Merged in latest RS6000 diffs from Metin G. Ozisik.
[binutils-gdb.git] / gdb / tm-rs6000.h
1 /* Parameters for target execution on an RS6000, for GDB, the GNU debugger.
2 Copyright (C) 1986, 1987, 1989, 1991 Free Software Foundation, Inc.
3 Contributed by IBM Corporation.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21
22 /* A successful ptrace(continue) might return errno != 0 in this particular port
23 of rs6000. I am not sure why. We will use this kludge and ignore it until
24 we figure out the real problem. */
25
26 #define AIX_BUGGY_PTRACE_CONTINUE \
27 { \
28 int ret = ptrace (PT_CONTINUE, inferior_pid, (int *)1, signal, 0); \
29 if (errno) { \
30 /* printf ("ret: %d, errno: %d, signal: %d\n", ret, errno, signal); */ \
31 errno = 0; } \
32 }
33
34 extern int symtab_relocated;
35
36 /* Minimum possible text address in AIX */
37
38 #define TEXT_SEGMENT_BASE 0x10000000
39
40
41 /* text addresses in a core file does not necessarily match to symbol table,
42 if symbol table relocation wasn't done yet. */
43
44 #define CORE_NEEDS_RELOCATION(PC) \
45 if (!symtab_relocated && !inferior_pid && (PC) > TEXT_SEGMENT_BASE) \
46 (PC) -= ( TEXT_SEGMENT_BASE + text_adjustment (exec_bfd));
47
48 /* Load segment of a given pc value. */
49
50 #define PC_LOAD_SEGMENT(PC) pc_load_segment_name(PC)
51
52
53 /* Conversion between a register number in stab string to actual register num. */
54
55 #define STAB_REG_TO_REGNUM(value) (value)
56
57 /* return true if a given `pc' value is in `call dummy' function. */
58
59 #define PC_IN_CALL_DUMMY(STOP_PC, STOP_SP, STOP_FRAME_ADDR) \
60 (STOP_SP < STOP_PC && STOP_PC < STACK_END_ADDR)
61
62 /* For each symtab, we keep track of which BFD it came from. */
63 #define EXTRA_SYMTAB_INFO \
64 unsigned nonreloc:1; /* TRUE if non relocatable */
65
66 #define INIT_EXTRA_SYMTAB_INFO(symtab) \
67 symtab->nonreloc = 0; \
68
69 extern unsigned int text_start, data_start;
70 extern int inferior_pid;
71 extern char *corefile;
72
73 /* setpgrp() messes up controling terminal. The other version of it
74 requires libbsd.a. */
75 #define setpgrp(XX,YY) setpgid (XX, YY)
76
77 /* We are missing register descriptions in the system header files. Sigh! */
78
79 struct regs {
80 int gregs [32]; /* general purpose registers */
81 int pc; /* program conter */
82 int ps; /* processor status, or machine state */
83 };
84
85 struct fp_status {
86 double fpregs [32]; /* floating GP registers */
87 };
88
89
90 /* To be used by function_frame_info. */
91
92 struct aix_framedata {
93 int offset; /* # of bytes in gpr's and fpr's are saved */
94 int saved_gpr; /* smallest # of saved gpr */
95 int saved_fpr; /* smallest # of saved fpr */
96 int alloca_reg; /* alloca register number (frame ptr) */
97 char frameless; /* true if frameless functions. */
98 };
99
100
101 /* Define the byte order of the machine. */
102
103 #define TARGET_BYTE_ORDER BIG_ENDIAN
104
105 /* Define this if the C compiler puts an underscore at the front
106 of external names before giving them to the linker. */
107
108 #undef NAMES_HAVE_UNDERSCORE
109
110 /* Offset from address of function to start of its code.
111 Zero on most machines. */
112
113 #define FUNCTION_START_OFFSET 0
114
115 /* Advance PC across any function entry prologue instructions
116 to reach some "real" code. */
117
118 #define SKIP_PROLOGUE(pc) pc = skip_prologue (pc)
119
120 /* If PC is in some function-call trampoline code, return the PC
121 where the function itself actually starts. If not, return NULL. */
122
123 #define SKIP_TRAMPOLINE_CODE(pc) skip_trampoline_code (pc)
124
125 /* When a child process is just starting, we sneak in and relocate
126 the symbol table (and other stuff) after the dynamic linker has
127 figured out where they go. But we want to do this relocation just
128 once. */
129
130 extern int aix_loadInfoTextIndex;
131
132 #define SOLIB_CREATE_INFERIOR_HOOK(PID) \
133 do { \
134 if (aix_loadInfoTextIndex == 0) \
135 aixcoff_relocate_symtab (PID); \
136 } while (0)
137
138
139 #if 0
140 The following comment is not correct anymore. AIX has a trap signal
141 that might be sent with a "stopped after a load" status. This might
142 show up when the inferior is just started, or anytime inferior
143 loads something else. It is incorrect to try to skip over it *only* in
144 startup-time. It always has to be ignored and should not be mixed up
145 with breakpoint traps. See the macro SIGTRAP_STOP_AFTER_LOAD and its
146 usage in infrun.c.
147
148 /* In aix, number of the trap signals we need to skip over once the
149 inferior process starts running is different in version 3.1 and 3.2.
150 This will be 2 for version 3.1x, 3 for version 3.2x. */
151
152 #define START_INFERIOR_TRAPS_EXPECTED aix_starting_inferior_traps ()
153 #endif /* 0 */
154
155 #define START_INFERIOR_TRAPS_EXPECTED 2
156
157 /* AIX might return a sigtrap, with a "stop after load" status. It should
158 be ignored by gdb, shouldn't be mixed up with breakpoint traps. */
159
160 #define SIGTRAP_STOP_AFTER_LOAD(W) \
161 if ( (W) == 0x57c ) { \
162 if (breakpoints_inserted) { \
163 mark_breakpoints_out (); \
164 insert_breakpoints (); \
165 insert_step_breakpoint (); \
166 } \
167 resume (0, 0); \
168 continue; \
169 }
170
171 /* In aixcoff, we cannot process line numbers when we see them. This is
172 mainly because we don't know the boundaries of the include files. So,
173 we postpone that, and then enter and sort(?) the whole line table at
174 once, when we are closing the current symbol table in end_symtab(). */
175
176 #define PROCESS_LINENUMBER_HOOK() aix_process_linenos ()
177
178
179 /* When a target process or core-file has been attached, we sneak in
180 and figure out where the shared libraries have got to. In case there
181 is no inferior_process exists (e.g. bringing up a core file), we can't
182 attemtp to relocate symbol table, since we don't have information about
183 load segments. */
184
185 #define SOLIB_ADD(a, b, c) \
186 if (inferior_pid) aixcoff_relocate_symtab (inferior_pid)
187
188 /* Immediately after a function call, return the saved pc.
189 Can't go through the frames for this because on some machines
190 the new frame is not set up until the new function executes
191 some instructions. */
192
193 extern char registers[];
194 extern char register_valid [];
195
196 #define SAVED_PC_AFTER_CALL(frame) \
197 (register_valid [LR_REGNUM] ? \
198 (*(int*)&registers[REGISTER_BYTE (LR_REGNUM)]) : \
199 read_register (LR_REGNUM))
200
201 /*#define SAVED_PC_AFTER_CALL(frame) saved_pc_after_call(frame) */
202
203
204 /* Address of end of stack space. */
205
206 #define STACK_END_ADDR 0x2ff80000
207
208 /* Stack grows downward. */
209
210 #define INNER_THAN <
211
212 #if 0
213 /* No, we shouldn't use this. push_arguments() should leave stack in a
214 proper alignment! */
215 /* Stack has strict alignment. */
216
217 #define STACK_ALIGN(ADDR) (((ADDR)+7)&-8)
218 #endif
219
220 /* This is how argumets pushed onto stack or passed in registers. */
221
222 #define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
223 sp = push_arguments(nargs, args, sp, struct_return, struct_addr)
224
225 /* Sequence of bytes for breakpoint instruction. */
226
227 #define BREAKPOINT {0x7d, 0x82, 0x10, 0x08}
228
229 /* Amount PC must be decremented by after a breakpoint.
230 This is often the number of bytes in BREAKPOINT
231 but not always. */
232
233 #define DECR_PC_AFTER_BREAK 0
234
235 /* Nonzero if instruction at PC is a return instruction. */
236 /* Allow any of the return instructions, including a trapv and a return
237 from interrupt. */
238
239 #define ABOUT_TO_RETURN(pc) \
240 ((read_memory_integer (pc, 4) & 0xfe8007ff) == 0x4e800020)
241
242 /* Return 1 if P points to an invalid floating point value. */
243
244 #define INVALID_FLOAT(p, len) 0 /* Just a first guess; not checked */
245
246 /* Largest integer type */
247
248 #define LONGEST long
249
250 /* Name of the builtin type for the LONGEST type above. */
251
252 #define BUILTIN_TYPE_LONGEST builtin_type_long
253
254 /* Say how long (ordinary) registers are. */
255
256 #define REGISTER_TYPE long
257
258 /* Number of machine registers */
259
260 #define NUM_REGS 71
261
262 /* Initializer for an array of names of registers.
263 There should be NUM_REGS strings in this initializer. */
264
265 #define REGISTER_NAMES \
266 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
267 "r8", "r9", "r10","r11","r12","r13","r14","r15", \
268 "r16","r17","r18","r19","r20","r21","r22","r23", \
269 "r24","r25","r26","r27","r28","r29","r30","r31", \
270 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
271 "f8", "f9", "f10","f11","f12","f13","f14","f15", \
272 "f16","f17","f18","f19","f20","f21","f22","f23", \
273 "f24","f25","f26","f27","f28","f29","f30","f31", \
274 "pc", "ps", "cnd", "lr", "cnt", "xer", "mq" }
275
276 /* Register numbers of various important registers.
277 Note that some of these values are "real" register numbers,
278 and correspond to the general registers of the machine,
279 and some are "phony" register numbers which are too large
280 to be actual register numbers as far as the user is concerned
281 but do serve to get the desired values when passed to read_register. */
282
283 #define FP_REGNUM 1 /* Contains address of executing stack frame */
284 #define SP_REGNUM 1 /* Contains address of top of stack */
285 #define TOC_REGNUM 2 /* TOC register */
286 #define FP0_REGNUM 32 /* Floating point register 0 */
287 #define GP0_REGNUM 0 /* GPR register 0 */
288 #define FP0_REGNUM 32 /* FPR (Floating point) register 0 */
289 #define FPLAST_REGNUM 63 /* Last floating point register */
290
291 /* Special purpose registers... */
292 /* P.S. keep these in the same order as in /usr/mstsave.h `mstsave' structure, for
293 easier processing */
294
295 #define PC_REGNUM 64 /* Program counter (instruction address %iar) */
296 #define PS_REGNUM 65 /* Processor (or machine) status (%msr) */
297 #define CR_REGNUM 66 /* Condition register */
298 #define LR_REGNUM 67 /* Link register */
299 #define CTR_REGNUM 68 /* Count register */
300 #define XER_REGNUM 69 /* Fixed point exception registers */
301 #define MQ_REGNUM 70 /* Multiply/quotient register */
302
303 #define FIRST_SP_REGNUM 64 /* first special register number */
304 #define LAST_SP_REGNUM 70 /* last special register number */
305
306 /* Total amount of space needed to store our copies of the machine's
307 register state, the array `registers'.
308
309 32 4-byte gpr's
310 32 8-byte fpr's
311 7 4-byte special purpose registers,
312
313 total 416 bytes. Keep some extra space for now, in case to add more. */
314
315 #define REGISTER_BYTES 420
316
317
318 /* Index within `registers' of the first byte of the space for
319 register N. */
320
321 #define REGISTER_BYTE(N) \
322 ( \
323 ((N) > FPLAST_REGNUM) ? ((((N) - FPLAST_REGNUM -1) * 4) + 384)\
324 :((N) >= FP0_REGNUM) ? ((((N) - FP0_REGNUM) * 8) + 128) \
325 :((N) * 4) )
326
327 /* Number of bytes of storage in the actual machine representation
328 for register N. */
329 /* Note that the unsigned cast here forces the result of the
330 subtractiion to very high positive values if N < FP0_REGNUM */
331
332 #define REGISTER_RAW_SIZE(N) (((unsigned)(N) - FP0_REGNUM) < 32 ? 8 : 4)
333
334 /* Number of bytes of storage in the program's representation
335 for register N. On the RS6000, all regs are 4 bytes
336 except the floating point regs which are 8-byte doubles. */
337
338 #define REGISTER_VIRTUAL_SIZE(N) (((unsigned)(N) - FP0_REGNUM) < 32 ? 8 : 4)
339
340 /* Largest value REGISTER_RAW_SIZE can have. */
341
342 #define MAX_REGISTER_RAW_SIZE 8
343
344 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
345
346 #define MAX_REGISTER_VIRTUAL_SIZE 8
347
348 /* convert a dbx stab register number (from `r' declaration) to a gdb REGNUM */
349
350 #define STAB_REG_TO_REGNUM(value) (value)
351
352 /* Nonzero if register N requires conversion
353 from raw format to virtual format. */
354
355 #define REGISTER_CONVERTIBLE(N) ((N) >= FP0_REGNUM && (N) <= FPLAST_REGNUM)
356
357 /* Convert data from raw format for register REGNUM
358 to virtual format for register REGNUM. */
359
360 #define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \
361 bcopy ((FROM), (TO), REGISTER_RAW_SIZE (REGNUM))
362
363 /* Convert data from virtual format for register REGNUM
364 to raw format for register REGNUM. */
365
366 #define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \
367 bcopy ((FROM), (TO), REGISTER_RAW_SIZE (REGNUM))
368
369 /* Return the GDB type object for the "standard" data type
370 of data in register N. */
371
372 #define REGISTER_VIRTUAL_TYPE(N) \
373 (((unsigned)(N) - FP0_REGNUM) < 32 ? builtin_type_double : builtin_type_int)
374
375 /* Store the address of the place in which to copy the structure the
376 subroutine will return. This is called from call_function. */
377 /* in RS6000, struct return addresses are passed as an extra parameter in r3.
378 In function return, callee is not responsible of returning this address back.
379 Since gdb needs to find it, we will store in a designated variable
380 `rs6000_struct_return_address'. */
381
382 extern unsigned int rs6000_struct_return_address;
383
384 #define STORE_STRUCT_RETURN(ADDR, SP) \
385 { write_register (3, (ADDR)); \
386 rs6000_struct_return_address = (unsigned int)(ADDR); }
387
388 /* Extract from an array REGBUF containing the (raw) register state
389 a function return value of type TYPE, and copy that, in virtual format,
390 into VALBUF. */
391
392 /* #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
393 bcopy (REGBUF, VALBUF, TYPE_LENGTH (TYPE)) */
394
395 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
396 extract_return_value(TYPE,REGBUF,VALBUF)
397
398 /* Write into appropriate registers a function return value
399 of type TYPE, given in virtual format. */
400
401 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
402 { \
403 if (TYPE_CODE (TYPE) == TYPE_CODE_FLT) \
404 \
405 /* Floating point values are returned starting from FPR1 and up. \
406 Say a double_double_double type could be returned in \
407 FPR1/FPR2/FPR3 triple. */ \
408 \
409 write_register_bytes (REGISTER_BYTE (FP0_REGNUM+1), (VALBUF), \
410 TYPE_LENGTH (TYPE)); \
411 else \
412 /* Everything else is returned in GPR3 and up. */ \
413 write_register_bytes (REGISTER_BYTE (GP0_REGNUM+3), (VALBUF), \
414 TYPE_LENGTH (TYPE)); \
415 }
416
417
418 /* Extract from an array REGBUF containing the (raw) register state
419 the address in which a function should return its structure value,
420 as a CORE_ADDR (or an expression that can be used as one). */
421
422 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) rs6000_struct_return_address
423
424
425 /* Do implement the attach and detach commands. */
426
427 #define ATTACH_DETACH
428
429 /* infptrace.c requires those. */
430
431 #define PTRACE_ATTACH 30
432 #define PTRACE_DETACH 31
433
434 \f
435 /* Describe the pointer in each stack frame to the previous stack frame
436 (its caller). */
437
438 /* FRAME_CHAIN takes a frame's nominal address
439 and produces the frame's chain-pointer. */
440
441 /* In the case of the RS6000, the frame's nominal address
442 is the address of a 4-byte word containing the calling frame's address. */
443
444 #define FRAME_CHAIN(thisframe) \
445 (!inside_entry_file ((thisframe)->pc) ? \
446 read_memory_integer ((thisframe)->frame, 4) :\
447 0)
448
449 /* Define other aspects of the stack frame. */
450
451 /* A macro that tells us whether the function invocation represented
452 by FI does not have a frame on the stack associated with it. If it
453 does not, FRAMELESS is set to 1, else 0. */
454
455 #define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) \
456 FRAMELESS = frameless_function_invocation (FI)
457
458 /* Functions calling alloca() change the value of the stack pointer. We
459 need to use initial stack pointer (which is saved in r31 by gcc) in
460 such cases. If a compiler emits traceback table, then we should use the
461 alloca register specified in traceback table. FIXME. */
462 /* Also, it is a good idea to cache information about frame's saved registers
463 in the frame structure to speed things up. See tm-m88k.h. FIXME. */
464
465 #define EXTRA_FRAME_INFO \
466 CORE_ADDR initial_sp; /* initial stack pointer. */ \
467 struct frame_saved_regs *cache_fsr; /* saved registers */
468
469 /* Frameless function invocation in IBM RS/6000 is half-done. It perfectly
470 sets up a new frame, e.g. a new frame (in fact stack) pointer, etc, but it
471 doesn't save the %pc. In the following, even though it is considered a
472 frameless invocation, we still need to walk one frame up. */
473
474 #define INIT_EXTRA_FRAME_INFO(fromleaf, fi) \
475 fi->initial_sp = 0; \
476 fi->cache_fsr = 0;
477
478 #define FRAME_SAVED_PC(FRAME) \
479 read_memory_integer (read_memory_integer ((FRAME)->frame, 4)+8, 4)
480
481 #define FRAME_ARGS_ADDRESS(FI) \
482 (((struct frame_info*)(FI))->initial_sp ? \
483 ((struct frame_info*)(FI))->initial_sp : \
484 frame_initial_stack_address (FI))
485
486 #define FRAME_LOCALS_ADDRESS(FI) FRAME_ARGS_ADDRESS(FI)
487
488
489 /* Set VAL to the number of args passed to frame described by FI.
490 Can set VAL to -1, meaning no way to tell. */
491
492 /* We can't tell how many args there are
493 now that the C compiler delays popping them. */
494
495 #define FRAME_NUM_ARGS(val,fi) (val = -1)
496
497 /* Return number of bytes at start of arglist that are not really args. */
498
499 #define FRAME_ARGS_SKIP 8 /* Not sure on this. FIXMEmgo */
500
501 /* Put here the code to store, into a struct frame_saved_regs,
502 the addresses of the saved registers of frame described by FRAME_INFO.
503 This includes special registers such as pc and fp saved in special
504 ways in the stack frame. sp is even more special:
505 the address we return for it IS the sp for the next frame. */
506 /* In the following implementation for RS6000, we did *not* save sp. I am
507 not sure if it will be needed. The following macro takes care of gpr's
508 and fpr's only. */
509
510 #define FRAME_FIND_SAVED_REGS(FRAME_INFO, FRAME_SAVED_REGS) \
511 { \
512 int ii, frame_addr, func_start; \
513 struct aix_framedata fdata; \
514 \
515 /* find the start of the function and collect info about its frame. */ \
516 \
517 func_start = get_pc_function_start ((FRAME_INFO)->pc) + FUNCTION_START_OFFSET;\
518 function_frame_info (func_start, &fdata); \
519 bzero (&(FRAME_SAVED_REGS), sizeof (FRAME_SAVED_REGS)); \
520 \
521 /* if there were any saved registers, figure out parent's stack pointer. */ \
522 frame_addr = 0; \
523 /* the following is true only if the frame doesn't have a call to alloca(), \
524 FIXME. */ \
525 if (fdata.saved_fpr >= 0 || fdata.saved_gpr >= 0) { \
526 if ((FRAME_INFO)->prev && (FRAME_INFO)->prev->frame) \
527 frame_addr = (FRAME_INFO)->prev->frame; \
528 else \
529 frame_addr = read_memory_integer ((FRAME_INFO)->frame, 4); \
530 } \
531 \
532 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr. All fpr's \
533 from saved_fpr to fp31 are saved right underneath caller stack pointer, \
534 starting from fp31 first. */ \
535 \
536 if (fdata.saved_fpr >= 0) { \
537 for (ii=31; ii >= fdata.saved_fpr; --ii) \
538 (FRAME_SAVED_REGS).regs [FP0_REGNUM + ii] = frame_addr - ((32 - ii) * 8); \
539 frame_addr -= (32 - fdata.saved_fpr) * 8; \
540 } \
541 \
542 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr. All gpr's \
543 from saved_gpr to gpr31 are saved right under saved fprs, starting \
544 from r31 first. */ \
545 \
546 if (fdata.saved_gpr >= 0) \
547 for (ii=31; ii >= fdata.saved_gpr; --ii) \
548 (FRAME_SAVED_REGS).regs [ii] = frame_addr - ((32 - ii) * 4); \
549 }
550
551 \f
552 /* Things needed for making the inferior call functions. */
553
554 /* Push an empty stack frame, to record the current PC, etc. */
555 /* Change these names into rs6k_{push, pop}_frame(). FIXMEmgo. */
556
557 #define PUSH_DUMMY_FRAME push_dummy_frame ()
558
559 /* Discard from the stack the innermost frame,
560 restoring all saved registers. */
561
562 #define POP_FRAME pop_frame ()
563
564 /* This sequence of words is the instructions:
565
566 mflr r0 // 0x7c0802a6
567 // save fpr's
568 stfd r?, num(r1) // 0xd8010000 there should be 32 of this??
569 // save gpr's
570 stm r0, num(r1) // 0xbc010000
571 stu r1, num(r1) // 0x94210000
572
573 // the function we want to branch might be in a different load
574 // segment. reset the toc register. Note that the actual toc address
575 // will be fix by fix_call_dummy () along with function address.
576
577 st r2, 0x14(r1) // 0x90410014 save toc register
578 liu r2, 0x1234 // 0x3c401234 reset a new toc value 0x12345678
579 oril r2, r2,0x5678 // 0x60425678
580
581 // load absolute address 0x12345678 to r0
582 liu r0, 0x1234 // 0x3c001234
583 oril r0, r0,0x5678 // 0x60005678
584 mtctr r0 // 0x7c0903a6 ctr <- r0
585 bctrl // 0x4e800421 jump subroutine 0x12345678 (%ctr)
586 cror 0xf, 0xf, 0xf // 0x4def7b82
587 brpt // 0x7d821008, breakpoint
588 cror 0xf, 0xf, 0xf // 0x4def7b82 (for 8 byte alignment)
589
590
591 We actually start executing by saving the toc register first, since the pushing
592 of the registers is done by PUSH_DUMMY_FRAME. If this were real code,
593 the arguments for the function called by the `bctrl' would be pushed
594 between the `stu' and the `bctrl', and we could allow it to execute through.
595 But the arguments have to be pushed by GDB after the PUSH_DUMMY_FRAME is done,
596 and we cannot allow to push the registers again.
597 */
598
599 #define CALL_DUMMY {0x7c0802a6, 0xd8010000, 0xbc010000, 0x94210000, \
600 0x90410014, 0x3c401234, 0x60425678, \
601 0x3c001234, 0x60005678, 0x7c0903a6, 0x4e800421, \
602 0x4def7b82, 0x7d821008, 0x4def7b82 }
603
604
605 /* keep this as multiple of 8 (%sp requires 8 byte alignment) */
606 #define CALL_DUMMY_LENGTH 56
607
608 #define CALL_DUMMY_START_OFFSET 16
609
610 /* Insert the specified number of args and function address
611 into a call sequence of the above form stored at DUMMYNAME. */
612
613 #define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, using_gcc) \
614 fix_call_dummy(dummyname, pc, fun, nargs, type)
615
616
617 /* Signal handler for SIGWINCH `window size changed'. */
618
619 #define SIGWINCH_HANDLER aix_resizewindow
620 extern void aix_resizewindow ();
621
622 /* `lines_per_page' and `chars_per_line' are local to utils.c. Rectify this. */
623
624 #define SIGWINCH_HANDLER_BODY \
625 \
626 /* Respond to SIGWINCH `window size changed' signal, and reset GDB's \
627 window settings approproatelt. */ \
628 \
629 void \
630 aix_resizewindow () \
631 { \
632 int fd = fileno (stdout); \
633 if (isatty (fd)) { \
634 int val; \
635 \
636 val = atoi (termdef (fd, 'l')); \
637 if (val > 0) \
638 lines_per_page = val; \
639 val = atoi (termdef (fd, 'c')); \
640 if (val > 0) \
641 chars_per_line = val; \
642 } \
643 }
644
645
646 /* Flag for machine-specific stuff in shared files. FIXME */
647 #define IBM6000_TARGET