For MIPS_EABI, squeeze simple floating point structs into an FP register.
[binutils-gdb.git] / gdb / utils.c
1 /* General utility routines for GDB, the GNU debugger.
2 Copyright 1986, 1989, 1990-1992, 1995, 1996, 1998, 2000
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include "gdb_string.h"
25 #include "event-top.h"
26
27 #ifdef HAVE_CURSES_H
28 #include <curses.h>
29 #endif
30 #ifdef HAVE_TERM_H
31 #include <term.h>
32 #endif
33
34 #ifdef __GO32__
35 #include <pc.h>
36 #endif
37
38 /* SunOS's curses.h has a '#define reg register' in it. Thank you Sun. */
39 #ifdef reg
40 #undef reg
41 #endif
42
43 #include "signals.h"
44 #include "gdbcmd.h"
45 #include "serial.h"
46 #include "bfd.h"
47 #include "target.h"
48 #include "demangle.h"
49 #include "expression.h"
50 #include "language.h"
51 #include "annotate.h"
52
53 #include "inferior.h" /* for signed_pointer_to_address */
54
55 #include <readline/readline.h>
56
57 #undef XMALLOC
58 #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
59
60 /* readline defines this. */
61 #undef savestring
62
63 void (*error_begin_hook) (void);
64
65 /* Holds the last error message issued by gdb */
66
67 static struct ui_file *gdb_lasterr;
68
69 /* Prototypes for local functions */
70
71 static void vfprintf_maybe_filtered (struct ui_file *, const char *,
72 va_list, int);
73
74 static void fputs_maybe_filtered (const char *, struct ui_file *, int);
75
76 #if defined (USE_MMALLOC) && !defined (NO_MMCHECK)
77 static void malloc_botch (void);
78 #endif
79
80 static void prompt_for_continue (void);
81
82 static void set_width_command (char *, int, struct cmd_list_element *);
83
84 static void set_width (void);
85
86 /* Chain of cleanup actions established with make_cleanup,
87 to be executed if an error happens. */
88
89 static struct cleanup *cleanup_chain; /* cleaned up after a failed command */
90 static struct cleanup *final_cleanup_chain; /* cleaned up when gdb exits */
91 static struct cleanup *run_cleanup_chain; /* cleaned up on each 'run' */
92 static struct cleanup *exec_cleanup_chain; /* cleaned up on each execution command */
93 /* cleaned up on each error from within an execution command */
94 static struct cleanup *exec_error_cleanup_chain;
95
96 /* Pointer to what is left to do for an execution command after the
97 target stops. Used only in asynchronous mode, by targets that
98 support async execution. The finish and until commands use it. So
99 does the target extended-remote command. */
100 struct continuation *cmd_continuation;
101 struct continuation *intermediate_continuation;
102
103 /* Nonzero if we have job control. */
104
105 int job_control;
106
107 /* Nonzero means a quit has been requested. */
108
109 int quit_flag;
110
111 /* Nonzero means quit immediately if Control-C is typed now, rather
112 than waiting until QUIT is executed. Be careful in setting this;
113 code which executes with immediate_quit set has to be very careful
114 about being able to deal with being interrupted at any time. It is
115 almost always better to use QUIT; the only exception I can think of
116 is being able to quit out of a system call (using EINTR loses if
117 the SIGINT happens between the previous QUIT and the system call).
118 To immediately quit in the case in which a SIGINT happens between
119 the previous QUIT and setting immediate_quit (desirable anytime we
120 expect to block), call QUIT after setting immediate_quit. */
121
122 int immediate_quit;
123
124 /* Nonzero means that encoded C++ names should be printed out in their
125 C++ form rather than raw. */
126
127 int demangle = 1;
128
129 /* Nonzero means that encoded C++ names should be printed out in their
130 C++ form even in assembler language displays. If this is set, but
131 DEMANGLE is zero, names are printed raw, i.e. DEMANGLE controls. */
132
133 int asm_demangle = 0;
134
135 /* Nonzero means that strings with character values >0x7F should be printed
136 as octal escapes. Zero means just print the value (e.g. it's an
137 international character, and the terminal or window can cope.) */
138
139 int sevenbit_strings = 0;
140
141 /* String to be printed before error messages, if any. */
142
143 char *error_pre_print;
144
145 /* String to be printed before quit messages, if any. */
146
147 char *quit_pre_print;
148
149 /* String to be printed before warning messages, if any. */
150
151 char *warning_pre_print = "\nwarning: ";
152
153 int pagination_enabled = 1;
154 \f
155
156 /* Add a new cleanup to the cleanup_chain,
157 and return the previous chain pointer
158 to be passed later to do_cleanups or discard_cleanups.
159 Args are FUNCTION to clean up with, and ARG to pass to it. */
160
161 struct cleanup *
162 make_cleanup (make_cleanup_ftype *function, void *arg)
163 {
164 return make_my_cleanup (&cleanup_chain, function, arg);
165 }
166
167 struct cleanup *
168 make_final_cleanup (make_cleanup_ftype *function, void *arg)
169 {
170 return make_my_cleanup (&final_cleanup_chain, function, arg);
171 }
172
173 struct cleanup *
174 make_run_cleanup (make_cleanup_ftype *function, void *arg)
175 {
176 return make_my_cleanup (&run_cleanup_chain, function, arg);
177 }
178
179 struct cleanup *
180 make_exec_cleanup (make_cleanup_ftype *function, void *arg)
181 {
182 return make_my_cleanup (&exec_cleanup_chain, function, arg);
183 }
184
185 struct cleanup *
186 make_exec_error_cleanup (make_cleanup_ftype *function, void *arg)
187 {
188 return make_my_cleanup (&exec_error_cleanup_chain, function, arg);
189 }
190
191 static void
192 do_freeargv (arg)
193 void *arg;
194 {
195 freeargv ((char **) arg);
196 }
197
198 struct cleanup *
199 make_cleanup_freeargv (arg)
200 char **arg;
201 {
202 return make_my_cleanup (&cleanup_chain, do_freeargv, arg);
203 }
204
205 static void
206 do_bfd_close_cleanup (void *arg)
207 {
208 bfd_close (arg);
209 }
210
211 struct cleanup *
212 make_cleanup_bfd_close (bfd *abfd)
213 {
214 return make_cleanup (do_bfd_close_cleanup, abfd);
215 }
216
217 static void
218 do_close_cleanup (void *arg)
219 {
220 close ((int) arg);
221 }
222
223 struct cleanup *
224 make_cleanup_close (int fd)
225 {
226 /* int into void*. Outch!! */
227 return make_cleanup (do_close_cleanup, (void *) fd);
228 }
229
230 static void
231 do_ui_file_delete (void *arg)
232 {
233 ui_file_delete (arg);
234 }
235
236 struct cleanup *
237 make_cleanup_ui_file_delete (struct ui_file *arg)
238 {
239 return make_my_cleanup (&cleanup_chain, do_ui_file_delete, arg);
240 }
241
242 struct cleanup *
243 make_my_cleanup (struct cleanup **pmy_chain, make_cleanup_ftype *function,
244 void *arg)
245 {
246 register struct cleanup *new
247 = (struct cleanup *) xmalloc (sizeof (struct cleanup));
248 register struct cleanup *old_chain = *pmy_chain;
249
250 new->next = *pmy_chain;
251 new->function = function;
252 new->arg = arg;
253 *pmy_chain = new;
254
255 return old_chain;
256 }
257
258 /* Discard cleanups and do the actions they describe
259 until we get back to the point OLD_CHAIN in the cleanup_chain. */
260
261 void
262 do_cleanups (old_chain)
263 register struct cleanup *old_chain;
264 {
265 do_my_cleanups (&cleanup_chain, old_chain);
266 }
267
268 void
269 do_final_cleanups (old_chain)
270 register struct cleanup *old_chain;
271 {
272 do_my_cleanups (&final_cleanup_chain, old_chain);
273 }
274
275 void
276 do_run_cleanups (old_chain)
277 register struct cleanup *old_chain;
278 {
279 do_my_cleanups (&run_cleanup_chain, old_chain);
280 }
281
282 void
283 do_exec_cleanups (old_chain)
284 register struct cleanup *old_chain;
285 {
286 do_my_cleanups (&exec_cleanup_chain, old_chain);
287 }
288
289 void
290 do_exec_error_cleanups (old_chain)
291 register struct cleanup *old_chain;
292 {
293 do_my_cleanups (&exec_error_cleanup_chain, old_chain);
294 }
295
296 void
297 do_my_cleanups (pmy_chain, old_chain)
298 register struct cleanup **pmy_chain;
299 register struct cleanup *old_chain;
300 {
301 register struct cleanup *ptr;
302 while ((ptr = *pmy_chain) != old_chain)
303 {
304 *pmy_chain = ptr->next; /* Do this first incase recursion */
305 (*ptr->function) (ptr->arg);
306 free (ptr);
307 }
308 }
309
310 /* Discard cleanups, not doing the actions they describe,
311 until we get back to the point OLD_CHAIN in the cleanup_chain. */
312
313 void
314 discard_cleanups (old_chain)
315 register struct cleanup *old_chain;
316 {
317 discard_my_cleanups (&cleanup_chain, old_chain);
318 }
319
320 void
321 discard_final_cleanups (old_chain)
322 register struct cleanup *old_chain;
323 {
324 discard_my_cleanups (&final_cleanup_chain, old_chain);
325 }
326
327 void
328 discard_exec_error_cleanups (old_chain)
329 register struct cleanup *old_chain;
330 {
331 discard_my_cleanups (&exec_error_cleanup_chain, old_chain);
332 }
333
334 void
335 discard_my_cleanups (pmy_chain, old_chain)
336 register struct cleanup **pmy_chain;
337 register struct cleanup *old_chain;
338 {
339 register struct cleanup *ptr;
340 while ((ptr = *pmy_chain) != old_chain)
341 {
342 *pmy_chain = ptr->next;
343 free (ptr);
344 }
345 }
346
347 /* Set the cleanup_chain to 0, and return the old cleanup chain. */
348 struct cleanup *
349 save_cleanups ()
350 {
351 return save_my_cleanups (&cleanup_chain);
352 }
353
354 struct cleanup *
355 save_final_cleanups ()
356 {
357 return save_my_cleanups (&final_cleanup_chain);
358 }
359
360 struct cleanup *
361 save_my_cleanups (pmy_chain)
362 struct cleanup **pmy_chain;
363 {
364 struct cleanup *old_chain = *pmy_chain;
365
366 *pmy_chain = 0;
367 return old_chain;
368 }
369
370 /* Restore the cleanup chain from a previously saved chain. */
371 void
372 restore_cleanups (chain)
373 struct cleanup *chain;
374 {
375 restore_my_cleanups (&cleanup_chain, chain);
376 }
377
378 void
379 restore_final_cleanups (chain)
380 struct cleanup *chain;
381 {
382 restore_my_cleanups (&final_cleanup_chain, chain);
383 }
384
385 void
386 restore_my_cleanups (pmy_chain, chain)
387 struct cleanup **pmy_chain;
388 struct cleanup *chain;
389 {
390 *pmy_chain = chain;
391 }
392
393 /* This function is useful for cleanups.
394 Do
395
396 foo = xmalloc (...);
397 old_chain = make_cleanup (free_current_contents, &foo);
398
399 to arrange to free the object thus allocated. */
400
401 void
402 free_current_contents (void *ptr)
403 {
404 void **location = ptr;
405 if (location == NULL)
406 internal_error ("free_current_contents: NULL pointer");
407 if (*location != NULL)
408 {
409 free (*location);
410 *location = NULL;
411 }
412 }
413
414 /* Provide a known function that does nothing, to use as a base for
415 for a possibly long chain of cleanups. This is useful where we
416 use the cleanup chain for handling normal cleanups as well as dealing
417 with cleanups that need to be done as a result of a call to error().
418 In such cases, we may not be certain where the first cleanup is, unless
419 we have a do-nothing one to always use as the base. */
420
421 /* ARGSUSED */
422 void
423 null_cleanup (void *arg)
424 {
425 }
426
427 /* Add a continuation to the continuation list, the gloabl list
428 cmd_continuation. The new continuation will be added at the front.*/
429 void
430 add_continuation (continuation_hook, arg_list)
431 void (*continuation_hook) (struct continuation_arg *);
432 struct continuation_arg *arg_list;
433 {
434 struct continuation *continuation_ptr;
435
436 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
437 continuation_ptr->continuation_hook = continuation_hook;
438 continuation_ptr->arg_list = arg_list;
439 continuation_ptr->next = cmd_continuation;
440 cmd_continuation = continuation_ptr;
441 }
442
443 /* Walk down the cmd_continuation list, and execute all the
444 continuations. There is a problem though. In some cases new
445 continuations may be added while we are in the middle of this
446 loop. If this happens they will be added in the front, and done
447 before we have a chance of exhausting those that were already
448 there. We need to then save the beginning of the list in a pointer
449 and do the continuations from there on, instead of using the
450 global beginning of list as our iteration pointer.*/
451 void
452 do_all_continuations ()
453 {
454 struct continuation *continuation_ptr;
455 struct continuation *saved_continuation;
456
457 /* Copy the list header into another pointer, and set the global
458 list header to null, so that the global list can change as a side
459 effect of invoking the continuations and the processing of
460 the preexisting continuations will not be affected. */
461 continuation_ptr = cmd_continuation;
462 cmd_continuation = NULL;
463
464 /* Work now on the list we have set aside. */
465 while (continuation_ptr)
466 {
467 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
468 saved_continuation = continuation_ptr;
469 continuation_ptr = continuation_ptr->next;
470 free (saved_continuation);
471 }
472 }
473
474 /* Walk down the cmd_continuation list, and get rid of all the
475 continuations. */
476 void
477 discard_all_continuations ()
478 {
479 struct continuation *continuation_ptr;
480
481 while (cmd_continuation)
482 {
483 continuation_ptr = cmd_continuation;
484 cmd_continuation = continuation_ptr->next;
485 free (continuation_ptr);
486 }
487 }
488
489 /* Add a continuation to the continuation list, the global list
490 intermediate_continuation. The new continuation will be added at the front.*/
491 void
492 add_intermediate_continuation (continuation_hook, arg_list)
493 void (*continuation_hook) (struct continuation_arg *);
494 struct continuation_arg *arg_list;
495 {
496 struct continuation *continuation_ptr;
497
498 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
499 continuation_ptr->continuation_hook = continuation_hook;
500 continuation_ptr->arg_list = arg_list;
501 continuation_ptr->next = intermediate_continuation;
502 intermediate_continuation = continuation_ptr;
503 }
504
505 /* Walk down the cmd_continuation list, and execute all the
506 continuations. There is a problem though. In some cases new
507 continuations may be added while we are in the middle of this
508 loop. If this happens they will be added in the front, and done
509 before we have a chance of exhausting those that were already
510 there. We need to then save the beginning of the list in a pointer
511 and do the continuations from there on, instead of using the
512 global beginning of list as our iteration pointer.*/
513 void
514 do_all_intermediate_continuations ()
515 {
516 struct continuation *continuation_ptr;
517 struct continuation *saved_continuation;
518
519 /* Copy the list header into another pointer, and set the global
520 list header to null, so that the global list can change as a side
521 effect of invoking the continuations and the processing of
522 the preexisting continuations will not be affected. */
523 continuation_ptr = intermediate_continuation;
524 intermediate_continuation = NULL;
525
526 /* Work now on the list we have set aside. */
527 while (continuation_ptr)
528 {
529 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
530 saved_continuation = continuation_ptr;
531 continuation_ptr = continuation_ptr->next;
532 free (saved_continuation);
533 }
534 }
535
536 /* Walk down the cmd_continuation list, and get rid of all the
537 continuations. */
538 void
539 discard_all_intermediate_continuations ()
540 {
541 struct continuation *continuation_ptr;
542
543 while (intermediate_continuation)
544 {
545 continuation_ptr = intermediate_continuation;
546 intermediate_continuation = continuation_ptr->next;
547 free (continuation_ptr);
548 }
549 }
550
551 \f
552
553 /* Print a warning message. Way to use this is to call warning_begin,
554 output the warning message (use unfiltered output to gdb_stderr),
555 ending in a newline. There is not currently a warning_end that you
556 call afterwards, but such a thing might be added if it is useful
557 for a GUI to separate warning messages from other output.
558
559 FIXME: Why do warnings use unfiltered output and errors filtered?
560 Is this anything other than a historical accident? */
561
562 void
563 warning_begin ()
564 {
565 target_terminal_ours ();
566 wrap_here (""); /* Force out any buffered output */
567 gdb_flush (gdb_stdout);
568 if (warning_pre_print)
569 fprintf_unfiltered (gdb_stderr, warning_pre_print);
570 }
571
572 /* Print a warning message.
573 The first argument STRING is the warning message, used as a fprintf string,
574 and the remaining args are passed as arguments to it.
575 The primary difference between warnings and errors is that a warning
576 does not force the return to command level. */
577
578 void
579 warning (const char *string,...)
580 {
581 va_list args;
582 va_start (args, string);
583 if (warning_hook)
584 (*warning_hook) (string, args);
585 else
586 {
587 warning_begin ();
588 vfprintf_unfiltered (gdb_stderr, string, args);
589 fprintf_unfiltered (gdb_stderr, "\n");
590 va_end (args);
591 }
592 }
593
594 /* Start the printing of an error message. Way to use this is to call
595 this, output the error message (use filtered output to gdb_stderr
596 (FIXME: Some callers, like memory_error, use gdb_stdout)), ending
597 in a newline, and then call return_to_top_level (RETURN_ERROR).
598 error() provides a convenient way to do this for the special case
599 that the error message can be formatted with a single printf call,
600 but this is more general. */
601 void
602 error_begin ()
603 {
604 if (error_begin_hook)
605 error_begin_hook ();
606
607 target_terminal_ours ();
608 wrap_here (""); /* Force out any buffered output */
609 gdb_flush (gdb_stdout);
610
611 annotate_error_begin ();
612
613 if (error_pre_print)
614 fprintf_filtered (gdb_stderr, error_pre_print);
615 }
616
617 /* Print an error message and return to command level.
618 The first argument STRING is the error message, used as a fprintf string,
619 and the remaining args are passed as arguments to it. */
620
621 NORETURN void
622 verror (const char *string, va_list args)
623 {
624 char *err_string;
625 struct cleanup *err_string_cleanup;
626 /* FIXME: cagney/1999-11-10: All error calls should come here.
627 Unfortunatly some code uses the sequence: error_begin(); print
628 error message; return_to_top_level. That code should be
629 flushed. */
630 error_begin ();
631 /* NOTE: It's tempting to just do the following...
632 vfprintf_filtered (gdb_stderr, string, args);
633 and then follow with a similar looking statement to cause the message
634 to also go to gdb_lasterr. But if we do this, we'll be traversing the
635 va_list twice which works on some platforms and fails miserably on
636 others. */
637 /* Save it as the last error */
638 ui_file_rewind (gdb_lasterr);
639 vfprintf_filtered (gdb_lasterr, string, args);
640 /* Retrieve the last error and print it to gdb_stderr */
641 err_string = error_last_message ();
642 err_string_cleanup = make_cleanup (free, err_string);
643 fputs_filtered (err_string, gdb_stderr);
644 fprintf_filtered (gdb_stderr, "\n");
645 do_cleanups (err_string_cleanup);
646 return_to_top_level (RETURN_ERROR);
647 }
648
649 NORETURN void
650 error (const char *string,...)
651 {
652 va_list args;
653 va_start (args, string);
654 verror (string, args);
655 va_end (args);
656 }
657
658 NORETURN void
659 error_stream (struct ui_file *stream)
660 {
661 long size;
662 char *msg = ui_file_xstrdup (stream, &size);
663 make_cleanup (free, msg);
664 error ("%s", msg);
665 }
666
667 /* Get the last error message issued by gdb */
668
669 char *
670 error_last_message (void)
671 {
672 long len;
673 return ui_file_xstrdup (gdb_lasterr, &len);
674 }
675
676 /* This is to be called by main() at the very beginning */
677
678 void
679 error_init (void)
680 {
681 gdb_lasterr = mem_fileopen ();
682 }
683
684 /* Print a message reporting an internal error. Ask the user if they
685 want to continue, dump core, or just exit. */
686
687 NORETURN void
688 internal_verror (const char *fmt, va_list ap)
689 {
690 static char msg[] = "Internal GDB error: recursive internal error.\n";
691 static int dejavu = 0;
692 int continue_p;
693 int dump_core_p;
694
695 /* don't allow infinite error recursion. */
696 switch (dejavu)
697 {
698 case 0:
699 dejavu = 1;
700 break;
701 case 1:
702 dejavu = 2;
703 fputs_unfiltered (msg, gdb_stderr);
704 abort ();
705 default:
706 dejavu = 3;
707 write (STDERR_FILENO, msg, sizeof (msg));
708 exit (1);
709 }
710
711 /* Try to get the message out */
712 target_terminal_ours ();
713 fputs_unfiltered ("gdb-internal-error: ", gdb_stderr);
714 vfprintf_unfiltered (gdb_stderr, fmt, ap);
715 fputs_unfiltered ("\n", gdb_stderr);
716
717 /* Default (no case) is to quit GDB. When in batch mode this
718 lessens the likelhood of GDB going into an infinate loop. */
719 continue_p = query ("\
720 An internal GDB error was detected. This may make make further\n\
721 debugging unreliable. Continue this debugging session? ");
722
723 /* Default (no case) is to not dump core. Lessen the chance of GDB
724 leaving random core files around. */
725 dump_core_p = query ("\
726 Create a core file containing the current state of GDB? ");
727
728 if (continue_p)
729 {
730 if (dump_core_p)
731 {
732 if (fork () == 0)
733 abort ();
734 }
735 }
736 else
737 {
738 if (dump_core_p)
739 abort ();
740 else
741 exit (1);
742 }
743
744 dejavu = 0;
745 return_to_top_level (RETURN_ERROR);
746 }
747
748 NORETURN void
749 internal_error (char *string, ...)
750 {
751 va_list ap;
752 va_start (ap, string);
753
754 internal_verror (string, ap);
755 va_end (ap);
756 }
757
758 /* The strerror() function can return NULL for errno values that are
759 out of range. Provide a "safe" version that always returns a
760 printable string. */
761
762 char *
763 safe_strerror (errnum)
764 int errnum;
765 {
766 char *msg;
767 static char buf[32];
768
769 if ((msg = strerror (errnum)) == NULL)
770 {
771 sprintf (buf, "(undocumented errno %d)", errnum);
772 msg = buf;
773 }
774 return (msg);
775 }
776
777 /* Print the system error message for errno, and also mention STRING
778 as the file name for which the error was encountered.
779 Then return to command level. */
780
781 NORETURN void
782 perror_with_name (string)
783 char *string;
784 {
785 char *err;
786 char *combined;
787
788 err = safe_strerror (errno);
789 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
790 strcpy (combined, string);
791 strcat (combined, ": ");
792 strcat (combined, err);
793
794 /* I understand setting these is a matter of taste. Still, some people
795 may clear errno but not know about bfd_error. Doing this here is not
796 unreasonable. */
797 bfd_set_error (bfd_error_no_error);
798 errno = 0;
799
800 error ("%s.", combined);
801 }
802
803 /* Print the system error message for ERRCODE, and also mention STRING
804 as the file name for which the error was encountered. */
805
806 void
807 print_sys_errmsg (string, errcode)
808 char *string;
809 int errcode;
810 {
811 char *err;
812 char *combined;
813
814 err = safe_strerror (errcode);
815 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
816 strcpy (combined, string);
817 strcat (combined, ": ");
818 strcat (combined, err);
819
820 /* We want anything which was printed on stdout to come out first, before
821 this message. */
822 gdb_flush (gdb_stdout);
823 fprintf_unfiltered (gdb_stderr, "%s.\n", combined);
824 }
825
826 /* Control C eventually causes this to be called, at a convenient time. */
827
828 void
829 quit ()
830 {
831 serial_t gdb_stdout_serial = serial_fdopen (1);
832
833 target_terminal_ours ();
834
835 /* We want all output to appear now, before we print "Quit". We
836 have 3 levels of buffering we have to flush (it's possible that
837 some of these should be changed to flush the lower-level ones
838 too): */
839
840 /* 1. The _filtered buffer. */
841 wrap_here ((char *) 0);
842
843 /* 2. The stdio buffer. */
844 gdb_flush (gdb_stdout);
845 gdb_flush (gdb_stderr);
846
847 /* 3. The system-level buffer. */
848 SERIAL_DRAIN_OUTPUT (gdb_stdout_serial);
849 SERIAL_UN_FDOPEN (gdb_stdout_serial);
850
851 annotate_error_begin ();
852
853 /* Don't use *_filtered; we don't want to prompt the user to continue. */
854 if (quit_pre_print)
855 fprintf_unfiltered (gdb_stderr, quit_pre_print);
856
857 #ifdef __MSDOS__
858 /* No steenking SIGINT will ever be coming our way when the
859 program is resumed. Don't lie. */
860 fprintf_unfiltered (gdb_stderr, "Quit\n");
861 #else
862 if (job_control
863 /* If there is no terminal switching for this target, then we can't
864 possibly get screwed by the lack of job control. */
865 || current_target.to_terminal_ours == NULL)
866 fprintf_unfiltered (gdb_stderr, "Quit\n");
867 else
868 fprintf_unfiltered (gdb_stderr,
869 "Quit (expect signal SIGINT when the program is resumed)\n");
870 #endif
871 return_to_top_level (RETURN_QUIT);
872 }
873
874
875 #if defined(_MSC_VER) /* should test for wingdb instead? */
876
877 /*
878 * Windows translates all keyboard and mouse events
879 * into a message which is appended to the message
880 * queue for the process.
881 */
882
883 void
884 notice_quit ()
885 {
886 int k = win32pollquit ();
887 if (k == 1)
888 quit_flag = 1;
889 else if (k == 2)
890 immediate_quit = 1;
891 }
892
893 #else /* !defined(_MSC_VER) */
894
895 void
896 notice_quit ()
897 {
898 /* Done by signals */
899 }
900
901 #endif /* !defined(_MSC_VER) */
902
903 /* Control C comes here */
904 void
905 request_quit (signo)
906 int signo;
907 {
908 quit_flag = 1;
909 /* Restore the signal handler. Harmless with BSD-style signals, needed
910 for System V-style signals. So just always do it, rather than worrying
911 about USG defines and stuff like that. */
912 signal (signo, request_quit);
913
914 #ifdef REQUEST_QUIT
915 REQUEST_QUIT;
916 #else
917 if (immediate_quit)
918 quit ();
919 #endif
920 }
921 \f
922 /* Memory management stuff (malloc friends). */
923
924 /* Make a substitute size_t for non-ANSI compilers. */
925
926 #ifndef HAVE_STDDEF_H
927 #ifndef size_t
928 #define size_t unsigned int
929 #endif
930 #endif
931
932 #if !defined (USE_MMALLOC)
933
934 PTR
935 mcalloc (PTR md, size_t number, size_t size)
936 {
937 return calloc (number, size);
938 }
939
940 PTR
941 mmalloc (md, size)
942 PTR md;
943 size_t size;
944 {
945 return malloc (size);
946 }
947
948 PTR
949 mrealloc (md, ptr, size)
950 PTR md;
951 PTR ptr;
952 size_t size;
953 {
954 if (ptr == 0) /* Guard against old realloc's */
955 return malloc (size);
956 else
957 return realloc (ptr, size);
958 }
959
960 void
961 mfree (md, ptr)
962 PTR md;
963 PTR ptr;
964 {
965 free (ptr);
966 }
967
968 #endif /* USE_MMALLOC */
969
970 #if !defined (USE_MMALLOC) || defined (NO_MMCHECK)
971
972 void
973 init_malloc (void *md)
974 {
975 }
976
977 #else /* Have mmalloc and want corruption checking */
978
979 static void
980 malloc_botch ()
981 {
982 fprintf_unfiltered (gdb_stderr, "Memory corruption\n");
983 abort ();
984 }
985
986 /* Attempt to install hooks in mmalloc/mrealloc/mfree for the heap specified
987 by MD, to detect memory corruption. Note that MD may be NULL to specify
988 the default heap that grows via sbrk.
989
990 Note that for freshly created regions, we must call mmcheckf prior to any
991 mallocs in the region. Otherwise, any region which was allocated prior to
992 installing the checking hooks, which is later reallocated or freed, will
993 fail the checks! The mmcheck function only allows initial hooks to be
994 installed before the first mmalloc. However, anytime after we have called
995 mmcheck the first time to install the checking hooks, we can call it again
996 to update the function pointer to the memory corruption handler.
997
998 Returns zero on failure, non-zero on success. */
999
1000 #ifndef MMCHECK_FORCE
1001 #define MMCHECK_FORCE 0
1002 #endif
1003
1004 void
1005 init_malloc (void *md)
1006 {
1007 if (!mmcheckf (md, malloc_botch, MMCHECK_FORCE))
1008 {
1009 /* Don't use warning(), which relies on current_target being set
1010 to something other than dummy_target, until after
1011 initialize_all_files(). */
1012
1013 fprintf_unfiltered
1014 (gdb_stderr, "warning: failed to install memory consistency checks; ");
1015 fprintf_unfiltered
1016 (gdb_stderr, "configuration should define NO_MMCHECK or MMCHECK_FORCE\n");
1017 }
1018
1019 mmtrace ();
1020 }
1021
1022 #endif /* Have mmalloc and want corruption checking */
1023
1024 /* Called when a memory allocation fails, with the number of bytes of
1025 memory requested in SIZE. */
1026
1027 NORETURN void
1028 nomem (size)
1029 long size;
1030 {
1031 if (size > 0)
1032 {
1033 internal_error ("virtual memory exhausted: can't allocate %ld bytes.", size);
1034 }
1035 else
1036 {
1037 internal_error ("virtual memory exhausted.");
1038 }
1039 }
1040
1041 /* Like mmalloc but get error if no storage available, and protect against
1042 the caller wanting to allocate zero bytes. Whether to return NULL for
1043 a zero byte request, or translate the request into a request for one
1044 byte of zero'd storage, is a religious issue. */
1045
1046 PTR
1047 xmmalloc (md, size)
1048 PTR md;
1049 long size;
1050 {
1051 register PTR val;
1052
1053 if (size == 0)
1054 {
1055 val = NULL;
1056 }
1057 else if ((val = mmalloc (md, size)) == NULL)
1058 {
1059 nomem (size);
1060 }
1061 return (val);
1062 }
1063
1064 /* Like mrealloc but get error if no storage available. */
1065
1066 PTR
1067 xmrealloc (md, ptr, size)
1068 PTR md;
1069 PTR ptr;
1070 long size;
1071 {
1072 register PTR val;
1073
1074 if (ptr != NULL)
1075 {
1076 val = mrealloc (md, ptr, size);
1077 }
1078 else
1079 {
1080 val = mmalloc (md, size);
1081 }
1082 if (val == NULL)
1083 {
1084 nomem (size);
1085 }
1086 return (val);
1087 }
1088
1089 /* Like malloc but get error if no storage available, and protect against
1090 the caller wanting to allocate zero bytes. */
1091
1092 PTR
1093 xmalloc (size)
1094 size_t size;
1095 {
1096 return (xmmalloc ((PTR) NULL, size));
1097 }
1098
1099 /* Like calloc but get error if no storage available */
1100
1101 PTR
1102 xcalloc (size_t number, size_t size)
1103 {
1104 void *mem = mcalloc (NULL, number, size);
1105 if (mem == NULL)
1106 nomem (number * size);
1107 return mem;
1108 }
1109
1110 /* Like mrealloc but get error if no storage available. */
1111
1112 PTR
1113 xrealloc (ptr, size)
1114 PTR ptr;
1115 size_t size;
1116 {
1117 return (xmrealloc ((PTR) NULL, ptr, size));
1118 }
1119 \f
1120
1121 /* My replacement for the read system call.
1122 Used like `read' but keeps going if `read' returns too soon. */
1123
1124 int
1125 myread (desc, addr, len)
1126 int desc;
1127 char *addr;
1128 int len;
1129 {
1130 register int val;
1131 int orglen = len;
1132
1133 while (len > 0)
1134 {
1135 val = read (desc, addr, len);
1136 if (val < 0)
1137 return val;
1138 if (val == 0)
1139 return orglen - len;
1140 len -= val;
1141 addr += val;
1142 }
1143 return orglen;
1144 }
1145 \f
1146 /* Make a copy of the string at PTR with SIZE characters
1147 (and add a null character at the end in the copy).
1148 Uses malloc to get the space. Returns the address of the copy. */
1149
1150 char *
1151 savestring (ptr, size)
1152 const char *ptr;
1153 int size;
1154 {
1155 register char *p = (char *) xmalloc (size + 1);
1156 memcpy (p, ptr, size);
1157 p[size] = 0;
1158 return p;
1159 }
1160
1161 char *
1162 msavestring (void *md, const char *ptr, int size)
1163 {
1164 register char *p = (char *) xmmalloc (md, size + 1);
1165 memcpy (p, ptr, size);
1166 p[size] = 0;
1167 return p;
1168 }
1169
1170 /* The "const" is so it compiles under DGUX (which prototypes strsave
1171 in <string.h>. FIXME: This should be named "xstrsave", shouldn't it?
1172 Doesn't real strsave return NULL if out of memory? */
1173 char *
1174 strsave (ptr)
1175 const char *ptr;
1176 {
1177 return savestring (ptr, strlen (ptr));
1178 }
1179
1180 char *
1181 mstrsave (void *md, const char *ptr)
1182 {
1183 return (msavestring (md, ptr, strlen (ptr)));
1184 }
1185
1186 void
1187 print_spaces (n, file)
1188 register int n;
1189 register struct ui_file *file;
1190 {
1191 fputs_unfiltered (n_spaces (n), file);
1192 }
1193
1194 /* Print a host address. */
1195
1196 void
1197 gdb_print_host_address (void *addr, struct ui_file *stream)
1198 {
1199
1200 /* We could use the %p conversion specifier to fprintf if we had any
1201 way of knowing whether this host supports it. But the following
1202 should work on the Alpha and on 32 bit machines. */
1203
1204 fprintf_filtered (stream, "0x%lx", (unsigned long) addr);
1205 }
1206
1207 /* Ask user a y-or-n question and return 1 iff answer is yes.
1208 Takes three args which are given to printf to print the question.
1209 The first, a control string, should end in "? ".
1210 It should not say how to answer, because we do that. */
1211
1212 /* VARARGS */
1213 int
1214 query (char *ctlstr,...)
1215 {
1216 va_list args;
1217 register int answer;
1218 register int ans2;
1219 int retval;
1220
1221 va_start (args, ctlstr);
1222
1223 if (query_hook)
1224 {
1225 return query_hook (ctlstr, args);
1226 }
1227
1228 /* Automatically answer "yes" if input is not from a terminal. */
1229 if (!input_from_terminal_p ())
1230 return 1;
1231 #ifdef MPW
1232 /* FIXME Automatically answer "yes" if called from MacGDB. */
1233 if (mac_app)
1234 return 1;
1235 #endif /* MPW */
1236
1237 while (1)
1238 {
1239 wrap_here (""); /* Flush any buffered output */
1240 gdb_flush (gdb_stdout);
1241
1242 if (annotation_level > 1)
1243 printf_filtered ("\n\032\032pre-query\n");
1244
1245 vfprintf_filtered (gdb_stdout, ctlstr, args);
1246 printf_filtered ("(y or n) ");
1247
1248 if (annotation_level > 1)
1249 printf_filtered ("\n\032\032query\n");
1250
1251 #ifdef MPW
1252 /* If not in MacGDB, move to a new line so the entered line doesn't
1253 have a prompt on the front of it. */
1254 if (!mac_app)
1255 fputs_unfiltered ("\n", gdb_stdout);
1256 #endif /* MPW */
1257
1258 wrap_here ("");
1259 gdb_flush (gdb_stdout);
1260
1261 #if defined(TUI)
1262 if (!tui_version || cmdWin == tuiWinWithFocus ())
1263 #endif
1264 answer = fgetc (stdin);
1265 #if defined(TUI)
1266 else
1267 answer = (unsigned char) tuiBufferGetc ();
1268
1269 #endif
1270 clearerr (stdin); /* in case of C-d */
1271 if (answer == EOF) /* C-d */
1272 {
1273 retval = 1;
1274 break;
1275 }
1276 /* Eat rest of input line, to EOF or newline */
1277 if ((answer != '\n') || (tui_version && answer != '\r'))
1278 do
1279 {
1280 #if defined(TUI)
1281 if (!tui_version || cmdWin == tuiWinWithFocus ())
1282 #endif
1283 ans2 = fgetc (stdin);
1284 #if defined(TUI)
1285 else
1286 ans2 = (unsigned char) tuiBufferGetc ();
1287 #endif
1288 clearerr (stdin);
1289 }
1290 while (ans2 != EOF && ans2 != '\n' && ans2 != '\r');
1291 TUIDO (((TuiOpaqueFuncPtr) tui_vStartNewLines, 1));
1292
1293 if (answer >= 'a')
1294 answer -= 040;
1295 if (answer == 'Y')
1296 {
1297 retval = 1;
1298 break;
1299 }
1300 if (answer == 'N')
1301 {
1302 retval = 0;
1303 break;
1304 }
1305 printf_filtered ("Please answer y or n.\n");
1306 }
1307
1308 if (annotation_level > 1)
1309 printf_filtered ("\n\032\032post-query\n");
1310 return retval;
1311 }
1312 \f
1313
1314 /* Parse a C escape sequence. STRING_PTR points to a variable
1315 containing a pointer to the string to parse. That pointer
1316 should point to the character after the \. That pointer
1317 is updated past the characters we use. The value of the
1318 escape sequence is returned.
1319
1320 A negative value means the sequence \ newline was seen,
1321 which is supposed to be equivalent to nothing at all.
1322
1323 If \ is followed by a null character, we return a negative
1324 value and leave the string pointer pointing at the null character.
1325
1326 If \ is followed by 000, we return 0 and leave the string pointer
1327 after the zeros. A value of 0 does not mean end of string. */
1328
1329 int
1330 parse_escape (string_ptr)
1331 char **string_ptr;
1332 {
1333 register int c = *(*string_ptr)++;
1334 switch (c)
1335 {
1336 case 'a':
1337 return 007; /* Bell (alert) char */
1338 case 'b':
1339 return '\b';
1340 case 'e': /* Escape character */
1341 return 033;
1342 case 'f':
1343 return '\f';
1344 case 'n':
1345 return '\n';
1346 case 'r':
1347 return '\r';
1348 case 't':
1349 return '\t';
1350 case 'v':
1351 return '\v';
1352 case '\n':
1353 return -2;
1354 case 0:
1355 (*string_ptr)--;
1356 return 0;
1357 case '^':
1358 c = *(*string_ptr)++;
1359 if (c == '\\')
1360 c = parse_escape (string_ptr);
1361 if (c == '?')
1362 return 0177;
1363 return (c & 0200) | (c & 037);
1364
1365 case '0':
1366 case '1':
1367 case '2':
1368 case '3':
1369 case '4':
1370 case '5':
1371 case '6':
1372 case '7':
1373 {
1374 register int i = c - '0';
1375 register int count = 0;
1376 while (++count < 3)
1377 {
1378 if ((c = *(*string_ptr)++) >= '0' && c <= '7')
1379 {
1380 i *= 8;
1381 i += c - '0';
1382 }
1383 else
1384 {
1385 (*string_ptr)--;
1386 break;
1387 }
1388 }
1389 return i;
1390 }
1391 default:
1392 return c;
1393 }
1394 }
1395 \f
1396 /* Print the character C on STREAM as part of the contents of a literal
1397 string whose delimiter is QUOTER. Note that this routine should only
1398 be call for printing things which are independent of the language
1399 of the program being debugged. */
1400
1401 static void printchar (int c, void (*do_fputs) (const char *, struct ui_file*), void (*do_fprintf) (struct ui_file*, const char *, ...), struct ui_file *stream, int quoter);
1402
1403 static void
1404 printchar (c, do_fputs, do_fprintf, stream, quoter)
1405 int c;
1406 void (*do_fputs) (const char *, struct ui_file *);
1407 void (*do_fprintf) (struct ui_file *, const char *, ...);
1408 struct ui_file *stream;
1409 int quoter;
1410 {
1411
1412 c &= 0xFF; /* Avoid sign bit follies */
1413
1414 if (c < 0x20 || /* Low control chars */
1415 (c >= 0x7F && c < 0xA0) || /* DEL, High controls */
1416 (sevenbit_strings && c >= 0x80))
1417 { /* high order bit set */
1418 switch (c)
1419 {
1420 case '\n':
1421 do_fputs ("\\n", stream);
1422 break;
1423 case '\b':
1424 do_fputs ("\\b", stream);
1425 break;
1426 case '\t':
1427 do_fputs ("\\t", stream);
1428 break;
1429 case '\f':
1430 do_fputs ("\\f", stream);
1431 break;
1432 case '\r':
1433 do_fputs ("\\r", stream);
1434 break;
1435 case '\033':
1436 do_fputs ("\\e", stream);
1437 break;
1438 case '\007':
1439 do_fputs ("\\a", stream);
1440 break;
1441 default:
1442 do_fprintf (stream, "\\%.3o", (unsigned int) c);
1443 break;
1444 }
1445 }
1446 else
1447 {
1448 if (c == '\\' || c == quoter)
1449 do_fputs ("\\", stream);
1450 do_fprintf (stream, "%c", c);
1451 }
1452 }
1453
1454 /* Print the character C on STREAM as part of the contents of a
1455 literal string whose delimiter is QUOTER. Note that these routines
1456 should only be call for printing things which are independent of
1457 the language of the program being debugged. */
1458
1459 void
1460 fputstr_filtered (str, quoter, stream)
1461 const char *str;
1462 int quoter;
1463 struct ui_file *stream;
1464 {
1465 while (*str)
1466 printchar (*str++, fputs_filtered, fprintf_filtered, stream, quoter);
1467 }
1468
1469 void
1470 fputstr_unfiltered (str, quoter, stream)
1471 const char *str;
1472 int quoter;
1473 struct ui_file *stream;
1474 {
1475 while (*str)
1476 printchar (*str++, fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1477 }
1478
1479 void
1480 fputstrn_unfiltered (str, n, quoter, stream)
1481 const char *str;
1482 int n;
1483 int quoter;
1484 struct ui_file *stream;
1485 {
1486 int i;
1487 for (i = 0; i < n; i++)
1488 printchar (str[i], fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1489 }
1490
1491 \f
1492
1493 /* Number of lines per page or UINT_MAX if paging is disabled. */
1494 static unsigned int lines_per_page;
1495 /* Number of chars per line or UINT_MAX if line folding is disabled. */
1496 static unsigned int chars_per_line;
1497 /* Current count of lines printed on this page, chars on this line. */
1498 static unsigned int lines_printed, chars_printed;
1499
1500 /* Buffer and start column of buffered text, for doing smarter word-
1501 wrapping. When someone calls wrap_here(), we start buffering output
1502 that comes through fputs_filtered(). If we see a newline, we just
1503 spit it out and forget about the wrap_here(). If we see another
1504 wrap_here(), we spit it out and remember the newer one. If we see
1505 the end of the line, we spit out a newline, the indent, and then
1506 the buffered output. */
1507
1508 /* Malloc'd buffer with chars_per_line+2 bytes. Contains characters which
1509 are waiting to be output (they have already been counted in chars_printed).
1510 When wrap_buffer[0] is null, the buffer is empty. */
1511 static char *wrap_buffer;
1512
1513 /* Pointer in wrap_buffer to the next character to fill. */
1514 static char *wrap_pointer;
1515
1516 /* String to indent by if the wrap occurs. Must not be NULL if wrap_column
1517 is non-zero. */
1518 static char *wrap_indent;
1519
1520 /* Column number on the screen where wrap_buffer begins, or 0 if wrapping
1521 is not in effect. */
1522 static int wrap_column;
1523 \f
1524
1525 /* Inialize the lines and chars per page */
1526 void
1527 init_page_info ()
1528 {
1529 #if defined(TUI)
1530 if (tui_version && m_winPtrNotNull (cmdWin))
1531 {
1532 lines_per_page = cmdWin->generic.height;
1533 chars_per_line = cmdWin->generic.width;
1534 }
1535 else
1536 #endif
1537 {
1538 /* These defaults will be used if we are unable to get the correct
1539 values from termcap. */
1540 #if defined(__GO32__)
1541 lines_per_page = ScreenRows ();
1542 chars_per_line = ScreenCols ();
1543 #else
1544 lines_per_page = 24;
1545 chars_per_line = 80;
1546
1547 #if !defined (MPW) && !defined (_WIN32)
1548 /* No termcap under MPW, although might be cool to do something
1549 by looking at worksheet or console window sizes. */
1550 /* Initialize the screen height and width from termcap. */
1551 {
1552 char *termtype = getenv ("TERM");
1553
1554 /* Positive means success, nonpositive means failure. */
1555 int status;
1556
1557 /* 2048 is large enough for all known terminals, according to the
1558 GNU termcap manual. */
1559 char term_buffer[2048];
1560
1561 if (termtype)
1562 {
1563 status = tgetent (term_buffer, termtype);
1564 if (status > 0)
1565 {
1566 int val;
1567 int running_in_emacs = getenv ("EMACS") != NULL;
1568
1569 val = tgetnum ("li");
1570 if (val >= 0 && !running_in_emacs)
1571 lines_per_page = val;
1572 else
1573 /* The number of lines per page is not mentioned
1574 in the terminal description. This probably means
1575 that paging is not useful (e.g. emacs shell window),
1576 so disable paging. */
1577 lines_per_page = UINT_MAX;
1578
1579 val = tgetnum ("co");
1580 if (val >= 0)
1581 chars_per_line = val;
1582 }
1583 }
1584 }
1585 #endif /* MPW */
1586
1587 #if defined(SIGWINCH) && defined(SIGWINCH_HANDLER)
1588
1589 /* If there is a better way to determine the window size, use it. */
1590 SIGWINCH_HANDLER (SIGWINCH);
1591 #endif
1592 #endif
1593 /* If the output is not a terminal, don't paginate it. */
1594 if (!ui_file_isatty (gdb_stdout))
1595 lines_per_page = UINT_MAX;
1596 } /* the command_line_version */
1597 set_width ();
1598 }
1599
1600 static void
1601 set_width ()
1602 {
1603 if (chars_per_line == 0)
1604 init_page_info ();
1605
1606 if (!wrap_buffer)
1607 {
1608 wrap_buffer = (char *) xmalloc (chars_per_line + 2);
1609 wrap_buffer[0] = '\0';
1610 }
1611 else
1612 wrap_buffer = (char *) xrealloc (wrap_buffer, chars_per_line + 2);
1613 wrap_pointer = wrap_buffer; /* Start it at the beginning */
1614 }
1615
1616 /* ARGSUSED */
1617 static void
1618 set_width_command (args, from_tty, c)
1619 char *args;
1620 int from_tty;
1621 struct cmd_list_element *c;
1622 {
1623 set_width ();
1624 }
1625
1626 /* Wait, so the user can read what's on the screen. Prompt the user
1627 to continue by pressing RETURN. */
1628
1629 static void
1630 prompt_for_continue ()
1631 {
1632 char *ignore;
1633 char cont_prompt[120];
1634
1635 if (annotation_level > 1)
1636 printf_unfiltered ("\n\032\032pre-prompt-for-continue\n");
1637
1638 strcpy (cont_prompt,
1639 "---Type <return> to continue, or q <return> to quit---");
1640 if (annotation_level > 1)
1641 strcat (cont_prompt, "\n\032\032prompt-for-continue\n");
1642
1643 /* We must do this *before* we call gdb_readline, else it will eventually
1644 call us -- thinking that we're trying to print beyond the end of the
1645 screen. */
1646 reinitialize_more_filter ();
1647
1648 immediate_quit++;
1649 /* On a real operating system, the user can quit with SIGINT.
1650 But not on GO32.
1651
1652 'q' is provided on all systems so users don't have to change habits
1653 from system to system, and because telling them what to do in
1654 the prompt is more user-friendly than expecting them to think of
1655 SIGINT. */
1656 /* Call readline, not gdb_readline, because GO32 readline handles control-C
1657 whereas control-C to gdb_readline will cause the user to get dumped
1658 out to DOS. */
1659 ignore = readline (cont_prompt);
1660
1661 if (annotation_level > 1)
1662 printf_unfiltered ("\n\032\032post-prompt-for-continue\n");
1663
1664 if (ignore)
1665 {
1666 char *p = ignore;
1667 while (*p == ' ' || *p == '\t')
1668 ++p;
1669 if (p[0] == 'q')
1670 {
1671 if (!event_loop_p)
1672 request_quit (SIGINT);
1673 else
1674 async_request_quit (0);
1675 }
1676 free (ignore);
1677 }
1678 immediate_quit--;
1679
1680 /* Now we have to do this again, so that GDB will know that it doesn't
1681 need to save the ---Type <return>--- line at the top of the screen. */
1682 reinitialize_more_filter ();
1683
1684 dont_repeat (); /* Forget prev cmd -- CR won't repeat it. */
1685 }
1686
1687 /* Reinitialize filter; ie. tell it to reset to original values. */
1688
1689 void
1690 reinitialize_more_filter ()
1691 {
1692 lines_printed = 0;
1693 chars_printed = 0;
1694 }
1695
1696 /* Indicate that if the next sequence of characters overflows the line,
1697 a newline should be inserted here rather than when it hits the end.
1698 If INDENT is non-null, it is a string to be printed to indent the
1699 wrapped part on the next line. INDENT must remain accessible until
1700 the next call to wrap_here() or until a newline is printed through
1701 fputs_filtered().
1702
1703 If the line is already overfull, we immediately print a newline and
1704 the indentation, and disable further wrapping.
1705
1706 If we don't know the width of lines, but we know the page height,
1707 we must not wrap words, but should still keep track of newlines
1708 that were explicitly printed.
1709
1710 INDENT should not contain tabs, as that will mess up the char count
1711 on the next line. FIXME.
1712
1713 This routine is guaranteed to force out any output which has been
1714 squirreled away in the wrap_buffer, so wrap_here ((char *)0) can be
1715 used to force out output from the wrap_buffer. */
1716
1717 void
1718 wrap_here (indent)
1719 char *indent;
1720 {
1721 /* This should have been allocated, but be paranoid anyway. */
1722 if (!wrap_buffer)
1723 abort ();
1724
1725 if (wrap_buffer[0])
1726 {
1727 *wrap_pointer = '\0';
1728 fputs_unfiltered (wrap_buffer, gdb_stdout);
1729 }
1730 wrap_pointer = wrap_buffer;
1731 wrap_buffer[0] = '\0';
1732 if (chars_per_line == UINT_MAX) /* No line overflow checking */
1733 {
1734 wrap_column = 0;
1735 }
1736 else if (chars_printed >= chars_per_line)
1737 {
1738 puts_filtered ("\n");
1739 if (indent != NULL)
1740 puts_filtered (indent);
1741 wrap_column = 0;
1742 }
1743 else
1744 {
1745 wrap_column = chars_printed;
1746 if (indent == NULL)
1747 wrap_indent = "";
1748 else
1749 wrap_indent = indent;
1750 }
1751 }
1752
1753 /* Ensure that whatever gets printed next, using the filtered output
1754 commands, starts at the beginning of the line. I.E. if there is
1755 any pending output for the current line, flush it and start a new
1756 line. Otherwise do nothing. */
1757
1758 void
1759 begin_line ()
1760 {
1761 if (chars_printed > 0)
1762 {
1763 puts_filtered ("\n");
1764 }
1765 }
1766
1767
1768 /* Like fputs but if FILTER is true, pause after every screenful.
1769
1770 Regardless of FILTER can wrap at points other than the final
1771 character of a line.
1772
1773 Unlike fputs, fputs_maybe_filtered does not return a value.
1774 It is OK for LINEBUFFER to be NULL, in which case just don't print
1775 anything.
1776
1777 Note that a longjmp to top level may occur in this routine (only if
1778 FILTER is true) (since prompt_for_continue may do so) so this
1779 routine should not be called when cleanups are not in place. */
1780
1781 static void
1782 fputs_maybe_filtered (linebuffer, stream, filter)
1783 const char *linebuffer;
1784 struct ui_file *stream;
1785 int filter;
1786 {
1787 const char *lineptr;
1788
1789 if (linebuffer == 0)
1790 return;
1791
1792 /* Don't do any filtering if it is disabled. */
1793 if ((stream != gdb_stdout) || !pagination_enabled
1794 || (lines_per_page == UINT_MAX && chars_per_line == UINT_MAX))
1795 {
1796 fputs_unfiltered (linebuffer, stream);
1797 return;
1798 }
1799
1800 /* Go through and output each character. Show line extension
1801 when this is necessary; prompt user for new page when this is
1802 necessary. */
1803
1804 lineptr = linebuffer;
1805 while (*lineptr)
1806 {
1807 /* Possible new page. */
1808 if (filter &&
1809 (lines_printed >= lines_per_page - 1))
1810 prompt_for_continue ();
1811
1812 while (*lineptr && *lineptr != '\n')
1813 {
1814 /* Print a single line. */
1815 if (*lineptr == '\t')
1816 {
1817 if (wrap_column)
1818 *wrap_pointer++ = '\t';
1819 else
1820 fputc_unfiltered ('\t', stream);
1821 /* Shifting right by 3 produces the number of tab stops
1822 we have already passed, and then adding one and
1823 shifting left 3 advances to the next tab stop. */
1824 chars_printed = ((chars_printed >> 3) + 1) << 3;
1825 lineptr++;
1826 }
1827 else
1828 {
1829 if (wrap_column)
1830 *wrap_pointer++ = *lineptr;
1831 else
1832 fputc_unfiltered (*lineptr, stream);
1833 chars_printed++;
1834 lineptr++;
1835 }
1836
1837 if (chars_printed >= chars_per_line)
1838 {
1839 unsigned int save_chars = chars_printed;
1840
1841 chars_printed = 0;
1842 lines_printed++;
1843 /* If we aren't actually wrapping, don't output newline --
1844 if chars_per_line is right, we probably just overflowed
1845 anyway; if it's wrong, let us keep going. */
1846 if (wrap_column)
1847 fputc_unfiltered ('\n', stream);
1848
1849 /* Possible new page. */
1850 if (lines_printed >= lines_per_page - 1)
1851 prompt_for_continue ();
1852
1853 /* Now output indentation and wrapped string */
1854 if (wrap_column)
1855 {
1856 fputs_unfiltered (wrap_indent, stream);
1857 *wrap_pointer = '\0'; /* Null-terminate saved stuff */
1858 fputs_unfiltered (wrap_buffer, stream); /* and eject it */
1859 /* FIXME, this strlen is what prevents wrap_indent from
1860 containing tabs. However, if we recurse to print it
1861 and count its chars, we risk trouble if wrap_indent is
1862 longer than (the user settable) chars_per_line.
1863 Note also that this can set chars_printed > chars_per_line
1864 if we are printing a long string. */
1865 chars_printed = strlen (wrap_indent)
1866 + (save_chars - wrap_column);
1867 wrap_pointer = wrap_buffer; /* Reset buffer */
1868 wrap_buffer[0] = '\0';
1869 wrap_column = 0; /* And disable fancy wrap */
1870 }
1871 }
1872 }
1873
1874 if (*lineptr == '\n')
1875 {
1876 chars_printed = 0;
1877 wrap_here ((char *) 0); /* Spit out chars, cancel further wraps */
1878 lines_printed++;
1879 fputc_unfiltered ('\n', stream);
1880 lineptr++;
1881 }
1882 }
1883 }
1884
1885 void
1886 fputs_filtered (linebuffer, stream)
1887 const char *linebuffer;
1888 struct ui_file *stream;
1889 {
1890 fputs_maybe_filtered (linebuffer, stream, 1);
1891 }
1892
1893 int
1894 putchar_unfiltered (c)
1895 int c;
1896 {
1897 char buf = c;
1898 ui_file_write (gdb_stdout, &buf, 1);
1899 return c;
1900 }
1901
1902 int
1903 fputc_unfiltered (c, stream)
1904 int c;
1905 struct ui_file *stream;
1906 {
1907 char buf = c;
1908 ui_file_write (stream, &buf, 1);
1909 return c;
1910 }
1911
1912 int
1913 fputc_filtered (c, stream)
1914 int c;
1915 struct ui_file *stream;
1916 {
1917 char buf[2];
1918
1919 buf[0] = c;
1920 buf[1] = 0;
1921 fputs_filtered (buf, stream);
1922 return c;
1923 }
1924
1925 /* puts_debug is like fputs_unfiltered, except it prints special
1926 characters in printable fashion. */
1927
1928 void
1929 puts_debug (prefix, string, suffix)
1930 char *prefix;
1931 char *string;
1932 char *suffix;
1933 {
1934 int ch;
1935
1936 /* Print prefix and suffix after each line. */
1937 static int new_line = 1;
1938 static int return_p = 0;
1939 static char *prev_prefix = "";
1940 static char *prev_suffix = "";
1941
1942 if (*string == '\n')
1943 return_p = 0;
1944
1945 /* If the prefix is changing, print the previous suffix, a new line,
1946 and the new prefix. */
1947 if ((return_p || (strcmp (prev_prefix, prefix) != 0)) && !new_line)
1948 {
1949 fputs_unfiltered (prev_suffix, gdb_stdlog);
1950 fputs_unfiltered ("\n", gdb_stdlog);
1951 fputs_unfiltered (prefix, gdb_stdlog);
1952 }
1953
1954 /* Print prefix if we printed a newline during the previous call. */
1955 if (new_line)
1956 {
1957 new_line = 0;
1958 fputs_unfiltered (prefix, gdb_stdlog);
1959 }
1960
1961 prev_prefix = prefix;
1962 prev_suffix = suffix;
1963
1964 /* Output characters in a printable format. */
1965 while ((ch = *string++) != '\0')
1966 {
1967 switch (ch)
1968 {
1969 default:
1970 if (isprint (ch))
1971 fputc_unfiltered (ch, gdb_stdlog);
1972
1973 else
1974 fprintf_unfiltered (gdb_stdlog, "\\x%02x", ch & 0xff);
1975 break;
1976
1977 case '\\':
1978 fputs_unfiltered ("\\\\", gdb_stdlog);
1979 break;
1980 case '\b':
1981 fputs_unfiltered ("\\b", gdb_stdlog);
1982 break;
1983 case '\f':
1984 fputs_unfiltered ("\\f", gdb_stdlog);
1985 break;
1986 case '\n':
1987 new_line = 1;
1988 fputs_unfiltered ("\\n", gdb_stdlog);
1989 break;
1990 case '\r':
1991 fputs_unfiltered ("\\r", gdb_stdlog);
1992 break;
1993 case '\t':
1994 fputs_unfiltered ("\\t", gdb_stdlog);
1995 break;
1996 case '\v':
1997 fputs_unfiltered ("\\v", gdb_stdlog);
1998 break;
1999 }
2000
2001 return_p = ch == '\r';
2002 }
2003
2004 /* Print suffix if we printed a newline. */
2005 if (new_line)
2006 {
2007 fputs_unfiltered (suffix, gdb_stdlog);
2008 fputs_unfiltered ("\n", gdb_stdlog);
2009 }
2010 }
2011
2012
2013 /* Print a variable number of ARGS using format FORMAT. If this
2014 information is going to put the amount written (since the last call
2015 to REINITIALIZE_MORE_FILTER or the last page break) over the page size,
2016 call prompt_for_continue to get the users permision to continue.
2017
2018 Unlike fprintf, this function does not return a value.
2019
2020 We implement three variants, vfprintf (takes a vararg list and stream),
2021 fprintf (takes a stream to write on), and printf (the usual).
2022
2023 Note also that a longjmp to top level may occur in this routine
2024 (since prompt_for_continue may do so) so this routine should not be
2025 called when cleanups are not in place. */
2026
2027 static void
2028 vfprintf_maybe_filtered (stream, format, args, filter)
2029 struct ui_file *stream;
2030 const char *format;
2031 va_list args;
2032 int filter;
2033 {
2034 char *linebuffer;
2035 struct cleanup *old_cleanups;
2036
2037 vasprintf (&linebuffer, format, args);
2038 if (linebuffer == NULL)
2039 {
2040 fputs_unfiltered ("\ngdb: virtual memory exhausted.\n", gdb_stderr);
2041 exit (1);
2042 }
2043 old_cleanups = make_cleanup (free, linebuffer);
2044 fputs_maybe_filtered (linebuffer, stream, filter);
2045 do_cleanups (old_cleanups);
2046 }
2047
2048
2049 void
2050 vfprintf_filtered (stream, format, args)
2051 struct ui_file *stream;
2052 const char *format;
2053 va_list args;
2054 {
2055 vfprintf_maybe_filtered (stream, format, args, 1);
2056 }
2057
2058 void
2059 vfprintf_unfiltered (stream, format, args)
2060 struct ui_file *stream;
2061 const char *format;
2062 va_list args;
2063 {
2064 char *linebuffer;
2065 struct cleanup *old_cleanups;
2066
2067 vasprintf (&linebuffer, format, args);
2068 if (linebuffer == NULL)
2069 {
2070 fputs_unfiltered ("\ngdb: virtual memory exhausted.\n", gdb_stderr);
2071 exit (1);
2072 }
2073 old_cleanups = make_cleanup (free, linebuffer);
2074 fputs_unfiltered (linebuffer, stream);
2075 do_cleanups (old_cleanups);
2076 }
2077
2078 void
2079 vprintf_filtered (format, args)
2080 const char *format;
2081 va_list args;
2082 {
2083 vfprintf_maybe_filtered (gdb_stdout, format, args, 1);
2084 }
2085
2086 void
2087 vprintf_unfiltered (format, args)
2088 const char *format;
2089 va_list args;
2090 {
2091 vfprintf_unfiltered (gdb_stdout, format, args);
2092 }
2093
2094 void
2095 fprintf_filtered (struct ui_file * stream, const char *format,...)
2096 {
2097 va_list args;
2098 va_start (args, format);
2099 vfprintf_filtered (stream, format, args);
2100 va_end (args);
2101 }
2102
2103 void
2104 fprintf_unfiltered (struct ui_file * stream, const char *format,...)
2105 {
2106 va_list args;
2107 va_start (args, format);
2108 vfprintf_unfiltered (stream, format, args);
2109 va_end (args);
2110 }
2111
2112 /* Like fprintf_filtered, but prints its result indented.
2113 Called as fprintfi_filtered (spaces, stream, format, ...); */
2114
2115 void
2116 fprintfi_filtered (int spaces, struct ui_file * stream, const char *format,...)
2117 {
2118 va_list args;
2119 va_start (args, format);
2120 print_spaces_filtered (spaces, stream);
2121
2122 vfprintf_filtered (stream, format, args);
2123 va_end (args);
2124 }
2125
2126
2127 void
2128 printf_filtered (const char *format,...)
2129 {
2130 va_list args;
2131 va_start (args, format);
2132 vfprintf_filtered (gdb_stdout, format, args);
2133 va_end (args);
2134 }
2135
2136
2137 void
2138 printf_unfiltered (const char *format,...)
2139 {
2140 va_list args;
2141 va_start (args, format);
2142 vfprintf_unfiltered (gdb_stdout, format, args);
2143 va_end (args);
2144 }
2145
2146 /* Like printf_filtered, but prints it's result indented.
2147 Called as printfi_filtered (spaces, format, ...); */
2148
2149 void
2150 printfi_filtered (int spaces, const char *format,...)
2151 {
2152 va_list args;
2153 va_start (args, format);
2154 print_spaces_filtered (spaces, gdb_stdout);
2155 vfprintf_filtered (gdb_stdout, format, args);
2156 va_end (args);
2157 }
2158
2159 /* Easy -- but watch out!
2160
2161 This routine is *not* a replacement for puts()! puts() appends a newline.
2162 This one doesn't, and had better not! */
2163
2164 void
2165 puts_filtered (string)
2166 const char *string;
2167 {
2168 fputs_filtered (string, gdb_stdout);
2169 }
2170
2171 void
2172 puts_unfiltered (string)
2173 const char *string;
2174 {
2175 fputs_unfiltered (string, gdb_stdout);
2176 }
2177
2178 /* Return a pointer to N spaces and a null. The pointer is good
2179 until the next call to here. */
2180 char *
2181 n_spaces (n)
2182 int n;
2183 {
2184 char *t;
2185 static char *spaces = 0;
2186 static int max_spaces = -1;
2187
2188 if (n > max_spaces)
2189 {
2190 if (spaces)
2191 free (spaces);
2192 spaces = (char *) xmalloc (n + 1);
2193 for (t = spaces + n; t != spaces;)
2194 *--t = ' ';
2195 spaces[n] = '\0';
2196 max_spaces = n;
2197 }
2198
2199 return spaces + max_spaces - n;
2200 }
2201
2202 /* Print N spaces. */
2203 void
2204 print_spaces_filtered (n, stream)
2205 int n;
2206 struct ui_file *stream;
2207 {
2208 fputs_filtered (n_spaces (n), stream);
2209 }
2210 \f
2211 /* C++ demangler stuff. */
2212
2213 /* fprintf_symbol_filtered attempts to demangle NAME, a symbol in language
2214 LANG, using demangling args ARG_MODE, and print it filtered to STREAM.
2215 If the name is not mangled, or the language for the name is unknown, or
2216 demangling is off, the name is printed in its "raw" form. */
2217
2218 void
2219 fprintf_symbol_filtered (stream, name, lang, arg_mode)
2220 struct ui_file *stream;
2221 char *name;
2222 enum language lang;
2223 int arg_mode;
2224 {
2225 char *demangled;
2226
2227 if (name != NULL)
2228 {
2229 /* If user wants to see raw output, no problem. */
2230 if (!demangle)
2231 {
2232 fputs_filtered (name, stream);
2233 }
2234 else
2235 {
2236 switch (lang)
2237 {
2238 case language_cplus:
2239 demangled = cplus_demangle (name, arg_mode);
2240 break;
2241 case language_java:
2242 demangled = cplus_demangle (name, arg_mode | DMGL_JAVA);
2243 break;
2244 case language_chill:
2245 demangled = chill_demangle (name);
2246 break;
2247 default:
2248 demangled = NULL;
2249 break;
2250 }
2251 fputs_filtered (demangled ? demangled : name, stream);
2252 if (demangled != NULL)
2253 {
2254 free (demangled);
2255 }
2256 }
2257 }
2258 }
2259
2260 /* Do a strcmp() type operation on STRING1 and STRING2, ignoring any
2261 differences in whitespace. Returns 0 if they match, non-zero if they
2262 don't (slightly different than strcmp()'s range of return values).
2263
2264 As an extra hack, string1=="FOO(ARGS)" matches string2=="FOO".
2265 This "feature" is useful when searching for matching C++ function names
2266 (such as if the user types 'break FOO', where FOO is a mangled C++
2267 function). */
2268
2269 int
2270 strcmp_iw (string1, string2)
2271 const char *string1;
2272 const char *string2;
2273 {
2274 while ((*string1 != '\0') && (*string2 != '\0'))
2275 {
2276 while (isspace (*string1))
2277 {
2278 string1++;
2279 }
2280 while (isspace (*string2))
2281 {
2282 string2++;
2283 }
2284 if (*string1 != *string2)
2285 {
2286 break;
2287 }
2288 if (*string1 != '\0')
2289 {
2290 string1++;
2291 string2++;
2292 }
2293 }
2294 return (*string1 != '\0' && *string1 != '(') || (*string2 != '\0');
2295 }
2296 \f
2297
2298 /*
2299 ** subset_compare()
2300 ** Answer whether string_to_compare is a full or partial match to
2301 ** template_string. The partial match must be in sequence starting
2302 ** at index 0.
2303 */
2304 int
2305 subset_compare (string_to_compare, template_string)
2306 char *string_to_compare;
2307 char *template_string;
2308 {
2309 int match;
2310 if (template_string != (char *) NULL && string_to_compare != (char *) NULL &&
2311 strlen (string_to_compare) <= strlen (template_string))
2312 match = (strncmp (template_string,
2313 string_to_compare,
2314 strlen (string_to_compare)) == 0);
2315 else
2316 match = 0;
2317 return match;
2318 }
2319
2320
2321 static void pagination_on_command (char *arg, int from_tty);
2322 static void
2323 pagination_on_command (arg, from_tty)
2324 char *arg;
2325 int from_tty;
2326 {
2327 pagination_enabled = 1;
2328 }
2329
2330 static void pagination_on_command (char *arg, int from_tty);
2331 static void
2332 pagination_off_command (arg, from_tty)
2333 char *arg;
2334 int from_tty;
2335 {
2336 pagination_enabled = 0;
2337 }
2338 \f
2339
2340 void
2341 initialize_utils ()
2342 {
2343 struct cmd_list_element *c;
2344
2345 c = add_set_cmd ("width", class_support, var_uinteger,
2346 (char *) &chars_per_line,
2347 "Set number of characters gdb thinks are in a line.",
2348 &setlist);
2349 add_show_from_set (c, &showlist);
2350 c->function.sfunc = set_width_command;
2351
2352 add_show_from_set
2353 (add_set_cmd ("height", class_support,
2354 var_uinteger, (char *) &lines_per_page,
2355 "Set number of lines gdb thinks are in a page.", &setlist),
2356 &showlist);
2357
2358 init_page_info ();
2359
2360 /* If the output is not a terminal, don't paginate it. */
2361 if (!ui_file_isatty (gdb_stdout))
2362 lines_per_page = UINT_MAX;
2363
2364 set_width_command ((char *) NULL, 0, c);
2365
2366 add_show_from_set
2367 (add_set_cmd ("demangle", class_support, var_boolean,
2368 (char *) &demangle,
2369 "Set demangling of encoded C++ names when displaying symbols.",
2370 &setprintlist),
2371 &showprintlist);
2372
2373 add_show_from_set
2374 (add_set_cmd ("pagination", class_support,
2375 var_boolean, (char *) &pagination_enabled,
2376 "Set state of pagination.", &setlist),
2377 &showlist);
2378
2379 if (xdb_commands)
2380 {
2381 add_com ("am", class_support, pagination_on_command,
2382 "Enable pagination");
2383 add_com ("sm", class_support, pagination_off_command,
2384 "Disable pagination");
2385 }
2386
2387 add_show_from_set
2388 (add_set_cmd ("sevenbit-strings", class_support, var_boolean,
2389 (char *) &sevenbit_strings,
2390 "Set printing of 8-bit characters in strings as \\nnn.",
2391 &setprintlist),
2392 &showprintlist);
2393
2394 add_show_from_set
2395 (add_set_cmd ("asm-demangle", class_support, var_boolean,
2396 (char *) &asm_demangle,
2397 "Set demangling of C++ names in disassembly listings.",
2398 &setprintlist),
2399 &showprintlist);
2400 }
2401
2402 /* Machine specific function to handle SIGWINCH signal. */
2403
2404 #ifdef SIGWINCH_HANDLER_BODY
2405 SIGWINCH_HANDLER_BODY
2406 #endif
2407 \f
2408 /* Support for converting target fp numbers into host DOUBLEST format. */
2409
2410 /* XXX - This code should really be in libiberty/floatformat.c, however
2411 configuration issues with libiberty made this very difficult to do in the
2412 available time. */
2413
2414 #include "floatformat.h"
2415 #include <math.h> /* ldexp */
2416
2417 /* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
2418 going to bother with trying to muck around with whether it is defined in
2419 a system header, what we do if not, etc. */
2420 #define FLOATFORMAT_CHAR_BIT 8
2421
2422 static unsigned long get_field (unsigned char *,
2423 enum floatformat_byteorders,
2424 unsigned int, unsigned int, unsigned int);
2425
2426 /* Extract a field which starts at START and is LEN bytes long. DATA and
2427 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
2428 static unsigned long
2429 get_field (data, order, total_len, start, len)
2430 unsigned char *data;
2431 enum floatformat_byteorders order;
2432 unsigned int total_len;
2433 unsigned int start;
2434 unsigned int len;
2435 {
2436 unsigned long result;
2437 unsigned int cur_byte;
2438 int cur_bitshift;
2439
2440 /* Start at the least significant part of the field. */
2441 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2442 {
2443 /* We start counting from the other end (i.e, from the high bytes
2444 rather than the low bytes). As such, we need to be concerned
2445 with what happens if bit 0 doesn't start on a byte boundary.
2446 I.e, we need to properly handle the case where total_len is
2447 not evenly divisible by 8. So we compute ``excess'' which
2448 represents the number of bits from the end of our starting
2449 byte needed to get to bit 0. */
2450 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
2451 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
2452 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
2453 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
2454 - FLOATFORMAT_CHAR_BIT;
2455 }
2456 else
2457 {
2458 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2459 cur_bitshift =
2460 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2461 }
2462 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
2463 result = *(data + cur_byte) >> (-cur_bitshift);
2464 else
2465 result = 0;
2466 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2467 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2468 ++cur_byte;
2469 else
2470 --cur_byte;
2471
2472 /* Move towards the most significant part of the field. */
2473 while (cur_bitshift < len)
2474 {
2475 result |= (unsigned long)*(data + cur_byte) << cur_bitshift;
2476 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2477 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2478 ++cur_byte;
2479 else
2480 --cur_byte;
2481 }
2482 if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT)
2483 /* Mask out bits which are not part of the field */
2484 result &= ((1UL << len) - 1);
2485 return result;
2486 }
2487
2488 /* Convert from FMT to a DOUBLEST.
2489 FROM is the address of the extended float.
2490 Store the DOUBLEST in *TO. */
2491
2492 void
2493 floatformat_to_doublest (fmt, from, to)
2494 const struct floatformat *fmt;
2495 char *from;
2496 DOUBLEST *to;
2497 {
2498 unsigned char *ufrom = (unsigned char *) from;
2499 DOUBLEST dto;
2500 long exponent;
2501 unsigned long mant;
2502 unsigned int mant_bits, mant_off;
2503 int mant_bits_left;
2504 int special_exponent; /* It's a NaN, denorm or zero */
2505
2506 /* If the mantissa bits are not contiguous from one end of the
2507 mantissa to the other, we need to make a private copy of the
2508 source bytes that is in the right order since the unpacking
2509 algorithm assumes that the bits are contiguous.
2510
2511 Swap the bytes individually rather than accessing them through
2512 "long *" since we have no guarantee that they start on a long
2513 alignment, and also sizeof(long) for the host could be different
2514 than sizeof(long) for the target. FIXME: Assumes sizeof(long)
2515 for the target is 4. */
2516
2517 if (fmt->byteorder == floatformat_littlebyte_bigword)
2518 {
2519 static unsigned char *newfrom;
2520 unsigned char *swapin, *swapout;
2521 int longswaps;
2522
2523 longswaps = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
2524 longswaps >>= 3;
2525
2526 if (newfrom == NULL)
2527 {
2528 newfrom = (unsigned char *) xmalloc (fmt->totalsize);
2529 }
2530 swapout = newfrom;
2531 swapin = ufrom;
2532 ufrom = newfrom;
2533 while (longswaps-- > 0)
2534 {
2535 /* This is ugly, but efficient */
2536 *swapout++ = swapin[4];
2537 *swapout++ = swapin[5];
2538 *swapout++ = swapin[6];
2539 *swapout++ = swapin[7];
2540 *swapout++ = swapin[0];
2541 *swapout++ = swapin[1];
2542 *swapout++ = swapin[2];
2543 *swapout++ = swapin[3];
2544 swapin += 8;
2545 }
2546 }
2547
2548 exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize,
2549 fmt->exp_start, fmt->exp_len);
2550 /* Note that if exponent indicates a NaN, we can't really do anything useful
2551 (not knowing if the host has NaN's, or how to build one). So it will
2552 end up as an infinity or something close; that is OK. */
2553
2554 mant_bits_left = fmt->man_len;
2555 mant_off = fmt->man_start;
2556 dto = 0.0;
2557
2558 special_exponent = exponent == 0 || exponent == fmt->exp_nan;
2559
2560 /* Don't bias NaNs. Use minimum exponent for denorms. For simplicity,
2561 we don't check for zero as the exponent doesn't matter. */
2562 if (!special_exponent)
2563 exponent -= fmt->exp_bias;
2564 else if (exponent == 0)
2565 exponent = 1 - fmt->exp_bias;
2566
2567 /* Build the result algebraically. Might go infinite, underflow, etc;
2568 who cares. */
2569
2570 /* If this format uses a hidden bit, explicitly add it in now. Otherwise,
2571 increment the exponent by one to account for the integer bit. */
2572
2573 if (!special_exponent)
2574 {
2575 if (fmt->intbit == floatformat_intbit_no)
2576 dto = ldexp (1.0, exponent);
2577 else
2578 exponent++;
2579 }
2580
2581 while (mant_bits_left > 0)
2582 {
2583 mant_bits = min (mant_bits_left, 32);
2584
2585 mant = get_field (ufrom, fmt->byteorder, fmt->totalsize,
2586 mant_off, mant_bits);
2587
2588 dto += ldexp ((double) mant, exponent - mant_bits);
2589 exponent -= mant_bits;
2590 mant_off += mant_bits;
2591 mant_bits_left -= mant_bits;
2592 }
2593
2594 /* Negate it if negative. */
2595 if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1))
2596 dto = -dto;
2597 *to = dto;
2598 }
2599 \f
2600 static void put_field (unsigned char *, enum floatformat_byteorders,
2601 unsigned int,
2602 unsigned int, unsigned int, unsigned long);
2603
2604 /* Set a field which starts at START and is LEN bytes long. DATA and
2605 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
2606 static void
2607 put_field (data, order, total_len, start, len, stuff_to_put)
2608 unsigned char *data;
2609 enum floatformat_byteorders order;
2610 unsigned int total_len;
2611 unsigned int start;
2612 unsigned int len;
2613 unsigned long stuff_to_put;
2614 {
2615 unsigned int cur_byte;
2616 int cur_bitshift;
2617
2618 /* Start at the least significant part of the field. */
2619 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2620 {
2621 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
2622 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
2623 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
2624 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
2625 - FLOATFORMAT_CHAR_BIT;
2626 }
2627 else
2628 {
2629 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2630 cur_bitshift =
2631 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2632 }
2633 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
2634 {
2635 *(data + cur_byte) &=
2636 ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1)
2637 << (-cur_bitshift));
2638 *(data + cur_byte) |=
2639 (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
2640 }
2641 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2642 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2643 ++cur_byte;
2644 else
2645 --cur_byte;
2646
2647 /* Move towards the most significant part of the field. */
2648 while (cur_bitshift < len)
2649 {
2650 if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
2651 {
2652 /* This is the last byte. */
2653 *(data + cur_byte) &=
2654 ~((1 << (len - cur_bitshift)) - 1);
2655 *(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
2656 }
2657 else
2658 *(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
2659 & ((1 << FLOATFORMAT_CHAR_BIT) - 1));
2660 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2661 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2662 ++cur_byte;
2663 else
2664 --cur_byte;
2665 }
2666 }
2667
2668 #ifdef HAVE_LONG_DOUBLE
2669 /* Return the fractional part of VALUE, and put the exponent of VALUE in *EPTR.
2670 The range of the returned value is >= 0.5 and < 1.0. This is equivalent to
2671 frexp, but operates on the long double data type. */
2672
2673 static long double ldfrexp (long double value, int *eptr);
2674
2675 static long double
2676 ldfrexp (value, eptr)
2677 long double value;
2678 int *eptr;
2679 {
2680 long double tmp;
2681 int exp;
2682
2683 /* Unfortunately, there are no portable functions for extracting the exponent
2684 of a long double, so we have to do it iteratively by multiplying or dividing
2685 by two until the fraction is between 0.5 and 1.0. */
2686
2687 if (value < 0.0l)
2688 value = -value;
2689
2690 tmp = 1.0l;
2691 exp = 0;
2692
2693 if (value >= tmp) /* Value >= 1.0 */
2694 while (value >= tmp)
2695 {
2696 tmp *= 2.0l;
2697 exp++;
2698 }
2699 else if (value != 0.0l) /* Value < 1.0 and > 0.0 */
2700 {
2701 while (value < tmp)
2702 {
2703 tmp /= 2.0l;
2704 exp--;
2705 }
2706 tmp *= 2.0l;
2707 exp++;
2708 }
2709
2710 *eptr = exp;
2711 return value / tmp;
2712 }
2713 #endif /* HAVE_LONG_DOUBLE */
2714
2715
2716 /* The converse: convert the DOUBLEST *FROM to an extended float
2717 and store where TO points. Neither FROM nor TO have any alignment
2718 restrictions. */
2719
2720 void
2721 floatformat_from_doublest (fmt, from, to)
2722 CONST struct floatformat *fmt;
2723 DOUBLEST *from;
2724 char *to;
2725 {
2726 DOUBLEST dfrom;
2727 int exponent;
2728 DOUBLEST mant;
2729 unsigned int mant_bits, mant_off;
2730 int mant_bits_left;
2731 unsigned char *uto = (unsigned char *) to;
2732
2733 memcpy (&dfrom, from, sizeof (dfrom));
2734 memset (uto, 0, (fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1)
2735 / FLOATFORMAT_CHAR_BIT);
2736 if (dfrom == 0)
2737 return; /* Result is zero */
2738 if (dfrom != dfrom) /* Result is NaN */
2739 {
2740 /* From is NaN */
2741 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
2742 fmt->exp_len, fmt->exp_nan);
2743 /* Be sure it's not infinity, but NaN value is irrel */
2744 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
2745 32, 1);
2746 return;
2747 }
2748
2749 /* If negative, set the sign bit. */
2750 if (dfrom < 0)
2751 {
2752 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1, 1);
2753 dfrom = -dfrom;
2754 }
2755
2756 if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity */
2757 {
2758 /* Infinity exponent is same as NaN's. */
2759 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
2760 fmt->exp_len, fmt->exp_nan);
2761 /* Infinity mantissa is all zeroes. */
2762 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
2763 fmt->man_len, 0);
2764 return;
2765 }
2766
2767 #ifdef HAVE_LONG_DOUBLE
2768 mant = ldfrexp (dfrom, &exponent);
2769 #else
2770 mant = frexp (dfrom, &exponent);
2771 #endif
2772
2773 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start, fmt->exp_len,
2774 exponent + fmt->exp_bias - 1);
2775
2776 mant_bits_left = fmt->man_len;
2777 mant_off = fmt->man_start;
2778 while (mant_bits_left > 0)
2779 {
2780 unsigned long mant_long;
2781 mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
2782
2783 mant *= 4294967296.0;
2784 mant_long = ((unsigned long) mant) & 0xffffffffL;
2785 mant -= mant_long;
2786
2787 /* If the integer bit is implicit, then we need to discard it.
2788 If we are discarding a zero, we should be (but are not) creating
2789 a denormalized number which means adjusting the exponent
2790 (I think). */
2791 if (mant_bits_left == fmt->man_len
2792 && fmt->intbit == floatformat_intbit_no)
2793 {
2794 mant_long <<= 1;
2795 mant_long &= 0xffffffffL;
2796 mant_bits -= 1;
2797 }
2798
2799 if (mant_bits < 32)
2800 {
2801 /* The bits we want are in the most significant MANT_BITS bits of
2802 mant_long. Move them to the least significant. */
2803 mant_long >>= 32 - mant_bits;
2804 }
2805
2806 put_field (uto, fmt->byteorder, fmt->totalsize,
2807 mant_off, mant_bits, mant_long);
2808 mant_off += mant_bits;
2809 mant_bits_left -= mant_bits;
2810 }
2811 if (fmt->byteorder == floatformat_littlebyte_bigword)
2812 {
2813 int count;
2814 unsigned char *swaplow = uto;
2815 unsigned char *swaphigh = uto + 4;
2816 unsigned char tmp;
2817
2818 for (count = 0; count < 4; count++)
2819 {
2820 tmp = *swaplow;
2821 *swaplow++ = *swaphigh;
2822 *swaphigh++ = tmp;
2823 }
2824 }
2825 }
2826
2827 /* print routines to handle variable size regs, etc. */
2828
2829 /* temporary storage using circular buffer */
2830 #define NUMCELLS 16
2831 #define CELLSIZE 32
2832 static char *
2833 get_cell ()
2834 {
2835 static char buf[NUMCELLS][CELLSIZE];
2836 static int cell = 0;
2837 if (++cell >= NUMCELLS)
2838 cell = 0;
2839 return buf[cell];
2840 }
2841
2842 int
2843 strlen_paddr (void)
2844 {
2845 return (TARGET_PTR_BIT / 8 * 2);
2846 }
2847
2848 char *
2849 paddr (CORE_ADDR addr)
2850 {
2851 return phex (addr, TARGET_PTR_BIT / 8);
2852 }
2853
2854 char *
2855 paddr_nz (CORE_ADDR addr)
2856 {
2857 return phex_nz (addr, TARGET_PTR_BIT / 8);
2858 }
2859
2860 static void
2861 decimal2str (char *paddr_str, char *sign, ULONGEST addr)
2862 {
2863 /* steal code from valprint.c:print_decimal(). Should this worry
2864 about the real size of addr as the above does? */
2865 unsigned long temp[3];
2866 int i = 0;
2867 do
2868 {
2869 temp[i] = addr % (1000 * 1000 * 1000);
2870 addr /= (1000 * 1000 * 1000);
2871 i++;
2872 }
2873 while (addr != 0 && i < (sizeof (temp) / sizeof (temp[0])));
2874 switch (i)
2875 {
2876 case 1:
2877 sprintf (paddr_str, "%s%lu",
2878 sign, temp[0]);
2879 break;
2880 case 2:
2881 sprintf (paddr_str, "%s%lu%09lu",
2882 sign, temp[1], temp[0]);
2883 break;
2884 case 3:
2885 sprintf (paddr_str, "%s%lu%09lu%09lu",
2886 sign, temp[2], temp[1], temp[0]);
2887 break;
2888 default:
2889 abort ();
2890 }
2891 }
2892
2893 char *
2894 paddr_u (CORE_ADDR addr)
2895 {
2896 char *paddr_str = get_cell ();
2897 decimal2str (paddr_str, "", addr);
2898 return paddr_str;
2899 }
2900
2901 char *
2902 paddr_d (LONGEST addr)
2903 {
2904 char *paddr_str = get_cell ();
2905 if (addr < 0)
2906 decimal2str (paddr_str, "-", -addr);
2907 else
2908 decimal2str (paddr_str, "", addr);
2909 return paddr_str;
2910 }
2911
2912 /* eliminate warning from compiler on 32-bit systems */
2913 static int thirty_two = 32;
2914
2915 char *
2916 phex (ULONGEST l, int sizeof_l)
2917 {
2918 char *str = get_cell ();
2919 switch (sizeof_l)
2920 {
2921 case 8:
2922 sprintf (str, "%08lx%08lx",
2923 (unsigned long) (l >> thirty_two),
2924 (unsigned long) (l & 0xffffffff));
2925 break;
2926 case 4:
2927 sprintf (str, "%08lx", (unsigned long) l);
2928 break;
2929 case 2:
2930 sprintf (str, "%04x", (unsigned short) (l & 0xffff));
2931 break;
2932 default:
2933 phex (l, sizeof (l));
2934 break;
2935 }
2936 return str;
2937 }
2938
2939 char *
2940 phex_nz (ULONGEST l, int sizeof_l)
2941 {
2942 char *str = get_cell ();
2943 switch (sizeof_l)
2944 {
2945 case 8:
2946 {
2947 unsigned long high = (unsigned long) (l >> thirty_two);
2948 if (high == 0)
2949 sprintf (str, "%lx", (unsigned long) (l & 0xffffffff));
2950 else
2951 sprintf (str, "%lx%08lx",
2952 high, (unsigned long) (l & 0xffffffff));
2953 break;
2954 }
2955 case 4:
2956 sprintf (str, "%lx", (unsigned long) l);
2957 break;
2958 case 2:
2959 sprintf (str, "%x", (unsigned short) (l & 0xffff));
2960 break;
2961 default:
2962 phex_nz (l, sizeof (l));
2963 break;
2964 }
2965 return str;
2966 }
2967
2968
2969 /* Convert to / from the hosts pointer to GDB's internal CORE_ADDR
2970 using the target's conversion routines. */
2971 CORE_ADDR
2972 host_pointer_to_address (void *ptr)
2973 {
2974 if (sizeof (ptr) != TYPE_LENGTH (builtin_type_ptr))
2975 internal_error ("core_addr_to_void_ptr: bad cast");
2976 return POINTER_TO_ADDRESS (builtin_type_ptr, &ptr);
2977 }
2978
2979 void *
2980 address_to_host_pointer (CORE_ADDR addr)
2981 {
2982 void *ptr;
2983 if (sizeof (ptr) != TYPE_LENGTH (builtin_type_ptr))
2984 internal_error ("core_addr_to_void_ptr: bad cast");
2985 ADDRESS_TO_POINTER (builtin_type_ptr, &ptr, addr);
2986 return ptr;
2987 }