0716c9faf1e0dbef2b9ab630fc147302f0e6477d
[binutils-gdb.git] / gdb / tm-mips.h
1 /* Definitions to make GDB run on a mips box under 4.3bsd.
2 Copyright (C) 1986, 1987, 1989, 1991, 1992 Free Software Foundation, Inc.
3 Contributed by Per Bothner (bothner@cs.wisc.edu) at U.Wisconsin
4 and by Alessandro Forin (af@cs.cmu.edu) at CMU.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 #if !defined (TARGET_BYTE_ORDER)
23 #define TARGET_BYTE_ORDER LITTLE_ENDIAN
24 #endif
25
26 /* Floating point is IEEE compliant */
27 #define IEEE_FLOAT
28
29 /* Define this if the C compiler puts an underscore at the front
30 of external names before giving them to the linker. */
31
32 /*#define NAMES_HAVE_UNDERSCORE*/
33
34 /* Debugger information will be in mips' format */
35
36 #define READ_MIPS_FORMAT
37
38 /* File format is coff, but with additions */
39
40 #define COFF_FORMAT
41
42 /* Offset from address of function to start of its code.
43 Zero on most machines. */
44
45 #define FUNCTION_START_OFFSET 0
46
47 /* Advance PC across any function entry prologue instructions
48 to reach some "real" code. */
49
50 #define SKIP_PROLOGUE(pc) pc = mips_skip_prologue(pc)
51
52 /* Immediately after a function call, return the saved pc.
53 Can't always go through the frames for this because on some machines
54 the new frame is not set up until the new function executes
55 some instructions. */
56
57 #define SAVED_PC_AFTER_CALL(frame) read_register(RA_REGNUM)
58
59 /* Are we currently handling a signal */
60
61 #define IN_SIGTRAMP(pc, name) in_sigtramp(pc, name)
62
63 /* Address of end of stack space. */
64
65 #define STACK_END_ADDR (0x7ffff000)
66
67 /* Stack grows downward. */
68
69 #define INNER_THAN <
70
71 #define BIG_ENDIAN 4321
72 #if TARGET_BYTE_ORDER == BIG_ENDIAN
73 #define BREAKPOINT {0, 0x5, 0, 0xd}
74 #else
75 #define BREAKPOINT {0xd, 0, 0x5, 0}
76 #endif
77
78 /* Amount PC must be decremented by after a breakpoint.
79 This is often the number of bytes in BREAKPOINT
80 but not always. */
81
82 #define DECR_PC_AFTER_BREAK 0
83
84 /* Nonzero if instruction at PC is a return instruction. "j ra" on mips. */
85
86 #define ABOUT_TO_RETURN(pc) (read_memory_integer (pc, 4) == 0x3e00008)
87
88 /* Return 1 if P points to an invalid floating point value. */
89
90 #define INVALID_FLOAT(p,l) isa_NAN(p,l)
91
92 /* Say how long (all) registers are. */
93
94 #define REGISTER_TYPE long
95
96 /* Number of machine registers */
97
98 #define NUM_REGS 80
99
100 /* Initializer for an array of names of registers.
101 There should be NUM_REGS strings in this initializer. */
102
103 #define REGISTER_NAMES \
104 { "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", \
105 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", \
106 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", \
107 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", \
108 "sr", "lo", "hi", "bad", "cause","pc", \
109 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
110 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
111 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",\
112 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",\
113 "fsr", "fir", "fp", "inx", "rand", "tlblo","ctxt", "tlbhi",\
114 "epc", "prid"\
115 }
116
117 /* Register numbers of various important registers.
118 Note that some of these values are "real" register numbers,
119 and correspond to the general registers of the machine,
120 and some are "phony" register numbers which are too large
121 to be actual register numbers as far as the user is concerned
122 but do serve to get the desired values when passed to read_register. */
123
124 #define ZERO_REGNUM 0 /* read-only register, always 0 */
125 #define A0_REGNUM 4 /* Loc of first arg during a subr call */
126 #define SP_REGNUM 29 /* Contains address of top of stack */
127 #define RA_REGNUM 31 /* Contains return address value */
128 #define PS_REGNUM 32 /* Contains processor status */
129 #define HI_REGNUM 34 /* Multiple/divide temp */
130 #define LO_REGNUM 33 /* ... */
131 #define BADVADDR_REGNUM 35 /* bad vaddr for addressing exception */
132 #define CAUSE_REGNUM 36 /* describes last exception */
133 #define PC_REGNUM 37 /* Contains program counter */
134 #define FP0_REGNUM 38 /* Floating point register 0 (single float) */
135 #define FCRCS_REGNUM 70 /* FP control/status */
136 #define FCRIR_REGNUM 71 /* FP implementation/revision */
137 #define FP_REGNUM 72 /* Pseudo register that contains true address of executing stack frame */
138 #define FIRST_EMBED_REGNUM 73 /* First supervisor register for embedded use */
139 #define LAST_EMBED_REGNUM 79 /* Last one */
140
141 /* Define DO_REGISTERS_INFO() to do machine-specific formatting
142 of register dumps. */
143
144 #define DO_REGISTERS_INFO(_regnum, fp) mips_do_registers_info(_regnum, fp)
145
146 /* Total amount of space needed to store our copies of the machine's
147 register state, the array `registers'. */
148 #define REGISTER_BYTES (NUM_REGS*4)
149
150 /* Index within `registers' of the first byte of the space for
151 register N. */
152
153 #define REGISTER_BYTE(N) ((N) * 4)
154
155 /* Number of bytes of storage in the actual machine representation
156 for register N. On mips, all regs are 4 bytes. */
157
158 #define REGISTER_RAW_SIZE(N) 4
159
160 /* Number of bytes of storage in the program's representation
161 for register N. On mips, all regs are 4 bytes. */
162
163 #define REGISTER_VIRTUAL_SIZE(N) 4
164
165 /* Largest value REGISTER_RAW_SIZE can have. */
166
167 #define MAX_REGISTER_RAW_SIZE 4
168
169 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
170
171 #define MAX_REGISTER_VIRTUAL_SIZE 4
172
173 /* Nonzero if register N requires conversion
174 from raw format to virtual format. */
175
176 #define REGISTER_CONVERTIBLE(N) 0
177
178 /* Convert data from raw format for register REGNUM
179 to virtual format for register REGNUM. */
180
181 #define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \
182 bcopy ((FROM), (TO), 4);
183
184 /* Convert data from virtual format for register REGNUM
185 to raw format for register REGNUM. */
186
187 #define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \
188 bcopy ((FROM), (TO), 4);
189
190 /* Return the GDB type object for the "standard" data type
191 of data in register N. */
192
193 #define REGISTER_VIRTUAL_TYPE(N) builtin_type_int
194 /* Store the address of the place in which to copy the structure the
195 subroutine will return. This is called from call_function. */
196
197 #define STORE_STRUCT_RETURN(addr, sp) \
198 { sp = push_word(sp, addr);}
199
200 /* Extract from an array REGBUF containing the (raw) register state
201 a function return value of type TYPE, and copy that, in virtual format,
202 into VALBUF. XXX floats */
203
204 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
205 bcopy (REGBUF+REGISTER_BYTE (TYPE_CODE (TYPE) == TYPE_CODE_FLT ? FP0_REGNUM : 2), VALBUF, TYPE_LENGTH (TYPE))
206
207 /* Write into appropriate registers a function return value
208 of type TYPE, given in virtual format. */
209
210 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
211 write_register_bytes (REGISTER_BYTE (TYPE_CODE (TYPE) == TYPE_CODE_FLT ? FP0_REGNUM : 2), VALBUF, TYPE_LENGTH (TYPE))
212
213 /* Extract from an array REGBUF containing the (raw) register state
214 the address in which a function should return its structure value,
215 as a CORE_ADDR (or an expression that can be used as one). */
216
217 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(int *)(REGBUF+16))
218
219 /* Structures are returned by ref in extra arg0 */
220 #define USE_STRUCT_CONVENTION(gcc_p, type) 1
221
222 \f
223 /* Describe the pointer in each stack frame to the previous stack frame
224 (its caller). */
225
226 /* FRAME_CHAIN takes a frame's nominal address
227 and produces the frame's chain-pointer. */
228
229 #define FRAME_CHAIN(thisframe) (FRAME_ADDR)mips_frame_chain(thisframe)
230
231 /* Define other aspects of the stack frame. */
232
233
234 /* A macro that tells us whether the function invocation represented
235 by FI does not have a frame on the stack associated with it. If it
236 does not, FRAMELESS is set to 1, else 0. */
237 /* We handle this differently for mips, and maybe we should not */
238
239 #define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) {(FRAMELESS) = 0;}
240
241 /* Saved Pc. */
242
243 #define FRAME_SAVED_PC(FRAME) (mips_frame_saved_pc(FRAME))
244
245 #define FRAME_ARGS_ADDRESS(fi) (fi)->frame
246
247 #define FRAME_LOCALS_ADDRESS(fi) (fi)->frame
248
249 /* Return number of args passed to a frame.
250 Can return -1, meaning no way to tell. */
251
252 #define FRAME_NUM_ARGS(num, fi) (num = mips_frame_num_args(fi))
253
254 /* Return number of bytes at start of arglist that are not really args. */
255
256 #define FRAME_ARGS_SKIP 0
257
258 /* Put here the code to store, into a struct frame_saved_regs,
259 the addresses of the saved registers of frame described by FRAME_INFO.
260 This includes special registers such as pc and fp saved in special
261 ways in the stack frame. sp is even more special:
262 the address we return for it IS the sp for the next frame. */
263
264 #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) ( \
265 (frame_saved_regs) = *(frame_info)->saved_regs, \
266 (frame_saved_regs).regs[SP_REGNUM] = (frame_info)->frame)
267
268 \f
269 /* Things needed for making the inferior call functions. */
270
271 /* Stack has strict alignment. However, use PUSH_ARGUMENTS
272 to take care of it. */
273 /*#define STACK_ALIGN(addr) (((addr)+3)&~3)*/
274
275 #define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
276 sp = mips_push_arguments(nargs, args, sp, struct_return, struct_addr)
277
278 /* Push an empty stack frame, to record the current PC, etc. */
279
280 #define PUSH_DUMMY_FRAME mips_push_dummy_frame()
281
282 /* Discard from the stack the innermost frame, restoring all registers. */
283
284 #define POP_FRAME mips_pop_frame()
285
286 #define MK_OP(op,rs,rt,offset) (((op)<<26)|((rs)<<21)|((rt)<<16)|(offset))
287 #define CALL_DUMMY_SIZE (16*4)
288 #define Dest_Reg 2
289 #define CALL_DUMMY {\
290 MK_OP(0,RA_REGNUM,0,8), /* jr $ra # Fake ABOUT_TO_RETURN ...*/\
291 0, /* nop # ... to stop raw backtrace*/\
292 0x27bd0000, /* addu sp,?0 # Pseudo prologue */\
293 /* Start here: */\
294 MK_OP(061,SP_REGNUM,12,0), /* lwc1 $f12,0(sp) # Reload first 4 args*/\
295 MK_OP(061,SP_REGNUM,13,4), /* lwc1 $f13,4(sp) */\
296 MK_OP(061,SP_REGNUM,14,8), /* lwc1 $f14,8(sp) */\
297 MK_OP(061,SP_REGNUM,15,12), /* lwc1 $f15,12(sp) */\
298 MK_OP(043,SP_REGNUM,4,0), /* lw $r4,0(sp) # Re-load FP regs*/\
299 MK_OP(043,SP_REGNUM,5,4), /* lw $r5,4(sp) */\
300 MK_OP(043,SP_REGNUM,6,8), /* lw $r6,8(sp) */\
301 MK_OP(043,SP_REGNUM,7,12), /* lw $r7,12(sp) */\
302 (017<<26)| (Dest_Reg << 16), /* lui $r31,<target upper 16 bits>*/\
303 MK_OP(13,Dest_Reg,Dest_Reg,0), /* ori $r31,$r31,<lower 16 bits>*/ \
304 (Dest_Reg<<21) | (31<<11) | 9, /* jalr $r31 */\
305 MK_OP(043,SP_REGNUM,7,12), /* lw $r7,12(sp) */\
306 0x5000d, /* bpt */\
307 }
308
309 #define CALL_DUMMY_START_OFFSET 12
310
311 /* Insert the specified number of args and function address
312 into a call sequence of the above form stored at DUMMYNAME. */
313
314 #define FIX_CALL_DUMMY(dummyname, start_sp, fun, nargs, args, rettype, gcc_p)\
315 (((int*)dummyname)[11] |= (((unsigned long)(fun)) >> 16), \
316 ((int*)dummyname)[12] |= (unsigned short)(fun))
317
318 /* Specific information about a procedure.
319 This overlays the MIPS's PDR records,
320 mipsread.c (ab)uses this to save memory */
321
322 typedef struct mips_extra_func_info {
323 unsigned long adr; /* memory address of start of procedure */
324 long isym; /* pointer to procedure symbol */
325 long pad2; /* iline: start of line number entries*/
326 long regmask; /* save register mask */
327 long regoffset; /* save register offset */
328 long numargs; /* number of args to procedure (was iopt) */
329 long fregmask; /* save floating point register mask */
330 long fregoffset; /* save floating point register offset */
331 long framesize; /* frameoffset: frame size */
332 short framereg; /* frame pointer register */
333 short pcreg; /* offset or reg of return pc */
334 long lnLow; /* lowest line in the procedure */
335 long lnHigh; /* highest line in the procedure */
336 long pad3; /* cbLineOffset: byte offset for this procedure from the fd base */
337 } *mips_extra_func_info_t;
338
339 #define EXTRA_FRAME_INFO \
340 char *proc_desc; /* actually, a mips_extra_func_info_t */\
341 int num_args;\
342 struct frame_saved_regs *saved_regs;
343
344 #define INIT_EXTRA_FRAME_INFO(fromleaf, fci) init_extra_frame_info(fci)
345
346 #define STAB_REG_TO_REGNUM(num) ((num) < 32 ? (num) : (num)+FP0_REGNUM-32)
347
348 /* Size of elements in jmpbuf */
349
350 #define JB_ELEMENT_SIZE 4
351
352 /* Figure out where the longjmp will land. We expect that we have just entered
353 longjmp and haven't yet setup the stack frame, so the args are still in the
354 argument regs. a0 (CALL_ARG0) points at the jmp_buf structure from which we
355 extract the pc (JB_PC) that we will land at. The pc is copied into ADDR.
356 This routine returns true on success */
357
358 /* Note that caller must #include <setjmp.h> in order to get def of JB_* */
359 #define GET_LONGJMP_TARGET(ADDR) get_longjmp_target(ADDR)