* mipsread.c (parse_symbol, parse_procedure): Re-do the way that
[binutils-gdb.git] / gdb / tm-mips.h
1 /* Definitions to make GDB run on a mips box under 4.3bsd.
2 Copyright (C) 1986, 1987, 1989, 1991, 1992 Free Software Foundation, Inc.
3 Contributed by Per Bothner (bothner@cs.wisc.edu) at U.Wisconsin
4 and by Alessandro Forin (af@cs.cmu.edu) at CMU.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 #ifndef LANGUAGE_C
23 #define LANGUAGE_C
24 #endif
25 #include <sym.h>
26 #include <symconst.h>
27
28 #if !defined (TARGET_BYTE_ORDER)
29 #define TARGET_BYTE_ORDER LITTLE_ENDIAN
30 #endif
31
32 /* Floating point is IEEE compliant */
33 #define IEEE_FLOAT
34
35 /* Define this if the C compiler puts an underscore at the front
36 of external names before giving them to the linker. */
37
38 /*#define NAMES_HAVE_UNDERSCORE*/
39
40 /* Debugger information will be in mips' format */
41
42 #define READ_MIPS_FORMAT
43
44 /* File format is coff, but with additions */
45
46 #define COFF_FORMAT
47
48 /* Offset from address of function to start of its code.
49 Zero on most machines. */
50
51 #define FUNCTION_START_OFFSET 0
52
53 /* Advance PC across any function entry prologue instructions
54 to reach some "real" code. */
55
56 #define SKIP_PROLOGUE(pc) pc = mips_skip_prologue(pc)
57
58 /* Immediately after a function call, return the saved pc.
59 Can't always go through the frames for this because on some machines
60 the new frame is not set up until the new function executes
61 some instructions. */
62
63 #define SAVED_PC_AFTER_CALL(frame) read_register(RA_REGNUM)
64
65 /* Are we currently handling a signal */
66
67 #define IN_SIGTRAMP(pc, name) in_sigtramp(pc, name)
68
69 /* Address of end of stack space. */
70
71 #define STACK_END_ADDR (0x7ffff000)
72
73 /* Stack grows downward. */
74
75 #define INNER_THAN <
76
77 #define BIG_ENDIAN 4321
78 #if TARGET_BYTE_ORDER == BIG_ENDIAN
79 #define BREAKPOINT {0, 0x5, 0, 0xd}
80 #else
81 #define BREAKPOINT {0xd, 0, 0x5, 0}
82 #endif
83
84 /* Amount PC must be decremented by after a breakpoint.
85 This is often the number of bytes in BREAKPOINT
86 but not always. */
87
88 #define DECR_PC_AFTER_BREAK 0
89
90 /* Nonzero if instruction at PC is a return instruction. "j ra" on mips. */
91
92 #define ABOUT_TO_RETURN(pc) (read_memory_integer (pc, 4) == 0x3e00008)
93
94 /* Return 1 if P points to an invalid floating point value. */
95
96 #define INVALID_FLOAT(p,l) isa_NAN(p,l)
97
98 /* Say how long (all) registers are. */
99
100 #define REGISTER_TYPE long
101
102 /* Number of machine registers */
103
104 #define NUM_REGS 80
105
106 /* Initializer for an array of names of registers.
107 There should be NUM_REGS strings in this initializer. */
108
109 #define REGISTER_NAMES \
110 { "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", \
111 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", \
112 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", \
113 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", \
114 "sr", "lo", "hi", "bad", "cause","pc", \
115 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
116 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
117 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",\
118 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",\
119 "fsr", "fir", "fp", "inx", "rand", "tlblo","ctxt", "tlbhi",\
120 "epc", "prid"\
121 }
122
123 /* Register numbers of various important registers.
124 Note that some of these values are "real" register numbers,
125 and correspond to the general registers of the machine,
126 and some are "phony" register numbers which are too large
127 to be actual register numbers as far as the user is concerned
128 but do serve to get the desired values when passed to read_register. */
129
130 #define ZERO_REGNUM 0 /* read-only register, always 0 */
131 #define A0_REGNUM 4 /* Loc of first arg during a subr call */
132 #define SP_REGNUM 29 /* Contains address of top of stack */
133 #define RA_REGNUM 31 /* Contains return address value */
134 #define PS_REGNUM 32 /* Contains processor status */
135 #define HI_REGNUM 34 /* Multiple/divide temp */
136 #define LO_REGNUM 33 /* ... */
137 #define BADVADDR_REGNUM 35 /* bad vaddr for addressing exception */
138 #define CAUSE_REGNUM 36 /* describes last exception */
139 #define PC_REGNUM 37 /* Contains program counter */
140 #define FP0_REGNUM 38 /* Floating point register 0 (single float) */
141 #define FCRCS_REGNUM 70 /* FP control/status */
142 #define FCRIR_REGNUM 71 /* FP implementation/revision */
143 #define FP_REGNUM 72 /* Pseudo register that contains true address of executing stack frame */
144 #define FIRST_EMBED_REGNUM 73 /* First supervisor register for embedded use */
145 #define LAST_EMBED_REGNUM 79 /* Last one */
146
147 /* Define DO_REGISTERS_INFO() to do machine-specific formatting
148 of register dumps. */
149
150 #define DO_REGISTERS_INFO(_regnum, fp) mips_do_registers_info(_regnum, fp)
151
152 /* Total amount of space needed to store our copies of the machine's
153 register state, the array `registers'. */
154 #define REGISTER_BYTES (NUM_REGS*4)
155
156 /* Index within `registers' of the first byte of the space for
157 register N. */
158
159 #define REGISTER_BYTE(N) ((N) * 4)
160
161 /* Number of bytes of storage in the actual machine representation
162 for register N. On mips, all regs are 4 bytes. */
163
164 #define REGISTER_RAW_SIZE(N) 4
165
166 /* Number of bytes of storage in the program's representation
167 for register N. On mips, all regs are 4 bytes. */
168
169 #define REGISTER_VIRTUAL_SIZE(N) 4
170
171 /* Largest value REGISTER_RAW_SIZE can have. */
172
173 #define MAX_REGISTER_RAW_SIZE 4
174
175 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
176
177 #define MAX_REGISTER_VIRTUAL_SIZE 4
178
179 /* Nonzero if register N requires conversion
180 from raw format to virtual format. */
181
182 #define REGISTER_CONVERTIBLE(N) 0
183
184 /* Convert data from raw format for register REGNUM
185 to virtual format for register REGNUM. */
186
187 #define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \
188 bcopy ((FROM), (TO), 4);
189
190 /* Convert data from virtual format for register REGNUM
191 to raw format for register REGNUM. */
192
193 #define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \
194 bcopy ((FROM), (TO), 4);
195
196 /* Return the GDB type object for the "standard" data type
197 of data in register N. */
198
199 #define REGISTER_VIRTUAL_TYPE(N) builtin_type_int
200 /* Store the address of the place in which to copy the structure the
201 subroutine will return. This is called from call_function. */
202
203 #define STORE_STRUCT_RETURN(addr, sp) \
204 { sp = push_word(sp, addr);}
205
206 /* Extract from an array REGBUF containing the (raw) register state
207 a function return value of type TYPE, and copy that, in virtual format,
208 into VALBUF. XXX floats */
209
210 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
211 bcopy (REGBUF+REGISTER_BYTE (TYPE_CODE (TYPE) == TYPE_CODE_FLT ? FP0_REGNUM : 2), VALBUF, TYPE_LENGTH (TYPE))
212
213 /* Write into appropriate registers a function return value
214 of type TYPE, given in virtual format. */
215
216 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
217 write_register_bytes (REGISTER_BYTE (TYPE_CODE (TYPE) == TYPE_CODE_FLT ? FP0_REGNUM : 2), VALBUF, TYPE_LENGTH (TYPE))
218
219 /* Extract from an array REGBUF containing the (raw) register state
220 the address in which a function should return its structure value,
221 as a CORE_ADDR (or an expression that can be used as one). */
222
223 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(int *)(REGBUF+16))
224
225 /* Structures are returned by ref in extra arg0 */
226 #define USE_STRUCT_CONVENTION(gcc_p, type) 1
227
228 \f
229 /* Describe the pointer in each stack frame to the previous stack frame
230 (its caller). */
231
232 /* FRAME_CHAIN takes a frame's nominal address
233 and produces the frame's chain-pointer. */
234
235 #define FRAME_CHAIN(thisframe) (FRAME_ADDR)mips_frame_chain(thisframe)
236
237 /* Define other aspects of the stack frame. */
238
239
240 /* A macro that tells us whether the function invocation represented
241 by FI does not have a frame on the stack associated with it. If it
242 does not, FRAMELESS is set to 1, else 0. */
243 /* We handle this differently for mips, and maybe we should not */
244
245 #define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) {(FRAMELESS) = 0;}
246
247 /* Saved Pc. */
248
249 #define FRAME_SAVED_PC(FRAME) (mips_frame_saved_pc(FRAME))
250
251 #define FRAME_ARGS_ADDRESS(fi) (fi)->frame
252
253 #define FRAME_LOCALS_ADDRESS(fi) (fi)->frame
254
255 /* Return number of args passed to a frame.
256 Can return -1, meaning no way to tell. */
257
258 #define FRAME_NUM_ARGS(num, fi) (num = mips_frame_num_args(fi))
259
260 /* Return number of bytes at start of arglist that are not really args. */
261
262 #define FRAME_ARGS_SKIP 0
263
264 /* Put here the code to store, into a struct frame_saved_regs,
265 the addresses of the saved registers of frame described by FRAME_INFO.
266 This includes special registers such as pc and fp saved in special
267 ways in the stack frame. sp is even more special:
268 the address we return for it IS the sp for the next frame. */
269
270 #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) ( \
271 (frame_saved_regs) = *(frame_info)->saved_regs, \
272 (frame_saved_regs).regs[SP_REGNUM] = (frame_info)->frame)
273
274 \f
275 /* Things needed for making the inferior call functions. */
276
277 /* Stack has strict alignment. However, use PUSH_ARGUMENTS
278 to take care of it. */
279 /*#define STACK_ALIGN(addr) (((addr)+3)&~3)*/
280
281 #define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
282 sp = mips_push_arguments(nargs, args, sp, struct_return, struct_addr)
283
284 /* Push an empty stack frame, to record the current PC, etc. */
285
286 #define PUSH_DUMMY_FRAME mips_push_dummy_frame()
287
288 /* Discard from the stack the innermost frame, restoring all registers. */
289
290 #define POP_FRAME mips_pop_frame()
291
292 #define MK_OP(op,rs,rt,offset) (((op)<<26)|((rs)<<21)|((rt)<<16)|(offset))
293 #define CALL_DUMMY_SIZE (16*4)
294 #define Dest_Reg 2
295 #define CALL_DUMMY {\
296 MK_OP(0,RA_REGNUM,0,8), /* jr $ra # Fake ABOUT_TO_RETURN ...*/\
297 0, /* nop # ... to stop raw backtrace*/\
298 0x27bd0000, /* addu sp,?0 # Pseudo prologue */\
299 /* Start here: */\
300 MK_OP(061,SP_REGNUM,12,0), /* lwc1 $f12,0(sp) # Reload first 4 args*/\
301 MK_OP(061,SP_REGNUM,13,4), /* lwc1 $f13,4(sp) */\
302 MK_OP(061,SP_REGNUM,14,8), /* lwc1 $f14,8(sp) */\
303 MK_OP(061,SP_REGNUM,15,12), /* lwc1 $f15,12(sp) */\
304 MK_OP(043,SP_REGNUM,4,0), /* lw $r4,0(sp) # Re-load FP regs*/\
305 MK_OP(043,SP_REGNUM,5,4), /* lw $r5,4(sp) */\
306 MK_OP(043,SP_REGNUM,6,8), /* lw $r6,8(sp) */\
307 MK_OP(043,SP_REGNUM,7,12), /* lw $r7,12(sp) */\
308 (017<<26)| (Dest_Reg << 16), /* lui $r31,<target upper 16 bits>*/\
309 MK_OP(13,Dest_Reg,Dest_Reg,0), /* ori $r31,$r31,<lower 16 bits>*/ \
310 (Dest_Reg<<21) | (31<<11) | 9, /* jalr $r31 */\
311 MK_OP(043,SP_REGNUM,7,12), /* lw $r7,12(sp) */\
312 0x5000d, /* bpt */\
313 }
314
315 #define CALL_DUMMY_START_OFFSET 12
316
317 /* Insert the specified number of args and function address
318 into a call sequence of the above form stored at DUMMYNAME. */
319
320 #define FIX_CALL_DUMMY(dummyname, start_sp, fun, nargs, args, rettype, gcc_p)\
321 (((int*)dummyname)[11] |= (((unsigned long)(fun)) >> 16), \
322 ((int*)dummyname)[12] |= (unsigned short)(fun))
323
324 /* Specific information about a procedure.
325 This overlays the MIPS's PDR records,
326 mipsread.c (ab)uses this to save memory */
327
328 typedef struct mips_extra_func_info {
329 long numargs; /* number of args to procedure (was iopt) */
330 PDR pdr; /* Procedure descriptor record */
331 } *mips_extra_func_info_t;
332
333 #define EXTRA_FRAME_INFO \
334 char *proc_desc; /* actually, a mips_extra_func_info_t */\
335 int num_args;\
336 struct frame_saved_regs *saved_regs;
337
338 #define INIT_EXTRA_FRAME_INFO(fromleaf, fci) init_extra_frame_info(fci)
339
340 #define STAB_REG_TO_REGNUM(num) ((num) < 32 ? (num) : (num)+FP0_REGNUM-32)
341
342 /* Size of elements in jmpbuf */
343
344 #define JB_ELEMENT_SIZE 4
345
346 /* Figure out where the longjmp will land. We expect that we have just entered
347 longjmp and haven't yet setup the stack frame, so the args are still in the
348 argument regs. a0 (CALL_ARG0) points at the jmp_buf structure from which we
349 extract the pc (JB_PC) that we will land at. The pc is copied into ADDR.
350 This routine returns true on success */
351
352 /* Note that caller must #include <setjmp.h> in order to get def of JB_* */
353 #define GET_LONGJMP_TARGET(ADDR) get_longjmp_target(ADDR)