target support the debugger control of thread execution?
1034 a) Can it lock the thread scheduler?
1035 b) Can it switch the currently running thread? */
1036
1037 #define target_can_lock_scheduler \
1038 (current_target.to_has_thread_control & tc_schedlock)
1039
1040 #define target_can_switch_threads \
1041 (current_target.to_has_thread_control & tc_switch)
1042
1043 /* Can the target support asynchronous execution? */
1044 #define target_can_async_p() (current_target.to_can_async_p ())
1045
1046 /* Is the target in asynchronous execution mode? */
1047 #define target_is_async_p() (current_target.to_is_async_p())
1048
1049 /* Put the target in async mode with the specified callback function. */
1050 #define target_async(CALLBACK,CONTEXT) (current_target.to_async((CALLBACK), (CONTEXT)))
1051
1052 extern void target_link PARAMS ((char *, CORE_ADDR *));
1053
1054 /* Converts a process id to a string. Usually, the string just contains
1055 `process xyz', but on some systems it may contain
1056 `process xyz thread abc'. */
1057
1058 #ifndef target_pid_to_str
1059 #define target_pid_to_str(PID) \
1060 normal_pid_to_str (PID)
1061 extern char *normal_pid_to_str PARAMS ((int pid));
1062 #endif
1063
1064 #ifndef target_tid_to_str
1065 #define target_tid_to_str(PID) \
1066 normal_pid_to_str (PID)
1067 extern char *normal_pid_to_str PARAMS ((int pid));
1068 #endif
1069
1070 /*
1071 * New Objfile Event Hook:
1072 *
1073 * Sometimes a GDB component wants to get notified whenever a new
1074 * objfile is loaded. Mainly this is used by thread-debugging
1075 * implementations that need to know when symbols for the target
1076 * thread implemenation are available.
1077 *
1078 * The old way of doing this is to define a macro 'target_new_objfile'
1079 * that points to the function that you want to be called on every
1080 * objfile/shlib load.
1081 *
1082 * The new way is to grab the function pointer, 'target_new_objfile_hook',
1083 * and point it to the function that you want to be called on every
1084 * objfile/shlib load.
1085 *
1086 * If multiple clients are willing to be cooperative, they can each
1087 * save a pointer to the previous value of target_new_objfile_hook
1088 * before modifying it, and arrange for their function to call the
1089 * previous function in the chain. In that way, multiple clients
1090 * can receive this notification (something like with signal handlers).
1091 */
1092
1093 extern void (*target_new_objfile_hook) PARAMS ((struct objfile *));
1094
1095 #ifndef target_pid_or_tid_to_str
1096 #define target_pid_or_tid_to_str(ID) \
1097 normal_pid_to_str (ID)
1098 #endif
1099
1100 /* Attempts to find the pathname of the executable file
1101 that was run to create a specified process.
1102
1103 The process PID must be stopped when this operation is used.
1104
1105 If the executable file cannot be determined, NULL is returned.
1106
1107 Else, a pointer to a character string containing the pathname
1108 is returned. This string should be copied into a buffer by
1109 the client if the string will not be immediately used, or if
1110 it must persist.
1111 */
1112
1113 #define target_pid_to_exec_file(pid) \
1114 (current_target.to_pid_to_exec_file) (pid)
1115
1116 /* Hook to call target-dependant code after reading in a new symbol table. */
1117
1118 #ifndef TARGET_SYMFILE_POSTREAD
1119 #define TARGET_SYMFILE_POSTREAD(OBJFILE)
1120 #endif
1121
1122 /* Hook to call target dependant code just after inferior target process has
1123 started. */
1124
1125 #ifndef TARGET_CREATE_INFERIOR_HOOK
1126 #define TARGET_CREATE_INFERIOR_HOOK(PID)
1127 #endif
1128
1129 /* Hardware watchpoint interfaces. */
1130
1131 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1132 write). */
1133
1134 #ifndef STOPPED_BY_WATCHPOINT
1135 #define STOPPED_BY_WATCHPOINT(w) 0
1136 #endif
1137
1138 /* HP-UX supplies these operations, which respectively disable and enable
1139 the memory page-protections that are used to implement hardware watchpoints
1140 on that platform. See wait_for_inferior's use of these.
1141 */
1142 #if !defined(TARGET_DISABLE_HW_WATCHPOINTS)
1143 #define TARGET_DISABLE_HW_WATCHPOINTS(pid)
1144 #endif
1145
1146 #if !defined(TARGET_ENABLE_HW_WATCHPOINTS)
1147 #define TARGET_ENABLE_HW_WATCHPOINTS(pid)
1148 #endif
1149
1150 /* Provide defaults for systems that don't support hardware watchpoints. */
1151
1152 #ifndef TARGET_HAS_HARDWARE_WATCHPOINTS
1153
1154 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1155 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1156 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1157 (including this one?). OTHERTYPE is who knows what... */
1158
1159 #define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) 0
1160
1161 #if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
1162 #define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
1163 (LONGEST)(byte_count) <= REGISTER_SIZE
1164 #endif
1165
1166 /* However, some addresses may not be profitable to use hardware to watch,
1167 or may be difficult to understand when the addressed object is out of
1168 scope, and hence should be unwatched. On some targets, this may have
1169 severe performance penalties, such that we might as well use regular
1170 watchpoints, and save (possibly precious) hardware watchpoints for other
1171 locations.
1172 */
1173 #if !defined(TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT)
1174 #define TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT(pid,start,len) 0
1175 #endif
1176
1177
1178 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1179 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1180 success, non-zero for failure. */
1181
1182 #define target_remove_watchpoint(ADDR,LEN,TYPE) -1
1183 #define target_insert_watchpoint(ADDR,LEN,TYPE) -1
1184
1185 #endif /* TARGET_HAS_HARDWARE_WATCHPOINTS */
1186
1187 #ifndef target_insert_hw_breakpoint
1188 #define target_remove_hw_breakpoint(ADDR,SHADOW) -1
1189 #define target_insert_hw_breakpoint(ADDR,SHADOW) -1
1190 #endif
1191
1192 #ifndef target_stopped_data_address
1193 #define target_stopped_data_address() 0
1194 #endif
1195
1196 /* If defined, then we need to decr pc by this much after a hardware break-
1197 point. Presumably this overrides DECR_PC_AFTER_BREAK... */
1198
1199 #ifndef DECR_PC_AFTER_HW_BREAK
1200 #define DECR_PC_AFTER_HW_BREAK 0
1201 #endif
1202
1203 /* Sometimes gdb may pick up what appears to be a valid target address
1204 from a minimal symbol, but the value really means, essentially,
1205 "This is an index into a table which is populated when the inferior
1206 is run. Therefore, do not attempt to use this as a PC."
1207 */
1208 #if !defined(PC_REQUIRES_RUN_BEFORE_USE)
1209 #define PC_REQUIRES_RUN_BEFORE_USE(pc) (0)
1210 #endif
1211
1212 /* This will only be defined by a target that supports catching vfork events,
1213 such as HP-UX.
1214
1215 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1216 child process after it has exec'd, causes the parent process to resume as
1217 well. To prevent the parent from running spontaneously, such targets should
1218 define this to a function that prevents that from happening.
1219 */
1220 #if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1221 #define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1222 #endif
1223
1224 /* This will only be defined by a target that supports catching vfork events,
1225 such as HP-UX.
1226
1227 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1228 process must be resumed when it delivers its exec event, before the parent
1229 vfork event will be delivered to us.
1230 */
1231 #if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1232 #define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1233 #endif
1234
1235 /* Routines for maintenance of the target structures...
1236
1237 add_target: Add a target to the list of all possible targets.
1238
1239 push_target: Make this target the top of the stack of currently used
1240 targets, within its particular stratum of the stack. Result
1241 is 0 if now atop the stack, nonzero if not on top (maybe
1242 should warn user).
1243
1244 unpush_target: Remove this from the stack of currently used targets,
1245 no matter where it is on the list. Returns 0 if no
1246 change, 1 if removed from stack.
1247
1248 pop_target: Remove the top thing on the stack of current targets. */
1249
1250 extern void
1251 add_target PARAMS ((struct target_ops *));
1252
1253 extern int
1254 push_target PARAMS ((struct target_ops *));
1255
1256 extern int
1257 unpush_target PARAMS ((struct target_ops *));
1258
1259 extern void
1260 target_preopen PARAMS ((int));
1261
1262 extern void
1263 pop_target PARAMS ((void));
1264
1265 /* Struct section_table maps address ranges to file sections. It is
1266 mostly used with BFD files, but can be used without (e.g. for handling
1267 raw disks, or files not in formats handled by BFD). */
1268
1269 struct section_table
1270 {
1271 CORE_ADDR addr; /* Lowest address in section */
1272 CORE_ADDR endaddr; /* 1+highest address in section */
1273
1274 sec_ptr the_bfd_section;
1275
1276 bfd *bfd; /* BFD file pointer */
1277 };
1278
1279 /* Builds a section table, given args BFD, SECTABLE_PTR, SECEND_PTR.
1280 Returns 0 if OK, 1 on error. */
1281
1282 extern int
1283 build_section_table PARAMS ((bfd *, struct section_table **,
1284 struct section_table **));
1285
1286 /* From mem-break.c */
1287
1288 extern int memory_remove_breakpoint PARAMS ((CORE_ADDR, char *));
1289
1290 extern int memory_insert_breakpoint PARAMS ((CORE_ADDR, char *));
1291
1292 extern int default_memory_remove_breakpoint PARAMS ((CORE_ADDR, char *));
1293
1294 extern int default_memory_insert_breakpoint PARAMS ((CORE_ADDR, char *));
1295
1296 extern breakpoint_from_pc_fn memory_breakpoint_from_pc;
1297 #ifndef BREAKPOINT_FROM_PC
1298 #define BREAKPOINT_FROM_PC(pcptr, lenptr) memory_breakpoint_from_pc (pcptr, lenptr)
1299 #endif
1300
1301
1302 /* From target.c */
1303
1304 extern void
1305 initialize_targets PARAMS ((void));
1306
1307 extern void
1308 noprocess PARAMS ((void));
1309
1310 extern void
1311 find_default_attach PARAMS ((char *, int));
1312
1313 void
1314 find_default_require_attach PARAMS ((char *, int));
1315
1316 void
1317 find_default_require_detach PARAMS ((int, char *, int));
1318
1319 extern void
1320 find_default_create_inferior PARAMS ((char *, char *, char **));
1321
1322 void
1323 find_default_clone_and_follow_inferior PARAMS ((int, int *));
1324
1325 extern struct target_ops *find_run_target PARAMS ((void));
1326
1327 extern struct target_ops *
1328 find_core_target PARAMS ((void));
1329
1330 int
1331 target_resize_to_sections PARAMS ((struct target_ops *target, int num_added));
1332 \f
1333 /* Stuff that should be shared among the various remote targets. */
1334
1335 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1336 information (higher values, more information). */
1337 extern int remote_debug;
1338
1339 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1340 extern int baud_rate;
1341 /* Timeout limit for response from target. */
1342 extern int remote_timeout;
1343
1344 extern asection *target_memory_bfd_section;
1345 \f
1346 /* Functions for helping to write a native target. */
1347
1348 /* This is for native targets which use a unix/POSIX-style waitstatus. */
1349 extern void store_waitstatus PARAMS ((struct target_waitstatus *, int));
1350
1351 /* Predicate to target_signal_to_host(). Return non-zero if the enum
1352 targ_signal SIGNO has an equivalent ``host'' representation. */
1353 /* FIXME: cagney/1999-11-22: The name below was chosen in preference
1354 to the shorter target_signal_p() because it is far less ambigious.
1355 In this context ``target_signal'' refers to GDB's internal
1356 representation of the target's set of signals while ``host signal''
1357 refers to the target operating system's signal. Confused? */
1358 extern int target_signal_to_host_p (enum target_signal signo);
1359
1360 /* Convert between host signal numbers and enum target_signal's.
1361 target_signal_to_host() returns 0 and prints a warning() on GDB's
1362 console if SIGNO has no equivalent host representation. */
1363 /* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1364 refering to the target operating system's signal numbering.
1365 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1366 gdb_signal'' would probably be better as it is refering to GDB's
1367 internal representation of a target operating system's signal. */
1368 extern enum target_signal target_signal_from_host PARAMS ((int));
1369 extern int target_signal_to_host PARAMS ((enum target_signal));
1370
1371 /* Convert from a number used in a GDB command to an enum target_signal. */
1372 extern enum target_signal target_signal_from_command PARAMS ((int));
1373
1374 /* Any target can call this to switch to remote protocol (in remote.c). */
1375 extern void push_remote_target PARAMS ((char *name, int from_tty));
1376 \f
1377 /* Imported from machine dependent code */
1378
1379 #ifndef SOFTWARE_SINGLE_STEP_P
1380 #define SOFTWARE_SINGLE_STEP_P 0
1381 #define SOFTWARE_SINGLE_STEP(sig,bp_p) (internal_error ("SOFTWARE_SINGLE_STEP"), 0)
1382 #endif /* SOFTWARE_SINGLE_STEP_P */
1383
1384 /* Blank target vector entries are initialized to target_ignore. */
1385 void target_ignore PARAMS ((void));
1386
1387 /* Macro for getting target's idea of a frame pointer.
1388 FIXME: GDB's whole scheme for dealing with "frames" and
1389 "frame pointers" needs a serious shakedown. */
1390 #ifndef TARGET_VIRTUAL_FRAME_POINTER
1391 #define TARGET_VIRTUAL_FRAME_POINTER(ADDR, REGP, OFFP) \
1392 do { *(REGP) = FP_REGNUM; *(OFFP) = 0; } while (0)
1393 #endif /* TARGET_VIRTUAL_FRAME_POINTER */
1394
1395 #endif /* !defined (TARGET_H) */