Document bfd/doc/Makefile.in TEXINPUTS problem.
[binutils-gdb.git] / gdb / utils.c
1 /* General utility routines for GDB, the GNU debugger.
2 Copyright 1986, 1989, 1990-1992, 1995, 1996, 1998, 2000
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include "gdb_string.h"
25 #include "event-top.h"
26
27 #ifdef HAVE_CURSES_H
28 #include <curses.h>
29 #endif
30 #ifdef HAVE_TERM_H
31 #include <term.h>
32 #endif
33
34 #ifdef __GO32__
35 #include <pc.h>
36 #endif
37
38 /* SunOS's curses.h has a '#define reg register' in it. Thank you Sun. */
39 #ifdef reg
40 #undef reg
41 #endif
42
43 #include "signals.h"
44 #include "gdbcmd.h"
45 #include "serial.h"
46 #include "bfd.h"
47 #include "target.h"
48 #include "demangle.h"
49 #include "expression.h"
50 #include "language.h"
51 #include "annotate.h"
52
53 #include <readline/readline.h>
54
55 #undef XMALLOC
56 #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
57
58 /* readline defines this. */
59 #undef savestring
60
61 void (*error_begin_hook) PARAMS ((void));
62
63 /* Holds the last error message issued by gdb */
64
65 static struct ui_file *gdb_lasterr;
66
67 /* Prototypes for local functions */
68
69 static void vfprintf_maybe_filtered (struct ui_file *, const char *,
70 va_list, int);
71
72 static void fputs_maybe_filtered (const char *, struct ui_file *, int);
73
74 #if defined (USE_MMALLOC) && !defined (NO_MMCHECK)
75 static void malloc_botch PARAMS ((void));
76 #endif
77
78 static void
79 prompt_for_continue PARAMS ((void));
80
81 static void
82 set_width_command PARAMS ((char *, int, struct cmd_list_element *));
83
84 static void
85 set_width PARAMS ((void));
86
87 /* Chain of cleanup actions established with make_cleanup,
88 to be executed if an error happens. */
89
90 static struct cleanup *cleanup_chain; /* cleaned up after a failed command */
91 static struct cleanup *final_cleanup_chain; /* cleaned up when gdb exits */
92 static struct cleanup *run_cleanup_chain; /* cleaned up on each 'run' */
93 static struct cleanup *exec_cleanup_chain; /* cleaned up on each execution command */
94 /* cleaned up on each error from within an execution command */
95 static struct cleanup *exec_error_cleanup_chain;
96
97 /* Pointer to what is left to do for an execution command after the
98 target stops. Used only in asynchronous mode, by targets that
99 support async execution. The finish and until commands use it. So
100 does the target extended-remote command. */
101 struct continuation *cmd_continuation;
102 struct continuation *intermediate_continuation;
103
104 /* Nonzero if we have job control. */
105
106 int job_control;
107
108 /* Nonzero means a quit has been requested. */
109
110 int quit_flag;
111
112 /* Nonzero means quit immediately if Control-C is typed now, rather
113 than waiting until QUIT is executed. Be careful in setting this;
114 code which executes with immediate_quit set has to be very careful
115 about being able to deal with being interrupted at any time. It is
116 almost always better to use QUIT; the only exception I can think of
117 is being able to quit out of a system call (using EINTR loses if
118 the SIGINT happens between the previous QUIT and the system call).
119 To immediately quit in the case in which a SIGINT happens between
120 the previous QUIT and setting immediate_quit (desirable anytime we
121 expect to block), call QUIT after setting immediate_quit. */
122
123 int immediate_quit;
124
125 /* Nonzero means that encoded C++ names should be printed out in their
126 C++ form rather than raw. */
127
128 int demangle = 1;
129
130 /* Nonzero means that encoded C++ names should be printed out in their
131 C++ form even in assembler language displays. If this is set, but
132 DEMANGLE is zero, names are printed raw, i.e. DEMANGLE controls. */
133
134 int asm_demangle = 0;
135
136 /* Nonzero means that strings with character values >0x7F should be printed
137 as octal escapes. Zero means just print the value (e.g. it's an
138 international character, and the terminal or window can cope.) */
139
140 int sevenbit_strings = 0;
141
142 /* String to be printed before error messages, if any. */
143
144 char *error_pre_print;
145
146 /* String to be printed before quit messages, if any. */
147
148 char *quit_pre_print;
149
150 /* String to be printed before warning messages, if any. */
151
152 char *warning_pre_print = "\nwarning: ";
153
154 int pagination_enabled = 1;
155 \f
156
157 /* Add a new cleanup to the cleanup_chain,
158 and return the previous chain pointer
159 to be passed later to do_cleanups or discard_cleanups.
160 Args are FUNCTION to clean up with, and ARG to pass to it. */
161
162 struct cleanup *
163 make_cleanup (make_cleanup_ftype *function, void *arg)
164 {
165 return make_my_cleanup (&cleanup_chain, function, arg);
166 }
167
168 struct cleanup *
169 make_final_cleanup (make_cleanup_ftype *function, void *arg)
170 {
171 return make_my_cleanup (&final_cleanup_chain, function, arg);
172 }
173
174 struct cleanup *
175 make_run_cleanup (make_cleanup_ftype *function, void *arg)
176 {
177 return make_my_cleanup (&run_cleanup_chain, function, arg);
178 }
179
180 struct cleanup *
181 make_exec_cleanup (make_cleanup_ftype *function, void *arg)
182 {
183 return make_my_cleanup (&exec_cleanup_chain, function, arg);
184 }
185
186 struct cleanup *
187 make_exec_error_cleanup (make_cleanup_ftype *function, void *arg)
188 {
189 return make_my_cleanup (&exec_error_cleanup_chain, function, arg);
190 }
191
192 static void
193 do_freeargv (arg)
194 void *arg;
195 {
196 freeargv ((char **) arg);
197 }
198
199 struct cleanup *
200 make_cleanup_freeargv (arg)
201 char **arg;
202 {
203 return make_my_cleanup (&cleanup_chain, do_freeargv, arg);
204 }
205
206 static void
207 do_ui_file_delete (void *arg)
208 {
209 ui_file_delete (arg);
210 }
211
212 struct cleanup *
213 make_cleanup_ui_file_delete (struct ui_file *arg)
214 {
215 return make_my_cleanup (&cleanup_chain, do_ui_file_delete, arg);
216 }
217
218 struct cleanup *
219 make_my_cleanup (struct cleanup **pmy_chain, make_cleanup_ftype *function,
220 void *arg)
221 {
222 register struct cleanup *new
223 = (struct cleanup *) xmalloc (sizeof (struct cleanup));
224 register struct cleanup *old_chain = *pmy_chain;
225
226 new->next = *pmy_chain;
227 new->function = function;
228 new->arg = arg;
229 *pmy_chain = new;
230
231 return old_chain;
232 }
233
234 /* Discard cleanups and do the actions they describe
235 until we get back to the point OLD_CHAIN in the cleanup_chain. */
236
237 void
238 do_cleanups (old_chain)
239 register struct cleanup *old_chain;
240 {
241 do_my_cleanups (&cleanup_chain, old_chain);
242 }
243
244 void
245 do_final_cleanups (old_chain)
246 register struct cleanup *old_chain;
247 {
248 do_my_cleanups (&final_cleanup_chain, old_chain);
249 }
250
251 void
252 do_run_cleanups (old_chain)
253 register struct cleanup *old_chain;
254 {
255 do_my_cleanups (&run_cleanup_chain, old_chain);
256 }
257
258 void
259 do_exec_cleanups (old_chain)
260 register struct cleanup *old_chain;
261 {
262 do_my_cleanups (&exec_cleanup_chain, old_chain);
263 }
264
265 void
266 do_exec_error_cleanups (old_chain)
267 register struct cleanup *old_chain;
268 {
269 do_my_cleanups (&exec_error_cleanup_chain, old_chain);
270 }
271
272 void
273 do_my_cleanups (pmy_chain, old_chain)
274 register struct cleanup **pmy_chain;
275 register struct cleanup *old_chain;
276 {
277 register struct cleanup *ptr;
278 while ((ptr = *pmy_chain) != old_chain)
279 {
280 *pmy_chain = ptr->next; /* Do this first incase recursion */
281 (*ptr->function) (ptr->arg);
282 free (ptr);
283 }
284 }
285
286 /* Discard cleanups, not doing the actions they describe,
287 until we get back to the point OLD_CHAIN in the cleanup_chain. */
288
289 void
290 discard_cleanups (old_chain)
291 register struct cleanup *old_chain;
292 {
293 discard_my_cleanups (&cleanup_chain, old_chain);
294 }
295
296 void
297 discard_final_cleanups (old_chain)
298 register struct cleanup *old_chain;
299 {
300 discard_my_cleanups (&final_cleanup_chain, old_chain);
301 }
302
303 void
304 discard_exec_error_cleanups (old_chain)
305 register struct cleanup *old_chain;
306 {
307 discard_my_cleanups (&exec_error_cleanup_chain, old_chain);
308 }
309
310 void
311 discard_my_cleanups (pmy_chain, old_chain)
312 register struct cleanup **pmy_chain;
313 register struct cleanup *old_chain;
314 {
315 register struct cleanup *ptr;
316 while ((ptr = *pmy_chain) != old_chain)
317 {
318 *pmy_chain = ptr->next;
319 free (ptr);
320 }
321 }
322
323 /* Set the cleanup_chain to 0, and return the old cleanup chain. */
324 struct cleanup *
325 save_cleanups ()
326 {
327 return save_my_cleanups (&cleanup_chain);
328 }
329
330 struct cleanup *
331 save_final_cleanups ()
332 {
333 return save_my_cleanups (&final_cleanup_chain);
334 }
335
336 struct cleanup *
337 save_my_cleanups (pmy_chain)
338 struct cleanup **pmy_chain;
339 {
340 struct cleanup *old_chain = *pmy_chain;
341
342 *pmy_chain = 0;
343 return old_chain;
344 }
345
346 /* Restore the cleanup chain from a previously saved chain. */
347 void
348 restore_cleanups (chain)
349 struct cleanup *chain;
350 {
351 restore_my_cleanups (&cleanup_chain, chain);
352 }
353
354 void
355 restore_final_cleanups (chain)
356 struct cleanup *chain;
357 {
358 restore_my_cleanups (&final_cleanup_chain, chain);
359 }
360
361 void
362 restore_my_cleanups (pmy_chain, chain)
363 struct cleanup **pmy_chain;
364 struct cleanup *chain;
365 {
366 *pmy_chain = chain;
367 }
368
369 /* This function is useful for cleanups.
370 Do
371
372 foo = xmalloc (...);
373 old_chain = make_cleanup (free_current_contents, &foo);
374
375 to arrange to free the object thus allocated. */
376
377 void
378 free_current_contents (void *ptr)
379 {
380 void **location = ptr;
381 if (*location != NULL)
382 free (*location);
383 }
384
385 /* Provide a known function that does nothing, to use as a base for
386 for a possibly long chain of cleanups. This is useful where we
387 use the cleanup chain for handling normal cleanups as well as dealing
388 with cleanups that need to be done as a result of a call to error().
389 In such cases, we may not be certain where the first cleanup is, unless
390 we have a do-nothing one to always use as the base. */
391
392 /* ARGSUSED */
393 void
394 null_cleanup (void *arg)
395 {
396 }
397
398 /* Add a continuation to the continuation list, the gloabl list
399 cmd_continuation. The new continuation will be added at the front.*/
400 void
401 add_continuation (continuation_hook, arg_list)
402 void (*continuation_hook) PARAMS ((struct continuation_arg *));
403 struct continuation_arg *arg_list;
404 {
405 struct continuation *continuation_ptr;
406
407 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
408 continuation_ptr->continuation_hook = continuation_hook;
409 continuation_ptr->arg_list = arg_list;
410 continuation_ptr->next = cmd_continuation;
411 cmd_continuation = continuation_ptr;
412 }
413
414 /* Walk down the cmd_continuation list, and execute all the
415 continuations. There is a problem though. In some cases new
416 continuations may be added while we are in the middle of this
417 loop. If this happens they will be added in the front, and done
418 before we have a chance of exhausting those that were already
419 there. We need to then save the beginning of the list in a pointer
420 and do the continuations from there on, instead of using the
421 global beginning of list as our iteration pointer.*/
422 void
423 do_all_continuations ()
424 {
425 struct continuation *continuation_ptr;
426 struct continuation *saved_continuation;
427
428 /* Copy the list header into another pointer, and set the global
429 list header to null, so that the global list can change as a side
430 effect of invoking the continuations and the processing of
431 the preexisting continuations will not be affected. */
432 continuation_ptr = cmd_continuation;
433 cmd_continuation = NULL;
434
435 /* Work now on the list we have set aside. */
436 while (continuation_ptr)
437 {
438 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
439 saved_continuation = continuation_ptr;
440 continuation_ptr = continuation_ptr->next;
441 free (saved_continuation);
442 }
443 }
444
445 /* Walk down the cmd_continuation list, and get rid of all the
446 continuations. */
447 void
448 discard_all_continuations ()
449 {
450 struct continuation *continuation_ptr;
451
452 while (cmd_continuation)
453 {
454 continuation_ptr = cmd_continuation;
455 cmd_continuation = continuation_ptr->next;
456 free (continuation_ptr);
457 }
458 }
459
460 /* Add a continuation to the continuation list, the global list
461 intermediate_continuation. The new continuation will be added at the front.*/
462 void
463 add_intermediate_continuation (continuation_hook, arg_list)
464 void (*continuation_hook) PARAMS ((struct continuation_arg *));
465 struct continuation_arg *arg_list;
466 {
467 struct continuation *continuation_ptr;
468
469 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
470 continuation_ptr->continuation_hook = continuation_hook;
471 continuation_ptr->arg_list = arg_list;
472 continuation_ptr->next = intermediate_continuation;
473 intermediate_continuation = continuation_ptr;
474 }
475
476 /* Walk down the cmd_continuation list, and execute all the
477 continuations. There is a problem though. In some cases new
478 continuations may be added while we are in the middle of this
479 loop. If this happens they will be added in the front, and done
480 before we have a chance of exhausting those that were already
481 there. We need to then save the beginning of the list in a pointer
482 and do the continuations from there on, instead of using the
483 global beginning of list as our iteration pointer.*/
484 void
485 do_all_intermediate_continuations ()
486 {
487 struct continuation *continuation_ptr;
488 struct continuation *saved_continuation;
489
490 /* Copy the list header into another pointer, and set the global
491 list header to null, so that the global list can change as a side
492 effect of invoking the continuations and the processing of
493 the preexisting continuations will not be affected. */
494 continuation_ptr = intermediate_continuation;
495 intermediate_continuation = NULL;
496
497 /* Work now on the list we have set aside. */
498 while (continuation_ptr)
499 {
500 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
501 saved_continuation = continuation_ptr;
502 continuation_ptr = continuation_ptr->next;
503 free (saved_continuation);
504 }
505 }
506
507 /* Walk down the cmd_continuation list, and get rid of all the
508 continuations. */
509 void
510 discard_all_intermediate_continuations ()
511 {
512 struct continuation *continuation_ptr;
513
514 while (intermediate_continuation)
515 {
516 continuation_ptr = intermediate_continuation;
517 intermediate_continuation = continuation_ptr->next;
518 free (continuation_ptr);
519 }
520 }
521
522 \f
523
524 /* Print a warning message. Way to use this is to call warning_begin,
525 output the warning message (use unfiltered output to gdb_stderr),
526 ending in a newline. There is not currently a warning_end that you
527 call afterwards, but such a thing might be added if it is useful
528 for a GUI to separate warning messages from other output.
529
530 FIXME: Why do warnings use unfiltered output and errors filtered?
531 Is this anything other than a historical accident? */
532
533 void
534 warning_begin ()
535 {
536 target_terminal_ours ();
537 wrap_here (""); /* Force out any buffered output */
538 gdb_flush (gdb_stdout);
539 if (warning_pre_print)
540 fprintf_unfiltered (gdb_stderr, warning_pre_print);
541 }
542
543 /* Print a warning message.
544 The first argument STRING is the warning message, used as a fprintf string,
545 and the remaining args are passed as arguments to it.
546 The primary difference between warnings and errors is that a warning
547 does not force the return to command level. */
548
549 void
550 warning (const char *string,...)
551 {
552 va_list args;
553 va_start (args, string);
554 if (warning_hook)
555 (*warning_hook) (string, args);
556 else
557 {
558 warning_begin ();
559 vfprintf_unfiltered (gdb_stderr, string, args);
560 fprintf_unfiltered (gdb_stderr, "\n");
561 va_end (args);
562 }
563 }
564
565 /* Start the printing of an error message. Way to use this is to call
566 this, output the error message (use filtered output to gdb_stderr
567 (FIXME: Some callers, like memory_error, use gdb_stdout)), ending
568 in a newline, and then call return_to_top_level (RETURN_ERROR).
569 error() provides a convenient way to do this for the special case
570 that the error message can be formatted with a single printf call,
571 but this is more general. */
572 void
573 error_begin ()
574 {
575 if (error_begin_hook)
576 error_begin_hook ();
577
578 target_terminal_ours ();
579 wrap_here (""); /* Force out any buffered output */
580 gdb_flush (gdb_stdout);
581
582 annotate_error_begin ();
583
584 if (error_pre_print)
585 fprintf_filtered (gdb_stderr, error_pre_print);
586 }
587
588 /* Print an error message and return to command level.
589 The first argument STRING is the error message, used as a fprintf string,
590 and the remaining args are passed as arguments to it. */
591
592 NORETURN void
593 verror (const char *string, va_list args)
594 {
595 char *err_string;
596 struct cleanup *err_string_cleanup;
597 /* FIXME: cagney/1999-11-10: All error calls should come here.
598 Unfortunatly some code uses the sequence: error_begin(); print
599 error message; return_to_top_level. That code should be
600 flushed. */
601 error_begin ();
602 /* NOTE: It's tempting to just do the following...
603 vfprintf_filtered (gdb_stderr, string, args);
604 and then follow with a similar looking statement to cause the message
605 to also go to gdb_lasterr. But if we do this, we'll be traversing the
606 va_list twice which works on some platforms and fails miserably on
607 others. */
608 /* Save it as the last error */
609 ui_file_rewind (gdb_lasterr);
610 vfprintf_filtered (gdb_lasterr, string, args);
611 /* Retrieve the last error and print it to gdb_stderr */
612 err_string = error_last_message ();
613 err_string_cleanup = make_cleanup (free, err_string);
614 fputs_filtered (err_string, gdb_stderr);
615 fprintf_filtered (gdb_stderr, "\n");
616 do_cleanups (err_string_cleanup);
617 return_to_top_level (RETURN_ERROR);
618 }
619
620 NORETURN void
621 error (const char *string,...)
622 {
623 va_list args;
624 va_start (args, string);
625 verror (string, args);
626 va_end (args);
627 }
628
629 NORETURN void
630 error_stream (struct ui_file *stream)
631 {
632 long size;
633 char *msg = ui_file_xstrdup (stream, &size);
634 make_cleanup (free, msg);
635 error ("%s", msg);
636 }
637
638 /* Get the last error message issued by gdb */
639
640 char *
641 error_last_message (void)
642 {
643 long len;
644 return ui_file_xstrdup (gdb_lasterr, &len);
645 }
646
647 /* This is to be called by main() at the very beginning */
648
649 void
650 error_init (void)
651 {
652 gdb_lasterr = mem_fileopen ();
653 }
654
655 /* Print a message reporting an internal error. Ask the user if they
656 want to continue, dump core, or just exit. */
657
658 NORETURN void
659 internal_verror (const char *fmt, va_list ap)
660 {
661 static char msg[] = "Internal GDB error: recursive internal error.\n";
662 static int dejavu = 0;
663 int continue_p;
664 int dump_core_p;
665
666 /* don't allow infinite error recursion. */
667 switch (dejavu)
668 {
669 case 0:
670 dejavu = 1;
671 break;
672 case 1:
673 dejavu = 2;
674 fputs_unfiltered (msg, gdb_stderr);
675 abort ();
676 default:
677 dejavu = 3;
678 write (STDERR_FILENO, msg, sizeof (msg));
679 exit (1);
680 }
681
682 /* Try to get the message out */
683 fputs_unfiltered ("gdb-internal-error: ", gdb_stderr);
684 vfprintf_unfiltered (gdb_stderr, fmt, ap);
685 fputs_unfiltered ("\n", gdb_stderr);
686
687 /* Default (no case) is to quit GDB. When in batch mode this
688 lessens the likelhood of GDB going into an infinate loop. */
689 continue_p = query ("\
690 An internal GDB error was detected. This may make make further\n\
691 debugging unreliable. Continue this debugging session? ");
692
693 /* Default (no case) is to not dump core. Lessen the chance of GDB
694 leaving random core files around. */
695 dump_core_p = query ("\
696 Create a core file containing the current state of GDB? ");
697
698 if (continue_p)
699 {
700 if (dump_core_p)
701 {
702 if (fork () == 0)
703 abort ();
704 }
705 }
706 else
707 {
708 if (dump_core_p)
709 abort ();
710 else
711 exit (1);
712 }
713
714 dejavu = 0;
715 return_to_top_level (RETURN_ERROR);
716 }
717
718 NORETURN void
719 internal_error (char *string, ...)
720 {
721 va_list ap;
722 va_start (ap, string);
723 internal_verror (string, ap);
724 va_end (ap);
725 }
726
727 /* The strerror() function can return NULL for errno values that are
728 out of range. Provide a "safe" version that always returns a
729 printable string. */
730
731 char *
732 safe_strerror (errnum)
733 int errnum;
734 {
735 char *msg;
736 static char buf[32];
737
738 if ((msg = strerror (errnum)) == NULL)
739 {
740 sprintf (buf, "(undocumented errno %d)", errnum);
741 msg = buf;
742 }
743 return (msg);
744 }
745
746 /* The strsignal() function can return NULL for signal values that are
747 out of range. Provide a "safe" version that always returns a
748 printable string. */
749
750 char *
751 safe_strsignal (signo)
752 int signo;
753 {
754 char *msg;
755 static char buf[32];
756
757 if ((msg = strsignal (signo)) == NULL)
758 {
759 sprintf (buf, "(undocumented signal %d)", signo);
760 msg = buf;
761 }
762 return (msg);
763 }
764
765
766 /* Print the system error message for errno, and also mention STRING
767 as the file name for which the error was encountered.
768 Then return to command level. */
769
770 NORETURN void
771 perror_with_name (string)
772 char *string;
773 {
774 char *err;
775 char *combined;
776
777 err = safe_strerror (errno);
778 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
779 strcpy (combined, string);
780 strcat (combined, ": ");
781 strcat (combined, err);
782
783 /* I understand setting these is a matter of taste. Still, some people
784 may clear errno but not know about bfd_error. Doing this here is not
785 unreasonable. */
786 bfd_set_error (bfd_error_no_error);
787 errno = 0;
788
789 error ("%s.", combined);
790 }
791
792 /* Print the system error message for ERRCODE, and also mention STRING
793 as the file name for which the error was encountered. */
794
795 void
796 print_sys_errmsg (string, errcode)
797 char *string;
798 int errcode;
799 {
800 char *err;
801 char *combined;
802
803 err = safe_strerror (errcode);
804 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
805 strcpy (combined, string);
806 strcat (combined, ": ");
807 strcat (combined, err);
808
809 /* We want anything which was printed on stdout to come out first, before
810 this message. */
811 gdb_flush (gdb_stdout);
812 fprintf_unfiltered (gdb_stderr, "%s.\n", combined);
813 }
814
815 /* Control C eventually causes this to be called, at a convenient time. */
816
817 void
818 quit ()
819 {
820 serial_t gdb_stdout_serial = serial_fdopen (1);
821
822 target_terminal_ours ();
823
824 /* We want all output to appear now, before we print "Quit". We
825 have 3 levels of buffering we have to flush (it's possible that
826 some of these should be changed to flush the lower-level ones
827 too): */
828
829 /* 1. The _filtered buffer. */
830 wrap_here ((char *) 0);
831
832 /* 2. The stdio buffer. */
833 gdb_flush (gdb_stdout);
834 gdb_flush (gdb_stderr);
835
836 /* 3. The system-level buffer. */
837 SERIAL_DRAIN_OUTPUT (gdb_stdout_serial);
838 SERIAL_UN_FDOPEN (gdb_stdout_serial);
839
840 annotate_error_begin ();
841
842 /* Don't use *_filtered; we don't want to prompt the user to continue. */
843 if (quit_pre_print)
844 fprintf_unfiltered (gdb_stderr, quit_pre_print);
845
846 #ifdef __MSDOS__
847 /* No steenking SIGINT will ever be coming our way when the
848 program is resumed. Don't lie. */
849 fprintf_unfiltered (gdb_stderr, "Quit\n");
850 #else
851 if (job_control
852 /* If there is no terminal switching for this target, then we can't
853 possibly get screwed by the lack of job control. */
854 || current_target.to_terminal_ours == NULL)
855 fprintf_unfiltered (gdb_stderr, "Quit\n");
856 else
857 fprintf_unfiltered (gdb_stderr,
858 "Quit (expect signal SIGINT when the program is resumed)\n");
859 #endif
860 return_to_top_level (RETURN_QUIT);
861 }
862
863
864 #if defined(_MSC_VER) /* should test for wingdb instead? */
865
866 /*
867 * Windows translates all keyboard and mouse events
868 * into a message which is appended to the message
869 * queue for the process.
870 */
871
872 void
873 notice_quit ()
874 {
875 int k = win32pollquit ();
876 if (k == 1)
877 quit_flag = 1;
878 else if (k == 2)
879 immediate_quit = 1;
880 }
881
882 #else /* !defined(_MSC_VER) */
883
884 void
885 notice_quit ()
886 {
887 /* Done by signals */
888 }
889
890 #endif /* !defined(_MSC_VER) */
891
892 /* Control C comes here */
893 void
894 request_quit (signo)
895 int signo;
896 {
897 quit_flag = 1;
898 /* Restore the signal handler. Harmless with BSD-style signals, needed
899 for System V-style signals. So just always do it, rather than worrying
900 about USG defines and stuff like that. */
901 signal (signo, request_quit);
902
903 #ifdef REQUEST_QUIT
904 REQUEST_QUIT;
905 #else
906 if (immediate_quit)
907 quit ();
908 #endif
909 }
910 \f
911 /* Memory management stuff (malloc friends). */
912
913 /* Make a substitute size_t for non-ANSI compilers. */
914
915 #ifndef HAVE_STDDEF_H
916 #ifndef size_t
917 #define size_t unsigned int
918 #endif
919 #endif
920
921 #if !defined (USE_MMALLOC)
922
923 PTR
924 mcalloc (PTR md, size_t number, size_t size)
925 {
926 return calloc (number, size);
927 }
928
929 PTR
930 mmalloc (md, size)
931 PTR md;
932 size_t size;
933 {
934 return malloc (size);
935 }
936
937 PTR
938 mrealloc (md, ptr, size)
939 PTR md;
940 PTR ptr;
941 size_t size;
942 {
943 if (ptr == 0) /* Guard against old realloc's */
944 return malloc (size);
945 else
946 return realloc (ptr, size);
947 }
948
949 void
950 mfree (md, ptr)
951 PTR md;
952 PTR ptr;
953 {
954 free (ptr);
955 }
956
957 #endif /* USE_MMALLOC */
958
959 #if !defined (USE_MMALLOC) || defined (NO_MMCHECK)
960
961 void
962 init_malloc (void *md)
963 {
964 }
965
966 #else /* Have mmalloc and want corruption checking */
967
968 static void
969 malloc_botch ()
970 {
971 fprintf_unfiltered (gdb_stderr, "Memory corruption\n");
972 abort ();
973 }
974
975 /* Attempt to install hooks in mmalloc/mrealloc/mfree for the heap specified
976 by MD, to detect memory corruption. Note that MD may be NULL to specify
977 the default heap that grows via sbrk.
978
979 Note that for freshly created regions, we must call mmcheckf prior to any
980 mallocs in the region. Otherwise, any region which was allocated prior to
981 installing the checking hooks, which is later reallocated or freed, will
982 fail the checks! The mmcheck function only allows initial hooks to be
983 installed before the first mmalloc. However, anytime after we have called
984 mmcheck the first time to install the checking hooks, we can call it again
985 to update the function pointer to the memory corruption handler.
986
987 Returns zero on failure, non-zero on success. */
988
989 #ifndef MMCHECK_FORCE
990 #define MMCHECK_FORCE 0
991 #endif
992
993 void
994 init_malloc (void *md)
995 {
996 if (!mmcheckf (md, malloc_botch, MMCHECK_FORCE))
997 {
998 /* Don't use warning(), which relies on current_target being set
999 to something other than dummy_target, until after
1000 initialize_all_files(). */
1001
1002 fprintf_unfiltered
1003 (gdb_stderr, "warning: failed to install memory consistency checks; ");
1004 fprintf_unfiltered
1005 (gdb_stderr, "configuration should define NO_MMCHECK or MMCHECK_FORCE\n");
1006 }
1007
1008 mmtrace ();
1009 }
1010
1011 #endif /* Have mmalloc and want corruption checking */
1012
1013 /* Called when a memory allocation fails, with the number of bytes of
1014 memory requested in SIZE. */
1015
1016 NORETURN void
1017 nomem (size)
1018 long size;
1019 {
1020 if (size > 0)
1021 {
1022 internal_error ("virtual memory exhausted: can't allocate %ld bytes.", size);
1023 }
1024 else
1025 {
1026 internal_error ("virtual memory exhausted.");
1027 }
1028 }
1029
1030 /* Like mmalloc but get error if no storage available, and protect against
1031 the caller wanting to allocate zero bytes. Whether to return NULL for
1032 a zero byte request, or translate the request into a request for one
1033 byte of zero'd storage, is a religious issue. */
1034
1035 PTR
1036 xmmalloc (md, size)
1037 PTR md;
1038 long size;
1039 {
1040 register PTR val;
1041
1042 if (size == 0)
1043 {
1044 val = NULL;
1045 }
1046 else if ((val = mmalloc (md, size)) == NULL)
1047 {
1048 nomem (size);
1049 }
1050 return (val);
1051 }
1052
1053 /* Like mrealloc but get error if no storage available. */
1054
1055 PTR
1056 xmrealloc (md, ptr, size)
1057 PTR md;
1058 PTR ptr;
1059 long size;
1060 {
1061 register PTR val;
1062
1063 if (ptr != NULL)
1064 {
1065 val = mrealloc (md, ptr, size);
1066 }
1067 else
1068 {
1069 val = mmalloc (md, size);
1070 }
1071 if (val == NULL)
1072 {
1073 nomem (size);
1074 }
1075 return (val);
1076 }
1077
1078 /* Like malloc but get error if no storage available, and protect against
1079 the caller wanting to allocate zero bytes. */
1080
1081 PTR
1082 xmalloc (size)
1083 size_t size;
1084 {
1085 return (xmmalloc ((PTR) NULL, size));
1086 }
1087
1088 /* Like calloc but get error if no storage available */
1089
1090 PTR
1091 xcalloc (size_t number, size_t size)
1092 {
1093 void *mem = mcalloc (NULL, number, size);
1094 if (mem == NULL)
1095 nomem (number * size);
1096 return mem;
1097 }
1098
1099 /* Like mrealloc but get error if no storage available. */
1100
1101 PTR
1102 xrealloc (ptr, size)
1103 PTR ptr;
1104 size_t size;
1105 {
1106 return (xmrealloc ((PTR) NULL, ptr, size));
1107 }
1108 \f
1109
1110 /* My replacement for the read system call.
1111 Used like `read' but keeps going if `read' returns too soon. */
1112
1113 int
1114 myread (desc, addr, len)
1115 int desc;
1116 char *addr;
1117 int len;
1118 {
1119 register int val;
1120 int orglen = len;
1121
1122 while (len > 0)
1123 {
1124 val = read (desc, addr, len);
1125 if (val < 0)
1126 return val;
1127 if (val == 0)
1128 return orglen - len;
1129 len -= val;
1130 addr += val;
1131 }
1132 return orglen;
1133 }
1134 \f
1135 /* Make a copy of the string at PTR with SIZE characters
1136 (and add a null character at the end in the copy).
1137 Uses malloc to get the space. Returns the address of the copy. */
1138
1139 char *
1140 savestring (ptr, size)
1141 const char *ptr;
1142 int size;
1143 {
1144 register char *p = (char *) xmalloc (size + 1);
1145 memcpy (p, ptr, size);
1146 p[size] = 0;
1147 return p;
1148 }
1149
1150 char *
1151 msavestring (void *md, const char *ptr, int size)
1152 {
1153 register char *p = (char *) xmmalloc (md, size + 1);
1154 memcpy (p, ptr, size);
1155 p[size] = 0;
1156 return p;
1157 }
1158
1159 /* The "const" is so it compiles under DGUX (which prototypes strsave
1160 in <string.h>. FIXME: This should be named "xstrsave", shouldn't it?
1161 Doesn't real strsave return NULL if out of memory? */
1162 char *
1163 strsave (ptr)
1164 const char *ptr;
1165 {
1166 return savestring (ptr, strlen (ptr));
1167 }
1168
1169 char *
1170 mstrsave (void *md, const char *ptr)
1171 {
1172 return (msavestring (md, ptr, strlen (ptr)));
1173 }
1174
1175 void
1176 print_spaces (n, file)
1177 register int n;
1178 register struct ui_file *file;
1179 {
1180 fputs_unfiltered (n_spaces (n), file);
1181 }
1182
1183 /* Print a host address. */
1184
1185 void
1186 gdb_print_host_address (void *addr, struct ui_file *stream)
1187 {
1188
1189 /* We could use the %p conversion specifier to fprintf if we had any
1190 way of knowing whether this host supports it. But the following
1191 should work on the Alpha and on 32 bit machines. */
1192
1193 fprintf_filtered (stream, "0x%lx", (unsigned long) addr);
1194 }
1195
1196 /* Ask user a y-or-n question and return 1 iff answer is yes.
1197 Takes three args which are given to printf to print the question.
1198 The first, a control string, should end in "? ".
1199 It should not say how to answer, because we do that. */
1200
1201 /* VARARGS */
1202 int
1203 query (char *ctlstr,...)
1204 {
1205 va_list args;
1206 register int answer;
1207 register int ans2;
1208 int retval;
1209
1210 va_start (args, ctlstr);
1211
1212 if (query_hook)
1213 {
1214 return query_hook (ctlstr, args);
1215 }
1216
1217 /* Automatically answer "yes" if input is not from a terminal. */
1218 if (!input_from_terminal_p ())
1219 return 1;
1220 #ifdef MPW
1221 /* FIXME Automatically answer "yes" if called from MacGDB. */
1222 if (mac_app)
1223 return 1;
1224 #endif /* MPW */
1225
1226 while (1)
1227 {
1228 wrap_here (""); /* Flush any buffered output */
1229 gdb_flush (gdb_stdout);
1230
1231 if (annotation_level > 1)
1232 printf_filtered ("\n\032\032pre-query\n");
1233
1234 vfprintf_filtered (gdb_stdout, ctlstr, args);
1235 printf_filtered ("(y or n) ");
1236
1237 if (annotation_level > 1)
1238 printf_filtered ("\n\032\032query\n");
1239
1240 #ifdef MPW
1241 /* If not in MacGDB, move to a new line so the entered line doesn't
1242 have a prompt on the front of it. */
1243 if (!mac_app)
1244 fputs_unfiltered ("\n", gdb_stdout);
1245 #endif /* MPW */
1246
1247 wrap_here ("");
1248 gdb_flush (gdb_stdout);
1249
1250 #if defined(TUI)
1251 if (!tui_version || cmdWin == tuiWinWithFocus ())
1252 #endif
1253 answer = fgetc (stdin);
1254 #if defined(TUI)
1255 else
1256 answer = (unsigned char) tuiBufferGetc ();
1257
1258 #endif
1259 clearerr (stdin); /* in case of C-d */
1260 if (answer == EOF) /* C-d */
1261 {
1262 retval = 1;
1263 break;
1264 }
1265 /* Eat rest of input line, to EOF or newline */
1266 if ((answer != '\n') || (tui_version && answer != '\r'))
1267 do
1268 {
1269 #if defined(TUI)
1270 if (!tui_version || cmdWin == tuiWinWithFocus ())
1271 #endif
1272 ans2 = fgetc (stdin);
1273 #if defined(TUI)
1274 else
1275 ans2 = (unsigned char) tuiBufferGetc ();
1276 #endif
1277 clearerr (stdin);
1278 }
1279 while (ans2 != EOF && ans2 != '\n' && ans2 != '\r');
1280 TUIDO (((TuiOpaqueFuncPtr) tui_vStartNewLines, 1));
1281
1282 if (answer >= 'a')
1283 answer -= 040;
1284 if (answer == 'Y')
1285 {
1286 retval = 1;
1287 break;
1288 }
1289 if (answer == 'N')
1290 {
1291 retval = 0;
1292 break;
1293 }
1294 printf_filtered ("Please answer y or n.\n");
1295 }
1296
1297 if (annotation_level > 1)
1298 printf_filtered ("\n\032\032post-query\n");
1299 return retval;
1300 }
1301 \f
1302
1303 /* Parse a C escape sequence. STRING_PTR points to a variable
1304 containing a pointer to the string to parse. That pointer
1305 should point to the character after the \. That pointer
1306 is updated past the characters we use. The value of the
1307 escape sequence is returned.
1308
1309 A negative value means the sequence \ newline was seen,
1310 which is supposed to be equivalent to nothing at all.
1311
1312 If \ is followed by a null character, we return a negative
1313 value and leave the string pointer pointing at the null character.
1314
1315 If \ is followed by 000, we return 0 and leave the string pointer
1316 after the zeros. A value of 0 does not mean end of string. */
1317
1318 int
1319 parse_escape (string_ptr)
1320 char **string_ptr;
1321 {
1322 register int c = *(*string_ptr)++;
1323 switch (c)
1324 {
1325 case 'a':
1326 return 007; /* Bell (alert) char */
1327 case 'b':
1328 return '\b';
1329 case 'e': /* Escape character */
1330 return 033;
1331 case 'f':
1332 return '\f';
1333 case 'n':
1334 return '\n';
1335 case 'r':
1336 return '\r';
1337 case 't':
1338 return '\t';
1339 case 'v':
1340 return '\v';
1341 case '\n':
1342 return -2;
1343 case 0:
1344 (*string_ptr)--;
1345 return 0;
1346 case '^':
1347 c = *(*string_ptr)++;
1348 if (c == '\\')
1349 c = parse_escape (string_ptr);
1350 if (c == '?')
1351 return 0177;
1352 return (c & 0200) | (c & 037);
1353
1354 case '0':
1355 case '1':
1356 case '2':
1357 case '3':
1358 case '4':
1359 case '5':
1360 case '6':
1361 case '7':
1362 {
1363 register int i = c - '0';
1364 register int count = 0;
1365 while (++count < 3)
1366 {
1367 if ((c = *(*string_ptr)++) >= '0' && c <= '7')
1368 {
1369 i *= 8;
1370 i += c - '0';
1371 }
1372 else
1373 {
1374 (*string_ptr)--;
1375 break;
1376 }
1377 }
1378 return i;
1379 }
1380 default:
1381 return c;
1382 }
1383 }
1384 \f
1385 /* Print the character C on STREAM as part of the contents of a literal
1386 string whose delimiter is QUOTER. Note that this routine should only
1387 be call for printing things which are independent of the language
1388 of the program being debugged. */
1389
1390 static void printchar (int c, void (*do_fputs) (const char *, struct ui_file*), void (*do_fprintf) (struct ui_file*, const char *, ...), struct ui_file *stream, int quoter);
1391
1392 static void
1393 printchar (c, do_fputs, do_fprintf, stream, quoter)
1394 int c;
1395 void (*do_fputs) PARAMS ((const char *, struct ui_file*));
1396 void (*do_fprintf) PARAMS ((struct ui_file*, const char *, ...));
1397 struct ui_file *stream;
1398 int quoter;
1399 {
1400
1401 c &= 0xFF; /* Avoid sign bit follies */
1402
1403 if (c < 0x20 || /* Low control chars */
1404 (c >= 0x7F && c < 0xA0) || /* DEL, High controls */
1405 (sevenbit_strings && c >= 0x80))
1406 { /* high order bit set */
1407 switch (c)
1408 {
1409 case '\n':
1410 do_fputs ("\\n", stream);
1411 break;
1412 case '\b':
1413 do_fputs ("\\b", stream);
1414 break;
1415 case '\t':
1416 do_fputs ("\\t", stream);
1417 break;
1418 case '\f':
1419 do_fputs ("\\f", stream);
1420 break;
1421 case '\r':
1422 do_fputs ("\\r", stream);
1423 break;
1424 case '\033':
1425 do_fputs ("\\e", stream);
1426 break;
1427 case '\007':
1428 do_fputs ("\\a", stream);
1429 break;
1430 default:
1431 do_fprintf (stream, "\\%.3o", (unsigned int) c);
1432 break;
1433 }
1434 }
1435 else
1436 {
1437 if (c == '\\' || c == quoter)
1438 do_fputs ("\\", stream);
1439 do_fprintf (stream, "%c", c);
1440 }
1441 }
1442
1443 /* Print the character C on STREAM as part of the contents of a
1444 literal string whose delimiter is QUOTER. Note that these routines
1445 should only be call for printing things which are independent of
1446 the language of the program being debugged. */
1447
1448 void
1449 fputstr_filtered (str, quoter, stream)
1450 const char *str;
1451 int quoter;
1452 struct ui_file *stream;
1453 {
1454 while (*str)
1455 printchar (*str++, fputs_filtered, fprintf_filtered, stream, quoter);
1456 }
1457
1458 void
1459 fputstr_unfiltered (str, quoter, stream)
1460 const char *str;
1461 int quoter;
1462 struct ui_file *stream;
1463 {
1464 while (*str)
1465 printchar (*str++, fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1466 }
1467
1468 void
1469 fputstrn_unfiltered (str, n, quoter, stream)
1470 const char *str;
1471 int n;
1472 int quoter;
1473 struct ui_file *stream;
1474 {
1475 int i;
1476 for (i = 0; i < n; i++)
1477 printchar (str[i], fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1478 }
1479
1480 \f
1481
1482 /* Number of lines per page or UINT_MAX if paging is disabled. */
1483 static unsigned int lines_per_page;
1484 /* Number of chars per line or UNIT_MAX if line folding is disabled. */
1485 static unsigned int chars_per_line;
1486 /* Current count of lines printed on this page, chars on this line. */
1487 static unsigned int lines_printed, chars_printed;
1488
1489 /* Buffer and start column of buffered text, for doing smarter word-
1490 wrapping. When someone calls wrap_here(), we start buffering output
1491 that comes through fputs_filtered(). If we see a newline, we just
1492 spit it out and forget about the wrap_here(). If we see another
1493 wrap_here(), we spit it out and remember the newer one. If we see
1494 the end of the line, we spit out a newline, the indent, and then
1495 the buffered output. */
1496
1497 /* Malloc'd buffer with chars_per_line+2 bytes. Contains characters which
1498 are waiting to be output (they have already been counted in chars_printed).
1499 When wrap_buffer[0] is null, the buffer is empty. */
1500 static char *wrap_buffer;
1501
1502 /* Pointer in wrap_buffer to the next character to fill. */
1503 static char *wrap_pointer;
1504
1505 /* String to indent by if the wrap occurs. Must not be NULL if wrap_column
1506 is non-zero. */
1507 static char *wrap_indent;
1508
1509 /* Column number on the screen where wrap_buffer begins, or 0 if wrapping
1510 is not in effect. */
1511 static int wrap_column;
1512 \f
1513
1514 /* Inialize the lines and chars per page */
1515 void
1516 init_page_info ()
1517 {
1518 #if defined(TUI)
1519 if (tui_version && m_winPtrNotNull (cmdWin))
1520 {
1521 lines_per_page = cmdWin->generic.height;
1522 chars_per_line = cmdWin->generic.width;
1523 }
1524 else
1525 #endif
1526 {
1527 /* These defaults will be used if we are unable to get the correct
1528 values from termcap. */
1529 #if defined(__GO32__)
1530 lines_per_page = ScreenRows ();
1531 chars_per_line = ScreenCols ();
1532 #else
1533 lines_per_page = 24;
1534 chars_per_line = 80;
1535
1536 #if !defined (MPW) && !defined (_WIN32)
1537 /* No termcap under MPW, although might be cool to do something
1538 by looking at worksheet or console window sizes. */
1539 /* Initialize the screen height and width from termcap. */
1540 {
1541 char *termtype = getenv ("TERM");
1542
1543 /* Positive means success, nonpositive means failure. */
1544 int status;
1545
1546 /* 2048 is large enough for all known terminals, according to the
1547 GNU termcap manual. */
1548 char term_buffer[2048];
1549
1550 if (termtype)
1551 {
1552 status = tgetent (term_buffer, termtype);
1553 if (status > 0)
1554 {
1555 int val;
1556 int running_in_emacs = getenv ("EMACS") != NULL;
1557
1558 val = tgetnum ("li");
1559 if (val >= 0 && !running_in_emacs)
1560 lines_per_page = val;
1561 else
1562 /* The number of lines per page is not mentioned
1563 in the terminal description. This probably means
1564 that paging is not useful (e.g. emacs shell window),
1565 so disable paging. */
1566 lines_per_page = UINT_MAX;
1567
1568 val = tgetnum ("co");
1569 if (val >= 0)
1570 chars_per_line = val;
1571 }
1572 }
1573 }
1574 #endif /* MPW */
1575
1576 #if defined(SIGWINCH) && defined(SIGWINCH_HANDLER)
1577
1578 /* If there is a better way to determine the window size, use it. */
1579 SIGWINCH_HANDLER (SIGWINCH);
1580 #endif
1581 #endif
1582 /* If the output is not a terminal, don't paginate it. */
1583 if (!ui_file_isatty (gdb_stdout))
1584 lines_per_page = UINT_MAX;
1585 } /* the command_line_version */
1586 set_width ();
1587 }
1588
1589 static void
1590 set_width ()
1591 {
1592 if (chars_per_line == 0)
1593 init_page_info ();
1594
1595 if (!wrap_buffer)
1596 {
1597 wrap_buffer = (char *) xmalloc (chars_per_line + 2);
1598 wrap_buffer[0] = '\0';
1599 }
1600 else
1601 wrap_buffer = (char *) xrealloc (wrap_buffer, chars_per_line + 2);
1602 wrap_pointer = wrap_buffer; /* Start it at the beginning */
1603 }
1604
1605 /* ARGSUSED */
1606 static void
1607 set_width_command (args, from_tty, c)
1608 char *args;
1609 int from_tty;
1610 struct cmd_list_element *c;
1611 {
1612 set_width ();
1613 }
1614
1615 /* Wait, so the user can read what's on the screen. Prompt the user
1616 to continue by pressing RETURN. */
1617
1618 static void
1619 prompt_for_continue ()
1620 {
1621 char *ignore;
1622 char cont_prompt[120];
1623
1624 if (annotation_level > 1)
1625 printf_unfiltered ("\n\032\032pre-prompt-for-continue\n");
1626
1627 strcpy (cont_prompt,
1628 "---Type <return> to continue, or q <return> to quit---");
1629 if (annotation_level > 1)
1630 strcat (cont_prompt, "\n\032\032prompt-for-continue\n");
1631
1632 /* We must do this *before* we call gdb_readline, else it will eventually
1633 call us -- thinking that we're trying to print beyond the end of the
1634 screen. */
1635 reinitialize_more_filter ();
1636
1637 immediate_quit++;
1638 /* On a real operating system, the user can quit with SIGINT.
1639 But not on GO32.
1640
1641 'q' is provided on all systems so users don't have to change habits
1642 from system to system, and because telling them what to do in
1643 the prompt is more user-friendly than expecting them to think of
1644 SIGINT. */
1645 /* Call readline, not gdb_readline, because GO32 readline handles control-C
1646 whereas control-C to gdb_readline will cause the user to get dumped
1647 out to DOS. */
1648 ignore = readline (cont_prompt);
1649
1650 if (annotation_level > 1)
1651 printf_unfiltered ("\n\032\032post-prompt-for-continue\n");
1652
1653 if (ignore)
1654 {
1655 char *p = ignore;
1656 while (*p == ' ' || *p == '\t')
1657 ++p;
1658 if (p[0] == 'q')
1659 {
1660 if (!event_loop_p)
1661 request_quit (SIGINT);
1662 else
1663 async_request_quit (0);
1664 }
1665 free (ignore);
1666 }
1667 immediate_quit--;
1668
1669 /* Now we have to do this again, so that GDB will know that it doesn't
1670 need to save the ---Type <return>--- line at the top of the screen. */
1671 reinitialize_more_filter ();
1672
1673 dont_repeat (); /* Forget prev cmd -- CR won't repeat it. */
1674 }
1675
1676 /* Reinitialize filter; ie. tell it to reset to original values. */
1677
1678 void
1679 reinitialize_more_filter ()
1680 {
1681 lines_printed = 0;
1682 chars_printed = 0;
1683 }
1684
1685 /* Indicate that if the next sequence of characters overflows the line,
1686 a newline should be inserted here rather than when it hits the end.
1687 If INDENT is non-null, it is a string to be printed to indent the
1688 wrapped part on the next line. INDENT must remain accessible until
1689 the next call to wrap_here() or until a newline is printed through
1690 fputs_filtered().
1691
1692 If the line is already overfull, we immediately print a newline and
1693 the indentation, and disable further wrapping.
1694
1695 If we don't know the width of lines, but we know the page height,
1696 we must not wrap words, but should still keep track of newlines
1697 that were explicitly printed.
1698
1699 INDENT should not contain tabs, as that will mess up the char count
1700 on the next line. FIXME.
1701
1702 This routine is guaranteed to force out any output which has been
1703 squirreled away in the wrap_buffer, so wrap_here ((char *)0) can be
1704 used to force out output from the wrap_buffer. */
1705
1706 void
1707 wrap_here (indent)
1708 char *indent;
1709 {
1710 /* This should have been allocated, but be paranoid anyway. */
1711 if (!wrap_buffer)
1712 abort ();
1713
1714 if (wrap_buffer[0])
1715 {
1716 *wrap_pointer = '\0';
1717 fputs_unfiltered (wrap_buffer, gdb_stdout);
1718 }
1719 wrap_pointer = wrap_buffer;
1720 wrap_buffer[0] = '\0';
1721 if (chars_per_line == UINT_MAX) /* No line overflow checking */
1722 {
1723 wrap_column = 0;
1724 }
1725 else if (chars_printed >= chars_per_line)
1726 {
1727 puts_filtered ("\n");
1728 if (indent != NULL)
1729 puts_filtered (indent);
1730 wrap_column = 0;
1731 }
1732 else
1733 {
1734 wrap_column = chars_printed;
1735 if (indent == NULL)
1736 wrap_indent = "";
1737 else
1738 wrap_indent = indent;
1739 }
1740 }
1741
1742 /* Ensure that whatever gets printed next, using the filtered output
1743 commands, starts at the beginning of the line. I.E. if there is
1744 any pending output for the current line, flush it and start a new
1745 line. Otherwise do nothing. */
1746
1747 void
1748 begin_line ()
1749 {
1750 if (chars_printed > 0)
1751 {
1752 puts_filtered ("\n");
1753 }
1754 }
1755
1756
1757 /* Like fputs but if FILTER is true, pause after every screenful.
1758
1759 Regardless of FILTER can wrap at points other than the final
1760 character of a line.
1761
1762 Unlike fputs, fputs_maybe_filtered does not return a value.
1763 It is OK for LINEBUFFER to be NULL, in which case just don't print
1764 anything.
1765
1766 Note that a longjmp to top level may occur in this routine (only if
1767 FILTER is true) (since prompt_for_continue may do so) so this
1768 routine should not be called when cleanups are not in place. */
1769
1770 static void
1771 fputs_maybe_filtered (linebuffer, stream, filter)
1772 const char *linebuffer;
1773 struct ui_file *stream;
1774 int filter;
1775 {
1776 const char *lineptr;
1777
1778 if (linebuffer == 0)
1779 return;
1780
1781 /* Don't do any filtering if it is disabled. */
1782 if ((stream != gdb_stdout) || !pagination_enabled
1783 || (lines_per_page == UINT_MAX && chars_per_line == UINT_MAX))
1784 {
1785 fputs_unfiltered (linebuffer, stream);
1786 return;
1787 }
1788
1789 /* Go through and output each character. Show line extension
1790 when this is necessary; prompt user for new page when this is
1791 necessary. */
1792
1793 lineptr = linebuffer;
1794 while (*lineptr)
1795 {
1796 /* Possible new page. */
1797 if (filter &&
1798 (lines_printed >= lines_per_page - 1))
1799 prompt_for_continue ();
1800
1801 while (*lineptr && *lineptr != '\n')
1802 {
1803 /* Print a single line. */
1804 if (*lineptr == '\t')
1805 {
1806 if (wrap_column)
1807 *wrap_pointer++ = '\t';
1808 else
1809 fputc_unfiltered ('\t', stream);
1810 /* Shifting right by 3 produces the number of tab stops
1811 we have already passed, and then adding one and
1812 shifting left 3 advances to the next tab stop. */
1813 chars_printed = ((chars_printed >> 3) + 1) << 3;
1814 lineptr++;
1815 }
1816 else
1817 {
1818 if (wrap_column)
1819 *wrap_pointer++ = *lineptr;
1820 else
1821 fputc_unfiltered (*lineptr, stream);
1822 chars_printed++;
1823 lineptr++;
1824 }
1825
1826 if (chars_printed >= chars_per_line)
1827 {
1828 unsigned int save_chars = chars_printed;
1829
1830 chars_printed = 0;
1831 lines_printed++;
1832 /* If we aren't actually wrapping, don't output newline --
1833 if chars_per_line is right, we probably just overflowed
1834 anyway; if it's wrong, let us keep going. */
1835 if (wrap_column)
1836 fputc_unfiltered ('\n', stream);
1837
1838 /* Possible new page. */
1839 if (lines_printed >= lines_per_page - 1)
1840 prompt_for_continue ();
1841
1842 /* Now output indentation and wrapped string */
1843 if (wrap_column)
1844 {
1845 fputs_unfiltered (wrap_indent, stream);
1846 *wrap_pointer = '\0'; /* Null-terminate saved stuff */
1847 fputs_unfiltered (wrap_buffer, stream); /* and eject it */
1848 /* FIXME, this strlen is what prevents wrap_indent from
1849 containing tabs. However, if we recurse to print it
1850 and count its chars, we risk trouble if wrap_indent is
1851 longer than (the user settable) chars_per_line.
1852 Note also that this can set chars_printed > chars_per_line
1853 if we are printing a long string. */
1854 chars_printed = strlen (wrap_indent)
1855 + (save_chars - wrap_column);
1856 wrap_pointer = wrap_buffer; /* Reset buffer */
1857 wrap_buffer[0] = '\0';
1858 wrap_column = 0; /* And disable fancy wrap */
1859 }
1860 }
1861 }
1862
1863 if (*lineptr == '\n')
1864 {
1865 chars_printed = 0;
1866 wrap_here ((char *) 0); /* Spit out chars, cancel further wraps */
1867 lines_printed++;
1868 fputc_unfiltered ('\n', stream);
1869 lineptr++;
1870 }
1871 }
1872 }
1873
1874 void
1875 fputs_filtered (linebuffer, stream)
1876 const char *linebuffer;
1877 struct ui_file *stream;
1878 {
1879 fputs_maybe_filtered (linebuffer, stream, 1);
1880 }
1881
1882 int
1883 putchar_unfiltered (c)
1884 int c;
1885 {
1886 char buf = c;
1887 ui_file_write (gdb_stdout, &buf, 1);
1888 return c;
1889 }
1890
1891 int
1892 fputc_unfiltered (c, stream)
1893 int c;
1894 struct ui_file *stream;
1895 {
1896 char buf = c;
1897 ui_file_write (stream, &buf, 1);
1898 return c;
1899 }
1900
1901 int
1902 fputc_filtered (c, stream)
1903 int c;
1904 struct ui_file *stream;
1905 {
1906 char buf[2];
1907
1908 buf[0] = c;
1909 buf[1] = 0;
1910 fputs_filtered (buf, stream);
1911 return c;
1912 }
1913
1914 /* puts_debug is like fputs_unfiltered, except it prints special
1915 characters in printable fashion. */
1916
1917 void
1918 puts_debug (prefix, string, suffix)
1919 char *prefix;
1920 char *string;
1921 char *suffix;
1922 {
1923 int ch;
1924
1925 /* Print prefix and suffix after each line. */
1926 static int new_line = 1;
1927 static int return_p = 0;
1928 static char *prev_prefix = "";
1929 static char *prev_suffix = "";
1930
1931 if (*string == '\n')
1932 return_p = 0;
1933
1934 /* If the prefix is changing, print the previous suffix, a new line,
1935 and the new prefix. */
1936 if ((return_p || (strcmp (prev_prefix, prefix) != 0)) && !new_line)
1937 {
1938 fputs_unfiltered (prev_suffix, gdb_stdlog);
1939 fputs_unfiltered ("\n", gdb_stdlog);
1940 fputs_unfiltered (prefix, gdb_stdlog);
1941 }
1942
1943 /* Print prefix if we printed a newline during the previous call. */
1944 if (new_line)
1945 {
1946 new_line = 0;
1947 fputs_unfiltered (prefix, gdb_stdlog);
1948 }
1949
1950 prev_prefix = prefix;
1951 prev_suffix = suffix;
1952
1953 /* Output characters in a printable format. */
1954 while ((ch = *string++) != '\0')
1955 {
1956 switch (ch)
1957 {
1958 default:
1959 if (isprint (ch))
1960 fputc_unfiltered (ch, gdb_stdlog);
1961
1962 else
1963 fprintf_unfiltered (gdb_stdlog, "\\x%02x", ch & 0xff);
1964 break;
1965
1966 case '\\':
1967 fputs_unfiltered ("\\\\", gdb_stdlog);
1968 break;
1969 case '\b':
1970 fputs_unfiltered ("\\b", gdb_stdlog);
1971 break;
1972 case '\f':
1973 fputs_unfiltered ("\\f", gdb_stdlog);
1974 break;
1975 case '\n':
1976 new_line = 1;
1977 fputs_unfiltered ("\\n", gdb_stdlog);
1978 break;
1979 case '\r':
1980 fputs_unfiltered ("\\r", gdb_stdlog);
1981 break;
1982 case '\t':
1983 fputs_unfiltered ("\\t", gdb_stdlog);
1984 break;
1985 case '\v':
1986 fputs_unfiltered ("\\v", gdb_stdlog);
1987 break;
1988 }
1989
1990 return_p = ch == '\r';
1991 }
1992
1993 /* Print suffix if we printed a newline. */
1994 if (new_line)
1995 {
1996 fputs_unfiltered (suffix, gdb_stdlog);
1997 fputs_unfiltered ("\n", gdb_stdlog);
1998 }
1999 }
2000
2001
2002 /* Print a variable number of ARGS using format FORMAT. If this
2003 information is going to put the amount written (since the last call
2004 to REINITIALIZE_MORE_FILTER or the last page break) over the page size,
2005 call prompt_for_continue to get the users permision to continue.
2006
2007 Unlike fprintf, this function does not return a value.
2008
2009 We implement three variants, vfprintf (takes a vararg list and stream),
2010 fprintf (takes a stream to write on), and printf (the usual).
2011
2012 Note also that a longjmp to top level may occur in this routine
2013 (since prompt_for_continue may do so) so this routine should not be
2014 called when cleanups are not in place. */
2015
2016 static void
2017 vfprintf_maybe_filtered (stream, format, args, filter)
2018 struct ui_file *stream;
2019 const char *format;
2020 va_list args;
2021 int filter;
2022 {
2023 char *linebuffer;
2024 struct cleanup *old_cleanups;
2025
2026 vasprintf (&linebuffer, format, args);
2027 if (linebuffer == NULL)
2028 {
2029 fputs_unfiltered ("\ngdb: virtual memory exhausted.\n", gdb_stderr);
2030 exit (1);
2031 }
2032 old_cleanups = make_cleanup (free, linebuffer);
2033 fputs_maybe_filtered (linebuffer, stream, filter);
2034 do_cleanups (old_cleanups);
2035 }
2036
2037
2038 void
2039 vfprintf_filtered (stream, format, args)
2040 struct ui_file *stream;
2041 const char *format;
2042 va_list args;
2043 {
2044 vfprintf_maybe_filtered (stream, format, args, 1);
2045 }
2046
2047 void
2048 vfprintf_unfiltered (stream, format, args)
2049 struct ui_file *stream;
2050 const char *format;
2051 va_list args;
2052 {
2053 char *linebuffer;
2054 struct cleanup *old_cleanups;
2055
2056 vasprintf (&linebuffer, format, args);
2057 if (linebuffer == NULL)
2058 {
2059 fputs_unfiltered ("\ngdb: virtual memory exhausted.\n", gdb_stderr);
2060 exit (1);
2061 }
2062 old_cleanups = make_cleanup (free, linebuffer);
2063 fputs_unfiltered (linebuffer, stream);
2064 do_cleanups (old_cleanups);
2065 }
2066
2067 void
2068 vprintf_filtered (format, args)
2069 const char *format;
2070 va_list args;
2071 {
2072 vfprintf_maybe_filtered (gdb_stdout, format, args, 1);
2073 }
2074
2075 void
2076 vprintf_unfiltered (format, args)
2077 const char *format;
2078 va_list args;
2079 {
2080 vfprintf_unfiltered (gdb_stdout, format, args);
2081 }
2082
2083 void
2084 fprintf_filtered (struct ui_file * stream, const char *format,...)
2085 {
2086 va_list args;
2087 va_start (args, format);
2088 vfprintf_filtered (stream, format, args);
2089 va_end (args);
2090 }
2091
2092 void
2093 fprintf_unfiltered (struct ui_file * stream, const char *format,...)
2094 {
2095 va_list args;
2096 va_start (args, format);
2097 vfprintf_unfiltered (stream, format, args);
2098 va_end (args);
2099 }
2100
2101 /* Like fprintf_filtered, but prints its result indented.
2102 Called as fprintfi_filtered (spaces, stream, format, ...); */
2103
2104 void
2105 fprintfi_filtered (int spaces, struct ui_file * stream, const char *format,...)
2106 {
2107 va_list args;
2108 va_start (args, format);
2109 print_spaces_filtered (spaces, stream);
2110
2111 vfprintf_filtered (stream, format, args);
2112 va_end (args);
2113 }
2114
2115
2116 void
2117 printf_filtered (const char *format,...)
2118 {
2119 va_list args;
2120 va_start (args, format);
2121 vfprintf_filtered (gdb_stdout, format, args);
2122 va_end (args);
2123 }
2124
2125
2126 void
2127 printf_unfiltered (const char *format,...)
2128 {
2129 va_list args;
2130 va_start (args, format);
2131 vfprintf_unfiltered (gdb_stdout, format, args);
2132 va_end (args);
2133 }
2134
2135 /* Like printf_filtered, but prints it's result indented.
2136 Called as printfi_filtered (spaces, format, ...); */
2137
2138 void
2139 printfi_filtered (int spaces, const char *format,...)
2140 {
2141 va_list args;
2142 va_start (args, format);
2143 print_spaces_filtered (spaces, gdb_stdout);
2144 vfprintf_filtered (gdb_stdout, format, args);
2145 va_end (args);
2146 }
2147
2148 /* Easy -- but watch out!
2149
2150 This routine is *not* a replacement for puts()! puts() appends a newline.
2151 This one doesn't, and had better not! */
2152
2153 void
2154 puts_filtered (string)
2155 const char *string;
2156 {
2157 fputs_filtered (string, gdb_stdout);
2158 }
2159
2160 void
2161 puts_unfiltered (string)
2162 const char *string;
2163 {
2164 fputs_unfiltered (string, gdb_stdout);
2165 }
2166
2167 /* Return a pointer to N spaces and a null. The pointer is good
2168 until the next call to here. */
2169 char *
2170 n_spaces (n)
2171 int n;
2172 {
2173 char *t;
2174 static char *spaces = 0;
2175 static int max_spaces = -1;
2176
2177 if (n > max_spaces)
2178 {
2179 if (spaces)
2180 free (spaces);
2181 spaces = (char *) xmalloc (n + 1);
2182 for (t = spaces + n; t != spaces;)
2183 *--t = ' ';
2184 spaces[n] = '\0';
2185 max_spaces = n;
2186 }
2187
2188 return spaces + max_spaces - n;
2189 }
2190
2191 /* Print N spaces. */
2192 void
2193 print_spaces_filtered (n, stream)
2194 int n;
2195 struct ui_file *stream;
2196 {
2197 fputs_filtered (n_spaces (n), stream);
2198 }
2199 \f
2200 /* C++ demangler stuff. */
2201
2202 /* fprintf_symbol_filtered attempts to demangle NAME, a symbol in language
2203 LANG, using demangling args ARG_MODE, and print it filtered to STREAM.
2204 If the name is not mangled, or the language for the name is unknown, or
2205 demangling is off, the name is printed in its "raw" form. */
2206
2207 void
2208 fprintf_symbol_filtered (stream, name, lang, arg_mode)
2209 struct ui_file *stream;
2210 char *name;
2211 enum language lang;
2212 int arg_mode;
2213 {
2214 char *demangled;
2215
2216 if (name != NULL)
2217 {
2218 /* If user wants to see raw output, no problem. */
2219 if (!demangle)
2220 {
2221 fputs_filtered (name, stream);
2222 }
2223 else
2224 {
2225 switch (lang)
2226 {
2227 case language_cplus:
2228 demangled = cplus_demangle (name, arg_mode);
2229 break;
2230 case language_java:
2231 demangled = cplus_demangle (name, arg_mode | DMGL_JAVA);
2232 break;
2233 case language_chill:
2234 demangled = chill_demangle (name);
2235 break;
2236 default:
2237 demangled = NULL;
2238 break;
2239 }
2240 fputs_filtered (demangled ? demangled : name, stream);
2241 if (demangled != NULL)
2242 {
2243 free (demangled);
2244 }
2245 }
2246 }
2247 }
2248
2249 /* Do a strcmp() type operation on STRING1 and STRING2, ignoring any
2250 differences in whitespace. Returns 0 if they match, non-zero if they
2251 don't (slightly different than strcmp()'s range of return values).
2252
2253 As an extra hack, string1=="FOO(ARGS)" matches string2=="FOO".
2254 This "feature" is useful when searching for matching C++ function names
2255 (such as if the user types 'break FOO', where FOO is a mangled C++
2256 function). */
2257
2258 int
2259 strcmp_iw (string1, string2)
2260 const char *string1;
2261 const char *string2;
2262 {
2263 while ((*string1 != '\0') && (*string2 != '\0'))
2264 {
2265 while (isspace (*string1))
2266 {
2267 string1++;
2268 }
2269 while (isspace (*string2))
2270 {
2271 string2++;
2272 }
2273 if (*string1 != *string2)
2274 {
2275 break;
2276 }
2277 if (*string1 != '\0')
2278 {
2279 string1++;
2280 string2++;
2281 }
2282 }
2283 return (*string1 != '\0' && *string1 != '(') || (*string2 != '\0');
2284 }
2285 \f
2286
2287 /*
2288 ** subset_compare()
2289 ** Answer whether string_to_compare is a full or partial match to
2290 ** template_string. The partial match must be in sequence starting
2291 ** at index 0.
2292 */
2293 int
2294 subset_compare (string_to_compare, template_string)
2295 char *string_to_compare;
2296 char *template_string;
2297 {
2298 int match;
2299 if (template_string != (char *) NULL && string_to_compare != (char *) NULL &&
2300 strlen (string_to_compare) <= strlen (template_string))
2301 match = (strncmp (template_string,
2302 string_to_compare,
2303 strlen (string_to_compare)) == 0);
2304 else
2305 match = 0;
2306 return match;
2307 }
2308
2309
2310 static void pagination_on_command PARAMS ((char *arg, int from_tty));
2311 static void
2312 pagination_on_command (arg, from_tty)
2313 char *arg;
2314 int from_tty;
2315 {
2316 pagination_enabled = 1;
2317 }
2318
2319 static void pagination_on_command PARAMS ((char *arg, int from_tty));
2320 static void
2321 pagination_off_command (arg, from_tty)
2322 char *arg;
2323 int from_tty;
2324 {
2325 pagination_enabled = 0;
2326 }
2327 \f
2328
2329 void
2330 initialize_utils ()
2331 {
2332 struct cmd_list_element *c;
2333
2334 c = add_set_cmd ("width", class_support, var_uinteger,
2335 (char *) &chars_per_line,
2336 "Set number of characters gdb thinks are in a line.",
2337 &setlist);
2338 add_show_from_set (c, &showlist);
2339 c->function.sfunc = set_width_command;
2340
2341 add_show_from_set
2342 (add_set_cmd ("height", class_support,
2343 var_uinteger, (char *) &lines_per_page,
2344 "Set number of lines gdb thinks are in a page.", &setlist),
2345 &showlist);
2346
2347 init_page_info ();
2348
2349 /* If the output is not a terminal, don't paginate it. */
2350 if (!ui_file_isatty (gdb_stdout))
2351 lines_per_page = UINT_MAX;
2352
2353 set_width_command ((char *) NULL, 0, c);
2354
2355 add_show_from_set
2356 (add_set_cmd ("demangle", class_support, var_boolean,
2357 (char *) &demangle,
2358 "Set demangling of encoded C++ names when displaying symbols.",
2359 &setprintlist),
2360 &showprintlist);
2361
2362 add_show_from_set
2363 (add_set_cmd ("pagination", class_support,
2364 var_boolean, (char *) &pagination_enabled,
2365 "Set state of pagination.", &setlist),
2366 &showlist);
2367 if (xdb_commands)
2368 {
2369 add_com ("am", class_support, pagination_on_command,
2370 "Enable pagination");
2371 add_com ("sm", class_support, pagination_off_command,
2372 "Disable pagination");
2373 }
2374
2375 add_show_from_set
2376 (add_set_cmd ("sevenbit-strings", class_support, var_boolean,
2377 (char *) &sevenbit_strings,
2378 "Set printing of 8-bit characters in strings as \\nnn.",
2379 &setprintlist),
2380 &showprintlist);
2381
2382 add_show_from_set
2383 (add_set_cmd ("asm-demangle", class_support, var_boolean,
2384 (char *) &asm_demangle,
2385 "Set demangling of C++ names in disassembly listings.",
2386 &setprintlist),
2387 &showprintlist);
2388 }
2389
2390 /* Machine specific function to handle SIGWINCH signal. */
2391
2392 #ifdef SIGWINCH_HANDLER_BODY
2393 SIGWINCH_HANDLER_BODY
2394 #endif
2395 \f
2396 /* Support for converting target fp numbers into host DOUBLEST format. */
2397
2398 /* XXX - This code should really be in libiberty/floatformat.c, however
2399 configuration issues with libiberty made this very difficult to do in the
2400 available time. */
2401
2402 #include "floatformat.h"
2403 #include <math.h> /* ldexp */
2404
2405 /* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
2406 going to bother with trying to muck around with whether it is defined in
2407 a system header, what we do if not, etc. */
2408 #define FLOATFORMAT_CHAR_BIT 8
2409
2410 static unsigned long get_field PARAMS ((unsigned char *,
2411 enum floatformat_byteorders,
2412 unsigned int,
2413 unsigned int,
2414 unsigned int));
2415
2416 /* Extract a field which starts at START and is LEN bytes long. DATA and
2417 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
2418 static unsigned long
2419 get_field (data, order, total_len, start, len)
2420 unsigned char *data;
2421 enum floatformat_byteorders order;
2422 unsigned int total_len;
2423 unsigned int start;
2424 unsigned int len;
2425 {
2426 unsigned long result;
2427 unsigned int cur_byte;
2428 int cur_bitshift;
2429
2430 /* Start at the least significant part of the field. */
2431 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2432 {
2433 /* We start counting from the other end (i.e, from the high bytes
2434 rather than the low bytes). As such, we need to be concerned
2435 with what happens if bit 0 doesn't start on a byte boundary.
2436 I.e, we need to properly handle the case where total_len is
2437 not evenly divisible by 8. So we compute ``excess'' which
2438 represents the number of bits from the end of our starting
2439 byte needed to get to bit 0. */
2440 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
2441 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
2442 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
2443 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
2444 - FLOATFORMAT_CHAR_BIT;
2445 }
2446 else
2447 {
2448 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2449 cur_bitshift =
2450 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2451 }
2452 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
2453 result = *(data + cur_byte) >> (-cur_bitshift);
2454 else
2455 result = 0;
2456 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2457 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2458 ++cur_byte;
2459 else
2460 --cur_byte;
2461
2462 /* Move towards the most significant part of the field. */
2463 while (cur_bitshift < len)
2464 {
2465 result |= (unsigned long)*(data + cur_byte) << cur_bitshift;
2466 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2467 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2468 ++cur_byte;
2469 else
2470 --cur_byte;
2471 }
2472 if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT)
2473 /* Mask out bits which are not part of the field */
2474 result &= ((1UL << len) - 1);
2475 return result;
2476 }
2477
2478 /* Convert from FMT to a DOUBLEST.
2479 FROM is the address of the extended float.
2480 Store the DOUBLEST in *TO. */
2481
2482 void
2483 floatformat_to_doublest (fmt, from, to)
2484 const struct floatformat *fmt;
2485 char *from;
2486 DOUBLEST *to;
2487 {
2488 unsigned char *ufrom = (unsigned char *) from;
2489 DOUBLEST dto;
2490 long exponent;
2491 unsigned long mant;
2492 unsigned int mant_bits, mant_off;
2493 int mant_bits_left;
2494 int special_exponent; /* It's a NaN, denorm or zero */
2495
2496 /* If the mantissa bits are not contiguous from one end of the
2497 mantissa to the other, we need to make a private copy of the
2498 source bytes that is in the right order since the unpacking
2499 algorithm assumes that the bits are contiguous.
2500
2501 Swap the bytes individually rather than accessing them through
2502 "long *" since we have no guarantee that they start on a long
2503 alignment, and also sizeof(long) for the host could be different
2504 than sizeof(long) for the target. FIXME: Assumes sizeof(long)
2505 for the target is 4. */
2506
2507 if (fmt->byteorder == floatformat_littlebyte_bigword)
2508 {
2509 static unsigned char *newfrom;
2510 unsigned char *swapin, *swapout;
2511 int longswaps;
2512
2513 longswaps = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
2514 longswaps >>= 3;
2515
2516 if (newfrom == NULL)
2517 {
2518 newfrom = (unsigned char *) xmalloc (fmt->totalsize);
2519 }
2520 swapout = newfrom;
2521 swapin = ufrom;
2522 ufrom = newfrom;
2523 while (longswaps-- > 0)
2524 {
2525 /* This is ugly, but efficient */
2526 *swapout++ = swapin[4];
2527 *swapout++ = swapin[5];
2528 *swapout++ = swapin[6];
2529 *swapout++ = swapin[7];
2530 *swapout++ = swapin[0];
2531 *swapout++ = swapin[1];
2532 *swapout++ = swapin[2];
2533 *swapout++ = swapin[3];
2534 swapin += 8;
2535 }
2536 }
2537
2538 exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize,
2539 fmt->exp_start, fmt->exp_len);
2540 /* Note that if exponent indicates a NaN, we can't really do anything useful
2541 (not knowing if the host has NaN's, or how to build one). So it will
2542 end up as an infinity or something close; that is OK. */
2543
2544 mant_bits_left = fmt->man_len;
2545 mant_off = fmt->man_start;
2546 dto = 0.0;
2547
2548 special_exponent = exponent == 0 || exponent == fmt->exp_nan;
2549
2550 /* Don't bias NaNs. Use minimum exponent for denorms. For simplicity,
2551 we don't check for zero as the exponent doesn't matter. */
2552 if (!special_exponent)
2553 exponent -= fmt->exp_bias;
2554 else if (exponent == 0)
2555 exponent = 1 - fmt->exp_bias;
2556
2557 /* Build the result algebraically. Might go infinite, underflow, etc;
2558 who cares. */
2559
2560 /* If this format uses a hidden bit, explicitly add it in now. Otherwise,
2561 increment the exponent by one to account for the integer bit. */
2562
2563 if (!special_exponent)
2564 {
2565 if (fmt->intbit == floatformat_intbit_no)
2566 dto = ldexp (1.0, exponent);
2567 else
2568 exponent++;
2569 }
2570
2571 while (mant_bits_left > 0)
2572 {
2573 mant_bits = min (mant_bits_left, 32);
2574
2575 mant = get_field (ufrom, fmt->byteorder, fmt->totalsize,
2576 mant_off, mant_bits);
2577
2578 dto += ldexp ((double) mant, exponent - mant_bits);
2579 exponent -= mant_bits;
2580 mant_off += mant_bits;
2581 mant_bits_left -= mant_bits;
2582 }
2583
2584 /* Negate it if negative. */
2585 if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1))
2586 dto = -dto;
2587 *to = dto;
2588 }
2589 \f
2590 static void put_field PARAMS ((unsigned char *, enum floatformat_byteorders,
2591 unsigned int,
2592 unsigned int,
2593 unsigned int,
2594 unsigned long));
2595
2596 /* Set a field which starts at START and is LEN bytes long. DATA and
2597 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
2598 static void
2599 put_field (data, order, total_len, start, len, stuff_to_put)
2600 unsigned char *data;
2601 enum floatformat_byteorders order;
2602 unsigned int total_len;
2603 unsigned int start;
2604 unsigned int len;
2605 unsigned long stuff_to_put;
2606 {
2607 unsigned int cur_byte;
2608 int cur_bitshift;
2609
2610 /* Start at the least significant part of the field. */
2611 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2612 {
2613 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
2614 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
2615 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
2616 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
2617 - FLOATFORMAT_CHAR_BIT;
2618 }
2619 else
2620 {
2621 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2622 cur_bitshift =
2623 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2624 }
2625 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
2626 {
2627 *(data + cur_byte) &=
2628 ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1)
2629 << (-cur_bitshift));
2630 *(data + cur_byte) |=
2631 (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
2632 }
2633 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2634 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2635 ++cur_byte;
2636 else
2637 --cur_byte;
2638
2639 /* Move towards the most significant part of the field. */
2640 while (cur_bitshift < len)
2641 {
2642 if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
2643 {
2644 /* This is the last byte. */
2645 *(data + cur_byte) &=
2646 ~((1 << (len - cur_bitshift)) - 1);
2647 *(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
2648 }
2649 else
2650 *(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
2651 & ((1 << FLOATFORMAT_CHAR_BIT) - 1));
2652 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2653 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2654 ++cur_byte;
2655 else
2656 --cur_byte;
2657 }
2658 }
2659
2660 #ifdef HAVE_LONG_DOUBLE
2661 /* Return the fractional part of VALUE, and put the exponent of VALUE in *EPTR.
2662 The range of the returned value is >= 0.5 and < 1.0. This is equivalent to
2663 frexp, but operates on the long double data type. */
2664
2665 static long double ldfrexp PARAMS ((long double value, int *eptr));
2666
2667 static long double
2668 ldfrexp (value, eptr)
2669 long double value;
2670 int *eptr;
2671 {
2672 long double tmp;
2673 int exp;
2674
2675 /* Unfortunately, there are no portable functions for extracting the exponent
2676 of a long double, so we have to do it iteratively by multiplying or dividing
2677 by two until the fraction is between 0.5 and 1.0. */
2678
2679 if (value < 0.0l)
2680 value = -value;
2681
2682 tmp = 1.0l;
2683 exp = 0;
2684
2685 if (value >= tmp) /* Value >= 1.0 */
2686 while (value >= tmp)
2687 {
2688 tmp *= 2.0l;
2689 exp++;
2690 }
2691 else if (value != 0.0l) /* Value < 1.0 and > 0.0 */
2692 {
2693 while (value < tmp)
2694 {
2695 tmp /= 2.0l;
2696 exp--;
2697 }
2698 tmp *= 2.0l;
2699 exp++;
2700 }
2701
2702 *eptr = exp;
2703 return value / tmp;
2704 }
2705 #endif /* HAVE_LONG_DOUBLE */
2706
2707
2708 /* The converse: convert the DOUBLEST *FROM to an extended float
2709 and store where TO points. Neither FROM nor TO have any alignment
2710 restrictions. */
2711
2712 void
2713 floatformat_from_doublest (fmt, from, to)
2714 CONST struct floatformat *fmt;
2715 DOUBLEST *from;
2716 char *to;
2717 {
2718 DOUBLEST dfrom;
2719 int exponent;
2720 DOUBLEST mant;
2721 unsigned int mant_bits, mant_off;
2722 int mant_bits_left;
2723 unsigned char *uto = (unsigned char *) to;
2724
2725 memcpy (&dfrom, from, sizeof (dfrom));
2726 memset (uto, 0, (fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1)
2727 / FLOATFORMAT_CHAR_BIT);
2728 if (dfrom == 0)
2729 return; /* Result is zero */
2730 if (dfrom != dfrom) /* Result is NaN */
2731 {
2732 /* From is NaN */
2733 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
2734 fmt->exp_len, fmt->exp_nan);
2735 /* Be sure it's not infinity, but NaN value is irrel */
2736 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
2737 32, 1);
2738 return;
2739 }
2740
2741 /* If negative, set the sign bit. */
2742 if (dfrom < 0)
2743 {
2744 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1, 1);
2745 dfrom = -dfrom;
2746 }
2747
2748 if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity */
2749 {
2750 /* Infinity exponent is same as NaN's. */
2751 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
2752 fmt->exp_len, fmt->exp_nan);
2753 /* Infinity mantissa is all zeroes. */
2754 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
2755 fmt->man_len, 0);
2756 return;
2757 }
2758
2759 #ifdef HAVE_LONG_DOUBLE
2760 mant = ldfrexp (dfrom, &exponent);
2761 #else
2762 mant = frexp (dfrom, &exponent);
2763 #endif
2764
2765 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start, fmt->exp_len,
2766 exponent + fmt->exp_bias - 1);
2767
2768 mant_bits_left = fmt->man_len;
2769 mant_off = fmt->man_start;
2770 while (mant_bits_left > 0)
2771 {
2772 unsigned long mant_long;
2773 mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
2774
2775 mant *= 4294967296.0;
2776 mant_long = ((unsigned long) mant) & 0xffffffffL;
2777 mant -= mant_long;
2778
2779 /* If the integer bit is implicit, then we need to discard it.
2780 If we are discarding a zero, we should be (but are not) creating
2781 a denormalized number which means adjusting the exponent
2782 (I think). */
2783 if (mant_bits_left == fmt->man_len
2784 && fmt->intbit == floatformat_intbit_no)
2785 {
2786 mant_long <<= 1;
2787 mant_long &= 0xffffffffL;
2788 mant_bits -= 1;
2789 }
2790
2791 if (mant_bits < 32)
2792 {
2793 /* The bits we want are in the most significant MANT_BITS bits of
2794 mant_long. Move them to the least significant. */
2795 mant_long >>= 32 - mant_bits;
2796 }
2797
2798 put_field (uto, fmt->byteorder, fmt->totalsize,
2799 mant_off, mant_bits, mant_long);
2800 mant_off += mant_bits;
2801 mant_bits_left -= mant_bits;
2802 }
2803 if (fmt->byteorder == floatformat_littlebyte_bigword)
2804 {
2805 int count;
2806 unsigned char *swaplow = uto;
2807 unsigned char *swaphigh = uto + 4;
2808 unsigned char tmp;
2809
2810 for (count = 0; count < 4; count++)
2811 {
2812 tmp = *swaplow;
2813 *swaplow++ = *swaphigh;
2814 *swaphigh++ = tmp;
2815 }
2816 }
2817 }
2818
2819 /* temporary storage using circular buffer */
2820 #define NUMCELLS 16
2821 #define CELLSIZE 32
2822 static char *
2823 get_cell ()
2824 {
2825 static char buf[NUMCELLS][CELLSIZE];
2826 static int cell = 0;
2827 if (++cell >= NUMCELLS)
2828 cell = 0;
2829 return buf[cell];
2830 }
2831
2832 /* print routines to handle variable size regs, etc.
2833
2834 FIXME: Note that t_addr is a bfd_vma, which is currently either an
2835 unsigned long or unsigned long long, determined at configure time.
2836 If t_addr is an unsigned long long and sizeof (unsigned long long)
2837 is greater than sizeof (unsigned long), then I believe this code will
2838 probably lose, at least for little endian machines. I believe that
2839 it would also be better to eliminate the switch on the absolute size
2840 of t_addr and replace it with a sequence of if statements that compare
2841 sizeof t_addr with sizeof the various types and do the right thing,
2842 which includes knowing whether or not the host supports long long.
2843 -fnf
2844
2845 */
2846
2847 int
2848 strlen_paddr (void)
2849 {
2850 return (TARGET_PTR_BIT / 8 * 2);
2851 }
2852
2853
2854 /* eliminate warning from compiler on 32-bit systems */
2855 static int thirty_two = 32;
2856
2857 char *
2858 paddr (CORE_ADDR addr)
2859 {
2860 char *paddr_str = get_cell ();
2861 switch (TARGET_PTR_BIT / 8)
2862 {
2863 case 8:
2864 sprintf (paddr_str, "%08lx%08lx",
2865 (unsigned long) (addr >> thirty_two), (unsigned long) (addr & 0xffffffff));
2866 break;
2867 case 4:
2868 sprintf (paddr_str, "%08lx", (unsigned long) addr);
2869 break;
2870 case 2:
2871 sprintf (paddr_str, "%04x", (unsigned short) (addr & 0xffff));
2872 break;
2873 default:
2874 sprintf (paddr_str, "%lx", (unsigned long) addr);
2875 }
2876 return paddr_str;
2877 }
2878
2879 char *
2880 paddr_nz (CORE_ADDR addr)
2881 {
2882 char *paddr_str = get_cell ();
2883 switch (TARGET_PTR_BIT / 8)
2884 {
2885 case 8:
2886 {
2887 unsigned long high = (unsigned long) (addr >> thirty_two);
2888 if (high == 0)
2889 sprintf (paddr_str, "%lx", (unsigned long) (addr & 0xffffffff));
2890 else
2891 sprintf (paddr_str, "%lx%08lx",
2892 high, (unsigned long) (addr & 0xffffffff));
2893 break;
2894 }
2895 case 4:
2896 sprintf (paddr_str, "%lx", (unsigned long) addr);
2897 break;
2898 case 2:
2899 sprintf (paddr_str, "%x", (unsigned short) (addr & 0xffff));
2900 break;
2901 default:
2902 sprintf (paddr_str, "%lx", (unsigned long) addr);
2903 }
2904 return paddr_str;
2905 }
2906
2907 static void
2908 decimal2str (char *paddr_str, char *sign, ULONGEST addr)
2909 {
2910 /* steal code from valprint.c:print_decimal(). Should this worry
2911 about the real size of addr as the above does? */
2912 unsigned long temp[3];
2913 int i = 0;
2914 do
2915 {
2916 temp[i] = addr % (1000 * 1000 * 1000);
2917 addr /= (1000 * 1000 * 1000);
2918 i++;
2919 }
2920 while (addr != 0 && i < (sizeof (temp) / sizeof (temp[0])));
2921 switch (i)
2922 {
2923 case 1:
2924 sprintf (paddr_str, "%s%lu",
2925 sign, temp[0]);
2926 break;
2927 case 2:
2928 sprintf (paddr_str, "%s%lu%09lu",
2929 sign, temp[1], temp[0]);
2930 break;
2931 case 3:
2932 sprintf (paddr_str, "%s%lu%09lu%09lu",
2933 sign, temp[2], temp[1], temp[0]);
2934 break;
2935 default:
2936 abort ();
2937 }
2938 }
2939
2940 char *
2941 paddr_u (CORE_ADDR addr)
2942 {
2943 char *paddr_str = get_cell ();
2944 decimal2str (paddr_str, "", addr);
2945 return paddr_str;
2946 }
2947
2948 char *
2949 paddr_d (LONGEST addr)
2950 {
2951 char *paddr_str = get_cell ();
2952 if (addr < 0)
2953 decimal2str (paddr_str, "-", -addr);
2954 else
2955 decimal2str (paddr_str, "", addr);
2956 return paddr_str;
2957 }
2958
2959 char *
2960 preg (reg)
2961 t_reg reg;
2962 {
2963 char *preg_str = get_cell ();
2964 switch (sizeof (t_reg))
2965 {
2966 case 8:
2967 sprintf (preg_str, "%08lx%08lx",
2968 (unsigned long) (reg >> thirty_two), (unsigned long) (reg & 0xffffffff));
2969 break;
2970 case 4:
2971 sprintf (preg_str, "%08lx", (unsigned long) reg);
2972 break;
2973 case 2:
2974 sprintf (preg_str, "%04x", (unsigned short) (reg & 0xffff));
2975 break;
2976 default:
2977 sprintf (preg_str, "%lx", (unsigned long) reg);
2978 }
2979 return preg_str;
2980 }
2981
2982 char *
2983 preg_nz (reg)
2984 t_reg reg;
2985 {
2986 char *preg_str = get_cell ();
2987 switch (sizeof (t_reg))
2988 {
2989 case 8:
2990 {
2991 unsigned long high = (unsigned long) (reg >> thirty_two);
2992 if (high == 0)
2993 sprintf (preg_str, "%lx", (unsigned long) (reg & 0xffffffff));
2994 else
2995 sprintf (preg_str, "%lx%08lx",
2996 high, (unsigned long) (reg & 0xffffffff));
2997 break;
2998 }
2999 case 4:
3000 sprintf (preg_str, "%lx", (unsigned long) reg);
3001 break;
3002 case 2:
3003 sprintf (preg_str, "%x", (unsigned short) (reg & 0xffff));
3004 break;
3005 default:
3006 sprintf (preg_str, "%lx", (unsigned long) reg);
3007 }
3008 return preg_str;
3009 }
3010
3011 /* Helper functions for INNER_THAN */
3012 int
3013 core_addr_lessthan (lhs, rhs)
3014 CORE_ADDR lhs;
3015 CORE_ADDR rhs;
3016 {
3017 return (lhs < rhs);
3018 }
3019
3020 int
3021 core_addr_greaterthan (lhs, rhs)
3022 CORE_ADDR lhs;
3023 CORE_ADDR rhs;
3024 {
3025 return (lhs > rhs);
3026 }