[gdb/symtab] Add get/set functions for per_cu->lang/unit_type
[binutils-gdb.git] / gdb / tui / tui-disasm.c
1 /* Disassembly display.
2
3 Copyright (C) 1998-2022 Free Software Foundation, Inc.
4
5 Contributed by Hewlett-Packard Company.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "symtab.h"
25 #include "breakpoint.h"
26 #include "frame.h"
27 #include "value.h"
28 #include "source.h"
29 #include "disasm.h"
30 #include "tui/tui.h"
31 #include "tui/tui-command.h"
32 #include "tui/tui-data.h"
33 #include "tui/tui-win.h"
34 #include "tui/tui-layout.h"
35 #include "tui/tui-winsource.h"
36 #include "tui/tui-stack.h"
37 #include "tui/tui-file.h"
38 #include "tui/tui-disasm.h"
39 #include "tui/tui-source.h"
40 #include "progspace.h"
41 #include "objfiles.h"
42 #include "cli/cli-style.h"
43 #include "tui/tui-location.h"
44
45 #include "gdb_curses.h"
46
47 struct tui_asm_line
48 {
49 CORE_ADDR addr;
50 std::string addr_string;
51 size_t addr_size;
52 std::string insn;
53 };
54
55 /* Helper function to find the number of characters in STR, skipping
56 any ANSI escape sequences. */
57 static size_t
58 len_without_escapes (const std::string &str)
59 {
60 size_t len = 0;
61 const char *ptr = str.c_str ();
62 char c;
63
64 while ((c = *ptr) != '\0')
65 {
66 if (c == '\033')
67 {
68 ui_file_style style;
69 size_t n_read;
70 if (style.parse (ptr, &n_read))
71 ptr += n_read;
72 else
73 {
74 /* Shouldn't happen, but just skip the ESC if it somehow
75 does. */
76 ++ptr;
77 }
78 }
79 else
80 {
81 ++len;
82 ++ptr;
83 }
84 }
85 return len;
86 }
87
88 /* Function to disassemble up to COUNT instructions starting from address
89 PC into the ASM_LINES vector (which will be emptied of any previous
90 contents). Return the address of the COUNT'th instruction after pc.
91 When ADDR_SIZE is non-null then place the maximum size of an address and
92 label into the value pointed to by ADDR_SIZE, and set the addr_size
93 field on each item in ASM_LINES, otherwise the addr_size fields within
94 ASM_LINES are undefined.
95
96 It is worth noting that ASM_LINES might not have COUNT entries when this
97 function returns. If the disassembly is truncated for some other
98 reason, for example, we hit invalid memory, then ASM_LINES can have
99 fewer entries than requested. */
100 static CORE_ADDR
101 tui_disassemble (struct gdbarch *gdbarch,
102 std::vector<tui_asm_line> &asm_lines,
103 CORE_ADDR pc, int count,
104 size_t *addr_size = nullptr)
105 {
106 bool term_out = source_styling && gdb_stdout->can_emit_style_escape ();
107 string_file gdb_dis_out (term_out);
108
109 /* Must start with an empty list. */
110 asm_lines.clear ();
111
112 /* Now construct each line. */
113 for (int i = 0; i < count; ++i)
114 {
115 tui_asm_line tal;
116 CORE_ADDR orig_pc = pc;
117
118 try
119 {
120 pc = pc + gdb_print_insn (gdbarch, pc, &gdb_dis_out, NULL);
121 }
122 catch (const gdb_exception_error &except)
123 {
124 /* If PC points to an invalid address then we'll catch a
125 MEMORY_ERROR here, this should stop the disassembly, but
126 otherwise is fine. */
127 if (except.error != MEMORY_ERROR)
128 throw;
129 return pc;
130 }
131
132 /* Capture the disassembled instruction. */
133 tal.insn = gdb_dis_out.release ();
134
135 /* And capture the address the instruction is at. */
136 tal.addr = orig_pc;
137 print_address (gdbarch, orig_pc, &gdb_dis_out);
138 tal.addr_string = gdb_dis_out.release ();
139
140 if (addr_size != nullptr)
141 {
142 size_t new_size;
143
144 if (term_out)
145 new_size = len_without_escapes (tal.addr_string);
146 else
147 new_size = tal.addr_string.size ();
148 *addr_size = std::max (*addr_size, new_size);
149 tal.addr_size = new_size;
150 }
151
152 asm_lines.push_back (std::move (tal));
153 }
154 return pc;
155 }
156
157 /* Look backward from ADDR for an address from which we can start
158 disassembling, this needs to be something we can be reasonably
159 confident will fall on an instruction boundary. We use msymbol
160 addresses, or the start of a section. */
161
162 static CORE_ADDR
163 tui_find_backward_disassembly_start_address (CORE_ADDR addr)
164 {
165 struct bound_minimal_symbol msym, msym_prev;
166
167 msym = lookup_minimal_symbol_by_pc_section (addr - 1, nullptr,
168 lookup_msym_prefer::TEXT,
169 &msym_prev);
170 if (msym.minsym != nullptr)
171 return msym.value_address ();
172 else if (msym_prev.minsym != nullptr)
173 return msym_prev.value_address ();
174
175 /* Find the section that ADDR is in, and look for the start of the
176 section. */
177 struct obj_section *section = find_pc_section (addr);
178 if (section != NULL)
179 return section->addr ();
180
181 return addr;
182 }
183
184 /* Find the disassembly address that corresponds to FROM lines above
185 or below the PC. Variable sized instructions are taken into
186 account by the algorithm. */
187 static CORE_ADDR
188 tui_find_disassembly_address (struct gdbarch *gdbarch, CORE_ADDR pc, int from)
189 {
190 CORE_ADDR new_low;
191 int max_lines;
192
193 max_lines = (from > 0) ? from : - from;
194 if (max_lines == 0)
195 return pc;
196
197 std::vector<tui_asm_line> asm_lines;
198
199 new_low = pc;
200 if (from > 0)
201 {
202 /* Always disassemble 1 extra instruction here, then if the last
203 instruction fails to disassemble we will take the address of the
204 previous instruction that did disassemble as the result. */
205 tui_disassemble (gdbarch, asm_lines, pc, max_lines + 1);
206 new_low = asm_lines.back ().addr;
207 }
208 else
209 {
210 /* In order to disassemble backwards we need to find a suitable
211 address to start disassembling from and then work forward until we
212 re-find the address we're currently at. We can then figure out
213 which address will be at the top of the TUI window after our
214 backward scroll. During our backward disassemble we need to be
215 able to distinguish between the case where the last address we
216 _can_ disassemble is ADDR, and the case where the disassembly
217 just happens to stop at ADDR, for this reason we increase
218 MAX_LINES by one. */
219 max_lines++;
220
221 /* When we disassemble a series of instructions this will hold the
222 address of the last instruction disassembled. */
223 CORE_ADDR last_addr;
224
225 /* And this will hold the address of the next instruction that would
226 have been disassembled. */
227 CORE_ADDR next_addr;
228
229 /* As we search backward if we find an address that looks like a
230 promising starting point then we record it in this structure. If
231 the next address we try is not a suitable starting point then we
232 will fall back to the address held here. */
233 gdb::optional<CORE_ADDR> possible_new_low;
234
235 /* The previous value of NEW_LOW so we know if the new value is
236 different or not. */
237 CORE_ADDR prev_low;
238
239 do
240 {
241 /* Find an address from which we can start disassembling. */
242 prev_low = new_low;
243 new_low = tui_find_backward_disassembly_start_address (new_low);
244
245 /* Disassemble forward. */
246 next_addr = tui_disassemble (gdbarch, asm_lines, new_low, max_lines);
247 last_addr = asm_lines.back ().addr;
248
249 /* If disassembling from the current value of NEW_LOW reached PC
250 (or went past it) then this would do as a starting point if we
251 can't find anything better, so remember it. */
252 if (last_addr >= pc && new_low != prev_low
253 && asm_lines.size () >= max_lines)
254 possible_new_low.emplace (new_low);
255
256 /* Continue searching until we find a value of NEW_LOW from which
257 disassembling MAX_LINES instructions doesn't reach PC. We
258 know this means we can find the required number of previous
259 instructions then. */
260 }
261 while ((last_addr > pc
262 || (last_addr == pc && asm_lines.size () < max_lines))
263 && new_low != prev_low);
264
265 /* If we failed to disassemble the required number of lines then the
266 following walk forward is not going to work, it assumes that
267 ASM_LINES contains exactly MAX_LINES entries. Instead we should
268 consider falling back to a previous possible start address in
269 POSSIBLE_NEW_LOW. */
270 if (asm_lines.size () < max_lines)
271 {
272 if (!possible_new_low.has_value ())
273 return new_low;
274
275 /* Take the best possible match we have. */
276 new_low = *possible_new_low;
277 next_addr = tui_disassemble (gdbarch, asm_lines, new_low, max_lines);
278 last_addr = asm_lines.back ().addr;
279 gdb_assert (asm_lines.size () >= max_lines);
280 }
281
282 /* Scan forward disassembling one instruction at a time until
283 the last visible instruction of the window matches the pc.
284 We keep the disassembled instructions in the 'lines' window
285 and shift it downward (increasing its addresses). */
286 int pos = max_lines - 1;
287 if (last_addr < pc)
288 do
289 {
290 pos++;
291 if (pos >= max_lines)
292 pos = 0;
293
294 CORE_ADDR old_next_addr = next_addr;
295 std::vector<tui_asm_line> single_asm_line;
296 next_addr = tui_disassemble (gdbarch, single_asm_line,
297 next_addr, 1);
298 /* If there are some problems while disassembling exit. */
299 if (next_addr <= old_next_addr)
300 return pc;
301 gdb_assert (single_asm_line.size () == 1);
302 asm_lines[pos] = single_asm_line[0];
303 } while (next_addr <= pc);
304 pos++;
305 if (pos >= max_lines)
306 pos = 0;
307 new_low = asm_lines[pos].addr;
308
309 /* When scrolling backward the addresses should move backward, or at
310 the very least stay the same if we are at the first address that
311 can be disassembled. */
312 gdb_assert (new_low <= pc);
313 }
314 return new_low;
315 }
316
317 /* Function to set the disassembly window's content. */
318 bool
319 tui_disasm_window::set_contents (struct gdbarch *arch,
320 const struct symtab_and_line &sal)
321 {
322 int i;
323 int max_lines;
324 CORE_ADDR cur_pc;
325 int tab_len = tui_tab_width;
326 int insn_pos;
327
328 CORE_ADDR pc = sal.pc;
329 if (pc == 0)
330 return false;
331
332 m_gdbarch = arch;
333 m_start_line_or_addr.loa = LOA_ADDRESS;
334 m_start_line_or_addr.u.addr = pc;
335 cur_pc = tui_location.addr ();
336
337 /* Window size, excluding highlight box. */
338 max_lines = height - 2;
339
340 /* Get temporary table that will hold all strings (addr & insn). */
341 std::vector<tui_asm_line> asm_lines;
342 size_t addr_size = 0;
343 tui_disassemble (m_gdbarch, asm_lines, pc, max_lines, &addr_size);
344
345 /* Align instructions to the same column. */
346 insn_pos = (1 + (addr_size / tab_len)) * tab_len;
347
348 /* Now construct each line. */
349 m_content.resize (max_lines);
350 m_max_length = -1;
351 for (i = 0; i < max_lines; i++)
352 {
353 tui_source_element *src = &m_content[i];
354
355 std::string line;
356 CORE_ADDR addr;
357
358 if (i < asm_lines.size ())
359 {
360 line
361 = (asm_lines[i].addr_string
362 + n_spaces (insn_pos - asm_lines[i].addr_size)
363 + asm_lines[i].insn);
364 addr = asm_lines[i].addr;
365 }
366 else
367 {
368 line = "";
369 addr = 0;
370 }
371
372 const char *ptr = line.c_str ();
373 int line_len;
374 src->line = tui_copy_source_line (&ptr, &line_len);
375 m_max_length = std::max (m_max_length, line_len);
376
377 src->line_or_addr.loa = LOA_ADDRESS;
378 src->line_or_addr.u.addr = addr;
379 src->is_exec_point = (addr == cur_pc && line.size () > 0);
380 }
381 return true;
382 }
383
384
385 void
386 tui_get_begin_asm_address (struct gdbarch **gdbarch_p, CORE_ADDR *addr_p)
387 {
388 struct gdbarch *gdbarch = get_current_arch ();
389 CORE_ADDR addr = 0;
390
391 if (tui_location.addr () == 0)
392 {
393 if (have_full_symbols () || have_partial_symbols ())
394 {
395 set_default_source_symtab_and_line ();
396 struct symtab_and_line sal = get_current_source_symtab_and_line ();
397
398 if (sal.symtab != nullptr)
399 find_line_pc (sal.symtab, sal.line, &addr);
400 }
401
402 if (addr == 0)
403 {
404 struct bound_minimal_symbol main_symbol
405 = lookup_minimal_symbol (main_name (), nullptr, nullptr);
406 if (main_symbol.minsym != nullptr)
407 addr = main_symbol.value_address ();
408 }
409 }
410 else /* The target is executing. */
411 {
412 gdbarch = tui_location.gdbarch ();
413 addr = tui_location.addr ();
414 }
415
416 *gdbarch_p = gdbarch;
417 *addr_p = addr;
418 }
419
420 /* Determine what the low address will be to display in the TUI's
421 disassembly window. This may or may not be the same as the low
422 address input. */
423 CORE_ADDR
424 tui_get_low_disassembly_address (struct gdbarch *gdbarch,
425 CORE_ADDR low, CORE_ADDR pc)
426 {
427 int pos;
428
429 /* Determine where to start the disassembly so that the pc is about
430 in the middle of the viewport. */
431 if (TUI_DISASM_WIN != NULL)
432 pos = TUI_DISASM_WIN->height;
433 else if (TUI_CMD_WIN == NULL)
434 pos = tui_term_height () / 2 - 2;
435 else
436 pos = tui_term_height () - TUI_CMD_WIN->height - 2;
437 pos = (pos - 2) / 2;
438
439 pc = tui_find_disassembly_address (gdbarch, pc, -pos);
440
441 if (pc < low)
442 pc = low;
443 return pc;
444 }
445
446 /* Scroll the disassembly forward or backward vertically. */
447 void
448 tui_disasm_window::do_scroll_vertical (int num_to_scroll)
449 {
450 if (!m_content.empty ())
451 {
452 CORE_ADDR pc;
453
454 pc = m_start_line_or_addr.u.addr;
455
456 symtab_and_line sal {};
457 sal.pspace = current_program_space;
458 sal.pc = tui_find_disassembly_address (m_gdbarch, pc, num_to_scroll);
459 update_source_window_as_is (m_gdbarch, sal);
460 }
461 }
462
463 bool
464 tui_disasm_window::location_matches_p (struct bp_location *loc, int line_no)
465 {
466 return (m_content[line_no].line_or_addr.loa == LOA_ADDRESS
467 && m_content[line_no].line_or_addr.u.addr == loc->address);
468 }
469
470 bool
471 tui_disasm_window::addr_is_displayed (CORE_ADDR addr) const
472 {
473 if (m_content.size () < SCROLL_THRESHOLD)
474 return false;
475
476 for (size_t i = 0; i < m_content.size () - SCROLL_THRESHOLD; ++i)
477 {
478 if (m_content[i].line_or_addr.loa == LOA_ADDRESS
479 && m_content[i].line_or_addr.u.addr == addr)
480 return true;
481 }
482
483 return false;
484 }
485
486 void
487 tui_disasm_window::maybe_update (struct frame_info *fi, symtab_and_line sal)
488 {
489 CORE_ADDR low;
490
491 struct gdbarch *frame_arch = get_frame_arch (fi);
492
493 if (find_pc_partial_function (sal.pc, NULL, &low, NULL) == 0)
494 {
495 /* There is no symbol available for current PC. There is no
496 safe way how to "disassemble backwards". */
497 low = sal.pc;
498 }
499 else
500 low = tui_get_low_disassembly_address (frame_arch, low, sal.pc);
501
502 struct tui_line_or_address a;
503
504 a.loa = LOA_ADDRESS;
505 a.u.addr = low;
506 if (!addr_is_displayed (sal.pc))
507 {
508 sal.pc = low;
509 update_source_window (frame_arch, sal);
510 }
511 else
512 {
513 a.u.addr = sal.pc;
514 set_is_exec_point_at (a);
515 }
516 }
517
518 void
519 tui_disasm_window::display_start_addr (struct gdbarch **gdbarch_p,
520 CORE_ADDR *addr_p)
521 {
522 *gdbarch_p = m_gdbarch;
523 *addr_p = m_start_line_or_addr.u.addr;
524 }