1e081552f07dd7f156d3fffeedacd56f5b667cf2
[binutils-gdb.git] / gdb / utils.c
1 /* General utility routines for GDB, the GNU debugger.
2 Copyright 1986, 1989, 1990-1992, 1995, 1996, 1998, 2000
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include "gdb_string.h"
25 #include "event-top.h"
26
27 #ifdef HAVE_CURSES_H
28 #include <curses.h>
29 #endif
30 #ifdef HAVE_TERM_H
31 #include <term.h>
32 #endif
33
34 #ifdef __GO32__
35 #include <pc.h>
36 #endif
37
38 /* SunOS's curses.h has a '#define reg register' in it. Thank you Sun. */
39 #ifdef reg
40 #undef reg
41 #endif
42
43 #include "signals.h"
44 #include "gdbcmd.h"
45 #include "serial.h"
46 #include "bfd.h"
47 #include "target.h"
48 #include "demangle.h"
49 #include "expression.h"
50 #include "language.h"
51 #include "annotate.h"
52
53 #include <readline/readline.h>
54
55 #undef XMALLOC
56 #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
57
58 /* readline defines this. */
59 #undef savestring
60
61 void (*error_begin_hook) PARAMS ((void));
62
63 /* Holds the last error message issued by gdb */
64
65 static struct ui_file *gdb_lasterr;
66
67 /* Prototypes for local functions */
68
69 static void vfprintf_maybe_filtered (struct ui_file *, const char *,
70 va_list, int);
71
72 static void fputs_maybe_filtered (const char *, struct ui_file *, int);
73
74 #if defined (USE_MMALLOC) && !defined (NO_MMCHECK)
75 static void malloc_botch PARAMS ((void));
76 #endif
77
78 static void
79 prompt_for_continue PARAMS ((void));
80
81 static void
82 set_width_command PARAMS ((char *, int, struct cmd_list_element *));
83
84 static void
85 set_width PARAMS ((void));
86
87 /* Chain of cleanup actions established with make_cleanup,
88 to be executed if an error happens. */
89
90 static struct cleanup *cleanup_chain; /* cleaned up after a failed command */
91 static struct cleanup *final_cleanup_chain; /* cleaned up when gdb exits */
92 static struct cleanup *run_cleanup_chain; /* cleaned up on each 'run' */
93 static struct cleanup *exec_cleanup_chain; /* cleaned up on each execution command */
94 /* cleaned up on each error from within an execution command */
95 static struct cleanup *exec_error_cleanup_chain;
96
97 /* Pointer to what is left to do for an execution command after the
98 target stops. Used only in asynchronous mode, by targets that
99 support async execution. The finish and until commands use it. So
100 does the target extended-remote command. */
101 struct continuation *cmd_continuation;
102 struct continuation *intermediate_continuation;
103
104 /* Nonzero if we have job control. */
105
106 int job_control;
107
108 /* Nonzero means a quit has been requested. */
109
110 int quit_flag;
111
112 /* Nonzero means quit immediately if Control-C is typed now, rather
113 than waiting until QUIT is executed. Be careful in setting this;
114 code which executes with immediate_quit set has to be very careful
115 about being able to deal with being interrupted at any time. It is
116 almost always better to use QUIT; the only exception I can think of
117 is being able to quit out of a system call (using EINTR loses if
118 the SIGINT happens between the previous QUIT and the system call).
119 To immediately quit in the case in which a SIGINT happens between
120 the previous QUIT and setting immediate_quit (desirable anytime we
121 expect to block), call QUIT after setting immediate_quit. */
122
123 int immediate_quit;
124
125 /* Nonzero means that encoded C++ names should be printed out in their
126 C++ form rather than raw. */
127
128 int demangle = 1;
129
130 /* Nonzero means that encoded C++ names should be printed out in their
131 C++ form even in assembler language displays. If this is set, but
132 DEMANGLE is zero, names are printed raw, i.e. DEMANGLE controls. */
133
134 int asm_demangle = 0;
135
136 /* Nonzero means that strings with character values >0x7F should be printed
137 as octal escapes. Zero means just print the value (e.g. it's an
138 international character, and the terminal or window can cope.) */
139
140 int sevenbit_strings = 0;
141
142 /* String to be printed before error messages, if any. */
143
144 char *error_pre_print;
145
146 /* String to be printed before quit messages, if any. */
147
148 char *quit_pre_print;
149
150 /* String to be printed before warning messages, if any. */
151
152 char *warning_pre_print = "\nwarning: ";
153
154 int pagination_enabled = 1;
155 \f
156
157 /* Add a new cleanup to the cleanup_chain,
158 and return the previous chain pointer
159 to be passed later to do_cleanups or discard_cleanups.
160 Args are FUNCTION to clean up with, and ARG to pass to it. */
161
162 struct cleanup *
163 make_cleanup (make_cleanup_ftype *function, void *arg)
164 {
165 return make_my_cleanup (&cleanup_chain, function, arg);
166 }
167
168 struct cleanup *
169 make_final_cleanup (make_cleanup_ftype *function, void *arg)
170 {
171 return make_my_cleanup (&final_cleanup_chain, function, arg);
172 }
173
174 struct cleanup *
175 make_run_cleanup (make_cleanup_ftype *function, void *arg)
176 {
177 return make_my_cleanup (&run_cleanup_chain, function, arg);
178 }
179
180 struct cleanup *
181 make_exec_cleanup (make_cleanup_ftype *function, void *arg)
182 {
183 return make_my_cleanup (&exec_cleanup_chain, function, arg);
184 }
185
186 struct cleanup *
187 make_exec_error_cleanup (make_cleanup_ftype *function, void *arg)
188 {
189 return make_my_cleanup (&exec_error_cleanup_chain, function, arg);
190 }
191
192 static void
193 do_freeargv (arg)
194 void *arg;
195 {
196 freeargv ((char **) arg);
197 }
198
199 struct cleanup *
200 make_cleanup_freeargv (arg)
201 char **arg;
202 {
203 return make_my_cleanup (&cleanup_chain, do_freeargv, arg);
204 }
205
206 static void
207 do_ui_file_delete (void *arg)
208 {
209 ui_file_delete (arg);
210 }
211
212 struct cleanup *
213 make_cleanup_ui_file_delete (struct ui_file *arg)
214 {
215 return make_my_cleanup (&cleanup_chain, do_ui_file_delete, arg);
216 }
217
218 struct cleanup *
219 make_my_cleanup (struct cleanup **pmy_chain, make_cleanup_ftype *function,
220 void *arg)
221 {
222 register struct cleanup *new
223 = (struct cleanup *) xmalloc (sizeof (struct cleanup));
224 register struct cleanup *old_chain = *pmy_chain;
225
226 new->next = *pmy_chain;
227 new->function = function;
228 new->arg = arg;
229 *pmy_chain = new;
230
231 return old_chain;
232 }
233
234 /* Discard cleanups and do the actions they describe
235 until we get back to the point OLD_CHAIN in the cleanup_chain. */
236
237 void
238 do_cleanups (old_chain)
239 register struct cleanup *old_chain;
240 {
241 do_my_cleanups (&cleanup_chain, old_chain);
242 }
243
244 void
245 do_final_cleanups (old_chain)
246 register struct cleanup *old_chain;
247 {
248 do_my_cleanups (&final_cleanup_chain, old_chain);
249 }
250
251 void
252 do_run_cleanups (old_chain)
253 register struct cleanup *old_chain;
254 {
255 do_my_cleanups (&run_cleanup_chain, old_chain);
256 }
257
258 void
259 do_exec_cleanups (old_chain)
260 register struct cleanup *old_chain;
261 {
262 do_my_cleanups (&exec_cleanup_chain, old_chain);
263 }
264
265 void
266 do_exec_error_cleanups (old_chain)
267 register struct cleanup *old_chain;
268 {
269 do_my_cleanups (&exec_error_cleanup_chain, old_chain);
270 }
271
272 void
273 do_my_cleanups (pmy_chain, old_chain)
274 register struct cleanup **pmy_chain;
275 register struct cleanup *old_chain;
276 {
277 register struct cleanup *ptr;
278 while ((ptr = *pmy_chain) != old_chain)
279 {
280 *pmy_chain = ptr->next; /* Do this first incase recursion */
281 (*ptr->function) (ptr->arg);
282 free (ptr);
283 }
284 }
285
286 /* Discard cleanups, not doing the actions they describe,
287 until we get back to the point OLD_CHAIN in the cleanup_chain. */
288
289 void
290 discard_cleanups (old_chain)
291 register struct cleanup *old_chain;
292 {
293 discard_my_cleanups (&cleanup_chain, old_chain);
294 }
295
296 void
297 discard_final_cleanups (old_chain)
298 register struct cleanup *old_chain;
299 {
300 discard_my_cleanups (&final_cleanup_chain, old_chain);
301 }
302
303 void
304 discard_exec_error_cleanups (old_chain)
305 register struct cleanup *old_chain;
306 {
307 discard_my_cleanups (&exec_error_cleanup_chain, old_chain);
308 }
309
310 void
311 discard_my_cleanups (pmy_chain, old_chain)
312 register struct cleanup **pmy_chain;
313 register struct cleanup *old_chain;
314 {
315 register struct cleanup *ptr;
316 while ((ptr = *pmy_chain) != old_chain)
317 {
318 *pmy_chain = ptr->next;
319 free (ptr);
320 }
321 }
322
323 /* Set the cleanup_chain to 0, and return the old cleanup chain. */
324 struct cleanup *
325 save_cleanups ()
326 {
327 return save_my_cleanups (&cleanup_chain);
328 }
329
330 struct cleanup *
331 save_final_cleanups ()
332 {
333 return save_my_cleanups (&final_cleanup_chain);
334 }
335
336 struct cleanup *
337 save_my_cleanups (pmy_chain)
338 struct cleanup **pmy_chain;
339 {
340 struct cleanup *old_chain = *pmy_chain;
341
342 *pmy_chain = 0;
343 return old_chain;
344 }
345
346 /* Restore the cleanup chain from a previously saved chain. */
347 void
348 restore_cleanups (chain)
349 struct cleanup *chain;
350 {
351 restore_my_cleanups (&cleanup_chain, chain);
352 }
353
354 void
355 restore_final_cleanups (chain)
356 struct cleanup *chain;
357 {
358 restore_my_cleanups (&final_cleanup_chain, chain);
359 }
360
361 void
362 restore_my_cleanups (pmy_chain, chain)
363 struct cleanup **pmy_chain;
364 struct cleanup *chain;
365 {
366 *pmy_chain = chain;
367 }
368
369 /* This function is useful for cleanups.
370 Do
371
372 foo = xmalloc (...);
373 old_chain = make_cleanup (free_current_contents, &foo);
374
375 to arrange to free the object thus allocated. */
376
377 void
378 free_current_contents (location)
379 char **location;
380 {
381 free (*location);
382 }
383
384 /* Provide a known function that does nothing, to use as a base for
385 for a possibly long chain of cleanups. This is useful where we
386 use the cleanup chain for handling normal cleanups as well as dealing
387 with cleanups that need to be done as a result of a call to error().
388 In such cases, we may not be certain where the first cleanup is, unless
389 we have a do-nothing one to always use as the base. */
390
391 /* ARGSUSED */
392 void
393 null_cleanup (void *arg)
394 {
395 }
396
397 /* Add a continuation to the continuation list, the gloabl list
398 cmd_continuation. The new continuation will be added at the front.*/
399 void
400 add_continuation (continuation_hook, arg_list)
401 void (*continuation_hook) PARAMS ((struct continuation_arg *));
402 struct continuation_arg *arg_list;
403 {
404 struct continuation *continuation_ptr;
405
406 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
407 continuation_ptr->continuation_hook = continuation_hook;
408 continuation_ptr->arg_list = arg_list;
409 continuation_ptr->next = cmd_continuation;
410 cmd_continuation = continuation_ptr;
411 }
412
413 /* Walk down the cmd_continuation list, and execute all the
414 continuations. There is a problem though. In some cases new
415 continuations may be added while we are in the middle of this
416 loop. If this happens they will be added in the front, and done
417 before we have a chance of exhausting those that were already
418 there. We need to then save the beginning of the list in a pointer
419 and do the continuations from there on, instead of using the
420 global beginning of list as our iteration pointer.*/
421 void
422 do_all_continuations ()
423 {
424 struct continuation *continuation_ptr;
425 struct continuation *saved_continuation;
426
427 /* Copy the list header into another pointer, and set the global
428 list header to null, so that the global list can change as a side
429 effect of invoking the continuations and the processing of
430 the preexisting continuations will not be affected. */
431 continuation_ptr = cmd_continuation;
432 cmd_continuation = NULL;
433
434 /* Work now on the list we have set aside. */
435 while (continuation_ptr)
436 {
437 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
438 saved_continuation = continuation_ptr;
439 continuation_ptr = continuation_ptr->next;
440 free (saved_continuation);
441 }
442 }
443
444 /* Walk down the cmd_continuation list, and get rid of all the
445 continuations. */
446 void
447 discard_all_continuations ()
448 {
449 struct continuation *continuation_ptr;
450
451 while (cmd_continuation)
452 {
453 continuation_ptr = cmd_continuation;
454 cmd_continuation = continuation_ptr->next;
455 free (continuation_ptr);
456 }
457 }
458
459 /* Add a continuation to the continuation list, the global list
460 intermediate_continuation. The new continuation will be added at the front.*/
461 void
462 add_intermediate_continuation (continuation_hook, arg_list)
463 void (*continuation_hook) PARAMS ((struct continuation_arg *));
464 struct continuation_arg *arg_list;
465 {
466 struct continuation *continuation_ptr;
467
468 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
469 continuation_ptr->continuation_hook = continuation_hook;
470 continuation_ptr->arg_list = arg_list;
471 continuation_ptr->next = intermediate_continuation;
472 intermediate_continuation = continuation_ptr;
473 }
474
475 /* Walk down the cmd_continuation list, and execute all the
476 continuations. There is a problem though. In some cases new
477 continuations may be added while we are in the middle of this
478 loop. If this happens they will be added in the front, and done
479 before we have a chance of exhausting those that were already
480 there. We need to then save the beginning of the list in a pointer
481 and do the continuations from there on, instead of using the
482 global beginning of list as our iteration pointer.*/
483 void
484 do_all_intermediate_continuations ()
485 {
486 struct continuation *continuation_ptr;
487 struct continuation *saved_continuation;
488
489 /* Copy the list header into another pointer, and set the global
490 list header to null, so that the global list can change as a side
491 effect of invoking the continuations and the processing of
492 the preexisting continuations will not be affected. */
493 continuation_ptr = intermediate_continuation;
494 intermediate_continuation = NULL;
495
496 /* Work now on the list we have set aside. */
497 while (continuation_ptr)
498 {
499 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
500 saved_continuation = continuation_ptr;
501 continuation_ptr = continuation_ptr->next;
502 free (saved_continuation);
503 }
504 }
505
506 /* Walk down the cmd_continuation list, and get rid of all the
507 continuations. */
508 void
509 discard_all_intermediate_continuations ()
510 {
511 struct continuation *continuation_ptr;
512
513 while (intermediate_continuation)
514 {
515 continuation_ptr = intermediate_continuation;
516 intermediate_continuation = continuation_ptr->next;
517 free (continuation_ptr);
518 }
519 }
520
521 \f
522
523 /* Print a warning message. Way to use this is to call warning_begin,
524 output the warning message (use unfiltered output to gdb_stderr),
525 ending in a newline. There is not currently a warning_end that you
526 call afterwards, but such a thing might be added if it is useful
527 for a GUI to separate warning messages from other output.
528
529 FIXME: Why do warnings use unfiltered output and errors filtered?
530 Is this anything other than a historical accident? */
531
532 void
533 warning_begin ()
534 {
535 target_terminal_ours ();
536 wrap_here (""); /* Force out any buffered output */
537 gdb_flush (gdb_stdout);
538 if (warning_pre_print)
539 fprintf_unfiltered (gdb_stderr, warning_pre_print);
540 }
541
542 /* Print a warning message.
543 The first argument STRING is the warning message, used as a fprintf string,
544 and the remaining args are passed as arguments to it.
545 The primary difference between warnings and errors is that a warning
546 does not force the return to command level. */
547
548 void
549 warning (const char *string,...)
550 {
551 va_list args;
552 va_start (args, string);
553 if (warning_hook)
554 (*warning_hook) (string, args);
555 else
556 {
557 warning_begin ();
558 vfprintf_unfiltered (gdb_stderr, string, args);
559 fprintf_unfiltered (gdb_stderr, "\n");
560 va_end (args);
561 }
562 }
563
564 /* Start the printing of an error message. Way to use this is to call
565 this, output the error message (use filtered output to gdb_stderr
566 (FIXME: Some callers, like memory_error, use gdb_stdout)), ending
567 in a newline, and then call return_to_top_level (RETURN_ERROR).
568 error() provides a convenient way to do this for the special case
569 that the error message can be formatted with a single printf call,
570 but this is more general. */
571 void
572 error_begin ()
573 {
574 if (error_begin_hook)
575 error_begin_hook ();
576
577 target_terminal_ours ();
578 wrap_here (""); /* Force out any buffered output */
579 gdb_flush (gdb_stdout);
580
581 annotate_error_begin ();
582
583 if (error_pre_print)
584 fprintf_filtered (gdb_stderr, error_pre_print);
585 }
586
587 /* Print an error message and return to command level.
588 The first argument STRING is the error message, used as a fprintf string,
589 and the remaining args are passed as arguments to it. */
590
591 NORETURN void
592 verror (const char *string, va_list args)
593 {
594 char *err_string;
595 struct cleanup *err_string_cleanup;
596 /* FIXME: cagney/1999-11-10: All error calls should come here.
597 Unfortunatly some code uses the sequence: error_begin(); print
598 error message; return_to_top_level. That code should be
599 flushed. */
600 error_begin ();
601 /* NOTE: It's tempting to just do the following...
602 vfprintf_filtered (gdb_stderr, string, args);
603 and then follow with a similar looking statement to cause the message
604 to also go to gdb_lasterr. But if we do this, we'll be traversing the
605 va_list twice which works on some platforms and fails miserably on
606 others. */
607 /* Save it as the last error */
608 ui_file_rewind (gdb_lasterr);
609 vfprintf_filtered (gdb_lasterr, string, args);
610 /* Retrieve the last error and print it to gdb_stderr */
611 err_string = error_last_message ();
612 err_string_cleanup = make_cleanup (free, err_string);
613 fputs_filtered (err_string, gdb_stderr);
614 fprintf_filtered (gdb_stderr, "\n");
615 do_cleanups (err_string_cleanup);
616 return_to_top_level (RETURN_ERROR);
617 }
618
619 NORETURN void
620 error (const char *string,...)
621 {
622 va_list args;
623 va_start (args, string);
624 verror (string, args);
625 va_end (args);
626 }
627
628 NORETURN void
629 error_stream (struct ui_file *stream)
630 {
631 long size;
632 char *msg = ui_file_xstrdup (stream, &size);
633 make_cleanup (free, msg);
634 error ("%s", msg);
635 }
636
637 /* Get the last error message issued by gdb */
638
639 char *
640 error_last_message (void)
641 {
642 long len;
643 return ui_file_xstrdup (gdb_lasterr, &len);
644 }
645
646 /* This is to be called by main() at the very beginning */
647
648 void
649 error_init (void)
650 {
651 gdb_lasterr = mem_fileopen ();
652 }
653
654 /* Print a message reporting an internal error. Ask the user if they
655 want to continue, dump core, or just exit. */
656
657 NORETURN void
658 internal_verror (const char *fmt, va_list ap)
659 {
660 static char msg[] = "Internal GDB error: recursive internal error.\n";
661 static int dejavu = 0;
662 int continue_p;
663 int dump_core_p;
664
665 /* don't allow infinite error recursion. */
666 switch (dejavu)
667 {
668 case 0:
669 dejavu = 1;
670 break;
671 case 1:
672 dejavu = 2;
673 fputs_unfiltered (msg, gdb_stderr);
674 abort ();
675 default:
676 dejavu = 3;
677 write (STDERR_FILENO, msg, sizeof (msg));
678 exit (1);
679 }
680
681 /* Try to get the message out */
682 fputs_unfiltered ("gdb-internal-error: ", gdb_stderr);
683 vfprintf_unfiltered (gdb_stderr, fmt, ap);
684 fputs_unfiltered ("\n", gdb_stderr);
685
686 /* Default (no case) is to quit GDB. When in batch mode this
687 lessens the likelhood of GDB going into an infinate loop. */
688 continue_p = query ("\
689 An internal GDB error was detected. This may make make further\n\
690 debugging unreliable. Continue this debugging session? ");
691
692 /* Default (no case) is to not dump core. Lessen the chance of GDB
693 leaving random core files around. */
694 dump_core_p = query ("\
695 Create a core file containing the current state of GDB? ");
696
697 if (continue_p)
698 {
699 if (dump_core_p)
700 {
701 if (fork () == 0)
702 abort ();
703 }
704 }
705 else
706 {
707 if (dump_core_p)
708 abort ();
709 else
710 exit (1);
711 }
712
713 dejavu = 0;
714 return_to_top_level (RETURN_ERROR);
715 }
716
717 NORETURN void
718 internal_error (char *string, ...)
719 {
720 va_list ap;
721 va_start (ap, string);
722 internal_verror (string, ap);
723 va_end (ap);
724 }
725
726 /* The strerror() function can return NULL for errno values that are
727 out of range. Provide a "safe" version that always returns a
728 printable string. */
729
730 char *
731 safe_strerror (errnum)
732 int errnum;
733 {
734 char *msg;
735 static char buf[32];
736
737 if ((msg = strerror (errnum)) == NULL)
738 {
739 sprintf (buf, "(undocumented errno %d)", errnum);
740 msg = buf;
741 }
742 return (msg);
743 }
744
745 /* The strsignal() function can return NULL for signal values that are
746 out of range. Provide a "safe" version that always returns a
747 printable string. */
748
749 char *
750 safe_strsignal (signo)
751 int signo;
752 {
753 char *msg;
754 static char buf[32];
755
756 if ((msg = strsignal (signo)) == NULL)
757 {
758 sprintf (buf, "(undocumented signal %d)", signo);
759 msg = buf;
760 }
761 return (msg);
762 }
763
764
765 /* Print the system error message for errno, and also mention STRING
766 as the file name for which the error was encountered.
767 Then return to command level. */
768
769 NORETURN void
770 perror_with_name (string)
771 char *string;
772 {
773 char *err;
774 char *combined;
775
776 err = safe_strerror (errno);
777 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
778 strcpy (combined, string);
779 strcat (combined, ": ");
780 strcat (combined, err);
781
782 /* I understand setting these is a matter of taste. Still, some people
783 may clear errno but not know about bfd_error. Doing this here is not
784 unreasonable. */
785 bfd_set_error (bfd_error_no_error);
786 errno = 0;
787
788 error ("%s.", combined);
789 }
790
791 /* Print the system error message for ERRCODE, and also mention STRING
792 as the file name for which the error was encountered. */
793
794 void
795 print_sys_errmsg (string, errcode)
796 char *string;
797 int errcode;
798 {
799 char *err;
800 char *combined;
801
802 err = safe_strerror (errcode);
803 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
804 strcpy (combined, string);
805 strcat (combined, ": ");
806 strcat (combined, err);
807
808 /* We want anything which was printed on stdout to come out first, before
809 this message. */
810 gdb_flush (gdb_stdout);
811 fprintf_unfiltered (gdb_stderr, "%s.\n", combined);
812 }
813
814 /* Control C eventually causes this to be called, at a convenient time. */
815
816 void
817 quit ()
818 {
819 serial_t gdb_stdout_serial = serial_fdopen (1);
820
821 target_terminal_ours ();
822
823 /* We want all output to appear now, before we print "Quit". We
824 have 3 levels of buffering we have to flush (it's possible that
825 some of these should be changed to flush the lower-level ones
826 too): */
827
828 /* 1. The _filtered buffer. */
829 wrap_here ((char *) 0);
830
831 /* 2. The stdio buffer. */
832 gdb_flush (gdb_stdout);
833 gdb_flush (gdb_stderr);
834
835 /* 3. The system-level buffer. */
836 SERIAL_DRAIN_OUTPUT (gdb_stdout_serial);
837 SERIAL_UN_FDOPEN (gdb_stdout_serial);
838
839 annotate_error_begin ();
840
841 /* Don't use *_filtered; we don't want to prompt the user to continue. */
842 if (quit_pre_print)
843 fprintf_unfiltered (gdb_stderr, quit_pre_print);
844
845 #ifdef __MSDOS__
846 /* No steenking SIGINT will ever be coming our way when the
847 program is resumed. Don't lie. */
848 fprintf_unfiltered (gdb_stderr, "Quit\n");
849 #else
850 if (job_control
851 /* If there is no terminal switching for this target, then we can't
852 possibly get screwed by the lack of job control. */
853 || current_target.to_terminal_ours == NULL)
854 fprintf_unfiltered (gdb_stderr, "Quit\n");
855 else
856 fprintf_unfiltered (gdb_stderr,
857 "Quit (expect signal SIGINT when the program is resumed)\n");
858 #endif
859 return_to_top_level (RETURN_QUIT);
860 }
861
862
863 #if defined(_MSC_VER) /* should test for wingdb instead? */
864
865 /*
866 * Windows translates all keyboard and mouse events
867 * into a message which is appended to the message
868 * queue for the process.
869 */
870
871 void
872 notice_quit ()
873 {
874 int k = win32pollquit ();
875 if (k == 1)
876 quit_flag = 1;
877 else if (k == 2)
878 immediate_quit = 1;
879 }
880
881 #else /* !defined(_MSC_VER) */
882
883 void
884 notice_quit ()
885 {
886 /* Done by signals */
887 }
888
889 #endif /* !defined(_MSC_VER) */
890
891 /* Control C comes here */
892 void
893 request_quit (signo)
894 int signo;
895 {
896 quit_flag = 1;
897 /* Restore the signal handler. Harmless with BSD-style signals, needed
898 for System V-style signals. So just always do it, rather than worrying
899 about USG defines and stuff like that. */
900 signal (signo, request_quit);
901
902 #ifdef REQUEST_QUIT
903 REQUEST_QUIT;
904 #else
905 if (immediate_quit)
906 quit ();
907 #endif
908 }
909 \f
910 /* Memory management stuff (malloc friends). */
911
912 /* Make a substitute size_t for non-ANSI compilers. */
913
914 #ifndef HAVE_STDDEF_H
915 #ifndef size_t
916 #define size_t unsigned int
917 #endif
918 #endif
919
920 #if !defined (USE_MMALLOC)
921
922 PTR
923 mcalloc (PTR md, size_t number, size_t size)
924 {
925 return calloc (number, size);
926 }
927
928 PTR
929 mmalloc (md, size)
930 PTR md;
931 size_t size;
932 {
933 return malloc (size);
934 }
935
936 PTR
937 mrealloc (md, ptr, size)
938 PTR md;
939 PTR ptr;
940 size_t size;
941 {
942 if (ptr == 0) /* Guard against old realloc's */
943 return malloc (size);
944 else
945 return realloc (ptr, size);
946 }
947
948 void
949 mfree (md, ptr)
950 PTR md;
951 PTR ptr;
952 {
953 free (ptr);
954 }
955
956 #endif /* USE_MMALLOC */
957
958 #if !defined (USE_MMALLOC) || defined (NO_MMCHECK)
959
960 void
961 init_malloc (void *md)
962 {
963 }
964
965 #else /* Have mmalloc and want corruption checking */
966
967 static void
968 malloc_botch ()
969 {
970 fprintf_unfiltered (gdb_stderr, "Memory corruption\n");
971 abort ();
972 }
973
974 /* Attempt to install hooks in mmalloc/mrealloc/mfree for the heap specified
975 by MD, to detect memory corruption. Note that MD may be NULL to specify
976 the default heap that grows via sbrk.
977
978 Note that for freshly created regions, we must call mmcheckf prior to any
979 mallocs in the region. Otherwise, any region which was allocated prior to
980 installing the checking hooks, which is later reallocated or freed, will
981 fail the checks! The mmcheck function only allows initial hooks to be
982 installed before the first mmalloc. However, anytime after we have called
983 mmcheck the first time to install the checking hooks, we can call it again
984 to update the function pointer to the memory corruption handler.
985
986 Returns zero on failure, non-zero on success. */
987
988 #ifndef MMCHECK_FORCE
989 #define MMCHECK_FORCE 0
990 #endif
991
992 void
993 init_malloc (void *md)
994 {
995 if (!mmcheckf (md, malloc_botch, MMCHECK_FORCE))
996 {
997 /* Don't use warning(), which relies on current_target being set
998 to something other than dummy_target, until after
999 initialize_all_files(). */
1000
1001 fprintf_unfiltered
1002 (gdb_stderr, "warning: failed to install memory consistency checks; ");
1003 fprintf_unfiltered
1004 (gdb_stderr, "configuration should define NO_MMCHECK or MMCHECK_FORCE\n");
1005 }
1006
1007 mmtrace ();
1008 }
1009
1010 #endif /* Have mmalloc and want corruption checking */
1011
1012 /* Called when a memory allocation fails, with the number of bytes of
1013 memory requested in SIZE. */
1014
1015 NORETURN void
1016 nomem (size)
1017 long size;
1018 {
1019 if (size > 0)
1020 {
1021 internal_error ("virtual memory exhausted: can't allocate %ld bytes.", size);
1022 }
1023 else
1024 {
1025 internal_error ("virtual memory exhausted.");
1026 }
1027 }
1028
1029 /* Like mmalloc but get error if no storage available, and protect against
1030 the caller wanting to allocate zero bytes. Whether to return NULL for
1031 a zero byte request, or translate the request into a request for one
1032 byte of zero'd storage, is a religious issue. */
1033
1034 PTR
1035 xmmalloc (md, size)
1036 PTR md;
1037 long size;
1038 {
1039 register PTR val;
1040
1041 if (size == 0)
1042 {
1043 val = NULL;
1044 }
1045 else if ((val = mmalloc (md, size)) == NULL)
1046 {
1047 nomem (size);
1048 }
1049 return (val);
1050 }
1051
1052 /* Like mrealloc but get error if no storage available. */
1053
1054 PTR
1055 xmrealloc (md, ptr, size)
1056 PTR md;
1057 PTR ptr;
1058 long size;
1059 {
1060 register PTR val;
1061
1062 if (ptr != NULL)
1063 {
1064 val = mrealloc (md, ptr, size);
1065 }
1066 else
1067 {
1068 val = mmalloc (md, size);
1069 }
1070 if (val == NULL)
1071 {
1072 nomem (size);
1073 }
1074 return (val);
1075 }
1076
1077 /* Like malloc but get error if no storage available, and protect against
1078 the caller wanting to allocate zero bytes. */
1079
1080 PTR
1081 xmalloc (size)
1082 size_t size;
1083 {
1084 return (xmmalloc ((PTR) NULL, size));
1085 }
1086
1087 /* Like calloc but get error if no storage available */
1088
1089 PTR
1090 xcalloc (size_t number, size_t size)
1091 {
1092 void *mem = mcalloc (NULL, number, size);
1093 if (mem == NULL)
1094 nomem (number * size);
1095 return mem;
1096 }
1097
1098 /* Like mrealloc but get error if no storage available. */
1099
1100 PTR
1101 xrealloc (ptr, size)
1102 PTR ptr;
1103 size_t size;
1104 {
1105 return (xmrealloc ((PTR) NULL, ptr, size));
1106 }
1107 \f
1108
1109 /* My replacement for the read system call.
1110 Used like `read' but keeps going if `read' returns too soon. */
1111
1112 int
1113 myread (desc, addr, len)
1114 int desc;
1115 char *addr;
1116 int len;
1117 {
1118 register int val;
1119 int orglen = len;
1120
1121 while (len > 0)
1122 {
1123 val = read (desc, addr, len);
1124 if (val < 0)
1125 return val;
1126 if (val == 0)
1127 return orglen - len;
1128 len -= val;
1129 addr += val;
1130 }
1131 return orglen;
1132 }
1133 \f
1134 /* Make a copy of the string at PTR with SIZE characters
1135 (and add a null character at the end in the copy).
1136 Uses malloc to get the space. Returns the address of the copy. */
1137
1138 char *
1139 savestring (ptr, size)
1140 const char *ptr;
1141 int size;
1142 {
1143 register char *p = (char *) xmalloc (size + 1);
1144 memcpy (p, ptr, size);
1145 p[size] = 0;
1146 return p;
1147 }
1148
1149 char *
1150 msavestring (void *md, const char *ptr, int size)
1151 {
1152 register char *p = (char *) xmmalloc (md, size + 1);
1153 memcpy (p, ptr, size);
1154 p[size] = 0;
1155 return p;
1156 }
1157
1158 /* The "const" is so it compiles under DGUX (which prototypes strsave
1159 in <string.h>. FIXME: This should be named "xstrsave", shouldn't it?
1160 Doesn't real strsave return NULL if out of memory? */
1161 char *
1162 strsave (ptr)
1163 const char *ptr;
1164 {
1165 return savestring (ptr, strlen (ptr));
1166 }
1167
1168 char *
1169 mstrsave (void *md, const char *ptr)
1170 {
1171 return (msavestring (md, ptr, strlen (ptr)));
1172 }
1173
1174 void
1175 print_spaces (n, file)
1176 register int n;
1177 register struct ui_file *file;
1178 {
1179 fputs_unfiltered (n_spaces (n), file);
1180 }
1181
1182 /* Print a host address. */
1183
1184 void
1185 gdb_print_host_address (void *addr, struct ui_file *stream)
1186 {
1187
1188 /* We could use the %p conversion specifier to fprintf if we had any
1189 way of knowing whether this host supports it. But the following
1190 should work on the Alpha and on 32 bit machines. */
1191
1192 fprintf_filtered (stream, "0x%lx", (unsigned long) addr);
1193 }
1194
1195 /* Ask user a y-or-n question and return 1 iff answer is yes.
1196 Takes three args which are given to printf to print the question.
1197 The first, a control string, should end in "? ".
1198 It should not say how to answer, because we do that. */
1199
1200 /* VARARGS */
1201 int
1202 query (char *ctlstr,...)
1203 {
1204 va_list args;
1205 register int answer;
1206 register int ans2;
1207 int retval;
1208
1209 va_start (args, ctlstr);
1210
1211 if (query_hook)
1212 {
1213 return query_hook (ctlstr, args);
1214 }
1215
1216 /* Automatically answer "yes" if input is not from a terminal. */
1217 if (!input_from_terminal_p ())
1218 return 1;
1219 #ifdef MPW
1220 /* FIXME Automatically answer "yes" if called from MacGDB. */
1221 if (mac_app)
1222 return 1;
1223 #endif /* MPW */
1224
1225 while (1)
1226 {
1227 wrap_here (""); /* Flush any buffered output */
1228 gdb_flush (gdb_stdout);
1229
1230 if (annotation_level > 1)
1231 printf_filtered ("\n\032\032pre-query\n");
1232
1233 vfprintf_filtered (gdb_stdout, ctlstr, args);
1234 printf_filtered ("(y or n) ");
1235
1236 if (annotation_level > 1)
1237 printf_filtered ("\n\032\032query\n");
1238
1239 #ifdef MPW
1240 /* If not in MacGDB, move to a new line so the entered line doesn't
1241 have a prompt on the front of it. */
1242 if (!mac_app)
1243 fputs_unfiltered ("\n", gdb_stdout);
1244 #endif /* MPW */
1245
1246 wrap_here ("");
1247 gdb_flush (gdb_stdout);
1248
1249 #if defined(TUI)
1250 if (!tui_version || cmdWin == tuiWinWithFocus ())
1251 #endif
1252 answer = fgetc (stdin);
1253 #if defined(TUI)
1254 else
1255 answer = (unsigned char) tuiBufferGetc ();
1256
1257 #endif
1258 clearerr (stdin); /* in case of C-d */
1259 if (answer == EOF) /* C-d */
1260 {
1261 retval = 1;
1262 break;
1263 }
1264 /* Eat rest of input line, to EOF or newline */
1265 if ((answer != '\n') || (tui_version && answer != '\r'))
1266 do
1267 {
1268 #if defined(TUI)
1269 if (!tui_version || cmdWin == tuiWinWithFocus ())
1270 #endif
1271 ans2 = fgetc (stdin);
1272 #if defined(TUI)
1273 else
1274 ans2 = (unsigned char) tuiBufferGetc ();
1275 #endif
1276 clearerr (stdin);
1277 }
1278 while (ans2 != EOF && ans2 != '\n' && ans2 != '\r');
1279 TUIDO (((TuiOpaqueFuncPtr) tui_vStartNewLines, 1));
1280
1281 if (answer >= 'a')
1282 answer -= 040;
1283 if (answer == 'Y')
1284 {
1285 retval = 1;
1286 break;
1287 }
1288 if (answer == 'N')
1289 {
1290 retval = 0;
1291 break;
1292 }
1293 printf_filtered ("Please answer y or n.\n");
1294 }
1295
1296 if (annotation_level > 1)
1297 printf_filtered ("\n\032\032post-query\n");
1298 return retval;
1299 }
1300 \f
1301
1302 /* Parse a C escape sequence. STRING_PTR points to a variable
1303 containing a pointer to the string to parse. That pointer
1304 should point to the character after the \. That pointer
1305 is updated past the characters we use. The value of the
1306 escape sequence is returned.
1307
1308 A negative value means the sequence \ newline was seen,
1309 which is supposed to be equivalent to nothing at all.
1310
1311 If \ is followed by a null character, we return a negative
1312 value and leave the string pointer pointing at the null character.
1313
1314 If \ is followed by 000, we return 0 and leave the string pointer
1315 after the zeros. A value of 0 does not mean end of string. */
1316
1317 int
1318 parse_escape (string_ptr)
1319 char **string_ptr;
1320 {
1321 register int c = *(*string_ptr)++;
1322 switch (c)
1323 {
1324 case 'a':
1325 return 007; /* Bell (alert) char */
1326 case 'b':
1327 return '\b';
1328 case 'e': /* Escape character */
1329 return 033;
1330 case 'f':
1331 return '\f';
1332 case 'n':
1333 return '\n';
1334 case 'r':
1335 return '\r';
1336 case 't':
1337 return '\t';
1338 case 'v':
1339 return '\v';
1340 case '\n':
1341 return -2;
1342 case 0:
1343 (*string_ptr)--;
1344 return 0;
1345 case '^':
1346 c = *(*string_ptr)++;
1347 if (c == '\\')
1348 c = parse_escape (string_ptr);
1349 if (c == '?')
1350 return 0177;
1351 return (c & 0200) | (c & 037);
1352
1353 case '0':
1354 case '1':
1355 case '2':
1356 case '3':
1357 case '4':
1358 case '5':
1359 case '6':
1360 case '7':
1361 {
1362 register int i = c - '0';
1363 register int count = 0;
1364 while (++count < 3)
1365 {
1366 if ((c = *(*string_ptr)++) >= '0' && c <= '7')
1367 {
1368 i *= 8;
1369 i += c - '0';
1370 }
1371 else
1372 {
1373 (*string_ptr)--;
1374 break;
1375 }
1376 }
1377 return i;
1378 }
1379 default:
1380 return c;
1381 }
1382 }
1383 \f
1384 /* Print the character C on STREAM as part of the contents of a literal
1385 string whose delimiter is QUOTER. Note that this routine should only
1386 be call for printing things which are independent of the language
1387 of the program being debugged. */
1388
1389 static void printchar (int c, void (*do_fputs) (const char *, struct ui_file*), void (*do_fprintf) (struct ui_file*, const char *, ...), struct ui_file *stream, int quoter);
1390
1391 static void
1392 printchar (c, do_fputs, do_fprintf, stream, quoter)
1393 int c;
1394 void (*do_fputs) PARAMS ((const char *, struct ui_file*));
1395 void (*do_fprintf) PARAMS ((struct ui_file*, const char *, ...));
1396 struct ui_file *stream;
1397 int quoter;
1398 {
1399
1400 c &= 0xFF; /* Avoid sign bit follies */
1401
1402 if (c < 0x20 || /* Low control chars */
1403 (c >= 0x7F && c < 0xA0) || /* DEL, High controls */
1404 (sevenbit_strings && c >= 0x80))
1405 { /* high order bit set */
1406 switch (c)
1407 {
1408 case '\n':
1409 do_fputs ("\\n", stream);
1410 break;
1411 case '\b':
1412 do_fputs ("\\b", stream);
1413 break;
1414 case '\t':
1415 do_fputs ("\\t", stream);
1416 break;
1417 case '\f':
1418 do_fputs ("\\f", stream);
1419 break;
1420 case '\r':
1421 do_fputs ("\\r", stream);
1422 break;
1423 case '\033':
1424 do_fputs ("\\e", stream);
1425 break;
1426 case '\007':
1427 do_fputs ("\\a", stream);
1428 break;
1429 default:
1430 do_fprintf (stream, "\\%.3o", (unsigned int) c);
1431 break;
1432 }
1433 }
1434 else
1435 {
1436 if (c == '\\' || c == quoter)
1437 do_fputs ("\\", stream);
1438 do_fprintf (stream, "%c", c);
1439 }
1440 }
1441
1442 /* Print the character C on STREAM as part of the contents of a
1443 literal string whose delimiter is QUOTER. Note that these routines
1444 should only be call for printing things which are independent of
1445 the language of the program being debugged. */
1446
1447 void
1448 fputstr_filtered (str, quoter, stream)
1449 const char *str;
1450 int quoter;
1451 struct ui_file *stream;
1452 {
1453 while (*str)
1454 printchar (*str++, fputs_filtered, fprintf_filtered, stream, quoter);
1455 }
1456
1457 void
1458 fputstr_unfiltered (str, quoter, stream)
1459 const char *str;
1460 int quoter;
1461 struct ui_file *stream;
1462 {
1463 while (*str)
1464 printchar (*str++, fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1465 }
1466
1467 void
1468 fputstrn_unfiltered (str, n, quoter, stream)
1469 const char *str;
1470 int n;
1471 int quoter;
1472 struct ui_file *stream;
1473 {
1474 int i;
1475 for (i = 0; i < n; i++)
1476 printchar (str[i], fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1477 }
1478
1479 \f
1480
1481 /* Number of lines per page or UINT_MAX if paging is disabled. */
1482 static unsigned int lines_per_page;
1483 /* Number of chars per line or UNIT_MAX if line folding is disabled. */
1484 static unsigned int chars_per_line;
1485 /* Current count of lines printed on this page, chars on this line. */
1486 static unsigned int lines_printed, chars_printed;
1487
1488 /* Buffer and start column of buffered text, for doing smarter word-
1489 wrapping. When someone calls wrap_here(), we start buffering output
1490 that comes through fputs_filtered(). If we see a newline, we just
1491 spit it out and forget about the wrap_here(). If we see another
1492 wrap_here(), we spit it out and remember the newer one. If we see
1493 the end of the line, we spit out a newline, the indent, and then
1494 the buffered output. */
1495
1496 /* Malloc'd buffer with chars_per_line+2 bytes. Contains characters which
1497 are waiting to be output (they have already been counted in chars_printed).
1498 When wrap_buffer[0] is null, the buffer is empty. */
1499 static char *wrap_buffer;
1500
1501 /* Pointer in wrap_buffer to the next character to fill. */
1502 static char *wrap_pointer;
1503
1504 /* String to indent by if the wrap occurs. Must not be NULL if wrap_column
1505 is non-zero. */
1506 static char *wrap_indent;
1507
1508 /* Column number on the screen where wrap_buffer begins, or 0 if wrapping
1509 is not in effect. */
1510 static int wrap_column;
1511 \f
1512
1513 /* Inialize the lines and chars per page */
1514 void
1515 init_page_info ()
1516 {
1517 #if defined(TUI)
1518 if (tui_version && m_winPtrNotNull (cmdWin))
1519 {
1520 lines_per_page = cmdWin->generic.height;
1521 chars_per_line = cmdWin->generic.width;
1522 }
1523 else
1524 #endif
1525 {
1526 /* These defaults will be used if we are unable to get the correct
1527 values from termcap. */
1528 #if defined(__GO32__)
1529 lines_per_page = ScreenRows ();
1530 chars_per_line = ScreenCols ();
1531 #else
1532 lines_per_page = 24;
1533 chars_per_line = 80;
1534
1535 #if !defined (MPW) && !defined (_WIN32)
1536 /* No termcap under MPW, although might be cool to do something
1537 by looking at worksheet or console window sizes. */
1538 /* Initialize the screen height and width from termcap. */
1539 {
1540 char *termtype = getenv ("TERM");
1541
1542 /* Positive means success, nonpositive means failure. */
1543 int status;
1544
1545 /* 2048 is large enough for all known terminals, according to the
1546 GNU termcap manual. */
1547 char term_buffer[2048];
1548
1549 if (termtype)
1550 {
1551 status = tgetent (term_buffer, termtype);
1552 if (status > 0)
1553 {
1554 int val;
1555 int running_in_emacs = getenv ("EMACS") != NULL;
1556
1557 val = tgetnum ("li");
1558 if (val >= 0 && !running_in_emacs)
1559 lines_per_page = val;
1560 else
1561 /* The number of lines per page is not mentioned
1562 in the terminal description. This probably means
1563 that paging is not useful (e.g. emacs shell window),
1564 so disable paging. */
1565 lines_per_page = UINT_MAX;
1566
1567 val = tgetnum ("co");
1568 if (val >= 0)
1569 chars_per_line = val;
1570 }
1571 }
1572 }
1573 #endif /* MPW */
1574
1575 #if defined(SIGWINCH) && defined(SIGWINCH_HANDLER)
1576
1577 /* If there is a better way to determine the window size, use it. */
1578 SIGWINCH_HANDLER (SIGWINCH);
1579 #endif
1580 #endif
1581 /* If the output is not a terminal, don't paginate it. */
1582 if (!ui_file_isatty (gdb_stdout))
1583 lines_per_page = UINT_MAX;
1584 } /* the command_line_version */
1585 set_width ();
1586 }
1587
1588 static void
1589 set_width ()
1590 {
1591 if (chars_per_line == 0)
1592 init_page_info ();
1593
1594 if (!wrap_buffer)
1595 {
1596 wrap_buffer = (char *) xmalloc (chars_per_line + 2);
1597 wrap_buffer[0] = '\0';
1598 }
1599 else
1600 wrap_buffer = (char *) xrealloc (wrap_buffer, chars_per_line + 2);
1601 wrap_pointer = wrap_buffer; /* Start it at the beginning */
1602 }
1603
1604 /* ARGSUSED */
1605 static void
1606 set_width_command (args, from_tty, c)
1607 char *args;
1608 int from_tty;
1609 struct cmd_list_element *c;
1610 {
1611 set_width ();
1612 }
1613
1614 /* Wait, so the user can read what's on the screen. Prompt the user
1615 to continue by pressing RETURN. */
1616
1617 static void
1618 prompt_for_continue ()
1619 {
1620 char *ignore;
1621 char cont_prompt[120];
1622
1623 if (annotation_level > 1)
1624 printf_unfiltered ("\n\032\032pre-prompt-for-continue\n");
1625
1626 strcpy (cont_prompt,
1627 "---Type <return> to continue, or q <return> to quit---");
1628 if (annotation_level > 1)
1629 strcat (cont_prompt, "\n\032\032prompt-for-continue\n");
1630
1631 /* We must do this *before* we call gdb_readline, else it will eventually
1632 call us -- thinking that we're trying to print beyond the end of the
1633 screen. */
1634 reinitialize_more_filter ();
1635
1636 immediate_quit++;
1637 /* On a real operating system, the user can quit with SIGINT.
1638 But not on GO32.
1639
1640 'q' is provided on all systems so users don't have to change habits
1641 from system to system, and because telling them what to do in
1642 the prompt is more user-friendly than expecting them to think of
1643 SIGINT. */
1644 /* Call readline, not gdb_readline, because GO32 readline handles control-C
1645 whereas control-C to gdb_readline will cause the user to get dumped
1646 out to DOS. */
1647 ignore = readline (cont_prompt);
1648
1649 if (annotation_level > 1)
1650 printf_unfiltered ("\n\032\032post-prompt-for-continue\n");
1651
1652 if (ignore)
1653 {
1654 char *p = ignore;
1655 while (*p == ' ' || *p == '\t')
1656 ++p;
1657 if (p[0] == 'q')
1658 {
1659 if (!event_loop_p)
1660 request_quit (SIGINT);
1661 else
1662 async_request_quit (0);
1663 }
1664 free (ignore);
1665 }
1666 immediate_quit--;
1667
1668 /* Now we have to do this again, so that GDB will know that it doesn't
1669 need to save the ---Type <return>--- line at the top of the screen. */
1670 reinitialize_more_filter ();
1671
1672 dont_repeat (); /* Forget prev cmd -- CR won't repeat it. */
1673 }
1674
1675 /* Reinitialize filter; ie. tell it to reset to original values. */
1676
1677 void
1678 reinitialize_more_filter ()
1679 {
1680 lines_printed = 0;
1681 chars_printed = 0;
1682 }
1683
1684 /* Indicate that if the next sequence of characters overflows the line,
1685 a newline should be inserted here rather than when it hits the end.
1686 If INDENT is non-null, it is a string to be printed to indent the
1687 wrapped part on the next line. INDENT must remain accessible until
1688 the next call to wrap_here() or until a newline is printed through
1689 fputs_filtered().
1690
1691 If the line is already overfull, we immediately print a newline and
1692 the indentation, and disable further wrapping.
1693
1694 If we don't know the width of lines, but we know the page height,
1695 we must not wrap words, but should still keep track of newlines
1696 that were explicitly printed.
1697
1698 INDENT should not contain tabs, as that will mess up the char count
1699 on the next line. FIXME.
1700
1701 This routine is guaranteed to force out any output which has been
1702 squirreled away in the wrap_buffer, so wrap_here ((char *)0) can be
1703 used to force out output from the wrap_buffer. */
1704
1705 void
1706 wrap_here (indent)
1707 char *indent;
1708 {
1709 /* This should have been allocated, but be paranoid anyway. */
1710 if (!wrap_buffer)
1711 abort ();
1712
1713 if (wrap_buffer[0])
1714 {
1715 *wrap_pointer = '\0';
1716 fputs_unfiltered (wrap_buffer, gdb_stdout);
1717 }
1718 wrap_pointer = wrap_buffer;
1719 wrap_buffer[0] = '\0';
1720 if (chars_per_line == UINT_MAX) /* No line overflow checking */
1721 {
1722 wrap_column = 0;
1723 }
1724 else if (chars_printed >= chars_per_line)
1725 {
1726 puts_filtered ("\n");
1727 if (indent != NULL)
1728 puts_filtered (indent);
1729 wrap_column = 0;
1730 }
1731 else
1732 {
1733 wrap_column = chars_printed;
1734 if (indent == NULL)
1735 wrap_indent = "";
1736 else
1737 wrap_indent = indent;
1738 }
1739 }
1740
1741 /* Ensure that whatever gets printed next, using the filtered output
1742 commands, starts at the beginning of the line. I.E. if there is
1743 any pending output for the current line, flush it and start a new
1744 line. Otherwise do nothing. */
1745
1746 void
1747 begin_line ()
1748 {
1749 if (chars_printed > 0)
1750 {
1751 puts_filtered ("\n");
1752 }
1753 }
1754
1755
1756 /* Like fputs but if FILTER is true, pause after every screenful.
1757
1758 Regardless of FILTER can wrap at points other than the final
1759 character of a line.
1760
1761 Unlike fputs, fputs_maybe_filtered does not return a value.
1762 It is OK for LINEBUFFER to be NULL, in which case just don't print
1763 anything.
1764
1765 Note that a longjmp to top level may occur in this routine (only if
1766 FILTER is true) (since prompt_for_continue may do so) so this
1767 routine should not be called when cleanups are not in place. */
1768
1769 static void
1770 fputs_maybe_filtered (linebuffer, stream, filter)
1771 const char *linebuffer;
1772 struct ui_file *stream;
1773 int filter;
1774 {
1775 const char *lineptr;
1776
1777 if (linebuffer == 0)
1778 return;
1779
1780 /* Don't do any filtering if it is disabled. */
1781 if ((stream != gdb_stdout) || !pagination_enabled
1782 || (lines_per_page == UINT_MAX && chars_per_line == UINT_MAX))
1783 {
1784 fputs_unfiltered (linebuffer, stream);
1785 return;
1786 }
1787
1788 /* Go through and output each character. Show line extension
1789 when this is necessary; prompt user for new page when this is
1790 necessary. */
1791
1792 lineptr = linebuffer;
1793 while (*lineptr)
1794 {
1795 /* Possible new page. */
1796 if (filter &&
1797 (lines_printed >= lines_per_page - 1))
1798 prompt_for_continue ();
1799
1800 while (*lineptr && *lineptr != '\n')
1801 {
1802 /* Print a single line. */
1803 if (*lineptr == '\t')
1804 {
1805 if (wrap_column)
1806 *wrap_pointer++ = '\t';
1807 else
1808 fputc_unfiltered ('\t', stream);
1809 /* Shifting right by 3 produces the number of tab stops
1810 we have already passed, and then adding one and
1811 shifting left 3 advances to the next tab stop. */
1812 chars_printed = ((chars_printed >> 3) + 1) << 3;
1813 lineptr++;
1814 }
1815 else
1816 {
1817 if (wrap_column)
1818 *wrap_pointer++ = *lineptr;
1819 else
1820 fputc_unfiltered (*lineptr, stream);
1821 chars_printed++;
1822 lineptr++;
1823 }
1824
1825 if (chars_printed >= chars_per_line)
1826 {
1827 unsigned int save_chars = chars_printed;
1828
1829 chars_printed = 0;
1830 lines_printed++;
1831 /* If we aren't actually wrapping, don't output newline --
1832 if chars_per_line is right, we probably just overflowed
1833 anyway; if it's wrong, let us keep going. */
1834 if (wrap_column)
1835 fputc_unfiltered ('\n', stream);
1836
1837 /* Possible new page. */
1838 if (lines_printed >= lines_per_page - 1)
1839 prompt_for_continue ();
1840
1841 /* Now output indentation and wrapped string */
1842 if (wrap_column)
1843 {
1844 fputs_unfiltered (wrap_indent, stream);
1845 *wrap_pointer = '\0'; /* Null-terminate saved stuff */
1846 fputs_unfiltered (wrap_buffer, stream); /* and eject it */
1847 /* FIXME, this strlen is what prevents wrap_indent from
1848 containing tabs. However, if we recurse to print it
1849 and count its chars, we risk trouble if wrap_indent is
1850 longer than (the user settable) chars_per_line.
1851 Note also that this can set chars_printed > chars_per_line
1852 if we are printing a long string. */
1853 chars_printed = strlen (wrap_indent)
1854 + (save_chars - wrap_column);
1855 wrap_pointer = wrap_buffer; /* Reset buffer */
1856 wrap_buffer[0] = '\0';
1857 wrap_column = 0; /* And disable fancy wrap */
1858 }
1859 }
1860 }
1861
1862 if (*lineptr == '\n')
1863 {
1864 chars_printed = 0;
1865 wrap_here ((char *) 0); /* Spit out chars, cancel further wraps */
1866 lines_printed++;
1867 fputc_unfiltered ('\n', stream);
1868 lineptr++;
1869 }
1870 }
1871 }
1872
1873 void
1874 fputs_filtered (linebuffer, stream)
1875 const char *linebuffer;
1876 struct ui_file *stream;
1877 {
1878 fputs_maybe_filtered (linebuffer, stream, 1);
1879 }
1880
1881 int
1882 putchar_unfiltered (c)
1883 int c;
1884 {
1885 char buf = c;
1886 ui_file_write (gdb_stdout, &buf, 1);
1887 return c;
1888 }
1889
1890 int
1891 fputc_unfiltered (c, stream)
1892 int c;
1893 struct ui_file *stream;
1894 {
1895 char buf = c;
1896 ui_file_write (stream, &buf, 1);
1897 return c;
1898 }
1899
1900 int
1901 fputc_filtered (c, stream)
1902 int c;
1903 struct ui_file *stream;
1904 {
1905 char buf[2];
1906
1907 buf[0] = c;
1908 buf[1] = 0;
1909 fputs_filtered (buf, stream);
1910 return c;
1911 }
1912
1913 /* puts_debug is like fputs_unfiltered, except it prints special
1914 characters in printable fashion. */
1915
1916 void
1917 puts_debug (prefix, string, suffix)
1918 char *prefix;
1919 char *string;
1920 char *suffix;
1921 {
1922 int ch;
1923
1924 /* Print prefix and suffix after each line. */
1925 static int new_line = 1;
1926 static int return_p = 0;
1927 static char *prev_prefix = "";
1928 static char *prev_suffix = "";
1929
1930 if (*string == '\n')
1931 return_p = 0;
1932
1933 /* If the prefix is changing, print the previous suffix, a new line,
1934 and the new prefix. */
1935 if ((return_p || (strcmp (prev_prefix, prefix) != 0)) && !new_line)
1936 {
1937 fputs_unfiltered (prev_suffix, gdb_stdlog);
1938 fputs_unfiltered ("\n", gdb_stdlog);
1939 fputs_unfiltered (prefix, gdb_stdlog);
1940 }
1941
1942 /* Print prefix if we printed a newline during the previous call. */
1943 if (new_line)
1944 {
1945 new_line = 0;
1946 fputs_unfiltered (prefix, gdb_stdlog);
1947 }
1948
1949 prev_prefix = prefix;
1950 prev_suffix = suffix;
1951
1952 /* Output characters in a printable format. */
1953 while ((ch = *string++) != '\0')
1954 {
1955 switch (ch)
1956 {
1957 default:
1958 if (isprint (ch))
1959 fputc_unfiltered (ch, gdb_stdlog);
1960
1961 else
1962 fprintf_unfiltered (gdb_stdlog, "\\x%02x", ch & 0xff);
1963 break;
1964
1965 case '\\':
1966 fputs_unfiltered ("\\\\", gdb_stdlog);
1967 break;
1968 case '\b':
1969 fputs_unfiltered ("\\b", gdb_stdlog);
1970 break;
1971 case '\f':
1972 fputs_unfiltered ("\\f", gdb_stdlog);
1973 break;
1974 case '\n':
1975 new_line = 1;
1976 fputs_unfiltered ("\\n", gdb_stdlog);
1977 break;
1978 case '\r':
1979 fputs_unfiltered ("\\r", gdb_stdlog);
1980 break;
1981 case '\t':
1982 fputs_unfiltered ("\\t", gdb_stdlog);
1983 break;
1984 case '\v':
1985 fputs_unfiltered ("\\v", gdb_stdlog);
1986 break;
1987 }
1988
1989 return_p = ch == '\r';
1990 }
1991
1992 /* Print suffix if we printed a newline. */
1993 if (new_line)
1994 {
1995 fputs_unfiltered (suffix, gdb_stdlog);
1996 fputs_unfiltered ("\n", gdb_stdlog);
1997 }
1998 }
1999
2000
2001 /* Print a variable number of ARGS using format FORMAT. If this
2002 information is going to put the amount written (since the last call
2003 to REINITIALIZE_MORE_FILTER or the last page break) over the page size,
2004 call prompt_for_continue to get the users permision to continue.
2005
2006 Unlike fprintf, this function does not return a value.
2007
2008 We implement three variants, vfprintf (takes a vararg list and stream),
2009 fprintf (takes a stream to write on), and printf (the usual).
2010
2011 Note also that a longjmp to top level may occur in this routine
2012 (since prompt_for_continue may do so) so this routine should not be
2013 called when cleanups are not in place. */
2014
2015 static void
2016 vfprintf_maybe_filtered (stream, format, args, filter)
2017 struct ui_file *stream;
2018 const char *format;
2019 va_list args;
2020 int filter;
2021 {
2022 char *linebuffer;
2023 struct cleanup *old_cleanups;
2024
2025 vasprintf (&linebuffer, format, args);
2026 if (linebuffer == NULL)
2027 {
2028 fputs_unfiltered ("\ngdb: virtual memory exhausted.\n", gdb_stderr);
2029 exit (1);
2030 }
2031 old_cleanups = make_cleanup (free, linebuffer);
2032 fputs_maybe_filtered (linebuffer, stream, filter);
2033 do_cleanups (old_cleanups);
2034 }
2035
2036
2037 void
2038 vfprintf_filtered (stream, format, args)
2039 struct ui_file *stream;
2040 const char *format;
2041 va_list args;
2042 {
2043 vfprintf_maybe_filtered (stream, format, args, 1);
2044 }
2045
2046 void
2047 vfprintf_unfiltered (stream, format, args)
2048 struct ui_file *stream;
2049 const char *format;
2050 va_list args;
2051 {
2052 char *linebuffer;
2053 struct cleanup *old_cleanups;
2054
2055 vasprintf (&linebuffer, format, args);
2056 if (linebuffer == NULL)
2057 {
2058 fputs_unfiltered ("\ngdb: virtual memory exhausted.\n", gdb_stderr);
2059 exit (1);
2060 }
2061 old_cleanups = make_cleanup (free, linebuffer);
2062 fputs_unfiltered (linebuffer, stream);
2063 do_cleanups (old_cleanups);
2064 }
2065
2066 void
2067 vprintf_filtered (format, args)
2068 const char *format;
2069 va_list args;
2070 {
2071 vfprintf_maybe_filtered (gdb_stdout, format, args, 1);
2072 }
2073
2074 void
2075 vprintf_unfiltered (format, args)
2076 const char *format;
2077 va_list args;
2078 {
2079 vfprintf_unfiltered (gdb_stdout, format, args);
2080 }
2081
2082 void
2083 fprintf_filtered (struct ui_file * stream, const char *format,...)
2084 {
2085 va_list args;
2086 va_start (args, format);
2087 vfprintf_filtered (stream, format, args);
2088 va_end (args);
2089 }
2090
2091 void
2092 fprintf_unfiltered (struct ui_file * stream, const char *format,...)
2093 {
2094 va_list args;
2095 va_start (args, format);
2096 vfprintf_unfiltered (stream, format, args);
2097 va_end (args);
2098 }
2099
2100 /* Like fprintf_filtered, but prints its result indented.
2101 Called as fprintfi_filtered (spaces, stream, format, ...); */
2102
2103 void
2104 fprintfi_filtered (int spaces, struct ui_file * stream, const char *format,...)
2105 {
2106 va_list args;
2107 va_start (args, format);
2108 print_spaces_filtered (spaces, stream);
2109
2110 vfprintf_filtered (stream, format, args);
2111 va_end (args);
2112 }
2113
2114
2115 void
2116 printf_filtered (const char *format,...)
2117 {
2118 va_list args;
2119 va_start (args, format);
2120 vfprintf_filtered (gdb_stdout, format, args);
2121 va_end (args);
2122 }
2123
2124
2125 void
2126 printf_unfiltered (const char *format,...)
2127 {
2128 va_list args;
2129 va_start (args, format);
2130 vfprintf_unfiltered (gdb_stdout, format, args);
2131 va_end (args);
2132 }
2133
2134 /* Like printf_filtered, but prints it's result indented.
2135 Called as printfi_filtered (spaces, format, ...); */
2136
2137 void
2138 printfi_filtered (int spaces, const char *format,...)
2139 {
2140 va_list args;
2141 va_start (args, format);
2142 print_spaces_filtered (spaces, gdb_stdout);
2143 vfprintf_filtered (gdb_stdout, format, args);
2144 va_end (args);
2145 }
2146
2147 /* Easy -- but watch out!
2148
2149 This routine is *not* a replacement for puts()! puts() appends a newline.
2150 This one doesn't, and had better not! */
2151
2152 void
2153 puts_filtered (string)
2154 const char *string;
2155 {
2156 fputs_filtered (string, gdb_stdout);
2157 }
2158
2159 void
2160 puts_unfiltered (string)
2161 const char *string;
2162 {
2163 fputs_unfiltered (string, gdb_stdout);
2164 }
2165
2166 /* Return a pointer to N spaces and a null. The pointer is good
2167 until the next call to here. */
2168 char *
2169 n_spaces (n)
2170 int n;
2171 {
2172 char *t;
2173 static char *spaces = 0;
2174 static int max_spaces = -1;
2175
2176 if (n > max_spaces)
2177 {
2178 if (spaces)
2179 free (spaces);
2180 spaces = (char *) xmalloc (n + 1);
2181 for (t = spaces + n; t != spaces;)
2182 *--t = ' ';
2183 spaces[n] = '\0';
2184 max_spaces = n;
2185 }
2186
2187 return spaces + max_spaces - n;
2188 }
2189
2190 /* Print N spaces. */
2191 void
2192 print_spaces_filtered (n, stream)
2193 int n;
2194 struct ui_file *stream;
2195 {
2196 fputs_filtered (n_spaces (n), stream);
2197 }
2198 \f
2199 /* C++ demangler stuff. */
2200
2201 /* fprintf_symbol_filtered attempts to demangle NAME, a symbol in language
2202 LANG, using demangling args ARG_MODE, and print it filtered to STREAM.
2203 If the name is not mangled, or the language for the name is unknown, or
2204 demangling is off, the name is printed in its "raw" form. */
2205
2206 void
2207 fprintf_symbol_filtered (stream, name, lang, arg_mode)
2208 struct ui_file *stream;
2209 char *name;
2210 enum language lang;
2211 int arg_mode;
2212 {
2213 char *demangled;
2214
2215 if (name != NULL)
2216 {
2217 /* If user wants to see raw output, no problem. */
2218 if (!demangle)
2219 {
2220 fputs_filtered (name, stream);
2221 }
2222 else
2223 {
2224 switch (lang)
2225 {
2226 case language_cplus:
2227 demangled = cplus_demangle (name, arg_mode);
2228 break;
2229 case language_java:
2230 demangled = cplus_demangle (name, arg_mode | DMGL_JAVA);
2231 break;
2232 case language_chill:
2233 demangled = chill_demangle (name);
2234 break;
2235 default:
2236 demangled = NULL;
2237 break;
2238 }
2239 fputs_filtered (demangled ? demangled : name, stream);
2240 if (demangled != NULL)
2241 {
2242 free (demangled);
2243 }
2244 }
2245 }
2246 }
2247
2248 /* Do a strcmp() type operation on STRING1 and STRING2, ignoring any
2249 differences in whitespace. Returns 0 if they match, non-zero if they
2250 don't (slightly different than strcmp()'s range of return values).
2251
2252 As an extra hack, string1=="FOO(ARGS)" matches string2=="FOO".
2253 This "feature" is useful when searching for matching C++ function names
2254 (such as if the user types 'break FOO', where FOO is a mangled C++
2255 function). */
2256
2257 int
2258 strcmp_iw (string1, string2)
2259 const char *string1;
2260 const char *string2;
2261 {
2262 while ((*string1 != '\0') && (*string2 != '\0'))
2263 {
2264 while (isspace (*string1))
2265 {
2266 string1++;
2267 }
2268 while (isspace (*string2))
2269 {
2270 string2++;
2271 }
2272 if (*string1 != *string2)
2273 {
2274 break;
2275 }
2276 if (*string1 != '\0')
2277 {
2278 string1++;
2279 string2++;
2280 }
2281 }
2282 return (*string1 != '\0' && *string1 != '(') || (*string2 != '\0');
2283 }
2284 \f
2285
2286 /*
2287 ** subset_compare()
2288 ** Answer whether string_to_compare is a full or partial match to
2289 ** template_string. The partial match must be in sequence starting
2290 ** at index 0.
2291 */
2292 int
2293 subset_compare (string_to_compare, template_string)
2294 char *string_to_compare;
2295 char *template_string;
2296 {
2297 int match;
2298 if (template_string != (char *) NULL && string_to_compare != (char *) NULL &&
2299 strlen (string_to_compare) <= strlen (template_string))
2300 match = (strncmp (template_string,
2301 string_to_compare,
2302 strlen (string_to_compare)) == 0);
2303 else
2304 match = 0;
2305 return match;
2306 }
2307
2308
2309 static void pagination_on_command PARAMS ((char *arg, int from_tty));
2310 static void
2311 pagination_on_command (arg, from_tty)
2312 char *arg;
2313 int from_tty;
2314 {
2315 pagination_enabled = 1;
2316 }
2317
2318 static void pagination_on_command PARAMS ((char *arg, int from_tty));
2319 static void
2320 pagination_off_command (arg, from_tty)
2321 char *arg;
2322 int from_tty;
2323 {
2324 pagination_enabled = 0;
2325 }
2326 \f
2327
2328 void
2329 initialize_utils ()
2330 {
2331 struct cmd_list_element *c;
2332
2333 c = add_set_cmd ("width", class_support, var_uinteger,
2334 (char *) &chars_per_line,
2335 "Set number of characters gdb thinks are in a line.",
2336 &setlist);
2337 add_show_from_set (c, &showlist);
2338 c->function.sfunc = set_width_command;
2339
2340 add_show_from_set
2341 (add_set_cmd ("height", class_support,
2342 var_uinteger, (char *) &lines_per_page,
2343 "Set number of lines gdb thinks are in a page.", &setlist),
2344 &showlist);
2345
2346 init_page_info ();
2347
2348 /* If the output is not a terminal, don't paginate it. */
2349 if (!ui_file_isatty (gdb_stdout))
2350 lines_per_page = UINT_MAX;
2351
2352 set_width_command ((char *) NULL, 0, c);
2353
2354 add_show_from_set
2355 (add_set_cmd ("demangle", class_support, var_boolean,
2356 (char *) &demangle,
2357 "Set demangling of encoded C++ names when displaying symbols.",
2358 &setprintlist),
2359 &showprintlist);
2360
2361 add_show_from_set
2362 (add_set_cmd ("pagination", class_support,
2363 var_boolean, (char *) &pagination_enabled,
2364 "Set state of pagination.", &setlist),
2365 &showlist);
2366 if (xdb_commands)
2367 {
2368 add_com ("am", class_support, pagination_on_command,
2369 "Enable pagination");
2370 add_com ("sm", class_support, pagination_off_command,
2371 "Disable pagination");
2372 }
2373
2374 add_show_from_set
2375 (add_set_cmd ("sevenbit-strings", class_support, var_boolean,
2376 (char *) &sevenbit_strings,
2377 "Set printing of 8-bit characters in strings as \\nnn.",
2378 &setprintlist),
2379 &showprintlist);
2380
2381 add_show_from_set
2382 (add_set_cmd ("asm-demangle", class_support, var_boolean,
2383 (char *) &asm_demangle,
2384 "Set demangling of C++ names in disassembly listings.",
2385 &setprintlist),
2386 &showprintlist);
2387 }
2388
2389 /* Machine specific function to handle SIGWINCH signal. */
2390
2391 #ifdef SIGWINCH_HANDLER_BODY
2392 SIGWINCH_HANDLER_BODY
2393 #endif
2394 \f
2395 /* Support for converting target fp numbers into host DOUBLEST format. */
2396
2397 /* XXX - This code should really be in libiberty/floatformat.c, however
2398 configuration issues with libiberty made this very difficult to do in the
2399 available time. */
2400
2401 #include "floatformat.h"
2402 #include <math.h> /* ldexp */
2403
2404 /* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
2405 going to bother with trying to muck around with whether it is defined in
2406 a system header, what we do if not, etc. */
2407 #define FLOATFORMAT_CHAR_BIT 8
2408
2409 static unsigned long get_field PARAMS ((unsigned char *,
2410 enum floatformat_byteorders,
2411 unsigned int,
2412 unsigned int,
2413 unsigned int));
2414
2415 /* Extract a field which starts at START and is LEN bytes long. DATA and
2416 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
2417 static unsigned long
2418 get_field (data, order, total_len, start, len)
2419 unsigned char *data;
2420 enum floatformat_byteorders order;
2421 unsigned int total_len;
2422 unsigned int start;
2423 unsigned int len;
2424 {
2425 unsigned long result;
2426 unsigned int cur_byte;
2427 int cur_bitshift;
2428
2429 /* Start at the least significant part of the field. */
2430 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2431 {
2432 /* We start counting from the other end (i.e, from the high bytes
2433 rather than the low bytes). As such, we need to be concerned
2434 with what happens if bit 0 doesn't start on a byte boundary.
2435 I.e, we need to properly handle the case where total_len is
2436 not evenly divisible by 8. So we compute ``excess'' which
2437 represents the number of bits from the end of our starting
2438 byte needed to get to bit 0. */
2439 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
2440 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
2441 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
2442 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
2443 - FLOATFORMAT_CHAR_BIT;
2444 }
2445 else
2446 {
2447 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2448 cur_bitshift =
2449 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2450 }
2451 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
2452 result = *(data + cur_byte) >> (-cur_bitshift);
2453 else
2454 result = 0;
2455 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2456 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2457 ++cur_byte;
2458 else
2459 --cur_byte;
2460
2461 /* Move towards the most significant part of the field. */
2462 while (cur_bitshift < len)
2463 {
2464 result |= (unsigned long)*(data + cur_byte) << cur_bitshift;
2465 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2466 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2467 ++cur_byte;
2468 else
2469 --cur_byte;
2470 }
2471 if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT)
2472 /* Mask out bits which are not part of the field */
2473 result &= ((1UL << len) - 1);
2474 return result;
2475 }
2476
2477 /* Convert from FMT to a DOUBLEST.
2478 FROM is the address of the extended float.
2479 Store the DOUBLEST in *TO. */
2480
2481 void
2482 floatformat_to_doublest (fmt, from, to)
2483 const struct floatformat *fmt;
2484 char *from;
2485 DOUBLEST *to;
2486 {
2487 unsigned char *ufrom = (unsigned char *) from;
2488 DOUBLEST dto;
2489 long exponent;
2490 unsigned long mant;
2491 unsigned int mant_bits, mant_off;
2492 int mant_bits_left;
2493 int special_exponent; /* It's a NaN, denorm or zero */
2494
2495 /* If the mantissa bits are not contiguous from one end of the
2496 mantissa to the other, we need to make a private copy of the
2497 source bytes that is in the right order since the unpacking
2498 algorithm assumes that the bits are contiguous.
2499
2500 Swap the bytes individually rather than accessing them through
2501 "long *" since we have no guarantee that they start on a long
2502 alignment, and also sizeof(long) for the host could be different
2503 than sizeof(long) for the target. FIXME: Assumes sizeof(long)
2504 for the target is 4. */
2505
2506 if (fmt->byteorder == floatformat_littlebyte_bigword)
2507 {
2508 static unsigned char *newfrom;
2509 unsigned char *swapin, *swapout;
2510 int longswaps;
2511
2512 longswaps = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
2513 longswaps >>= 3;
2514
2515 if (newfrom == NULL)
2516 {
2517 newfrom = (unsigned char *) xmalloc (fmt->totalsize);
2518 }
2519 swapout = newfrom;
2520 swapin = ufrom;
2521 ufrom = newfrom;
2522 while (longswaps-- > 0)
2523 {
2524 /* This is ugly, but efficient */
2525 *swapout++ = swapin[4];
2526 *swapout++ = swapin[5];
2527 *swapout++ = swapin[6];
2528 *swapout++ = swapin[7];
2529 *swapout++ = swapin[0];
2530 *swapout++ = swapin[1];
2531 *swapout++ = swapin[2];
2532 *swapout++ = swapin[3];
2533 swapin += 8;
2534 }
2535 }
2536
2537 exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize,
2538 fmt->exp_start, fmt->exp_len);
2539 /* Note that if exponent indicates a NaN, we can't really do anything useful
2540 (not knowing if the host has NaN's, or how to build one). So it will
2541 end up as an infinity or something close; that is OK. */
2542
2543 mant_bits_left = fmt->man_len;
2544 mant_off = fmt->man_start;
2545 dto = 0.0;
2546
2547 special_exponent = exponent == 0 || exponent == fmt->exp_nan;
2548
2549 /* Don't bias NaNs. Use minimum exponent for denorms. For simplicity,
2550 we don't check for zero as the exponent doesn't matter. */
2551 if (!special_exponent)
2552 exponent -= fmt->exp_bias;
2553 else if (exponent == 0)
2554 exponent = 1 - fmt->exp_bias;
2555
2556 /* Build the result algebraically. Might go infinite, underflow, etc;
2557 who cares. */
2558
2559 /* If this format uses a hidden bit, explicitly add it in now. Otherwise,
2560 increment the exponent by one to account for the integer bit. */
2561
2562 if (!special_exponent)
2563 {
2564 if (fmt->intbit == floatformat_intbit_no)
2565 dto = ldexp (1.0, exponent);
2566 else
2567 exponent++;
2568 }
2569
2570 while (mant_bits_left > 0)
2571 {
2572 mant_bits = min (mant_bits_left, 32);
2573
2574 mant = get_field (ufrom, fmt->byteorder, fmt->totalsize,
2575 mant_off, mant_bits);
2576
2577 dto += ldexp ((double) mant, exponent - mant_bits);
2578 exponent -= mant_bits;
2579 mant_off += mant_bits;
2580 mant_bits_left -= mant_bits;
2581 }
2582
2583 /* Negate it if negative. */
2584 if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1))
2585 dto = -dto;
2586 *to = dto;
2587 }
2588 \f
2589 static void put_field PARAMS ((unsigned char *, enum floatformat_byteorders,
2590 unsigned int,
2591 unsigned int,
2592 unsigned int,
2593 unsigned long));
2594
2595 /* Set a field which starts at START and is LEN bytes long. DATA and
2596 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
2597 static void
2598 put_field (data, order, total_len, start, len, stuff_to_put)
2599 unsigned char *data;
2600 enum floatformat_byteorders order;
2601 unsigned int total_len;
2602 unsigned int start;
2603 unsigned int len;
2604 unsigned long stuff_to_put;
2605 {
2606 unsigned int cur_byte;
2607 int cur_bitshift;
2608
2609 /* Start at the least significant part of the field. */
2610 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2611 {
2612 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
2613 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
2614 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
2615 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
2616 - FLOATFORMAT_CHAR_BIT;
2617 }
2618 else
2619 {
2620 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2621 cur_bitshift =
2622 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2623 }
2624 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
2625 {
2626 *(data + cur_byte) &=
2627 ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1)
2628 << (-cur_bitshift));
2629 *(data + cur_byte) |=
2630 (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
2631 }
2632 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2633 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2634 ++cur_byte;
2635 else
2636 --cur_byte;
2637
2638 /* Move towards the most significant part of the field. */
2639 while (cur_bitshift < len)
2640 {
2641 if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
2642 {
2643 /* This is the last byte. */
2644 *(data + cur_byte) &=
2645 ~((1 << (len - cur_bitshift)) - 1);
2646 *(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
2647 }
2648 else
2649 *(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
2650 & ((1 << FLOATFORMAT_CHAR_BIT) - 1));
2651 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2652 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2653 ++cur_byte;
2654 else
2655 --cur_byte;
2656 }
2657 }
2658
2659 #ifdef HAVE_LONG_DOUBLE
2660 /* Return the fractional part of VALUE, and put the exponent of VALUE in *EPTR.
2661 The range of the returned value is >= 0.5 and < 1.0. This is equivalent to
2662 frexp, but operates on the long double data type. */
2663
2664 static long double ldfrexp PARAMS ((long double value, int *eptr));
2665
2666 static long double
2667 ldfrexp (value, eptr)
2668 long double value;
2669 int *eptr;
2670 {
2671 long double tmp;
2672 int exp;
2673
2674 /* Unfortunately, there are no portable functions for extracting the exponent
2675 of a long double, so we have to do it iteratively by multiplying or dividing
2676 by two until the fraction is between 0.5 and 1.0. */
2677
2678 if (value < 0.0l)
2679 value = -value;
2680
2681 tmp = 1.0l;
2682 exp = 0;
2683
2684 if (value >= tmp) /* Value >= 1.0 */
2685 while (value >= tmp)
2686 {
2687 tmp *= 2.0l;
2688 exp++;
2689 }
2690 else if (value != 0.0l) /* Value < 1.0 and > 0.0 */
2691 {
2692 while (value < tmp)
2693 {
2694 tmp /= 2.0l;
2695 exp--;
2696 }
2697 tmp *= 2.0l;
2698 exp++;
2699 }
2700
2701 *eptr = exp;
2702 return value / tmp;
2703 }
2704 #endif /* HAVE_LONG_DOUBLE */
2705
2706
2707 /* The converse: convert the DOUBLEST *FROM to an extended float
2708 and store where TO points. Neither FROM nor TO have any alignment
2709 restrictions. */
2710
2711 void
2712 floatformat_from_doublest (fmt, from, to)
2713 CONST struct floatformat *fmt;
2714 DOUBLEST *from;
2715 char *to;
2716 {
2717 DOUBLEST dfrom;
2718 int exponent;
2719 DOUBLEST mant;
2720 unsigned int mant_bits, mant_off;
2721 int mant_bits_left;
2722 unsigned char *uto = (unsigned char *) to;
2723
2724 memcpy (&dfrom, from, sizeof (dfrom));
2725 memset (uto, 0, (fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1)
2726 / FLOATFORMAT_CHAR_BIT);
2727 if (dfrom == 0)
2728 return; /* Result is zero */
2729 if (dfrom != dfrom) /* Result is NaN */
2730 {
2731 /* From is NaN */
2732 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
2733 fmt->exp_len, fmt->exp_nan);
2734 /* Be sure it's not infinity, but NaN value is irrel */
2735 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
2736 32, 1);
2737 return;
2738 }
2739
2740 /* If negative, set the sign bit. */
2741 if (dfrom < 0)
2742 {
2743 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1, 1);
2744 dfrom = -dfrom;
2745 }
2746
2747 if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity */
2748 {
2749 /* Infinity exponent is same as NaN's. */
2750 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
2751 fmt->exp_len, fmt->exp_nan);
2752 /* Infinity mantissa is all zeroes. */
2753 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
2754 fmt->man_len, 0);
2755 return;
2756 }
2757
2758 #ifdef HAVE_LONG_DOUBLE
2759 mant = ldfrexp (dfrom, &exponent);
2760 #else
2761 mant = frexp (dfrom, &exponent);
2762 #endif
2763
2764 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start, fmt->exp_len,
2765 exponent + fmt->exp_bias - 1);
2766
2767 mant_bits_left = fmt->man_len;
2768 mant_off = fmt->man_start;
2769 while (mant_bits_left > 0)
2770 {
2771 unsigned long mant_long;
2772 mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
2773
2774 mant *= 4294967296.0;
2775 mant_long = ((unsigned long) mant) & 0xffffffffL;
2776 mant -= mant_long;
2777
2778 /* If the integer bit is implicit, then we need to discard it.
2779 If we are discarding a zero, we should be (but are not) creating
2780 a denormalized number which means adjusting the exponent
2781 (I think). */
2782 if (mant_bits_left == fmt->man_len
2783 && fmt->intbit == floatformat_intbit_no)
2784 {
2785 mant_long <<= 1;
2786 mant_long &= 0xffffffffL;
2787 mant_bits -= 1;
2788 }
2789
2790 if (mant_bits < 32)
2791 {
2792 /* The bits we want are in the most significant MANT_BITS bits of
2793 mant_long. Move them to the least significant. */
2794 mant_long >>= 32 - mant_bits;
2795 }
2796
2797 put_field (uto, fmt->byteorder, fmt->totalsize,
2798 mant_off, mant_bits, mant_long);
2799 mant_off += mant_bits;
2800 mant_bits_left -= mant_bits;
2801 }
2802 if (fmt->byteorder == floatformat_littlebyte_bigword)
2803 {
2804 int count;
2805 unsigned char *swaplow = uto;
2806 unsigned char *swaphigh = uto + 4;
2807 unsigned char tmp;
2808
2809 for (count = 0; count < 4; count++)
2810 {
2811 tmp = *swaplow;
2812 *swaplow++ = *swaphigh;
2813 *swaphigh++ = tmp;
2814 }
2815 }
2816 }
2817
2818 /* temporary storage using circular buffer */
2819 #define NUMCELLS 16
2820 #define CELLSIZE 32
2821 static char *
2822 get_cell ()
2823 {
2824 static char buf[NUMCELLS][CELLSIZE];
2825 static int cell = 0;
2826 if (++cell >= NUMCELLS)
2827 cell = 0;
2828 return buf[cell];
2829 }
2830
2831 /* print routines to handle variable size regs, etc.
2832
2833 FIXME: Note that t_addr is a bfd_vma, which is currently either an
2834 unsigned long or unsigned long long, determined at configure time.
2835 If t_addr is an unsigned long long and sizeof (unsigned long long)
2836 is greater than sizeof (unsigned long), then I believe this code will
2837 probably lose, at least for little endian machines. I believe that
2838 it would also be better to eliminate the switch on the absolute size
2839 of t_addr and replace it with a sequence of if statements that compare
2840 sizeof t_addr with sizeof the various types and do the right thing,
2841 which includes knowing whether or not the host supports long long.
2842 -fnf
2843
2844 */
2845
2846 int
2847 strlen_paddr (void)
2848 {
2849 return (TARGET_PTR_BIT / 8 * 2);
2850 }
2851
2852
2853 /* eliminate warning from compiler on 32-bit systems */
2854 static int thirty_two = 32;
2855
2856 char *
2857 paddr (CORE_ADDR addr)
2858 {
2859 char *paddr_str = get_cell ();
2860 switch (TARGET_PTR_BIT / 8)
2861 {
2862 case 8:
2863 sprintf (paddr_str, "%08lx%08lx",
2864 (unsigned long) (addr >> thirty_two), (unsigned long) (addr & 0xffffffff));
2865 break;
2866 case 4:
2867 sprintf (paddr_str, "%08lx", (unsigned long) addr);
2868 break;
2869 case 2:
2870 sprintf (paddr_str, "%04x", (unsigned short) (addr & 0xffff));
2871 break;
2872 default:
2873 sprintf (paddr_str, "%lx", (unsigned long) addr);
2874 }
2875 return paddr_str;
2876 }
2877
2878 char *
2879 paddr_nz (CORE_ADDR addr)
2880 {
2881 char *paddr_str = get_cell ();
2882 switch (TARGET_PTR_BIT / 8)
2883 {
2884 case 8:
2885 {
2886 unsigned long high = (unsigned long) (addr >> thirty_two);
2887 if (high == 0)
2888 sprintf (paddr_str, "%lx", (unsigned long) (addr & 0xffffffff));
2889 else
2890 sprintf (paddr_str, "%lx%08lx",
2891 high, (unsigned long) (addr & 0xffffffff));
2892 break;
2893 }
2894 case 4:
2895 sprintf (paddr_str, "%lx", (unsigned long) addr);
2896 break;
2897 case 2:
2898 sprintf (paddr_str, "%x", (unsigned short) (addr & 0xffff));
2899 break;
2900 default:
2901 sprintf (paddr_str, "%lx", (unsigned long) addr);
2902 }
2903 return paddr_str;
2904 }
2905
2906 static void
2907 decimal2str (char *paddr_str, char *sign, ULONGEST addr)
2908 {
2909 /* steal code from valprint.c:print_decimal(). Should this worry
2910 about the real size of addr as the above does? */
2911 unsigned long temp[3];
2912 int i = 0;
2913 do
2914 {
2915 temp[i] = addr % (1000 * 1000 * 1000);
2916 addr /= (1000 * 1000 * 1000);
2917 i++;
2918 }
2919 while (addr != 0 && i < (sizeof (temp) / sizeof (temp[0])));
2920 switch (i)
2921 {
2922 case 1:
2923 sprintf (paddr_str, "%s%lu",
2924 sign, temp[0]);
2925 break;
2926 case 2:
2927 sprintf (paddr_str, "%s%lu%09lu",
2928 sign, temp[1], temp[0]);
2929 break;
2930 case 3:
2931 sprintf (paddr_str, "%s%lu%09lu%09lu",
2932 sign, temp[2], temp[1], temp[0]);
2933 break;
2934 default:
2935 abort ();
2936 }
2937 }
2938
2939 char *
2940 paddr_u (CORE_ADDR addr)
2941 {
2942 char *paddr_str = get_cell ();
2943 decimal2str (paddr_str, "", addr);
2944 return paddr_str;
2945 }
2946
2947 char *
2948 paddr_d (LONGEST addr)
2949 {
2950 char *paddr_str = get_cell ();
2951 if (addr < 0)
2952 decimal2str (paddr_str, "-", -addr);
2953 else
2954 decimal2str (paddr_str, "", addr);
2955 return paddr_str;
2956 }
2957
2958 char *
2959 preg (reg)
2960 t_reg reg;
2961 {
2962 char *preg_str = get_cell ();
2963 switch (sizeof (t_reg))
2964 {
2965 case 8:
2966 sprintf (preg_str, "%08lx%08lx",
2967 (unsigned long) (reg >> thirty_two), (unsigned long) (reg & 0xffffffff));
2968 break;
2969 case 4:
2970 sprintf (preg_str, "%08lx", (unsigned long) reg);
2971 break;
2972 case 2:
2973 sprintf (preg_str, "%04x", (unsigned short) (reg & 0xffff));
2974 break;
2975 default:
2976 sprintf (preg_str, "%lx", (unsigned long) reg);
2977 }
2978 return preg_str;
2979 }
2980
2981 char *
2982 preg_nz (reg)
2983 t_reg reg;
2984 {
2985 char *preg_str = get_cell ();
2986 switch (sizeof (t_reg))
2987 {
2988 case 8:
2989 {
2990 unsigned long high = (unsigned long) (reg >> thirty_two);
2991 if (high == 0)
2992 sprintf (preg_str, "%lx", (unsigned long) (reg & 0xffffffff));
2993 else
2994 sprintf (preg_str, "%lx%08lx",
2995 high, (unsigned long) (reg & 0xffffffff));
2996 break;
2997 }
2998 case 4:
2999 sprintf (preg_str, "%lx", (unsigned long) reg);
3000 break;
3001 case 2:
3002 sprintf (preg_str, "%x", (unsigned short) (reg & 0xffff));
3003 break;
3004 default:
3005 sprintf (preg_str, "%lx", (unsigned long) reg);
3006 }
3007 return preg_str;
3008 }
3009
3010 /* Helper functions for INNER_THAN */
3011 int
3012 core_addr_lessthan (lhs, rhs)
3013 CORE_ADDR lhs;
3014 CORE_ADDR rhs;
3015 {
3016 return (lhs < rhs);
3017 }
3018
3019 int
3020 core_addr_greaterthan (lhs, rhs)
3021 CORE_ADDR lhs;
3022 CORE_ADDR rhs;
3023 {
3024 return (lhs > rhs);
3025 }