Add `set print repeats' tests for C/C++ arrays
[binutils-gdb.git] / gdb / tic6x-tdep.c
1 /* Target dependent code for GDB on TI C6x systems.
2
3 Copyright (C) 2010-2022 Free Software Foundation, Inc.
4 Contributed by Andrew Jenner <andrew@codesourcery.com>
5 Contributed by Yao Qi <yao@codesourcery.com>
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "trad-frame.h"
27 #include "dwarf2/frame.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "gdbtypes.h"
31 #include "gdbcore.h"
32 #include "gdbcmd.h"
33 #include "target.h"
34 #include "dis-asm.h"
35 #include "regcache.h"
36 #include "value.h"
37 #include "symfile.h"
38 #include "arch-utils.h"
39 #include "glibc-tdep.h"
40 #include "infcall.h"
41 #include "regset.h"
42 #include "tramp-frame.h"
43 #include "linux-tdep.h"
44 #include "solib.h"
45 #include "objfiles.h"
46 #include "osabi.h"
47 #include "tic6x-tdep.h"
48 #include "language.h"
49 #include "target-descriptions.h"
50 #include <algorithm>
51
52 #define TIC6X_OPCODE_SIZE 4
53 #define TIC6X_FETCH_PACKET_SIZE 32
54
55 #define INST_S_BIT(INST) ((INST >> 1) & 1)
56 #define INST_X_BIT(INST) ((INST >> 12) & 1)
57
58 const gdb_byte tic6x_bkpt_illegal_opcode_be[] = { 0x56, 0x45, 0x43, 0x14 };
59 const gdb_byte tic6x_bkpt_illegal_opcode_le[] = { 0x14, 0x43, 0x45, 0x56 };
60
61 struct tic6x_unwind_cache
62 {
63 /* The frame's base, optionally used by the high-level debug info. */
64 CORE_ADDR base;
65
66 /* The previous frame's inner most stack address. Used as this
67 frame ID's stack_addr. */
68 CORE_ADDR cfa;
69
70 /* The address of the first instruction in this function */
71 CORE_ADDR pc;
72
73 /* Which register holds the return address for the frame. */
74 int return_regnum;
75
76 /* The offset of register saved on stack. If register is not saved, the
77 corresponding element is -1. */
78 CORE_ADDR reg_saved[TIC6X_NUM_CORE_REGS];
79 };
80
81
82 /* Name of TI C6x core registers. */
83 static const char *const tic6x_register_names[] =
84 {
85 "A0", "A1", "A2", "A3", /* 0 1 2 3 */
86 "A4", "A5", "A6", "A7", /* 4 5 6 7 */
87 "A8", "A9", "A10", "A11", /* 8 9 10 11 */
88 "A12", "A13", "A14", "A15", /* 12 13 14 15 */
89 "B0", "B1", "B2", "B3", /* 16 17 18 19 */
90 "B4", "B5", "B6", "B7", /* 20 21 22 23 */
91 "B8", "B9", "B10", "B11", /* 24 25 26 27 */
92 "B12", "B13", "B14", "B15", /* 28 29 30 31 */
93 "CSR", "PC", /* 32 33 */
94 };
95
96 /* This array maps the arguments to the register number which passes argument
97 in function call according to C6000 ELF ABI. */
98 static const int arg_regs[] = { 4, 20, 6, 22, 8, 24, 10, 26, 12, 28 };
99
100 /* This is the implementation of gdbarch method register_name. */
101
102 static const char *
103 tic6x_register_name (struct gdbarch *gdbarch, int regno)
104 {
105 if (regno < 0)
106 return NULL;
107
108 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
109 return tdesc_register_name (gdbarch, regno);
110 else if (regno >= ARRAY_SIZE (tic6x_register_names))
111 return "";
112 else
113 return tic6x_register_names[regno];
114 }
115
116 /* This is the implementation of gdbarch method register_type. */
117
118 static struct type *
119 tic6x_register_type (struct gdbarch *gdbarch, int regno)
120 {
121
122 if (regno == TIC6X_PC_REGNUM)
123 return builtin_type (gdbarch)->builtin_func_ptr;
124 else
125 return builtin_type (gdbarch)->builtin_uint32;
126 }
127
128 static void
129 tic6x_setup_default (struct tic6x_unwind_cache *cache)
130 {
131 int i;
132
133 for (i = 0; i < TIC6X_NUM_CORE_REGS; i++)
134 cache->reg_saved[i] = -1;
135 }
136
137 static unsigned long tic6x_fetch_instruction (struct gdbarch *, CORE_ADDR);
138 static int tic6x_register_number (int reg, int side, int crosspath);
139
140 /* Do a full analysis of the prologue at START_PC and update CACHE accordingly.
141 Bail out early if CURRENT_PC is reached. Returns the address of the first
142 instruction after the prologue. */
143
144 static CORE_ADDR
145 tic6x_analyze_prologue (struct gdbarch *gdbarch, const CORE_ADDR start_pc,
146 const CORE_ADDR current_pc,
147 struct tic6x_unwind_cache *cache,
148 struct frame_info *this_frame)
149 {
150 unsigned int src_reg, base_reg, dst_reg;
151 int i;
152 CORE_ADDR pc = start_pc;
153 CORE_ADDR return_pc = start_pc;
154 int frame_base_offset_to_sp = 0;
155 /* Counter of non-stw instructions after first insn ` sub sp, xxx, sp'. */
156 int non_stw_insn_counter = 0;
157
158 if (start_pc >= current_pc)
159 return_pc = current_pc;
160
161 cache->base = 0;
162
163 /* The landmarks in prologue is one or two SUB instructions to SP.
164 Instructions on setting up dsbt are in the last part of prologue, if
165 needed. In maxim, prologue can be divided to three parts by two
166 `sub sp, xx, sp' insns. */
167
168 /* Step 1: Look for the 1st and 2nd insn `sub sp, xx, sp', in which, the
169 2nd one is optional. */
170 while (pc < current_pc)
171 {
172 unsigned long inst = tic6x_fetch_instruction (gdbarch, pc);
173
174 if ((inst & 0x1ffc) == 0x1dc0 || (inst & 0x1ffc) == 0x1bc0
175 || (inst & 0x0ffc) == 0x9c0)
176 {
177 /* SUBAW/SUBAH/SUB, and src1 is ucst 5. */
178 unsigned int src2 = tic6x_register_number ((inst >> 18) & 0x1f,
179 INST_S_BIT (inst), 0);
180 unsigned int dst = tic6x_register_number ((inst >> 23) & 0x1f,
181 INST_S_BIT (inst), 0);
182
183 if (src2 == TIC6X_SP_REGNUM && dst == TIC6X_SP_REGNUM)
184 {
185 /* Extract const from insn SUBAW/SUBAH/SUB, and translate it to
186 offset. The constant offset is decoded in bit 13-17 in all
187 these three kinds of instructions. */
188 unsigned int ucst5 = (inst >> 13) & 0x1f;
189
190 if ((inst & 0x1ffc) == 0x1dc0) /* SUBAW */
191 frame_base_offset_to_sp += ucst5 << 2;
192 else if ((inst & 0x1ffc) == 0x1bc0) /* SUBAH */
193 frame_base_offset_to_sp += ucst5 << 1;
194 else if ((inst & 0x0ffc) == 0x9c0) /* SUB */
195 frame_base_offset_to_sp += ucst5;
196 else
197 gdb_assert_not_reached ("unexpected instruction");
198
199 return_pc = pc + 4;
200 }
201 }
202 else if ((inst & 0x174) == 0x74) /* stw SRC, *+b15(uconst) */
203 {
204 /* The y bit determines which file base is read from. */
205 base_reg = tic6x_register_number ((inst >> 18) & 0x1f,
206 (inst >> 7) & 1, 0);
207
208 if (base_reg == TIC6X_SP_REGNUM)
209 {
210 src_reg = tic6x_register_number ((inst >> 23) & 0x1f,
211 INST_S_BIT (inst), 0);
212
213 cache->reg_saved[src_reg] = ((inst >> 13) & 0x1f) << 2;
214
215 return_pc = pc + 4;
216 }
217 non_stw_insn_counter = 0;
218 }
219 else
220 {
221 non_stw_insn_counter++;
222 /* Following instruction sequence may be emitted in prologue:
223
224 <+0>: subah .D2 b15,28,b15
225 <+4>: or .L2X 0,a4,b0
226 <+8>: || stw .D2T2 b14,*+b15(56)
227 <+12>:[!b0] b .S1 0xe50e4c1c <sleep+220>
228 <+16>:|| stw .D2T1 a10,*+b15(48)
229 <+20>:stw .D2T2 b3,*+b15(52)
230 <+24>:stw .D2T1 a4,*+b15(40)
231
232 we should look forward for next instruction instead of breaking loop
233 here. So far, we allow almost two sequential non-stw instructions
234 in prologue. */
235 if (non_stw_insn_counter >= 2)
236 break;
237 }
238
239
240 pc += 4;
241 }
242 /* Step 2: Skip insn on setting up dsbt if it is. Usually, it looks like,
243 ldw .D2T2 *+b14(0),b14 */
244 unsigned long inst = tic6x_fetch_instruction (gdbarch, pc);
245 /* The s bit determines which file dst will be loaded into, same effect as
246 other places. */
247 dst_reg = tic6x_register_number ((inst >> 23) & 0x1f, (inst >> 1) & 1, 0);
248 /* The y bit (bit 7), instead of s bit, determines which file base be
249 used. */
250 base_reg = tic6x_register_number ((inst >> 18) & 0x1f, (inst >> 7) & 1, 0);
251
252 if ((inst & 0x164) == 0x64 /* ldw */
253 && dst_reg == TIC6X_DP_REGNUM /* dst is B14 */
254 && base_reg == TIC6X_DP_REGNUM) /* baseR is B14 */
255 {
256 return_pc = pc + 4;
257 }
258
259 if (this_frame)
260 {
261 cache->base = get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM);
262
263 if (cache->reg_saved[TIC6X_FP_REGNUM] != -1)
264 {
265 /* If the FP now holds an offset from the CFA then this is a frame
266 which uses the frame pointer. */
267
268 cache->cfa = get_frame_register_unsigned (this_frame,
269 TIC6X_FP_REGNUM);
270 }
271 else
272 {
273 /* FP doesn't hold an offset from the CFA. If SP still holds an
274 offset from the CFA then we might be in a function which omits
275 the frame pointer. */
276
277 cache->cfa = cache->base + frame_base_offset_to_sp;
278 }
279 }
280
281 /* Adjust all the saved registers such that they contain addresses
282 instead of offsets. */
283 for (i = 0; i < TIC6X_NUM_CORE_REGS; i++)
284 if (cache->reg_saved[i] != -1)
285 cache->reg_saved[i] = cache->base + cache->reg_saved[i];
286
287 return return_pc;
288 }
289
290 /* This is the implementation of gdbarch method skip_prologue. */
291
292 static CORE_ADDR
293 tic6x_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
294 {
295 CORE_ADDR func_addr;
296 struct tic6x_unwind_cache cache;
297
298 /* See if we can determine the end of the prologue via the symbol table.
299 If so, then return either PC, or the PC after the prologue, whichever is
300 greater. */
301 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
302 {
303 CORE_ADDR post_prologue_pc
304 = skip_prologue_using_sal (gdbarch, func_addr);
305 if (post_prologue_pc != 0)
306 return std::max (start_pc, post_prologue_pc);
307 }
308
309 /* Can't determine prologue from the symbol table, need to examine
310 instructions. */
311 return tic6x_analyze_prologue (gdbarch, start_pc, (CORE_ADDR) -1, &cache,
312 NULL);
313 }
314
315 /* Implement the breakpoint_kind_from_pc gdbarch method. */
316
317 static int
318 tic6x_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
319 {
320 return 4;
321 }
322
323 /* Implement the sw_breakpoint_from_kind gdbarch method. */
324
325 static const gdb_byte *
326 tic6x_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
327 {
328 tic6x_gdbarch_tdep *tdep = (tic6x_gdbarch_tdep *) gdbarch_tdep (gdbarch);
329
330 *size = kind;
331
332 if (tdep == NULL || tdep->breakpoint == NULL)
333 {
334 if (BFD_ENDIAN_BIG == gdbarch_byte_order_for_code (gdbarch))
335 return tic6x_bkpt_illegal_opcode_be;
336 else
337 return tic6x_bkpt_illegal_opcode_le;
338 }
339 else
340 return tdep->breakpoint;
341 }
342
343 static void
344 tic6x_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
345 struct dwarf2_frame_state_reg *reg,
346 struct frame_info *this_frame)
347 {
348 /* Mark the PC as the destination for the return address. */
349 if (regnum == gdbarch_pc_regnum (gdbarch))
350 reg->how = DWARF2_FRAME_REG_RA;
351
352 /* Mark the stack pointer as the call frame address. */
353 else if (regnum == gdbarch_sp_regnum (gdbarch))
354 reg->how = DWARF2_FRAME_REG_CFA;
355
356 /* The above was taken from the default init_reg in dwarf2-frame.c
357 while the below is c6x specific. */
358
359 /* Callee save registers. The ABI designates A10-A15 and B10-B15 as
360 callee-save. */
361 else if ((regnum >= 10 && regnum <= 15) || (regnum >= 26 && regnum <= 31))
362 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
363 else
364 /* All other registers are caller-save. */
365 reg->how = DWARF2_FRAME_REG_UNDEFINED;
366 }
367
368 /* This is the implementation of gdbarch method unwind_pc. */
369
370 static CORE_ADDR
371 tic6x_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
372 {
373 gdb_byte buf[8];
374
375 frame_unwind_register (next_frame, TIC6X_PC_REGNUM, buf);
376 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
377 }
378
379 /* Frame base handling. */
380
381 static struct tic6x_unwind_cache*
382 tic6x_frame_unwind_cache (struct frame_info *this_frame,
383 void **this_prologue_cache)
384 {
385 struct gdbarch *gdbarch = get_frame_arch (this_frame);
386 CORE_ADDR current_pc;
387 struct tic6x_unwind_cache *cache;
388
389 if (*this_prologue_cache)
390 return (struct tic6x_unwind_cache *) *this_prologue_cache;
391
392 cache = FRAME_OBSTACK_ZALLOC (struct tic6x_unwind_cache);
393 (*this_prologue_cache) = cache;
394
395 cache->return_regnum = TIC6X_RA_REGNUM;
396
397 tic6x_setup_default (cache);
398
399 cache->pc = get_frame_func (this_frame);
400 current_pc = get_frame_pc (this_frame);
401
402 /* Prologue analysis does the rest... */
403 if (cache->pc != 0)
404 tic6x_analyze_prologue (gdbarch, cache->pc, current_pc, cache, this_frame);
405
406 return cache;
407 }
408
409 static void
410 tic6x_frame_this_id (struct frame_info *this_frame, void **this_cache,
411 struct frame_id *this_id)
412 {
413 struct tic6x_unwind_cache *cache =
414 tic6x_frame_unwind_cache (this_frame, this_cache);
415
416 /* This marks the outermost frame. */
417 if (cache->base == 0)
418 return;
419
420 (*this_id) = frame_id_build (cache->cfa, cache->pc);
421 }
422
423 static struct value *
424 tic6x_frame_prev_register (struct frame_info *this_frame, void **this_cache,
425 int regnum)
426 {
427 struct tic6x_unwind_cache *cache =
428 tic6x_frame_unwind_cache (this_frame, this_cache);
429
430 gdb_assert (regnum >= 0);
431
432 /* The PC of the previous frame is stored in the RA register of
433 the current frame. Frob regnum so that we pull the value from
434 the correct place. */
435 if (regnum == TIC6X_PC_REGNUM)
436 regnum = cache->return_regnum;
437
438 if (regnum == TIC6X_SP_REGNUM && cache->cfa)
439 return frame_unwind_got_constant (this_frame, regnum, cache->cfa);
440
441 /* If we've worked out where a register is stored then load it from
442 there. */
443 if (regnum < TIC6X_NUM_CORE_REGS && cache->reg_saved[regnum] != -1)
444 return frame_unwind_got_memory (this_frame, regnum,
445 cache->reg_saved[regnum]);
446
447 return frame_unwind_got_register (this_frame, regnum, regnum);
448 }
449
450 static CORE_ADDR
451 tic6x_frame_base_address (struct frame_info *this_frame, void **this_cache)
452 {
453 struct tic6x_unwind_cache *info
454 = tic6x_frame_unwind_cache (this_frame, this_cache);
455 return info->base;
456 }
457
458 static const struct frame_unwind tic6x_frame_unwind =
459 {
460 "tic6x prologue",
461 NORMAL_FRAME,
462 default_frame_unwind_stop_reason,
463 tic6x_frame_this_id,
464 tic6x_frame_prev_register,
465 NULL,
466 default_frame_sniffer
467 };
468
469 static const struct frame_base tic6x_frame_base =
470 {
471 &tic6x_frame_unwind,
472 tic6x_frame_base_address,
473 tic6x_frame_base_address,
474 tic6x_frame_base_address
475 };
476
477
478 static struct tic6x_unwind_cache *
479 tic6x_make_stub_cache (struct frame_info *this_frame)
480 {
481 struct tic6x_unwind_cache *cache;
482
483 cache = FRAME_OBSTACK_ZALLOC (struct tic6x_unwind_cache);
484
485 cache->return_regnum = TIC6X_RA_REGNUM;
486
487 tic6x_setup_default (cache);
488
489 cache->cfa = get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM);
490
491 return cache;
492 }
493
494 static void
495 tic6x_stub_this_id (struct frame_info *this_frame, void **this_cache,
496 struct frame_id *this_id)
497 {
498 struct tic6x_unwind_cache *cache;
499
500 if (*this_cache == NULL)
501 *this_cache = tic6x_make_stub_cache (this_frame);
502 cache = (struct tic6x_unwind_cache *) *this_cache;
503
504 *this_id = frame_id_build (cache->cfa, get_frame_pc (this_frame));
505 }
506
507 static int
508 tic6x_stub_unwind_sniffer (const struct frame_unwind *self,
509 struct frame_info *this_frame,
510 void **this_prologue_cache)
511 {
512 CORE_ADDR addr_in_block;
513
514 addr_in_block = get_frame_address_in_block (this_frame);
515 if (in_plt_section (addr_in_block))
516 return 1;
517
518 return 0;
519 }
520
521 static const struct frame_unwind tic6x_stub_unwind =
522 {
523 "tic6x stub",
524 NORMAL_FRAME,
525 default_frame_unwind_stop_reason,
526 tic6x_stub_this_id,
527 tic6x_frame_prev_register,
528 NULL,
529 tic6x_stub_unwind_sniffer
530 };
531
532 /* Return the instruction on address PC. */
533
534 static unsigned long
535 tic6x_fetch_instruction (struct gdbarch *gdbarch, CORE_ADDR pc)
536 {
537 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
538 return read_memory_unsigned_integer (pc, TIC6X_OPCODE_SIZE, byte_order);
539 }
540
541 /* Compute the condition of INST if it is a conditional instruction. Always
542 return 1 if INST is not a conditional instruction. */
543
544 static int
545 tic6x_condition_true (struct regcache *regcache, unsigned long inst)
546 {
547 int register_number;
548 int register_value;
549 static const int register_numbers[8] = { -1, 16, 17, 18, 1, 2, 0, -1 };
550
551 register_number = register_numbers[(inst >> 29) & 7];
552 if (register_number == -1)
553 return 1;
554
555 register_value = regcache_raw_get_signed (regcache, register_number);
556 if ((inst & 0x10000000) != 0)
557 return register_value == 0;
558 return register_value != 0;
559 }
560
561 /* Get the register number by decoding raw bits REG, SIDE, and CROSSPATH in
562 instruction. */
563
564 static int
565 tic6x_register_number (int reg, int side, int crosspath)
566 {
567 int r = (reg & 15) | ((crosspath ^ side) << 4);
568 if ((reg & 16) != 0) /* A16 - A31, B16 - B31 */
569 r += 37;
570 return r;
571 }
572
573 static int
574 tic6x_extract_signed_field (int value, int low_bit, int bits)
575 {
576 int mask = (1 << bits) - 1;
577 int r = (value >> low_bit) & mask;
578 if ((r & (1 << (bits - 1))) != 0)
579 r -= mask + 1;
580 return r;
581 }
582
583 /* Determine where to set a single step breakpoint. */
584
585 static CORE_ADDR
586 tic6x_get_next_pc (struct regcache *regcache, CORE_ADDR pc)
587 {
588 struct gdbarch *gdbarch = regcache->arch ();
589 unsigned long inst;
590 int register_number;
591 int last = 0;
592
593 do
594 {
595 inst = tic6x_fetch_instruction (gdbarch, pc);
596
597 last = !(inst & 1);
598
599 if (inst == TIC6X_INST_SWE)
600 {
601 tic6x_gdbarch_tdep *tdep
602 = (tic6x_gdbarch_tdep *) gdbarch_tdep (gdbarch);
603
604 if (tdep->syscall_next_pc != NULL)
605 return tdep->syscall_next_pc (get_current_frame ());
606 }
607
608 if (tic6x_condition_true (regcache, inst))
609 {
610 if ((inst & 0x0000007c) == 0x00000010)
611 {
612 /* B with displacement */
613 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
614 pc += tic6x_extract_signed_field (inst, 7, 21) << 2;
615 break;
616 }
617 if ((inst & 0x0f83effc) == 0x00000360)
618 {
619 /* B with register */
620
621 register_number = tic6x_register_number ((inst >> 18) & 0x1f,
622 INST_S_BIT (inst),
623 INST_X_BIT (inst));
624 pc = regcache_raw_get_unsigned (regcache, register_number);
625 break;
626 }
627 if ((inst & 0x00001ffc) == 0x00001020)
628 {
629 /* BDEC */
630 register_number = tic6x_register_number ((inst >> 23) & 0x1f,
631 INST_S_BIT (inst), 0);
632 if (regcache_raw_get_signed (regcache, register_number) >= 0)
633 {
634 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
635 pc += tic6x_extract_signed_field (inst, 7, 10) << 2;
636 }
637 break;
638 }
639 if ((inst & 0x00001ffc) == 0x00000120)
640 {
641 /* BNOP with displacement */
642 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
643 pc += tic6x_extract_signed_field (inst, 16, 12) << 2;
644 break;
645 }
646 if ((inst & 0x0f830ffe) == 0x00800362)
647 {
648 /* BNOP with register */
649 register_number = tic6x_register_number ((inst >> 18) & 0x1f,
650 1, INST_X_BIT (inst));
651 pc = regcache_raw_get_unsigned (regcache, register_number);
652 break;
653 }
654 if ((inst & 0x00001ffc) == 0x00000020)
655 {
656 /* BPOS */
657 register_number = tic6x_register_number ((inst >> 23) & 0x1f,
658 INST_S_BIT (inst), 0);
659 if (regcache_raw_get_signed (regcache, register_number) >= 0)
660 {
661 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
662 pc += tic6x_extract_signed_field (inst, 13, 10) << 2;
663 }
664 break;
665 }
666 if ((inst & 0xf000007c) == 0x10000010)
667 {
668 /* CALLP */
669 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
670 pc += tic6x_extract_signed_field (inst, 7, 21) << 2;
671 break;
672 }
673 }
674 pc += TIC6X_OPCODE_SIZE;
675 }
676 while (!last);
677 return pc;
678 }
679
680 /* This is the implementation of gdbarch method software_single_step. */
681
682 static std::vector<CORE_ADDR>
683 tic6x_software_single_step (struct regcache *regcache)
684 {
685 CORE_ADDR next_pc = tic6x_get_next_pc (regcache, regcache_read_pc (regcache));
686
687 return {next_pc};
688 }
689
690 /* This is the implementation of gdbarch method frame_align. */
691
692 static CORE_ADDR
693 tic6x_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
694 {
695 return align_down (addr, 8);
696 }
697
698 /* Given a return value in REGCACHE with a type VALTYPE, extract and copy its
699 value into VALBUF. */
700
701 static void
702 tic6x_extract_return_value (struct type *valtype, struct regcache *regcache,
703 enum bfd_endian byte_order, gdb_byte *valbuf)
704 {
705 int len = TYPE_LENGTH (valtype);
706
707 /* pointer types are returned in register A4,
708 up to 32-bit types in A4
709 up to 64-bit types in A5:A4 */
710 if (len <= 4)
711 {
712 /* In big-endian,
713 - one-byte structure or union occupies the LSB of single even register.
714 - for two-byte structure or union, the first byte occupies byte 1 of
715 register and the second byte occupies byte 0.
716 so, we read the contents in VAL from the LSBs of register. */
717 if (len < 3 && byte_order == BFD_ENDIAN_BIG)
718 regcache->cooked_read_part (TIC6X_A4_REGNUM, 4 - len, len, valbuf);
719 else
720 regcache->cooked_read (TIC6X_A4_REGNUM, valbuf);
721 }
722 else if (len <= 8)
723 {
724 /* For a 5-8 byte structure or union in big-endian, the first byte
725 occupies byte 3 (the MSB) of the upper (odd) register and the
726 remaining bytes fill the decreasingly significant bytes. 5-7
727 byte structures or unions have padding in the LSBs of the
728 lower (even) register. */
729 if (byte_order == BFD_ENDIAN_BIG)
730 {
731 regcache->cooked_read (TIC6X_A4_REGNUM, valbuf + 4);
732 regcache->cooked_read (TIC6X_A5_REGNUM, valbuf);
733 }
734 else
735 {
736 regcache->cooked_read (TIC6X_A4_REGNUM, valbuf);
737 regcache->cooked_read (TIC6X_A5_REGNUM, valbuf + 4);
738 }
739 }
740 }
741
742 /* Write into appropriate registers a function return value
743 of type TYPE, given in virtual format. */
744
745 static void
746 tic6x_store_return_value (struct type *valtype, struct regcache *regcache,
747 enum bfd_endian byte_order, const gdb_byte *valbuf)
748 {
749 int len = TYPE_LENGTH (valtype);
750
751 /* return values of up to 8 bytes are returned in A5:A4 */
752
753 if (len <= 4)
754 {
755 if (len < 3 && byte_order == BFD_ENDIAN_BIG)
756 regcache->cooked_write_part (TIC6X_A4_REGNUM, 4 - len, len, valbuf);
757 else
758 regcache->cooked_write (TIC6X_A4_REGNUM, valbuf);
759 }
760 else if (len <= 8)
761 {
762 if (byte_order == BFD_ENDIAN_BIG)
763 {
764 regcache->cooked_write (TIC6X_A4_REGNUM, valbuf + 4);
765 regcache->cooked_write (TIC6X_A5_REGNUM, valbuf);
766 }
767 else
768 {
769 regcache->cooked_write (TIC6X_A4_REGNUM, valbuf);
770 regcache->cooked_write (TIC6X_A5_REGNUM, valbuf + 4);
771 }
772 }
773 }
774
775 /* This is the implementation of gdbarch method return_value. */
776
777 static enum return_value_convention
778 tic6x_return_value (struct gdbarch *gdbarch, struct value *function,
779 struct type *type, struct regcache *regcache,
780 gdb_byte *readbuf, const gdb_byte *writebuf)
781 {
782 /* In C++, when function returns an object, even its size is small
783 enough, it stii has to be passed via reference, pointed by register
784 A3. */
785 if (current_language->la_language == language_cplus)
786 {
787 if (type != NULL)
788 {
789 type = check_typedef (type);
790 if (!(language_pass_by_reference (type).trivially_copyable))
791 return RETURN_VALUE_STRUCT_CONVENTION;
792 }
793 }
794
795 if (TYPE_LENGTH (type) > 8)
796 return RETURN_VALUE_STRUCT_CONVENTION;
797
798 if (readbuf)
799 tic6x_extract_return_value (type, regcache,
800 gdbarch_byte_order (gdbarch), readbuf);
801 if (writebuf)
802 tic6x_store_return_value (type, regcache,
803 gdbarch_byte_order (gdbarch), writebuf);
804
805 return RETURN_VALUE_REGISTER_CONVENTION;
806 }
807
808 /* Get the alignment requirement of TYPE. */
809
810 static int
811 tic6x_arg_type_alignment (struct type *type)
812 {
813 int len = TYPE_LENGTH (check_typedef (type));
814 enum type_code typecode = check_typedef (type)->code ();
815
816 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
817 {
818 /* The stack alignment of a structure (and union) passed by value is the
819 smallest power of two greater than or equal to its size.
820 This cannot exceed 8 bytes, which is the largest allowable size for
821 a structure passed by value. */
822
823 if (len <= 2)
824 return len;
825 else if (len <= 4)
826 return 4;
827 else if (len <= 8)
828 return 8;
829 else
830 gdb_assert_not_reached ("unexpected length of data");
831 }
832 else
833 {
834 if (len <= 4)
835 return 4;
836 else if (len == 8)
837 {
838 if (typecode == TYPE_CODE_COMPLEX)
839 return 4;
840 else
841 return 8;
842 }
843 else if (len == 16)
844 {
845 if (typecode == TYPE_CODE_COMPLEX)
846 return 8;
847 else
848 return 16;
849 }
850 else
851 internal_error (__FILE__, __LINE__, _("unexpected length %d of type"),
852 len);
853 }
854 }
855
856 /* This is the implementation of gdbarch method push_dummy_call. */
857
858 static CORE_ADDR
859 tic6x_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
860 struct regcache *regcache, CORE_ADDR bp_addr,
861 int nargs, struct value **args, CORE_ADDR sp,
862 function_call_return_method return_method,
863 CORE_ADDR struct_addr)
864 {
865 int argreg = 0;
866 int argnum;
867 int stack_offset = 4;
868 int references_offset = 4;
869 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
870 struct type *func_type = value_type (function);
871 /* The first arg passed on stack. Mostly the first 10 args are passed by
872 registers. */
873 int first_arg_on_stack = 10;
874
875 /* Set the return address register to point to the entry point of
876 the program, where a breakpoint lies in wait. */
877 regcache_cooked_write_unsigned (regcache, TIC6X_RA_REGNUM, bp_addr);
878
879 /* The caller must pass an argument in A3 containing a destination address
880 for the returned value. The callee returns the object by copying it to
881 the address in A3. */
882 if (return_method == return_method_struct)
883 regcache_cooked_write_unsigned (regcache, 3, struct_addr);
884
885 /* Determine the type of this function. */
886 func_type = check_typedef (func_type);
887 if (func_type->code () == TYPE_CODE_PTR)
888 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
889
890 gdb_assert (func_type->code () == TYPE_CODE_FUNC
891 || func_type->code () == TYPE_CODE_METHOD);
892
893 /* For a variadic C function, the last explicitly declared argument and all
894 remaining arguments are passed on the stack. */
895 if (func_type->has_varargs ())
896 first_arg_on_stack = func_type->num_fields () - 1;
897
898 /* Now make space on the stack for the args. */
899 for (argnum = 0; argnum < nargs; argnum++)
900 {
901 int len = align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
902 if (argnum >= 10 - argreg)
903 references_offset += len;
904 stack_offset += len;
905 }
906 sp -= stack_offset;
907 /* SP should be 8-byte aligned, see C6000 ABI section 4.4.1
908 Stack Alignment. */
909 sp = align_down (sp, 8);
910 stack_offset = 4;
911
912 /* Now load as many as possible of the first arguments into
913 registers, and push the rest onto the stack. Loop through args
914 from first to last. */
915 for (argnum = 0; argnum < nargs; argnum++)
916 {
917 const gdb_byte *val;
918 struct value *arg = args[argnum];
919 struct type *arg_type = check_typedef (value_type (arg));
920 int len = TYPE_LENGTH (arg_type);
921 enum type_code typecode = arg_type->code ();
922
923 val = value_contents (arg).data ();
924
925 /* Copy the argument to general registers or the stack in
926 register-sized pieces. */
927 if (argreg < first_arg_on_stack)
928 {
929 if (len <= 4)
930 {
931 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
932 {
933 /* In big-endian,
934 - one-byte structure or union occupies the LSB of single
935 even register.
936 - for two-byte structure or union, the first byte
937 occupies byte 1 of register and the second byte occupies
938 byte 0.
939 so, we write the contents in VAL to the lsp of
940 register. */
941 if (len < 3 && byte_order == BFD_ENDIAN_BIG)
942 regcache->cooked_write_part (arg_regs[argreg], 4 - len, len,
943 val);
944 else
945 regcache->cooked_write (arg_regs[argreg], val);
946 }
947 else
948 {
949 /* The argument is being passed by value in a single
950 register. */
951 CORE_ADDR regval = extract_unsigned_integer (val, len,
952 byte_order);
953
954 regcache_cooked_write_unsigned (regcache, arg_regs[argreg],
955 regval);
956 }
957 }
958 else
959 {
960 if (len <= 8)
961 {
962 if (typecode == TYPE_CODE_STRUCT
963 || typecode == TYPE_CODE_UNION)
964 {
965 /* For a 5-8 byte structure or union in big-endian, the
966 first byte occupies byte 3 (the MSB) of the upper (odd)
967 register and the remaining bytes fill the decreasingly
968 significant bytes. 5-7 byte structures or unions have
969 padding in the LSBs of the lower (even) register. */
970 if (byte_order == BFD_ENDIAN_BIG)
971 {
972 regcache->cooked_write (arg_regs[argreg] + 1, val);
973 regcache->cooked_write_part (arg_regs[argreg], 0,
974 len - 4, val + 4);
975 }
976 else
977 {
978 regcache->cooked_write (arg_regs[argreg], val);
979 regcache->cooked_write_part (arg_regs[argreg] + 1, 0,
980 len - 4, val + 4);
981 }
982 }
983 else
984 {
985 /* The argument is being passed by value in a pair of
986 registers. */
987 ULONGEST regval = extract_unsigned_integer (val, len,
988 byte_order);
989
990 regcache_cooked_write_unsigned (regcache,
991 arg_regs[argreg],
992 regval);
993 regcache_cooked_write_unsigned (regcache,
994 arg_regs[argreg] + 1,
995 regval >> 32);
996 }
997 }
998 else
999 {
1000 /* The argument is being passed by reference in a single
1001 register. */
1002 CORE_ADDR addr;
1003
1004 /* It is not necessary to adjust REFERENCES_OFFSET to
1005 8-byte aligned in some cases, in which 4-byte alignment
1006 is sufficient. For simplicity, we adjust
1007 REFERENCES_OFFSET to 8-byte aligned. */
1008 references_offset = align_up (references_offset, 8);
1009
1010 addr = sp + references_offset;
1011 write_memory (addr, val, len);
1012 references_offset += align_up (len, 4);
1013 regcache_cooked_write_unsigned (regcache, arg_regs[argreg],
1014 addr);
1015 }
1016 }
1017 argreg++;
1018 }
1019 else
1020 {
1021 /* The argument is being passed on the stack. */
1022 CORE_ADDR addr;
1023
1024 /* There are six different cases of alignment, and these rules can
1025 be found in tic6x_arg_type_alignment:
1026
1027 1) 4-byte aligned if size is less than or equal to 4 byte, such
1028 as short, int, struct, union etc.
1029 2) 8-byte aligned if size is less than or equal to 8-byte, such
1030 as double, long long,
1031 3) 4-byte aligned if it is of type _Complex float, even its size
1032 is 8-byte.
1033 4) 8-byte aligned if it is of type _Complex double or _Complex
1034 long double, even its size is 16-byte. Because, the address of
1035 variable is passed as reference.
1036 5) struct and union larger than 8-byte are passed by reference, so
1037 it is 4-byte aligned.
1038 6) struct and union of size between 4 byte and 8 byte varies.
1039 alignment of struct variable is the alignment of its first field,
1040 while alignment of union variable is the max of all its fields'
1041 alignment. */
1042
1043 if (len <= 4)
1044 ; /* Default is 4-byte aligned. Nothing to be done. */
1045 else if (len <= 8)
1046 stack_offset = align_up (stack_offset,
1047 tic6x_arg_type_alignment (arg_type));
1048 else if (len == 16)
1049 {
1050 /* _Complex double or _Complex long double */
1051 if (typecode == TYPE_CODE_COMPLEX)
1052 {
1053 /* The argument is being passed by reference on stack. */
1054 references_offset = align_up (references_offset, 8);
1055
1056 addr = sp + references_offset;
1057 /* Store variable on stack. */
1058 write_memory (addr, val, len);
1059
1060 references_offset += align_up (len, 4);
1061
1062 /* Pass the address of variable on stack as reference. */
1063 store_unsigned_integer ((gdb_byte *) val, 4, byte_order,
1064 addr);
1065 len = 4;
1066
1067 }
1068 else
1069 internal_error (__FILE__, __LINE__,
1070 _("unexpected type %d of arg %d"),
1071 typecode, argnum);
1072 }
1073 else
1074 internal_error (__FILE__, __LINE__,
1075 _("unexpected length %d of arg %d"), len, argnum);
1076
1077 addr = sp + stack_offset;
1078 write_memory (addr, val, len);
1079 stack_offset += align_up (len, 4);
1080 }
1081 }
1082
1083 regcache_cooked_write_signed (regcache, TIC6X_SP_REGNUM, sp);
1084
1085 /* Return adjusted stack pointer. */
1086 return sp;
1087 }
1088
1089 /* This is the implementation of gdbarch method stack_frame_destroyed_p. */
1090
1091 static int
1092 tic6x_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1093 {
1094 unsigned long inst = tic6x_fetch_instruction (gdbarch, pc);
1095 /* Normally, the epilogue is composed by instruction `b .S2 b3'. */
1096 if ((inst & 0x0f83effc) == 0x360)
1097 {
1098 unsigned int src2 = tic6x_register_number ((inst >> 18) & 0x1f,
1099 INST_S_BIT (inst),
1100 INST_X_BIT (inst));
1101 if (src2 == TIC6X_RA_REGNUM)
1102 return 1;
1103 }
1104
1105 return 0;
1106 }
1107
1108 /* This is the implementation of gdbarch method get_longjmp_target. */
1109
1110 static int
1111 tic6x_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1112 {
1113 struct gdbarch *gdbarch = get_frame_arch (frame);
1114 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1115 CORE_ADDR jb_addr;
1116 gdb_byte buf[4];
1117
1118 /* JMP_BUF is passed by reference in A4. */
1119 jb_addr = get_frame_register_unsigned (frame, 4);
1120
1121 /* JMP_BUF contains 13 elements of type int, and return address is stored
1122 in the last slot. */
1123 if (target_read_memory (jb_addr + 12 * 4, buf, 4))
1124 return 0;
1125
1126 *pc = extract_unsigned_integer (buf, 4, byte_order);
1127
1128 return 1;
1129 }
1130
1131 /* This is the implementation of gdbarch method
1132 return_in_first_hidden_param_p. */
1133
1134 static int
1135 tic6x_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
1136 struct type *type)
1137 {
1138 return 0;
1139 }
1140
1141 static struct gdbarch *
1142 tic6x_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1143 {
1144 struct gdbarch *gdbarch;
1145 tdesc_arch_data_up tdesc_data;
1146 const struct target_desc *tdesc = info.target_desc;
1147 int has_gp = 0;
1148
1149 /* Check any target description for validity. */
1150 if (tdesc_has_registers (tdesc))
1151 {
1152 const struct tdesc_feature *feature;
1153 int valid_p, i;
1154
1155 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.core");
1156
1157 if (feature == NULL)
1158 return NULL;
1159
1160 tdesc_data = tdesc_data_alloc ();
1161
1162 valid_p = 1;
1163 for (i = 0; i < 32; i++) /* A0 - A15, B0 - B15 */
1164 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (), i,
1165 tic6x_register_names[i]);
1166
1167 /* CSR */
1168 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (), i++,
1169 tic6x_register_names[TIC6X_CSR_REGNUM]);
1170 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (), i++,
1171 tic6x_register_names[TIC6X_PC_REGNUM]);
1172
1173 if (!valid_p)
1174 return NULL;
1175
1176 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.gp");
1177 if (feature)
1178 {
1179 int j = 0;
1180 static const char *const gp[] =
1181 {
1182 "A16", "A17", "A18", "A19", "A20", "A21", "A22", "A23",
1183 "A24", "A25", "A26", "A27", "A28", "A29", "A30", "A31",
1184 "B16", "B17", "B18", "B19", "B20", "B21", "B22", "B23",
1185 "B24", "B25", "B26", "B27", "B28", "B29", "B30", "B31",
1186 };
1187
1188 has_gp = 1;
1189 valid_p = 1;
1190 for (j = 0; j < 32; j++) /* A16 - A31, B16 - B31 */
1191 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
1192 i++, gp[j]);
1193
1194 if (!valid_p)
1195 return NULL;
1196 }
1197
1198 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.c6xp");
1199 if (feature)
1200 {
1201 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
1202 i++, "TSR");
1203 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
1204 i++, "ILC");
1205 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
1206 i++, "RILC");
1207
1208 if (!valid_p)
1209 return NULL;
1210 }
1211
1212 }
1213
1214 /* Find a candidate among extant architectures. */
1215 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1216 arches != NULL;
1217 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1218 {
1219 tic6x_gdbarch_tdep *tdep
1220 = (tic6x_gdbarch_tdep *) gdbarch_tdep (arches->gdbarch);
1221
1222 if (has_gp != tdep->has_gp)
1223 continue;
1224
1225 if (tdep && tdep->breakpoint)
1226 return arches->gdbarch;
1227 }
1228
1229 tic6x_gdbarch_tdep *tdep = new tic6x_gdbarch_tdep;
1230
1231 tdep->has_gp = has_gp;
1232 gdbarch = gdbarch_alloc (&info, tdep);
1233
1234 /* Data type sizes. */
1235 set_gdbarch_ptr_bit (gdbarch, 32);
1236 set_gdbarch_addr_bit (gdbarch, 32);
1237 set_gdbarch_short_bit (gdbarch, 16);
1238 set_gdbarch_int_bit (gdbarch, 32);
1239 set_gdbarch_long_bit (gdbarch, 32);
1240 set_gdbarch_long_long_bit (gdbarch, 64);
1241 set_gdbarch_float_bit (gdbarch, 32);
1242 set_gdbarch_double_bit (gdbarch, 64);
1243
1244 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1245 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1246
1247 /* The register set. */
1248 set_gdbarch_num_regs (gdbarch, TIC6X_NUM_REGS);
1249 set_gdbarch_sp_regnum (gdbarch, TIC6X_SP_REGNUM);
1250 set_gdbarch_pc_regnum (gdbarch, TIC6X_PC_REGNUM);
1251
1252 set_gdbarch_register_name (gdbarch, tic6x_register_name);
1253 set_gdbarch_register_type (gdbarch, tic6x_register_type);
1254
1255 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1256
1257 set_gdbarch_skip_prologue (gdbarch, tic6x_skip_prologue);
1258 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1259 tic6x_breakpoint_kind_from_pc);
1260 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1261 tic6x_sw_breakpoint_from_kind);
1262
1263 set_gdbarch_unwind_pc (gdbarch, tic6x_unwind_pc);
1264
1265 /* Unwinding. */
1266 dwarf2_append_unwinders (gdbarch);
1267
1268 frame_unwind_append_unwinder (gdbarch, &tic6x_stub_unwind);
1269 frame_unwind_append_unwinder (gdbarch, &tic6x_frame_unwind);
1270 frame_base_set_default (gdbarch, &tic6x_frame_base);
1271
1272 dwarf2_frame_set_init_reg (gdbarch, tic6x_dwarf2_frame_init_reg);
1273
1274 /* Single stepping. */
1275 set_gdbarch_software_single_step (gdbarch, tic6x_software_single_step);
1276
1277 /* Call dummy code. */
1278 set_gdbarch_frame_align (gdbarch, tic6x_frame_align);
1279
1280 set_gdbarch_return_value (gdbarch, tic6x_return_value);
1281
1282 /* Enable inferior call support. */
1283 set_gdbarch_push_dummy_call (gdbarch, tic6x_push_dummy_call);
1284
1285 set_gdbarch_get_longjmp_target (gdbarch, tic6x_get_longjmp_target);
1286
1287 set_gdbarch_stack_frame_destroyed_p (gdbarch, tic6x_stack_frame_destroyed_p);
1288
1289 set_gdbarch_return_in_first_hidden_param_p (gdbarch,
1290 tic6x_return_in_first_hidden_param_p);
1291
1292 /* Hook in ABI-specific overrides, if they have been registered. */
1293 gdbarch_init_osabi (info, gdbarch);
1294
1295 if (tdesc_data != nullptr)
1296 tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
1297
1298 return gdbarch;
1299 }
1300
1301 void _initialize_tic6x_tdep ();
1302 void
1303 _initialize_tic6x_tdep ()
1304 {
1305 register_gdbarch_init (bfd_arch_tic6x, tic6x_gdbarch_init);
1306 }