convert to_supports_evaluation_of_breakpoint_conditions
[binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* Generic I/O error. Note that it's important that this is '-1',
217 as we still have target_xfer-related code returning hardcoded
218 '-1' on error. */
219 TARGET_XFER_E_IO = -1,
220
221 /* Transfer failed because the piece of the object requested is
222 unavailable. */
223 TARGET_XFER_E_UNAVAILABLE = -2,
224
225 /* Keep list in sync with target_xfer_error_to_string. */
226 };
227
228 #define TARGET_XFER_STATUS_ERROR_P(STATUS) ((STATUS) < TARGET_XFER_EOF)
229
230 /* Return the string form of ERR. */
231
232 extern const char *target_xfer_status_to_string (enum target_xfer_status err);
233
234 /* Enumeration of the kinds of traceframe searches that a target may
235 be able to perform. */
236
237 enum trace_find_type
238 {
239 tfind_number,
240 tfind_pc,
241 tfind_tp,
242 tfind_range,
243 tfind_outside,
244 };
245
246 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
247 DEF_VEC_P(static_tracepoint_marker_p);
248
249 typedef enum target_xfer_status
250 target_xfer_partial_ftype (struct target_ops *ops,
251 enum target_object object,
252 const char *annex,
253 gdb_byte *readbuf,
254 const gdb_byte *writebuf,
255 ULONGEST offset,
256 ULONGEST len,
257 ULONGEST *xfered_len);
258
259 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
260 OBJECT. The OFFSET, for a seekable object, specifies the
261 starting point. The ANNEX can be used to provide additional
262 data-specific information to the target.
263
264 Return the number of bytes actually transfered, or a negative error
265 code (an 'enum target_xfer_error' value) if the transfer is not
266 supported or otherwise fails. Return of a positive value less than
267 LEN indicates that no further transfer is possible. Unlike the raw
268 to_xfer_partial interface, callers of these functions do not need
269 to retry partial transfers. */
270
271 extern LONGEST target_read (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276 struct memory_read_result
277 {
278 /* First address that was read. */
279 ULONGEST begin;
280 /* Past-the-end address. */
281 ULONGEST end;
282 /* The data. */
283 gdb_byte *data;
284 };
285 typedef struct memory_read_result memory_read_result_s;
286 DEF_VEC_O(memory_read_result_s);
287
288 extern void free_memory_read_result_vector (void *);
289
290 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
291 ULONGEST offset,
292 LONGEST len);
293
294 extern LONGEST target_write (struct target_ops *ops,
295 enum target_object object,
296 const char *annex, const gdb_byte *buf,
297 ULONGEST offset, LONGEST len);
298
299 /* Similar to target_write, except that it also calls PROGRESS with
300 the number of bytes written and the opaque BATON after every
301 successful partial write (and before the first write). This is
302 useful for progress reporting and user interaction while writing
303 data. To abort the transfer, the progress callback can throw an
304 exception. */
305
306 LONGEST target_write_with_progress (struct target_ops *ops,
307 enum target_object object,
308 const char *annex, const gdb_byte *buf,
309 ULONGEST offset, LONGEST len,
310 void (*progress) (ULONGEST, void *),
311 void *baton);
312
313 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
314 be read using OPS. The return value will be -1 if the transfer
315 fails or is not supported; 0 if the object is empty; or the length
316 of the object otherwise. If a positive value is returned, a
317 sufficiently large buffer will be allocated using xmalloc and
318 returned in *BUF_P containing the contents of the object.
319
320 This method should be used for objects sufficiently small to store
321 in a single xmalloc'd buffer, when no fixed bound on the object's
322 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
323 through this function. */
324
325 extern LONGEST target_read_alloc (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, gdb_byte **buf_p);
328
329 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
330 returned as a string, allocated using xmalloc. If an error occurs
331 or the transfer is unsupported, NULL is returned. Empty objects
332 are returned as allocated but empty strings. A warning is issued
333 if the result contains any embedded NUL bytes. */
334
335 extern char *target_read_stralloc (struct target_ops *ops,
336 enum target_object object,
337 const char *annex);
338
339 /* See target_ops->to_xfer_partial. */
340 extern target_xfer_partial_ftype target_xfer_partial;
341
342 /* Wrappers to target read/write that perform memory transfers. They
343 throw an error if the memory transfer fails.
344
345 NOTE: cagney/2003-10-23: The naming schema is lifted from
346 "frame.h". The parameter order is lifted from get_frame_memory,
347 which in turn lifted it from read_memory. */
348
349 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
350 gdb_byte *buf, LONGEST len);
351 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
352 CORE_ADDR addr, int len,
353 enum bfd_endian byte_order);
354 \f
355 struct thread_info; /* fwd decl for parameter list below: */
356
357 /* The type of the callback to the to_async method. */
358
359 typedef void async_callback_ftype (enum inferior_event_type event_type,
360 void *context);
361
362 /* These defines are used to mark target_ops methods. The script
363 make-target-delegates scans these and auto-generates the base
364 method implementations. There are four macros that can be used:
365
366 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
367 does nothing. This is only valid if the method return type is
368 'void'.
369
370 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
371 'tcomplain ()'. The base method simply makes this call, which is
372 assumed not to return.
373
374 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
375 base method returns this expression's value.
376
377 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
378 make-target-delegates does not generate a base method in this case,
379 but instead uses the argument function as the base method. */
380
381 #define TARGET_DEFAULT_IGNORE()
382 #define TARGET_DEFAULT_NORETURN(ARG)
383 #define TARGET_DEFAULT_RETURN(ARG)
384 #define TARGET_DEFAULT_FUNC(ARG)
385
386 struct target_ops
387 {
388 struct target_ops *beneath; /* To the target under this one. */
389 char *to_shortname; /* Name this target type */
390 char *to_longname; /* Name for printing */
391 char *to_doc; /* Documentation. Does not include trailing
392 newline, and starts with a one-line descrip-
393 tion (probably similar to to_longname). */
394 /* Per-target scratch pad. */
395 void *to_data;
396 /* The open routine takes the rest of the parameters from the
397 command, and (if successful) pushes a new target onto the
398 stack. Targets should supply this routine, if only to provide
399 an error message. */
400 void (*to_open) (char *, int);
401 /* Old targets with a static target vector provide "to_close".
402 New re-entrant targets provide "to_xclose" and that is expected
403 to xfree everything (including the "struct target_ops"). */
404 void (*to_xclose) (struct target_ops *targ);
405 void (*to_close) (struct target_ops *);
406 void (*to_attach) (struct target_ops *ops, char *, int)
407 TARGET_DEFAULT_FUNC (find_default_attach);
408 void (*to_post_attach) (struct target_ops *, int)
409 TARGET_DEFAULT_IGNORE ();
410 void (*to_detach) (struct target_ops *ops, const char *, int)
411 TARGET_DEFAULT_IGNORE ();
412 void (*to_disconnect) (struct target_ops *, char *, int);
413 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
414 TARGET_DEFAULT_NORETURN (noprocess ());
415 ptid_t (*to_wait) (struct target_ops *,
416 ptid_t, struct target_waitstatus *, int)
417 TARGET_DEFAULT_NORETURN (noprocess ());
418 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
419 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
420 TARGET_DEFAULT_NORETURN (noprocess ());
421 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
422 TARGET_DEFAULT_NORETURN (noprocess ());
423
424 /* Transfer LEN bytes of memory between GDB address MYADDR and
425 target address MEMADDR. If WRITE, transfer them to the target, else
426 transfer them from the target. TARGET is the target from which we
427 get this function.
428
429 Return value, N, is one of the following:
430
431 0 means that we can't handle this. If errno has been set, it is the
432 error which prevented us from doing it (FIXME: What about bfd_error?).
433
434 positive (call it N) means that we have transferred N bytes
435 starting at MEMADDR. We might be able to handle more bytes
436 beyond this length, but no promises.
437
438 negative (call its absolute value N) means that we cannot
439 transfer right at MEMADDR, but we could transfer at least
440 something at MEMADDR + N.
441
442 NOTE: cagney/2004-10-01: This has been entirely superseeded by
443 to_xfer_partial and inferior inheritance. */
444
445 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
446 int len, int write,
447 struct mem_attrib *attrib,
448 struct target_ops *target);
449
450 void (*to_files_info) (struct target_ops *)
451 TARGET_DEFAULT_IGNORE ();
452 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
453 struct bp_target_info *)
454 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
455 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
456 struct bp_target_info *)
457 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
458 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int)
459 TARGET_DEFAULT_RETURN (0);
460 int (*to_ranged_break_num_registers) (struct target_ops *);
461 int (*to_insert_hw_breakpoint) (struct target_ops *,
462 struct gdbarch *, struct bp_target_info *)
463 TARGET_DEFAULT_RETURN (-1);
464 int (*to_remove_hw_breakpoint) (struct target_ops *,
465 struct gdbarch *, struct bp_target_info *)
466 TARGET_DEFAULT_RETURN (-1);
467
468 /* Documentation of what the two routines below are expected to do is
469 provided with the corresponding target_* macros. */
470 int (*to_remove_watchpoint) (struct target_ops *,
471 CORE_ADDR, int, int, struct expression *)
472 TARGET_DEFAULT_RETURN (-1);
473 int (*to_insert_watchpoint) (struct target_ops *,
474 CORE_ADDR, int, int, struct expression *)
475 TARGET_DEFAULT_RETURN (-1);
476
477 int (*to_insert_mask_watchpoint) (struct target_ops *,
478 CORE_ADDR, CORE_ADDR, int);
479 int (*to_remove_mask_watchpoint) (struct target_ops *,
480 CORE_ADDR, CORE_ADDR, int);
481 int (*to_stopped_by_watchpoint) (struct target_ops *)
482 TARGET_DEFAULT_RETURN (0);
483 int to_have_steppable_watchpoint;
484 int to_have_continuable_watchpoint;
485 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
486 TARGET_DEFAULT_RETURN (0);
487 int (*to_watchpoint_addr_within_range) (struct target_ops *,
488 CORE_ADDR, CORE_ADDR, int)
489 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
490
491 /* Documentation of this routine is provided with the corresponding
492 target_* macro. */
493 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
494 CORE_ADDR, int)
495 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
496
497 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
498 CORE_ADDR, int, int,
499 struct expression *)
500 TARGET_DEFAULT_RETURN (0);
501 int (*to_masked_watch_num_registers) (struct target_ops *,
502 CORE_ADDR, CORE_ADDR);
503 void (*to_terminal_init) (struct target_ops *)
504 TARGET_DEFAULT_IGNORE ();
505 void (*to_terminal_inferior) (struct target_ops *)
506 TARGET_DEFAULT_IGNORE ();
507 void (*to_terminal_ours_for_output) (struct target_ops *)
508 TARGET_DEFAULT_IGNORE ();
509 void (*to_terminal_ours) (struct target_ops *)
510 TARGET_DEFAULT_IGNORE ();
511 void (*to_terminal_save_ours) (struct target_ops *)
512 TARGET_DEFAULT_IGNORE ();
513 void (*to_terminal_info) (struct target_ops *, const char *, int)
514 TARGET_DEFAULT_FUNC (default_terminal_info);
515 void (*to_kill) (struct target_ops *);
516 void (*to_load) (struct target_ops *, char *, int)
517 TARGET_DEFAULT_NORETURN (tcomplain ());
518 void (*to_create_inferior) (struct target_ops *,
519 char *, char *, char **, int);
520 void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
521 TARGET_DEFAULT_IGNORE ();
522 int (*to_insert_fork_catchpoint) (struct target_ops *, int)
523 TARGET_DEFAULT_RETURN (1);
524 int (*to_remove_fork_catchpoint) (struct target_ops *, int)
525 TARGET_DEFAULT_RETURN (1);
526 int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
527 TARGET_DEFAULT_RETURN (1);
528 int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
529 TARGET_DEFAULT_RETURN (1);
530 int (*to_follow_fork) (struct target_ops *, int, int);
531 int (*to_insert_exec_catchpoint) (struct target_ops *, int)
532 TARGET_DEFAULT_RETURN (1);
533 int (*to_remove_exec_catchpoint) (struct target_ops *, int)
534 TARGET_DEFAULT_RETURN (1);
535 int (*to_set_syscall_catchpoint) (struct target_ops *,
536 int, int, int, int, int *)
537 TARGET_DEFAULT_RETURN (1);
538 int (*to_has_exited) (struct target_ops *, int, int, int *)
539 TARGET_DEFAULT_RETURN (0);
540 void (*to_mourn_inferior) (struct target_ops *);
541 int (*to_can_run) (struct target_ops *);
542
543 /* Documentation of this routine is provided with the corresponding
544 target_* macro. */
545 void (*to_pass_signals) (struct target_ops *, int, unsigned char *);
546
547 /* Documentation of this routine is provided with the
548 corresponding target_* function. */
549 void (*to_program_signals) (struct target_ops *, int, unsigned char *);
550
551 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
552 void (*to_find_new_threads) (struct target_ops *);
553 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
554 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *)
555 TARGET_DEFAULT_RETURN (0);
556 char *(*to_thread_name) (struct target_ops *, struct thread_info *)
557 TARGET_DEFAULT_RETURN (0);
558 void (*to_stop) (struct target_ops *, ptid_t);
559 void (*to_rcmd) (struct target_ops *,
560 char *command, struct ui_file *output)
561 TARGET_DEFAULT_FUNC (default_rcmd);
562 char *(*to_pid_to_exec_file) (struct target_ops *, int pid)
563 TARGET_DEFAULT_RETURN (0);
564 void (*to_log_command) (struct target_ops *, const char *)
565 TARGET_DEFAULT_IGNORE ();
566 struct target_section_table *(*to_get_section_table) (struct target_ops *);
567 enum strata to_stratum;
568 int (*to_has_all_memory) (struct target_ops *);
569 int (*to_has_memory) (struct target_ops *);
570 int (*to_has_stack) (struct target_ops *);
571 int (*to_has_registers) (struct target_ops *);
572 int (*to_has_execution) (struct target_ops *, ptid_t);
573 int to_has_thread_control; /* control thread execution */
574 int to_attach_no_wait;
575 /* ASYNC target controls */
576 int (*to_can_async_p) (struct target_ops *)
577 TARGET_DEFAULT_FUNC (find_default_can_async_p);
578 int (*to_is_async_p) (struct target_ops *)
579 TARGET_DEFAULT_FUNC (find_default_is_async_p);
580 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
581 TARGET_DEFAULT_NORETURN (tcomplain ());
582 int (*to_supports_non_stop) (struct target_ops *);
583 /* find_memory_regions support method for gcore */
584 int (*to_find_memory_regions) (struct target_ops *,
585 find_memory_region_ftype func, void *data)
586 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
587 /* make_corefile_notes support method for gcore */
588 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *)
589 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
590 /* get_bookmark support method for bookmarks */
591 gdb_byte * (*to_get_bookmark) (struct target_ops *, char *, int)
592 TARGET_DEFAULT_NORETURN (tcomplain ());
593 /* goto_bookmark support method for bookmarks */
594 void (*to_goto_bookmark) (struct target_ops *, gdb_byte *, int)
595 TARGET_DEFAULT_NORETURN (tcomplain ());
596 /* Return the thread-local address at OFFSET in the
597 thread-local storage for the thread PTID and the shared library
598 or executable file given by OBJFILE. If that block of
599 thread-local storage hasn't been allocated yet, this function
600 may return an error. */
601 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
602 ptid_t ptid,
603 CORE_ADDR load_module_addr,
604 CORE_ADDR offset);
605
606 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
607 OBJECT. The OFFSET, for a seekable object, specifies the
608 starting point. The ANNEX can be used to provide additional
609 data-specific information to the target.
610
611 Return the transferred status, error or OK (an
612 'enum target_xfer_status' value). Save the number of bytes
613 actually transferred in *XFERED_LEN if transfer is successful
614 (TARGET_XFER_OK) or the number unavailable bytes if the requested
615 data is unavailable (TARGET_XFER_E_UNAVAILABLE). *XFERED_LEN
616 smaller than LEN does not indicate the end of the object, only
617 the end of the transfer; higher level code should continue
618 transferring if desired. This is handled in target.c.
619
620 The interface does not support a "retry" mechanism. Instead it
621 assumes that at least one byte will be transfered on each
622 successful call.
623
624 NOTE: cagney/2003-10-17: The current interface can lead to
625 fragmented transfers. Lower target levels should not implement
626 hacks, such as enlarging the transfer, in an attempt to
627 compensate for this. Instead, the target stack should be
628 extended so that it implements supply/collect methods and a
629 look-aside object cache. With that available, the lowest
630 target can safely and freely "push" data up the stack.
631
632 See target_read and target_write for more information. One,
633 and only one, of readbuf or writebuf must be non-NULL. */
634
635 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
636 enum target_object object,
637 const char *annex,
638 gdb_byte *readbuf,
639 const gdb_byte *writebuf,
640 ULONGEST offset, ULONGEST len,
641 ULONGEST *xfered_len)
642 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
643
644 /* Returns the memory map for the target. A return value of NULL
645 means that no memory map is available. If a memory address
646 does not fall within any returned regions, it's assumed to be
647 RAM. The returned memory regions should not overlap.
648
649 The order of regions does not matter; target_memory_map will
650 sort regions by starting address. For that reason, this
651 function should not be called directly except via
652 target_memory_map.
653
654 This method should not cache data; if the memory map could
655 change unexpectedly, it should be invalidated, and higher
656 layers will re-fetch it. */
657 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
658
659 /* Erases the region of flash memory starting at ADDRESS, of
660 length LENGTH.
661
662 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
663 on flash block boundaries, as reported by 'to_memory_map'. */
664 void (*to_flash_erase) (struct target_ops *,
665 ULONGEST address, LONGEST length);
666
667 /* Finishes a flash memory write sequence. After this operation
668 all flash memory should be available for writing and the result
669 of reading from areas written by 'to_flash_write' should be
670 equal to what was written. */
671 void (*to_flash_done) (struct target_ops *);
672
673 /* Describe the architecture-specific features of this target.
674 Returns the description found, or NULL if no description
675 was available. */
676 const struct target_desc *(*to_read_description) (struct target_ops *ops);
677
678 /* Build the PTID of the thread on which a given task is running,
679 based on LWP and THREAD. These values are extracted from the
680 task Private_Data section of the Ada Task Control Block, and
681 their interpretation depends on the target. */
682 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
683 long lwp, long thread)
684 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
685
686 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
687 Return 0 if *READPTR is already at the end of the buffer.
688 Return -1 if there is insufficient buffer for a whole entry.
689 Return 1 if an entry was read into *TYPEP and *VALP. */
690 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
691 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
692
693 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
694 sequence of bytes in PATTERN with length PATTERN_LEN.
695
696 The result is 1 if found, 0 if not found, and -1 if there was an error
697 requiring halting of the search (e.g. memory read error).
698 If the pattern is found the address is recorded in FOUND_ADDRP. */
699 int (*to_search_memory) (struct target_ops *ops,
700 CORE_ADDR start_addr, ULONGEST search_space_len,
701 const gdb_byte *pattern, ULONGEST pattern_len,
702 CORE_ADDR *found_addrp);
703
704 /* Can target execute in reverse? */
705 int (*to_can_execute_reverse) (struct target_ops *)
706 TARGET_DEFAULT_RETURN (0);
707
708 /* The direction the target is currently executing. Must be
709 implemented on targets that support reverse execution and async
710 mode. The default simply returns forward execution. */
711 enum exec_direction_kind (*to_execution_direction) (struct target_ops *)
712 TARGET_DEFAULT_FUNC (default_execution_direction);
713
714 /* Does this target support debugging multiple processes
715 simultaneously? */
716 int (*to_supports_multi_process) (struct target_ops *)
717 TARGET_DEFAULT_RETURN (0);
718
719 /* Does this target support enabling and disabling tracepoints while a trace
720 experiment is running? */
721 int (*to_supports_enable_disable_tracepoint) (struct target_ops *)
722 TARGET_DEFAULT_RETURN (0);
723
724 /* Does this target support disabling address space randomization? */
725 int (*to_supports_disable_randomization) (struct target_ops *);
726
727 /* Does this target support the tracenz bytecode for string collection? */
728 int (*to_supports_string_tracing) (struct target_ops *)
729 TARGET_DEFAULT_RETURN (0);
730
731 /* Does this target support evaluation of breakpoint conditions on its
732 end? */
733 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *)
734 TARGET_DEFAULT_RETURN (0);
735
736 /* Does this target support evaluation of breakpoint commands on its
737 end? */
738 int (*to_can_run_breakpoint_commands) (struct target_ops *);
739
740 /* Determine current architecture of thread PTID.
741
742 The target is supposed to determine the architecture of the code where
743 the target is currently stopped at (on Cell, if a target is in spu_run,
744 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
745 This is architecture used to perform decr_pc_after_break adjustment,
746 and also determines the frame architecture of the innermost frame.
747 ptrace operations need to operate according to target_gdbarch ().
748
749 The default implementation always returns target_gdbarch (). */
750 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t)
751 TARGET_DEFAULT_FUNC (default_thread_architecture);
752
753 /* Determine current address space of thread PTID.
754
755 The default implementation always returns the inferior's
756 address space. */
757 struct address_space *(*to_thread_address_space) (struct target_ops *,
758 ptid_t);
759
760 /* Target file operations. */
761
762 /* Open FILENAME on the target, using FLAGS and MODE. Return a
763 target file descriptor, or -1 if an error occurs (and set
764 *TARGET_ERRNO). */
765 int (*to_fileio_open) (struct target_ops *,
766 const char *filename, int flags, int mode,
767 int *target_errno);
768
769 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
770 Return the number of bytes written, or -1 if an error occurs
771 (and set *TARGET_ERRNO). */
772 int (*to_fileio_pwrite) (struct target_ops *,
773 int fd, const gdb_byte *write_buf, int len,
774 ULONGEST offset, int *target_errno);
775
776 /* Read up to LEN bytes FD on the target into READ_BUF.
777 Return the number of bytes read, or -1 if an error occurs
778 (and set *TARGET_ERRNO). */
779 int (*to_fileio_pread) (struct target_ops *,
780 int fd, gdb_byte *read_buf, int len,
781 ULONGEST offset, int *target_errno);
782
783 /* Close FD on the target. Return 0, or -1 if an error occurs
784 (and set *TARGET_ERRNO). */
785 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
786
787 /* Unlink FILENAME on the target. Return 0, or -1 if an error
788 occurs (and set *TARGET_ERRNO). */
789 int (*to_fileio_unlink) (struct target_ops *,
790 const char *filename, int *target_errno);
791
792 /* Read value of symbolic link FILENAME on the target. Return a
793 null-terminated string allocated via xmalloc, or NULL if an error
794 occurs (and set *TARGET_ERRNO). */
795 char *(*to_fileio_readlink) (struct target_ops *,
796 const char *filename, int *target_errno);
797
798
799 /* Implement the "info proc" command. */
800 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
801
802 /* Tracepoint-related operations. */
803
804 /* Prepare the target for a tracing run. */
805 void (*to_trace_init) (struct target_ops *)
806 TARGET_DEFAULT_NORETURN (tcomplain ());
807
808 /* Send full details of a tracepoint location to the target. */
809 void (*to_download_tracepoint) (struct target_ops *,
810 struct bp_location *location)
811 TARGET_DEFAULT_NORETURN (tcomplain ());
812
813 /* Is the target able to download tracepoint locations in current
814 state? */
815 int (*to_can_download_tracepoint) (struct target_ops *)
816 TARGET_DEFAULT_RETURN (0);
817
818 /* Send full details of a trace state variable to the target. */
819 void (*to_download_trace_state_variable) (struct target_ops *,
820 struct trace_state_variable *tsv)
821 TARGET_DEFAULT_NORETURN (tcomplain ());
822
823 /* Enable a tracepoint on the target. */
824 void (*to_enable_tracepoint) (struct target_ops *,
825 struct bp_location *location)
826 TARGET_DEFAULT_NORETURN (tcomplain ());
827
828 /* Disable a tracepoint on the target. */
829 void (*to_disable_tracepoint) (struct target_ops *,
830 struct bp_location *location)
831 TARGET_DEFAULT_NORETURN (tcomplain ());
832
833 /* Inform the target info of memory regions that are readonly
834 (such as text sections), and so it should return data from
835 those rather than look in the trace buffer. */
836 void (*to_trace_set_readonly_regions) (struct target_ops *)
837 TARGET_DEFAULT_NORETURN (tcomplain ());
838
839 /* Start a trace run. */
840 void (*to_trace_start) (struct target_ops *)
841 TARGET_DEFAULT_NORETURN (tcomplain ());
842
843 /* Get the current status of a tracing run. */
844 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts)
845 TARGET_DEFAULT_RETURN (-1);
846
847 void (*to_get_tracepoint_status) (struct target_ops *,
848 struct breakpoint *tp,
849 struct uploaded_tp *utp)
850 TARGET_DEFAULT_NORETURN (tcomplain ());
851
852 /* Stop a trace run. */
853 void (*to_trace_stop) (struct target_ops *)
854 TARGET_DEFAULT_NORETURN (tcomplain ());
855
856 /* Ask the target to find a trace frame of the given type TYPE,
857 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
858 number of the trace frame, and also the tracepoint number at
859 TPP. If no trace frame matches, return -1. May throw if the
860 operation fails. */
861 int (*to_trace_find) (struct target_ops *,
862 enum trace_find_type type, int num,
863 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
864 TARGET_DEFAULT_RETURN (-1);
865
866 /* Get the value of the trace state variable number TSV, returning
867 1 if the value is known and writing the value itself into the
868 location pointed to by VAL, else returning 0. */
869 int (*to_get_trace_state_variable_value) (struct target_ops *,
870 int tsv, LONGEST *val)
871 TARGET_DEFAULT_RETURN (0);
872
873 int (*to_save_trace_data) (struct target_ops *, const char *filename)
874 TARGET_DEFAULT_NORETURN (tcomplain ());
875
876 int (*to_upload_tracepoints) (struct target_ops *,
877 struct uploaded_tp **utpp)
878 TARGET_DEFAULT_RETURN (0);
879
880 int (*to_upload_trace_state_variables) (struct target_ops *,
881 struct uploaded_tsv **utsvp)
882 TARGET_DEFAULT_RETURN (0);
883
884 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
885 ULONGEST offset, LONGEST len)
886 TARGET_DEFAULT_NORETURN (tcomplain ());
887
888 /* Get the minimum length of instruction on which a fast tracepoint
889 may be set on the target. If this operation is unsupported,
890 return -1. If for some reason the minimum length cannot be
891 determined, return 0. */
892 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *)
893 TARGET_DEFAULT_RETURN (-1);
894
895 /* Set the target's tracing behavior in response to unexpected
896 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
897 void (*to_set_disconnected_tracing) (struct target_ops *, int val)
898 TARGET_DEFAULT_IGNORE ();
899 void (*to_set_circular_trace_buffer) (struct target_ops *, int val)
900 TARGET_DEFAULT_IGNORE ();
901 /* Set the size of trace buffer in the target. */
902 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val)
903 TARGET_DEFAULT_IGNORE ();
904
905 /* Add/change textual notes about the trace run, returning 1 if
906 successful, 0 otherwise. */
907 int (*to_set_trace_notes) (struct target_ops *,
908 const char *user, const char *notes,
909 const char *stopnotes)
910 TARGET_DEFAULT_RETURN (0);
911
912 /* Return the processor core that thread PTID was last seen on.
913 This information is updated only when:
914 - update_thread_list is called
915 - thread stops
916 If the core cannot be determined -- either for the specified
917 thread, or right now, or in this debug session, or for this
918 target -- return -1. */
919 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
920
921 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
922 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
923 a match, 0 if there's a mismatch, and -1 if an error is
924 encountered while reading memory. */
925 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
926 CORE_ADDR memaddr, ULONGEST size);
927
928 /* Return the address of the start of the Thread Information Block
929 a Windows OS specific feature. */
930 int (*to_get_tib_address) (struct target_ops *,
931 ptid_t ptid, CORE_ADDR *addr)
932 TARGET_DEFAULT_NORETURN (tcomplain ());
933
934 /* Send the new settings of write permission variables. */
935 void (*to_set_permissions) (struct target_ops *)
936 TARGET_DEFAULT_IGNORE ();
937
938 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
939 with its details. Return 1 on success, 0 on failure. */
940 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
941 struct static_tracepoint_marker *marker)
942 TARGET_DEFAULT_RETURN (0);
943
944 /* Return a vector of all tracepoints markers string id ID, or all
945 markers if ID is NULL. */
946 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid) (struct target_ops *, const char *id)
947 TARGET_DEFAULT_NORETURN (tcomplain ());
948
949 /* Return a traceframe info object describing the current
950 traceframe's contents. If the target doesn't support
951 traceframe info, return NULL. If the current traceframe is not
952 selected (the current traceframe number is -1), the target can
953 choose to return either NULL or an empty traceframe info. If
954 NULL is returned, for example in remote target, GDB will read
955 from the live inferior. If an empty traceframe info is
956 returned, for example in tfile target, which means the
957 traceframe info is available, but the requested memory is not
958 available in it. GDB will try to see if the requested memory
959 is available in the read-only sections. This method should not
960 cache data; higher layers take care of caching, invalidating,
961 and re-fetching when necessary. */
962 struct traceframe_info *(*to_traceframe_info) (struct target_ops *)
963 TARGET_DEFAULT_RETURN (0);
964
965 /* Ask the target to use or not to use agent according to USE. Return 1
966 successful, 0 otherwise. */
967 int (*to_use_agent) (struct target_ops *, int use)
968 TARGET_DEFAULT_NORETURN (tcomplain ());
969
970 /* Is the target able to use agent in current state? */
971 int (*to_can_use_agent) (struct target_ops *)
972 TARGET_DEFAULT_RETURN (0);
973
974 /* Check whether the target supports branch tracing. */
975 int (*to_supports_btrace) (struct target_ops *)
976 TARGET_DEFAULT_RETURN (0);
977
978 /* Enable branch tracing for PTID and allocate a branch trace target
979 information struct for reading and for disabling branch trace. */
980 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
981 ptid_t ptid);
982
983 /* Disable branch tracing and deallocate TINFO. */
984 void (*to_disable_btrace) (struct target_ops *,
985 struct btrace_target_info *tinfo);
986
987 /* Disable branch tracing and deallocate TINFO. This function is similar
988 to to_disable_btrace, except that it is called during teardown and is
989 only allowed to perform actions that are safe. A counter-example would
990 be attempting to talk to a remote target. */
991 void (*to_teardown_btrace) (struct target_ops *,
992 struct btrace_target_info *tinfo);
993
994 /* Read branch trace data for the thread indicated by BTINFO into DATA.
995 DATA is cleared before new trace is added.
996 The branch trace will start with the most recent block and continue
997 towards older blocks. */
998 enum btrace_error (*to_read_btrace) (struct target_ops *self,
999 VEC (btrace_block_s) **data,
1000 struct btrace_target_info *btinfo,
1001 enum btrace_read_type type);
1002
1003 /* Stop trace recording. */
1004 void (*to_stop_recording) (struct target_ops *);
1005
1006 /* Print information about the recording. */
1007 void (*to_info_record) (struct target_ops *);
1008
1009 /* Save the recorded execution trace into a file. */
1010 void (*to_save_record) (struct target_ops *, const char *filename);
1011
1012 /* Delete the recorded execution trace from the current position onwards. */
1013 void (*to_delete_record) (struct target_ops *);
1014
1015 /* Query if the record target is currently replaying. */
1016 int (*to_record_is_replaying) (struct target_ops *);
1017
1018 /* Go to the begin of the execution trace. */
1019 void (*to_goto_record_begin) (struct target_ops *);
1020
1021 /* Go to the end of the execution trace. */
1022 void (*to_goto_record_end) (struct target_ops *);
1023
1024 /* Go to a specific location in the recorded execution trace. */
1025 void (*to_goto_record) (struct target_ops *, ULONGEST insn);
1026
1027 /* Disassemble SIZE instructions in the recorded execution trace from
1028 the current position.
1029 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1030 disassemble SIZE succeeding instructions. */
1031 void (*to_insn_history) (struct target_ops *, int size, int flags);
1032
1033 /* Disassemble SIZE instructions in the recorded execution trace around
1034 FROM.
1035 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1036 disassemble SIZE instructions after FROM. */
1037 void (*to_insn_history_from) (struct target_ops *,
1038 ULONGEST from, int size, int flags);
1039
1040 /* Disassemble a section of the recorded execution trace from instruction
1041 BEGIN (inclusive) to instruction END (inclusive). */
1042 void (*to_insn_history_range) (struct target_ops *,
1043 ULONGEST begin, ULONGEST end, int flags);
1044
1045 /* Print a function trace of the recorded execution trace.
1046 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1047 succeeding functions. */
1048 void (*to_call_history) (struct target_ops *, int size, int flags);
1049
1050 /* Print a function trace of the recorded execution trace starting
1051 at function FROM.
1052 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1053 SIZE functions after FROM. */
1054 void (*to_call_history_from) (struct target_ops *,
1055 ULONGEST begin, int size, int flags);
1056
1057 /* Print a function trace of an execution trace section from function BEGIN
1058 (inclusive) to function END (inclusive). */
1059 void (*to_call_history_range) (struct target_ops *,
1060 ULONGEST begin, ULONGEST end, int flags);
1061
1062 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1063 non-empty annex. */
1064 int (*to_augmented_libraries_svr4_read) (struct target_ops *)
1065 TARGET_DEFAULT_RETURN (0);
1066
1067 /* Those unwinders are tried before any other arch unwinders. Use NULL if
1068 it is not used. */
1069 const struct frame_unwind *to_get_unwinder;
1070 const struct frame_unwind *to_get_tailcall_unwinder;
1071
1072 /* Return the number of bytes by which the PC needs to be decremented
1073 after executing a breakpoint instruction.
1074 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
1075 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
1076 struct gdbarch *gdbarch);
1077
1078 int to_magic;
1079 /* Need sub-structure for target machine related rather than comm related?
1080 */
1081 };
1082
1083 /* Magic number for checking ops size. If a struct doesn't end with this
1084 number, somebody changed the declaration but didn't change all the
1085 places that initialize one. */
1086
1087 #define OPS_MAGIC 3840
1088
1089 /* The ops structure for our "current" target process. This should
1090 never be NULL. If there is no target, it points to the dummy_target. */
1091
1092 extern struct target_ops current_target;
1093
1094 /* Define easy words for doing these operations on our current target. */
1095
1096 #define target_shortname (current_target.to_shortname)
1097 #define target_longname (current_target.to_longname)
1098
1099 /* Does whatever cleanup is required for a target that we are no
1100 longer going to be calling. This routine is automatically always
1101 called after popping the target off the target stack - the target's
1102 own methods are no longer available through the target vector.
1103 Closing file descriptors and freeing all memory allocated memory are
1104 typical things it should do. */
1105
1106 void target_close (struct target_ops *targ);
1107
1108 /* Attaches to a process on the target side. Arguments are as passed
1109 to the `attach' command by the user. This routine can be called
1110 when the target is not on the target-stack, if the target_can_run
1111 routine returns 1; in that case, it must push itself onto the stack.
1112 Upon exit, the target should be ready for normal operations, and
1113 should be ready to deliver the status of the process immediately
1114 (without waiting) to an upcoming target_wait call. */
1115
1116 void target_attach (char *, int);
1117
1118 /* Some targets don't generate traps when attaching to the inferior,
1119 or their target_attach implementation takes care of the waiting.
1120 These targets must set to_attach_no_wait. */
1121
1122 #define target_attach_no_wait \
1123 (current_target.to_attach_no_wait)
1124
1125 /* The target_attach operation places a process under debugger control,
1126 and stops the process.
1127
1128 This operation provides a target-specific hook that allows the
1129 necessary bookkeeping to be performed after an attach completes. */
1130 #define target_post_attach(pid) \
1131 (*current_target.to_post_attach) (&current_target, pid)
1132
1133 /* Takes a program previously attached to and detaches it.
1134 The program may resume execution (some targets do, some don't) and will
1135 no longer stop on signals, etc. We better not have left any breakpoints
1136 in the program or it'll die when it hits one. ARGS is arguments
1137 typed by the user (e.g. a signal to send the process). FROM_TTY
1138 says whether to be verbose or not. */
1139
1140 extern void target_detach (const char *, int);
1141
1142 /* Disconnect from the current target without resuming it (leaving it
1143 waiting for a debugger). */
1144
1145 extern void target_disconnect (char *, int);
1146
1147 /* Resume execution of the target process PTID (or a group of
1148 threads). STEP says whether to single-step or to run free; SIGGNAL
1149 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1150 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1151 PTID means `step/resume only this process id'. A wildcard PTID
1152 (all threads, or all threads of process) means `step/resume
1153 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1154 matches) resume with their 'thread->suspend.stop_signal' signal
1155 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1156 if in "no pass" state. */
1157
1158 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1159
1160 /* Wait for process pid to do something. PTID = -1 to wait for any
1161 pid to do something. Return pid of child, or -1 in case of error;
1162 store status through argument pointer STATUS. Note that it is
1163 _NOT_ OK to throw_exception() out of target_wait() without popping
1164 the debugging target from the stack; GDB isn't prepared to get back
1165 to the prompt with a debugging target but without the frame cache,
1166 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1167 options. */
1168
1169 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1170 int options);
1171
1172 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1173
1174 extern void target_fetch_registers (struct regcache *regcache, int regno);
1175
1176 /* Store at least register REGNO, or all regs if REGNO == -1.
1177 It can store as many registers as it wants to, so target_prepare_to_store
1178 must have been previously called. Calls error() if there are problems. */
1179
1180 extern void target_store_registers (struct regcache *regcache, int regs);
1181
1182 /* Get ready to modify the registers array. On machines which store
1183 individual registers, this doesn't need to do anything. On machines
1184 which store all the registers in one fell swoop, this makes sure
1185 that REGISTERS contains all the registers from the program being
1186 debugged. */
1187
1188 #define target_prepare_to_store(regcache) \
1189 (*current_target.to_prepare_to_store) (&current_target, regcache)
1190
1191 /* Determine current address space of thread PTID. */
1192
1193 struct address_space *target_thread_address_space (ptid_t);
1194
1195 /* Implement the "info proc" command. This returns one if the request
1196 was handled, and zero otherwise. It can also throw an exception if
1197 an error was encountered while attempting to handle the
1198 request. */
1199
1200 int target_info_proc (char *, enum info_proc_what);
1201
1202 /* Returns true if this target can debug multiple processes
1203 simultaneously. */
1204
1205 #define target_supports_multi_process() \
1206 (*current_target.to_supports_multi_process) (&current_target)
1207
1208 /* Returns true if this target can disable address space randomization. */
1209
1210 int target_supports_disable_randomization (void);
1211
1212 /* Returns true if this target can enable and disable tracepoints
1213 while a trace experiment is running. */
1214
1215 #define target_supports_enable_disable_tracepoint() \
1216 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1217
1218 #define target_supports_string_tracing() \
1219 (*current_target.to_supports_string_tracing) (&current_target)
1220
1221 /* Returns true if this target can handle breakpoint conditions
1222 on its end. */
1223
1224 #define target_supports_evaluation_of_breakpoint_conditions() \
1225 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1226
1227 /* Returns true if this target can handle breakpoint commands
1228 on its end. */
1229
1230 #define target_can_run_breakpoint_commands() \
1231 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1232
1233 extern int target_read_string (CORE_ADDR, char **, int, int *);
1234
1235 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1236 ssize_t len);
1237
1238 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1239 ssize_t len);
1240
1241 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1242
1243 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1244
1245 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1246 ssize_t len);
1247
1248 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1249 ssize_t len);
1250
1251 /* Fetches the target's memory map. If one is found it is sorted
1252 and returned, after some consistency checking. Otherwise, NULL
1253 is returned. */
1254 VEC(mem_region_s) *target_memory_map (void);
1255
1256 /* Erase the specified flash region. */
1257 void target_flash_erase (ULONGEST address, LONGEST length);
1258
1259 /* Finish a sequence of flash operations. */
1260 void target_flash_done (void);
1261
1262 /* Describes a request for a memory write operation. */
1263 struct memory_write_request
1264 {
1265 /* Begining address that must be written. */
1266 ULONGEST begin;
1267 /* Past-the-end address. */
1268 ULONGEST end;
1269 /* The data to write. */
1270 gdb_byte *data;
1271 /* A callback baton for progress reporting for this request. */
1272 void *baton;
1273 };
1274 typedef struct memory_write_request memory_write_request_s;
1275 DEF_VEC_O(memory_write_request_s);
1276
1277 /* Enumeration specifying different flash preservation behaviour. */
1278 enum flash_preserve_mode
1279 {
1280 flash_preserve,
1281 flash_discard
1282 };
1283
1284 /* Write several memory blocks at once. This version can be more
1285 efficient than making several calls to target_write_memory, in
1286 particular because it can optimize accesses to flash memory.
1287
1288 Moreover, this is currently the only memory access function in gdb
1289 that supports writing to flash memory, and it should be used for
1290 all cases where access to flash memory is desirable.
1291
1292 REQUESTS is the vector (see vec.h) of memory_write_request.
1293 PRESERVE_FLASH_P indicates what to do with blocks which must be
1294 erased, but not completely rewritten.
1295 PROGRESS_CB is a function that will be periodically called to provide
1296 feedback to user. It will be called with the baton corresponding
1297 to the request currently being written. It may also be called
1298 with a NULL baton, when preserved flash sectors are being rewritten.
1299
1300 The function returns 0 on success, and error otherwise. */
1301 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1302 enum flash_preserve_mode preserve_flash_p,
1303 void (*progress_cb) (ULONGEST, void *));
1304
1305 /* Print a line about the current target. */
1306
1307 #define target_files_info() \
1308 (*current_target.to_files_info) (&current_target)
1309
1310 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1311 the target machine. Returns 0 for success, and returns non-zero or
1312 throws an error (with a detailed failure reason error code and
1313 message) otherwise. */
1314
1315 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1316 struct bp_target_info *bp_tgt);
1317
1318 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1319 machine. Result is 0 for success, non-zero for error. */
1320
1321 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1322 struct bp_target_info *bp_tgt);
1323
1324 /* Initialize the terminal settings we record for the inferior,
1325 before we actually run the inferior. */
1326
1327 #define target_terminal_init() \
1328 (*current_target.to_terminal_init) (&current_target)
1329
1330 /* Put the inferior's terminal settings into effect.
1331 This is preparation for starting or resuming the inferior. */
1332
1333 extern void target_terminal_inferior (void);
1334
1335 /* Put some of our terminal settings into effect,
1336 enough to get proper results from our output,
1337 but do not change into or out of RAW mode
1338 so that no input is discarded.
1339
1340 After doing this, either terminal_ours or terminal_inferior
1341 should be called to get back to a normal state of affairs. */
1342
1343 #define target_terminal_ours_for_output() \
1344 (*current_target.to_terminal_ours_for_output) (&current_target)
1345
1346 /* Put our terminal settings into effect.
1347 First record the inferior's terminal settings
1348 so they can be restored properly later. */
1349
1350 #define target_terminal_ours() \
1351 (*current_target.to_terminal_ours) (&current_target)
1352
1353 /* Save our terminal settings.
1354 This is called from TUI after entering or leaving the curses
1355 mode. Since curses modifies our terminal this call is here
1356 to take this change into account. */
1357
1358 #define target_terminal_save_ours() \
1359 (*current_target.to_terminal_save_ours) (&current_target)
1360
1361 /* Print useful information about our terminal status, if such a thing
1362 exists. */
1363
1364 #define target_terminal_info(arg, from_tty) \
1365 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1366
1367 /* Kill the inferior process. Make it go away. */
1368
1369 extern void target_kill (void);
1370
1371 /* Load an executable file into the target process. This is expected
1372 to not only bring new code into the target process, but also to
1373 update GDB's symbol tables to match.
1374
1375 ARG contains command-line arguments, to be broken down with
1376 buildargv (). The first non-switch argument is the filename to
1377 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1378 0)), which is an offset to apply to the load addresses of FILE's
1379 sections. The target may define switches, or other non-switch
1380 arguments, as it pleases. */
1381
1382 extern void target_load (char *arg, int from_tty);
1383
1384 /* Start an inferior process and set inferior_ptid to its pid.
1385 EXEC_FILE is the file to run.
1386 ALLARGS is a string containing the arguments to the program.
1387 ENV is the environment vector to pass. Errors reported with error().
1388 On VxWorks and various standalone systems, we ignore exec_file. */
1389
1390 void target_create_inferior (char *exec_file, char *args,
1391 char **env, int from_tty);
1392
1393 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1394 notification of inferior events such as fork and vork immediately
1395 after the inferior is created. (This because of how gdb gets an
1396 inferior created via invoking a shell to do it. In such a scenario,
1397 if the shell init file has commands in it, the shell will fork and
1398 exec for each of those commands, and we will see each such fork
1399 event. Very bad.)
1400
1401 Such targets will supply an appropriate definition for this function. */
1402
1403 #define target_post_startup_inferior(ptid) \
1404 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1405
1406 /* On some targets, we can catch an inferior fork or vfork event when
1407 it occurs. These functions insert/remove an already-created
1408 catchpoint for such events. They return 0 for success, 1 if the
1409 catchpoint type is not supported and -1 for failure. */
1410
1411 #define target_insert_fork_catchpoint(pid) \
1412 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1413
1414 #define target_remove_fork_catchpoint(pid) \
1415 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1416
1417 #define target_insert_vfork_catchpoint(pid) \
1418 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1419
1420 #define target_remove_vfork_catchpoint(pid) \
1421 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1422
1423 /* If the inferior forks or vforks, this function will be called at
1424 the next resume in order to perform any bookkeeping and fiddling
1425 necessary to continue debugging either the parent or child, as
1426 requested, and releasing the other. Information about the fork
1427 or vfork event is available via get_last_target_status ().
1428 This function returns 1 if the inferior should not be resumed
1429 (i.e. there is another event pending). */
1430
1431 int target_follow_fork (int follow_child, int detach_fork);
1432
1433 /* On some targets, we can catch an inferior exec event when it
1434 occurs. These functions insert/remove an already-created
1435 catchpoint for such events. They return 0 for success, 1 if the
1436 catchpoint type is not supported and -1 for failure. */
1437
1438 #define target_insert_exec_catchpoint(pid) \
1439 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1440
1441 #define target_remove_exec_catchpoint(pid) \
1442 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1443
1444 /* Syscall catch.
1445
1446 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1447 If NEEDED is zero, it means the target can disable the mechanism to
1448 catch system calls because there are no more catchpoints of this type.
1449
1450 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1451 being requested. In this case, both TABLE_SIZE and TABLE should
1452 be ignored.
1453
1454 TABLE_SIZE is the number of elements in TABLE. It only matters if
1455 ANY_COUNT is zero.
1456
1457 TABLE is an array of ints, indexed by syscall number. An element in
1458 this array is nonzero if that syscall should be caught. This argument
1459 only matters if ANY_COUNT is zero.
1460
1461 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1462 for failure. */
1463
1464 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1465 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1466 pid, needed, any_count, \
1467 table_size, table)
1468
1469 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1470 exit code of PID, if any. */
1471
1472 #define target_has_exited(pid,wait_status,exit_status) \
1473 (*current_target.to_has_exited) (&current_target, \
1474 pid,wait_status,exit_status)
1475
1476 /* The debugger has completed a blocking wait() call. There is now
1477 some process event that must be processed. This function should
1478 be defined by those targets that require the debugger to perform
1479 cleanup or internal state changes in response to the process event. */
1480
1481 /* The inferior process has died. Do what is right. */
1482
1483 void target_mourn_inferior (void);
1484
1485 /* Does target have enough data to do a run or attach command? */
1486
1487 #define target_can_run(t) \
1488 ((t)->to_can_run) (t)
1489
1490 /* Set list of signals to be handled in the target.
1491
1492 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1493 (enum gdb_signal). For every signal whose entry in this array is
1494 non-zero, the target is allowed -but not required- to skip reporting
1495 arrival of the signal to the GDB core by returning from target_wait,
1496 and to pass the signal directly to the inferior instead.
1497
1498 However, if the target is hardware single-stepping a thread that is
1499 about to receive a signal, it needs to be reported in any case, even
1500 if mentioned in a previous target_pass_signals call. */
1501
1502 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1503
1504 /* Set list of signals the target may pass to the inferior. This
1505 directly maps to the "handle SIGNAL pass/nopass" setting.
1506
1507 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1508 number (enum gdb_signal). For every signal whose entry in this
1509 array is non-zero, the target is allowed to pass the signal to the
1510 inferior. Signals not present in the array shall be silently
1511 discarded. This does not influence whether to pass signals to the
1512 inferior as a result of a target_resume call. This is useful in
1513 scenarios where the target needs to decide whether to pass or not a
1514 signal to the inferior without GDB core involvement, such as for
1515 example, when detaching (as threads may have been suspended with
1516 pending signals not reported to GDB). */
1517
1518 extern void target_program_signals (int nsig, unsigned char *program_signals);
1519
1520 /* Check to see if a thread is still alive. */
1521
1522 extern int target_thread_alive (ptid_t ptid);
1523
1524 /* Query for new threads and add them to the thread list. */
1525
1526 extern void target_find_new_threads (void);
1527
1528 /* Make target stop in a continuable fashion. (For instance, under
1529 Unix, this should act like SIGSTOP). This function is normally
1530 used by GUIs to implement a stop button. */
1531
1532 extern void target_stop (ptid_t ptid);
1533
1534 /* Send the specified COMMAND to the target's monitor
1535 (shell,interpreter) for execution. The result of the query is
1536 placed in OUTBUF. */
1537
1538 #define target_rcmd(command, outbuf) \
1539 (*current_target.to_rcmd) (&current_target, command, outbuf)
1540
1541
1542 /* Does the target include all of memory, or only part of it? This
1543 determines whether we look up the target chain for other parts of
1544 memory if this target can't satisfy a request. */
1545
1546 extern int target_has_all_memory_1 (void);
1547 #define target_has_all_memory target_has_all_memory_1 ()
1548
1549 /* Does the target include memory? (Dummy targets don't.) */
1550
1551 extern int target_has_memory_1 (void);
1552 #define target_has_memory target_has_memory_1 ()
1553
1554 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1555 we start a process.) */
1556
1557 extern int target_has_stack_1 (void);
1558 #define target_has_stack target_has_stack_1 ()
1559
1560 /* Does the target have registers? (Exec files don't.) */
1561
1562 extern int target_has_registers_1 (void);
1563 #define target_has_registers target_has_registers_1 ()
1564
1565 /* Does the target have execution? Can we make it jump (through
1566 hoops), or pop its stack a few times? This means that the current
1567 target is currently executing; for some targets, that's the same as
1568 whether or not the target is capable of execution, but there are
1569 also targets which can be current while not executing. In that
1570 case this will become true after target_create_inferior or
1571 target_attach. */
1572
1573 extern int target_has_execution_1 (ptid_t);
1574
1575 /* Like target_has_execution_1, but always passes inferior_ptid. */
1576
1577 extern int target_has_execution_current (void);
1578
1579 #define target_has_execution target_has_execution_current ()
1580
1581 /* Default implementations for process_stratum targets. Return true
1582 if there's a selected inferior, false otherwise. */
1583
1584 extern int default_child_has_all_memory (struct target_ops *ops);
1585 extern int default_child_has_memory (struct target_ops *ops);
1586 extern int default_child_has_stack (struct target_ops *ops);
1587 extern int default_child_has_registers (struct target_ops *ops);
1588 extern int default_child_has_execution (struct target_ops *ops,
1589 ptid_t the_ptid);
1590
1591 /* Can the target support the debugger control of thread execution?
1592 Can it lock the thread scheduler? */
1593
1594 #define target_can_lock_scheduler \
1595 (current_target.to_has_thread_control & tc_schedlock)
1596
1597 /* Should the target enable async mode if it is supported? Temporary
1598 cludge until async mode is a strict superset of sync mode. */
1599 extern int target_async_permitted;
1600
1601 /* Can the target support asynchronous execution? */
1602 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1603
1604 /* Is the target in asynchronous execution mode? */
1605 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1606
1607 int target_supports_non_stop (void);
1608
1609 /* Put the target in async mode with the specified callback function. */
1610 #define target_async(CALLBACK,CONTEXT) \
1611 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1612
1613 #define target_execution_direction() \
1614 (current_target.to_execution_direction (&current_target))
1615
1616 /* Converts a process id to a string. Usually, the string just contains
1617 `process xyz', but on some systems it may contain
1618 `process xyz thread abc'. */
1619
1620 extern char *target_pid_to_str (ptid_t ptid);
1621
1622 extern char *normal_pid_to_str (ptid_t ptid);
1623
1624 /* Return a short string describing extra information about PID,
1625 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1626 is okay. */
1627
1628 #define target_extra_thread_info(TP) \
1629 (current_target.to_extra_thread_info (&current_target, TP))
1630
1631 /* Return the thread's name. A NULL result means that the target
1632 could not determine this thread's name. */
1633
1634 extern char *target_thread_name (struct thread_info *);
1635
1636 /* Attempts to find the pathname of the executable file
1637 that was run to create a specified process.
1638
1639 The process PID must be stopped when this operation is used.
1640
1641 If the executable file cannot be determined, NULL is returned.
1642
1643 Else, a pointer to a character string containing the pathname
1644 is returned. This string should be copied into a buffer by
1645 the client if the string will not be immediately used, or if
1646 it must persist. */
1647
1648 #define target_pid_to_exec_file(pid) \
1649 (current_target.to_pid_to_exec_file) (&current_target, pid)
1650
1651 /* See the to_thread_architecture description in struct target_ops. */
1652
1653 #define target_thread_architecture(ptid) \
1654 (current_target.to_thread_architecture (&current_target, ptid))
1655
1656 /*
1657 * Iterator function for target memory regions.
1658 * Calls a callback function once for each memory region 'mapped'
1659 * in the child process. Defined as a simple macro rather than
1660 * as a function macro so that it can be tested for nullity.
1661 */
1662
1663 #define target_find_memory_regions(FUNC, DATA) \
1664 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1665
1666 /*
1667 * Compose corefile .note section.
1668 */
1669
1670 #define target_make_corefile_notes(BFD, SIZE_P) \
1671 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1672
1673 /* Bookmark interfaces. */
1674 #define target_get_bookmark(ARGS, FROM_TTY) \
1675 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1676
1677 #define target_goto_bookmark(ARG, FROM_TTY) \
1678 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1679
1680 /* Hardware watchpoint interfaces. */
1681
1682 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1683 write). Only the INFERIOR_PTID task is being queried. */
1684
1685 #define target_stopped_by_watchpoint() \
1686 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1687
1688 /* Non-zero if we have steppable watchpoints */
1689
1690 #define target_have_steppable_watchpoint \
1691 (current_target.to_have_steppable_watchpoint)
1692
1693 /* Non-zero if we have continuable watchpoints */
1694
1695 #define target_have_continuable_watchpoint \
1696 (current_target.to_have_continuable_watchpoint)
1697
1698 /* Provide defaults for hardware watchpoint functions. */
1699
1700 /* If the *_hw_beakpoint functions have not been defined
1701 elsewhere use the definitions in the target vector. */
1702
1703 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1704 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1705 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1706 (including this one?). OTHERTYPE is who knows what... */
1707
1708 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1709 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1710 TYPE, CNT, OTHERTYPE);
1711
1712 /* Returns the number of debug registers needed to watch the given
1713 memory region, or zero if not supported. */
1714
1715 #define target_region_ok_for_hw_watchpoint(addr, len) \
1716 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1717 addr, len)
1718
1719
1720 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1721 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1722 COND is the expression for its condition, or NULL if there's none.
1723 Returns 0 for success, 1 if the watchpoint type is not supported,
1724 -1 for failure. */
1725
1726 #define target_insert_watchpoint(addr, len, type, cond) \
1727 (*current_target.to_insert_watchpoint) (&current_target, \
1728 addr, len, type, cond)
1729
1730 #define target_remove_watchpoint(addr, len, type, cond) \
1731 (*current_target.to_remove_watchpoint) (&current_target, \
1732 addr, len, type, cond)
1733
1734 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1735 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1736 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1737 masked watchpoints are not supported, -1 for failure. */
1738
1739 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1740
1741 /* Remove a masked watchpoint at ADDR with the mask MASK.
1742 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1743 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1744 for failure. */
1745
1746 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1747
1748 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1749 the target machine. Returns 0 for success, and returns non-zero or
1750 throws an error (with a detailed failure reason error code and
1751 message) otherwise. */
1752
1753 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1754 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1755 gdbarch, bp_tgt)
1756
1757 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1758 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1759 gdbarch, bp_tgt)
1760
1761 /* Return number of debug registers needed for a ranged breakpoint,
1762 or -1 if ranged breakpoints are not supported. */
1763
1764 extern int target_ranged_break_num_registers (void);
1765
1766 /* Return non-zero if target knows the data address which triggered this
1767 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1768 INFERIOR_PTID task is being queried. */
1769 #define target_stopped_data_address(target, addr_p) \
1770 (*target.to_stopped_data_address) (target, addr_p)
1771
1772 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1773 LENGTH bytes beginning at START. */
1774 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1775 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1776
1777 /* Return non-zero if the target is capable of using hardware to evaluate
1778 the condition expression. In this case, if the condition is false when
1779 the watched memory location changes, execution may continue without the
1780 debugger being notified.
1781
1782 Due to limitations in the hardware implementation, it may be capable of
1783 avoiding triggering the watchpoint in some cases where the condition
1784 expression is false, but may report some false positives as well.
1785 For this reason, GDB will still evaluate the condition expression when
1786 the watchpoint triggers. */
1787 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1788 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1789 addr, len, type, cond)
1790
1791 /* Return number of debug registers needed for a masked watchpoint,
1792 -1 if masked watchpoints are not supported or -2 if the given address
1793 and mask combination cannot be used. */
1794
1795 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1796
1797 /* Target can execute in reverse? */
1798 #define target_can_execute_reverse \
1799 current_target.to_can_execute_reverse (&current_target)
1800
1801 extern const struct target_desc *target_read_description (struct target_ops *);
1802
1803 #define target_get_ada_task_ptid(lwp, tid) \
1804 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1805
1806 /* Utility implementation of searching memory. */
1807 extern int simple_search_memory (struct target_ops* ops,
1808 CORE_ADDR start_addr,
1809 ULONGEST search_space_len,
1810 const gdb_byte *pattern,
1811 ULONGEST pattern_len,
1812 CORE_ADDR *found_addrp);
1813
1814 /* Main entry point for searching memory. */
1815 extern int target_search_memory (CORE_ADDR start_addr,
1816 ULONGEST search_space_len,
1817 const gdb_byte *pattern,
1818 ULONGEST pattern_len,
1819 CORE_ADDR *found_addrp);
1820
1821 /* Target file operations. */
1822
1823 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1824 target file descriptor, or -1 if an error occurs (and set
1825 *TARGET_ERRNO). */
1826 extern int target_fileio_open (const char *filename, int flags, int mode,
1827 int *target_errno);
1828
1829 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1830 Return the number of bytes written, or -1 if an error occurs
1831 (and set *TARGET_ERRNO). */
1832 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1833 ULONGEST offset, int *target_errno);
1834
1835 /* Read up to LEN bytes FD on the target into READ_BUF.
1836 Return the number of bytes read, or -1 if an error occurs
1837 (and set *TARGET_ERRNO). */
1838 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1839 ULONGEST offset, int *target_errno);
1840
1841 /* Close FD on the target. Return 0, or -1 if an error occurs
1842 (and set *TARGET_ERRNO). */
1843 extern int target_fileio_close (int fd, int *target_errno);
1844
1845 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1846 occurs (and set *TARGET_ERRNO). */
1847 extern int target_fileio_unlink (const char *filename, int *target_errno);
1848
1849 /* Read value of symbolic link FILENAME on the target. Return a
1850 null-terminated string allocated via xmalloc, or NULL if an error
1851 occurs (and set *TARGET_ERRNO). */
1852 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1853
1854 /* Read target file FILENAME. The return value will be -1 if the transfer
1855 fails or is not supported; 0 if the object is empty; or the length
1856 of the object otherwise. If a positive value is returned, a
1857 sufficiently large buffer will be allocated using xmalloc and
1858 returned in *BUF_P containing the contents of the object.
1859
1860 This method should be used for objects sufficiently small to store
1861 in a single xmalloc'd buffer, when no fixed bound on the object's
1862 size is known in advance. */
1863 extern LONGEST target_fileio_read_alloc (const char *filename,
1864 gdb_byte **buf_p);
1865
1866 /* Read target file FILENAME. The result is NUL-terminated and
1867 returned as a string, allocated using xmalloc. If an error occurs
1868 or the transfer is unsupported, NULL is returned. Empty objects
1869 are returned as allocated but empty strings. A warning is issued
1870 if the result contains any embedded NUL bytes. */
1871 extern char *target_fileio_read_stralloc (const char *filename);
1872
1873
1874 /* Tracepoint-related operations. */
1875
1876 #define target_trace_init() \
1877 (*current_target.to_trace_init) (&current_target)
1878
1879 #define target_download_tracepoint(t) \
1880 (*current_target.to_download_tracepoint) (&current_target, t)
1881
1882 #define target_can_download_tracepoint() \
1883 (*current_target.to_can_download_tracepoint) (&current_target)
1884
1885 #define target_download_trace_state_variable(tsv) \
1886 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
1887
1888 #define target_enable_tracepoint(loc) \
1889 (*current_target.to_enable_tracepoint) (&current_target, loc)
1890
1891 #define target_disable_tracepoint(loc) \
1892 (*current_target.to_disable_tracepoint) (&current_target, loc)
1893
1894 #define target_trace_start() \
1895 (*current_target.to_trace_start) (&current_target)
1896
1897 #define target_trace_set_readonly_regions() \
1898 (*current_target.to_trace_set_readonly_regions) (&current_target)
1899
1900 #define target_get_trace_status(ts) \
1901 (*current_target.to_get_trace_status) (&current_target, ts)
1902
1903 #define target_get_tracepoint_status(tp,utp) \
1904 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
1905
1906 #define target_trace_stop() \
1907 (*current_target.to_trace_stop) (&current_target)
1908
1909 #define target_trace_find(type,num,addr1,addr2,tpp) \
1910 (*current_target.to_trace_find) (&current_target, \
1911 (type), (num), (addr1), (addr2), (tpp))
1912
1913 #define target_get_trace_state_variable_value(tsv,val) \
1914 (*current_target.to_get_trace_state_variable_value) (&current_target, \
1915 (tsv), (val))
1916
1917 #define target_save_trace_data(filename) \
1918 (*current_target.to_save_trace_data) (&current_target, filename)
1919
1920 #define target_upload_tracepoints(utpp) \
1921 (*current_target.to_upload_tracepoints) (&current_target, utpp)
1922
1923 #define target_upload_trace_state_variables(utsvp) \
1924 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
1925
1926 #define target_get_raw_trace_data(buf,offset,len) \
1927 (*current_target.to_get_raw_trace_data) (&current_target, \
1928 (buf), (offset), (len))
1929
1930 #define target_get_min_fast_tracepoint_insn_len() \
1931 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
1932
1933 #define target_set_disconnected_tracing(val) \
1934 (*current_target.to_set_disconnected_tracing) (&current_target, val)
1935
1936 #define target_set_circular_trace_buffer(val) \
1937 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
1938
1939 #define target_set_trace_buffer_size(val) \
1940 (*current_target.to_set_trace_buffer_size) (&current_target, val)
1941
1942 #define target_set_trace_notes(user,notes,stopnotes) \
1943 (*current_target.to_set_trace_notes) (&current_target, \
1944 (user), (notes), (stopnotes))
1945
1946 #define target_get_tib_address(ptid, addr) \
1947 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
1948
1949 #define target_set_permissions() \
1950 (*current_target.to_set_permissions) (&current_target)
1951
1952 #define target_static_tracepoint_marker_at(addr, marker) \
1953 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
1954 addr, marker)
1955
1956 #define target_static_tracepoint_markers_by_strid(marker_id) \
1957 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
1958 marker_id)
1959
1960 #define target_traceframe_info() \
1961 (*current_target.to_traceframe_info) (&current_target)
1962
1963 #define target_use_agent(use) \
1964 (*current_target.to_use_agent) (&current_target, use)
1965
1966 #define target_can_use_agent() \
1967 (*current_target.to_can_use_agent) (&current_target)
1968
1969 #define target_augmented_libraries_svr4_read() \
1970 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
1971
1972 /* Command logging facility. */
1973
1974 #define target_log_command(p) \
1975 (*current_target.to_log_command) (&current_target, p)
1976
1977
1978 extern int target_core_of_thread (ptid_t ptid);
1979
1980 /* See to_get_unwinder in struct target_ops. */
1981 extern const struct frame_unwind *target_get_unwinder (void);
1982
1983 /* See to_get_tailcall_unwinder in struct target_ops. */
1984 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
1985
1986 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1987 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1988 if there's a mismatch, and -1 if an error is encountered while
1989 reading memory. Throws an error if the functionality is found not
1990 to be supported by the current target. */
1991 int target_verify_memory (const gdb_byte *data,
1992 CORE_ADDR memaddr, ULONGEST size);
1993
1994 /* Routines for maintenance of the target structures...
1995
1996 complete_target_initialization: Finalize a target_ops by filling in
1997 any fields needed by the target implementation.
1998
1999 add_target: Add a target to the list of all possible targets.
2000
2001 push_target: Make this target the top of the stack of currently used
2002 targets, within its particular stratum of the stack. Result
2003 is 0 if now atop the stack, nonzero if not on top (maybe
2004 should warn user).
2005
2006 unpush_target: Remove this from the stack of currently used targets,
2007 no matter where it is on the list. Returns 0 if no
2008 change, 1 if removed from stack. */
2009
2010 extern void add_target (struct target_ops *);
2011
2012 extern void add_target_with_completer (struct target_ops *t,
2013 completer_ftype *completer);
2014
2015 extern void complete_target_initialization (struct target_ops *t);
2016
2017 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
2018 for maintaining backwards compatibility when renaming targets. */
2019
2020 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
2021
2022 extern void push_target (struct target_ops *);
2023
2024 extern int unpush_target (struct target_ops *);
2025
2026 extern void target_pre_inferior (int);
2027
2028 extern void target_preopen (int);
2029
2030 /* Does whatever cleanup is required to get rid of all pushed targets. */
2031 extern void pop_all_targets (void);
2032
2033 /* Like pop_all_targets, but pops only targets whose stratum is
2034 strictly above ABOVE_STRATUM. */
2035 extern void pop_all_targets_above (enum strata above_stratum);
2036
2037 extern int target_is_pushed (struct target_ops *t);
2038
2039 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2040 CORE_ADDR offset);
2041
2042 /* Struct target_section maps address ranges to file sections. It is
2043 mostly used with BFD files, but can be used without (e.g. for handling
2044 raw disks, or files not in formats handled by BFD). */
2045
2046 struct target_section
2047 {
2048 CORE_ADDR addr; /* Lowest address in section */
2049 CORE_ADDR endaddr; /* 1+highest address in section */
2050
2051 struct bfd_section *the_bfd_section;
2052
2053 /* The "owner" of the section.
2054 It can be any unique value. It is set by add_target_sections
2055 and used by remove_target_sections.
2056 For example, for executables it is a pointer to exec_bfd and
2057 for shlibs it is the so_list pointer. */
2058 void *owner;
2059 };
2060
2061 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2062
2063 struct target_section_table
2064 {
2065 struct target_section *sections;
2066 struct target_section *sections_end;
2067 };
2068
2069 /* Return the "section" containing the specified address. */
2070 struct target_section *target_section_by_addr (struct target_ops *target,
2071 CORE_ADDR addr);
2072
2073 /* Return the target section table this target (or the targets
2074 beneath) currently manipulate. */
2075
2076 extern struct target_section_table *target_get_section_table
2077 (struct target_ops *target);
2078
2079 /* From mem-break.c */
2080
2081 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2082 struct bp_target_info *);
2083
2084 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2085 struct bp_target_info *);
2086
2087 extern int default_memory_remove_breakpoint (struct gdbarch *,
2088 struct bp_target_info *);
2089
2090 extern int default_memory_insert_breakpoint (struct gdbarch *,
2091 struct bp_target_info *);
2092
2093
2094 /* From target.c */
2095
2096 extern void initialize_targets (void);
2097
2098 extern void noprocess (void) ATTRIBUTE_NORETURN;
2099
2100 extern void target_require_runnable (void);
2101
2102 extern void find_default_attach (struct target_ops *, char *, int);
2103
2104 extern void find_default_create_inferior (struct target_ops *,
2105 char *, char *, char **, int);
2106
2107 extern struct target_ops *find_target_beneath (struct target_ops *);
2108
2109 /* Find the target at STRATUM. If no target is at that stratum,
2110 return NULL. */
2111
2112 struct target_ops *find_target_at (enum strata stratum);
2113
2114 /* Read OS data object of type TYPE from the target, and return it in
2115 XML format. The result is NUL-terminated and returned as a string,
2116 allocated using xmalloc. If an error occurs or the transfer is
2117 unsupported, NULL is returned. Empty objects are returned as
2118 allocated but empty strings. */
2119
2120 extern char *target_get_osdata (const char *type);
2121
2122 \f
2123 /* Stuff that should be shared among the various remote targets. */
2124
2125 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2126 information (higher values, more information). */
2127 extern int remote_debug;
2128
2129 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2130 extern int baud_rate;
2131 /* Timeout limit for response from target. */
2132 extern int remote_timeout;
2133
2134 \f
2135
2136 /* Set the show memory breakpoints mode to show, and installs a cleanup
2137 to restore it back to the current value. */
2138 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2139
2140 extern int may_write_registers;
2141 extern int may_write_memory;
2142 extern int may_insert_breakpoints;
2143 extern int may_insert_tracepoints;
2144 extern int may_insert_fast_tracepoints;
2145 extern int may_stop;
2146
2147 extern void update_target_permissions (void);
2148
2149 \f
2150 /* Imported from machine dependent code. */
2151
2152 /* Blank target vector entries are initialized to target_ignore. */
2153 void target_ignore (void);
2154
2155 /* See to_supports_btrace in struct target_ops. */
2156 #define target_supports_btrace() \
2157 (current_target.to_supports_btrace (&current_target))
2158
2159 /* See to_enable_btrace in struct target_ops. */
2160 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2161
2162 /* See to_disable_btrace in struct target_ops. */
2163 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2164
2165 /* See to_teardown_btrace in struct target_ops. */
2166 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2167
2168 /* See to_read_btrace in struct target_ops. */
2169 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2170 struct btrace_target_info *,
2171 enum btrace_read_type);
2172
2173 /* See to_stop_recording in struct target_ops. */
2174 extern void target_stop_recording (void);
2175
2176 /* See to_info_record in struct target_ops. */
2177 extern void target_info_record (void);
2178
2179 /* See to_save_record in struct target_ops. */
2180 extern void target_save_record (const char *filename);
2181
2182 /* Query if the target supports deleting the execution log. */
2183 extern int target_supports_delete_record (void);
2184
2185 /* See to_delete_record in struct target_ops. */
2186 extern void target_delete_record (void);
2187
2188 /* See to_record_is_replaying in struct target_ops. */
2189 extern int target_record_is_replaying (void);
2190
2191 /* See to_goto_record_begin in struct target_ops. */
2192 extern void target_goto_record_begin (void);
2193
2194 /* See to_goto_record_end in struct target_ops. */
2195 extern void target_goto_record_end (void);
2196
2197 /* See to_goto_record in struct target_ops. */
2198 extern void target_goto_record (ULONGEST insn);
2199
2200 /* See to_insn_history. */
2201 extern void target_insn_history (int size, int flags);
2202
2203 /* See to_insn_history_from. */
2204 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2205
2206 /* See to_insn_history_range. */
2207 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2208
2209 /* See to_call_history. */
2210 extern void target_call_history (int size, int flags);
2211
2212 /* See to_call_history_from. */
2213 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2214
2215 /* See to_call_history_range. */
2216 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2217
2218 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2219 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2220 struct gdbarch *gdbarch);
2221
2222 /* See to_decr_pc_after_break. */
2223 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2224
2225 #endif /* !defined (TARGET_H) */