* elflink.h (elf_bfd_final_link): Check if dynobj is not NULL
[binutils-gdb.git] / gdb / utils.c
1 /* General utility routines for GDB, the GNU debugger.
2 Copyright 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
3 1997, 1998, 1999, 2000, 2001
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "gdb_assert.h"
25 #include <ctype.h>
26 #include "gdb_string.h"
27 #include "event-top.h"
28
29 #ifdef HAVE_CURSES_H
30 #include <curses.h>
31 #endif
32 #ifdef HAVE_TERM_H
33 #include <term.h>
34 #endif
35
36 #ifdef __GO32__
37 #include <pc.h>
38 #endif
39
40 /* SunOS's curses.h has a '#define reg register' in it. Thank you Sun. */
41 #ifdef reg
42 #undef reg
43 #endif
44
45 #include <signal.h>
46 #include "gdbcmd.h"
47 #include "serial.h"
48 #include "bfd.h"
49 #include "target.h"
50 #include "demangle.h"
51 #include "expression.h"
52 #include "language.h"
53 #include "annotate.h"
54
55 #include "inferior.h" /* for signed_pointer_to_address */
56
57 #include <readline/readline.h>
58
59 #ifdef USE_MMALLOC
60 #include "mmalloc.h"
61 #endif
62
63 #ifndef MALLOC_INCOMPATIBLE
64 #ifdef NEED_DECLARATION_MALLOC
65 extern PTR malloc ();
66 #endif
67 #ifdef NEED_DECLARATION_REALLOC
68 extern PTR realloc ();
69 #endif
70 #ifdef NEED_DECLARATION_FREE
71 extern void free ();
72 #endif
73 #endif
74
75 #undef XMALLOC
76 #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
77
78 /* readline defines this. */
79 #undef savestring
80
81 void (*error_begin_hook) (void);
82
83 /* Holds the last error message issued by gdb */
84
85 static struct ui_file *gdb_lasterr;
86
87 /* Prototypes for local functions */
88
89 static void vfprintf_maybe_filtered (struct ui_file *, const char *,
90 va_list, int);
91
92 static void fputs_maybe_filtered (const char *, struct ui_file *, int);
93
94 #if defined (USE_MMALLOC) && !defined (NO_MMCHECK)
95 static void malloc_botch (void);
96 #endif
97
98 static void prompt_for_continue (void);
99
100 static void set_width_command (char *, int, struct cmd_list_element *);
101
102 static void set_width (void);
103
104 /* Chain of cleanup actions established with make_cleanup,
105 to be executed if an error happens. */
106
107 static struct cleanup *cleanup_chain; /* cleaned up after a failed command */
108 static struct cleanup *final_cleanup_chain; /* cleaned up when gdb exits */
109 static struct cleanup *run_cleanup_chain; /* cleaned up on each 'run' */
110 static struct cleanup *exec_cleanup_chain; /* cleaned up on each execution command */
111 /* cleaned up on each error from within an execution command */
112 static struct cleanup *exec_error_cleanup_chain;
113
114 /* Pointer to what is left to do for an execution command after the
115 target stops. Used only in asynchronous mode, by targets that
116 support async execution. The finish and until commands use it. So
117 does the target extended-remote command. */
118 struct continuation *cmd_continuation;
119 struct continuation *intermediate_continuation;
120
121 /* Nonzero if we have job control. */
122
123 int job_control;
124
125 /* Nonzero means a quit has been requested. */
126
127 int quit_flag;
128
129 /* Nonzero means quit immediately if Control-C is typed now, rather
130 than waiting until QUIT is executed. Be careful in setting this;
131 code which executes with immediate_quit set has to be very careful
132 about being able to deal with being interrupted at any time. It is
133 almost always better to use QUIT; the only exception I can think of
134 is being able to quit out of a system call (using EINTR loses if
135 the SIGINT happens between the previous QUIT and the system call).
136 To immediately quit in the case in which a SIGINT happens between
137 the previous QUIT and setting immediate_quit (desirable anytime we
138 expect to block), call QUIT after setting immediate_quit. */
139
140 int immediate_quit;
141
142 /* Nonzero means that encoded C++ names should be printed out in their
143 C++ form rather than raw. */
144
145 int demangle = 1;
146
147 /* Nonzero means that encoded C++ names should be printed out in their
148 C++ form even in assembler language displays. If this is set, but
149 DEMANGLE is zero, names are printed raw, i.e. DEMANGLE controls. */
150
151 int asm_demangle = 0;
152
153 /* Nonzero means that strings with character values >0x7F should be printed
154 as octal escapes. Zero means just print the value (e.g. it's an
155 international character, and the terminal or window can cope.) */
156
157 int sevenbit_strings = 0;
158
159 /* String to be printed before error messages, if any. */
160
161 char *error_pre_print;
162
163 /* String to be printed before quit messages, if any. */
164
165 char *quit_pre_print;
166
167 /* String to be printed before warning messages, if any. */
168
169 char *warning_pre_print = "\nwarning: ";
170
171 int pagination_enabled = 1;
172 \f
173
174 /* Add a new cleanup to the cleanup_chain,
175 and return the previous chain pointer
176 to be passed later to do_cleanups or discard_cleanups.
177 Args are FUNCTION to clean up with, and ARG to pass to it. */
178
179 struct cleanup *
180 make_cleanup (make_cleanup_ftype *function, void *arg)
181 {
182 return make_my_cleanup (&cleanup_chain, function, arg);
183 }
184
185 struct cleanup *
186 make_final_cleanup (make_cleanup_ftype *function, void *arg)
187 {
188 return make_my_cleanup (&final_cleanup_chain, function, arg);
189 }
190
191 struct cleanup *
192 make_run_cleanup (make_cleanup_ftype *function, void *arg)
193 {
194 return make_my_cleanup (&run_cleanup_chain, function, arg);
195 }
196
197 struct cleanup *
198 make_exec_cleanup (make_cleanup_ftype *function, void *arg)
199 {
200 return make_my_cleanup (&exec_cleanup_chain, function, arg);
201 }
202
203 struct cleanup *
204 make_exec_error_cleanup (make_cleanup_ftype *function, void *arg)
205 {
206 return make_my_cleanup (&exec_error_cleanup_chain, function, arg);
207 }
208
209 static void
210 do_freeargv (void *arg)
211 {
212 freeargv ((char **) arg);
213 }
214
215 struct cleanup *
216 make_cleanup_freeargv (char **arg)
217 {
218 return make_my_cleanup (&cleanup_chain, do_freeargv, arg);
219 }
220
221 static void
222 do_bfd_close_cleanup (void *arg)
223 {
224 bfd_close (arg);
225 }
226
227 struct cleanup *
228 make_cleanup_bfd_close (bfd *abfd)
229 {
230 return make_cleanup (do_bfd_close_cleanup, abfd);
231 }
232
233 static void
234 do_close_cleanup (void *arg)
235 {
236 int *fd = arg;
237 close (*fd);
238 xfree (fd);
239 }
240
241 struct cleanup *
242 make_cleanup_close (int fd)
243 {
244 int *saved_fd = xmalloc (sizeof (fd));
245 *saved_fd = fd;
246 return make_cleanup (do_close_cleanup, saved_fd);
247 }
248
249 static void
250 do_ui_file_delete (void *arg)
251 {
252 ui_file_delete (arg);
253 }
254
255 struct cleanup *
256 make_cleanup_ui_file_delete (struct ui_file *arg)
257 {
258 return make_my_cleanup (&cleanup_chain, do_ui_file_delete, arg);
259 }
260
261 struct cleanup *
262 make_my_cleanup (struct cleanup **pmy_chain, make_cleanup_ftype *function,
263 void *arg)
264 {
265 register struct cleanup *new
266 = (struct cleanup *) xmalloc (sizeof (struct cleanup));
267 register struct cleanup *old_chain = *pmy_chain;
268
269 new->next = *pmy_chain;
270 new->function = function;
271 new->arg = arg;
272 *pmy_chain = new;
273
274 return old_chain;
275 }
276
277 /* Discard cleanups and do the actions they describe
278 until we get back to the point OLD_CHAIN in the cleanup_chain. */
279
280 void
281 do_cleanups (register struct cleanup *old_chain)
282 {
283 do_my_cleanups (&cleanup_chain, old_chain);
284 }
285
286 void
287 do_final_cleanups (register struct cleanup *old_chain)
288 {
289 do_my_cleanups (&final_cleanup_chain, old_chain);
290 }
291
292 void
293 do_run_cleanups (register struct cleanup *old_chain)
294 {
295 do_my_cleanups (&run_cleanup_chain, old_chain);
296 }
297
298 void
299 do_exec_cleanups (register struct cleanup *old_chain)
300 {
301 do_my_cleanups (&exec_cleanup_chain, old_chain);
302 }
303
304 void
305 do_exec_error_cleanups (register struct cleanup *old_chain)
306 {
307 do_my_cleanups (&exec_error_cleanup_chain, old_chain);
308 }
309
310 void
311 do_my_cleanups (register struct cleanup **pmy_chain,
312 register struct cleanup *old_chain)
313 {
314 register struct cleanup *ptr;
315 while ((ptr = *pmy_chain) != old_chain)
316 {
317 *pmy_chain = ptr->next; /* Do this first incase recursion */
318 (*ptr->function) (ptr->arg);
319 xfree (ptr);
320 }
321 }
322
323 /* Discard cleanups, not doing the actions they describe,
324 until we get back to the point OLD_CHAIN in the cleanup_chain. */
325
326 void
327 discard_cleanups (register struct cleanup *old_chain)
328 {
329 discard_my_cleanups (&cleanup_chain, old_chain);
330 }
331
332 void
333 discard_final_cleanups (register struct cleanup *old_chain)
334 {
335 discard_my_cleanups (&final_cleanup_chain, old_chain);
336 }
337
338 void
339 discard_exec_error_cleanups (register struct cleanup *old_chain)
340 {
341 discard_my_cleanups (&exec_error_cleanup_chain, old_chain);
342 }
343
344 void
345 discard_my_cleanups (register struct cleanup **pmy_chain,
346 register struct cleanup *old_chain)
347 {
348 register struct cleanup *ptr;
349 while ((ptr = *pmy_chain) != old_chain)
350 {
351 *pmy_chain = ptr->next;
352 xfree (ptr);
353 }
354 }
355
356 /* Set the cleanup_chain to 0, and return the old cleanup chain. */
357 struct cleanup *
358 save_cleanups (void)
359 {
360 return save_my_cleanups (&cleanup_chain);
361 }
362
363 struct cleanup *
364 save_final_cleanups (void)
365 {
366 return save_my_cleanups (&final_cleanup_chain);
367 }
368
369 struct cleanup *
370 save_my_cleanups (struct cleanup **pmy_chain)
371 {
372 struct cleanup *old_chain = *pmy_chain;
373
374 *pmy_chain = 0;
375 return old_chain;
376 }
377
378 /* Restore the cleanup chain from a previously saved chain. */
379 void
380 restore_cleanups (struct cleanup *chain)
381 {
382 restore_my_cleanups (&cleanup_chain, chain);
383 }
384
385 void
386 restore_final_cleanups (struct cleanup *chain)
387 {
388 restore_my_cleanups (&final_cleanup_chain, chain);
389 }
390
391 void
392 restore_my_cleanups (struct cleanup **pmy_chain, struct cleanup *chain)
393 {
394 *pmy_chain = chain;
395 }
396
397 /* This function is useful for cleanups.
398 Do
399
400 foo = xmalloc (...);
401 old_chain = make_cleanup (free_current_contents, &foo);
402
403 to arrange to free the object thus allocated. */
404
405 void
406 free_current_contents (void *ptr)
407 {
408 void **location = ptr;
409 if (location == NULL)
410 internal_error (__FILE__, __LINE__,
411 "free_current_contents: NULL pointer");
412 if (*location != NULL)
413 {
414 xfree (*location);
415 *location = NULL;
416 }
417 }
418
419 /* Provide a known function that does nothing, to use as a base for
420 for a possibly long chain of cleanups. This is useful where we
421 use the cleanup chain for handling normal cleanups as well as dealing
422 with cleanups that need to be done as a result of a call to error().
423 In such cases, we may not be certain where the first cleanup is, unless
424 we have a do-nothing one to always use as the base. */
425
426 /* ARGSUSED */
427 void
428 null_cleanup (void *arg)
429 {
430 }
431
432 /* Add a continuation to the continuation list, the global list
433 cmd_continuation. The new continuation will be added at the front.*/
434 void
435 add_continuation (void (*continuation_hook) (struct continuation_arg *),
436 struct continuation_arg *arg_list)
437 {
438 struct continuation *continuation_ptr;
439
440 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
441 continuation_ptr->continuation_hook = continuation_hook;
442 continuation_ptr->arg_list = arg_list;
443 continuation_ptr->next = cmd_continuation;
444 cmd_continuation = continuation_ptr;
445 }
446
447 /* Walk down the cmd_continuation list, and execute all the
448 continuations. There is a problem though. In some cases new
449 continuations may be added while we are in the middle of this
450 loop. If this happens they will be added in the front, and done
451 before we have a chance of exhausting those that were already
452 there. We need to then save the beginning of the list in a pointer
453 and do the continuations from there on, instead of using the
454 global beginning of list as our iteration pointer.*/
455 void
456 do_all_continuations (void)
457 {
458 struct continuation *continuation_ptr;
459 struct continuation *saved_continuation;
460
461 /* Copy the list header into another pointer, and set the global
462 list header to null, so that the global list can change as a side
463 effect of invoking the continuations and the processing of
464 the preexisting continuations will not be affected. */
465 continuation_ptr = cmd_continuation;
466 cmd_continuation = NULL;
467
468 /* Work now on the list we have set aside. */
469 while (continuation_ptr)
470 {
471 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
472 saved_continuation = continuation_ptr;
473 continuation_ptr = continuation_ptr->next;
474 xfree (saved_continuation);
475 }
476 }
477
478 /* Walk down the cmd_continuation list, and get rid of all the
479 continuations. */
480 void
481 discard_all_continuations (void)
482 {
483 struct continuation *continuation_ptr;
484
485 while (cmd_continuation)
486 {
487 continuation_ptr = cmd_continuation;
488 cmd_continuation = continuation_ptr->next;
489 xfree (continuation_ptr);
490 }
491 }
492
493 /* Add a continuation to the continuation list, the global list
494 intermediate_continuation. The new continuation will be added at the front.*/
495 void
496 add_intermediate_continuation (void (*continuation_hook)
497 (struct continuation_arg *),
498 struct continuation_arg *arg_list)
499 {
500 struct continuation *continuation_ptr;
501
502 continuation_ptr = (struct continuation *) xmalloc (sizeof (struct continuation));
503 continuation_ptr->continuation_hook = continuation_hook;
504 continuation_ptr->arg_list = arg_list;
505 continuation_ptr->next = intermediate_continuation;
506 intermediate_continuation = continuation_ptr;
507 }
508
509 /* Walk down the cmd_continuation list, and execute all the
510 continuations. There is a problem though. In some cases new
511 continuations may be added while we are in the middle of this
512 loop. If this happens they will be added in the front, and done
513 before we have a chance of exhausting those that were already
514 there. We need to then save the beginning of the list in a pointer
515 and do the continuations from there on, instead of using the
516 global beginning of list as our iteration pointer.*/
517 void
518 do_all_intermediate_continuations (void)
519 {
520 struct continuation *continuation_ptr;
521 struct continuation *saved_continuation;
522
523 /* Copy the list header into another pointer, and set the global
524 list header to null, so that the global list can change as a side
525 effect of invoking the continuations and the processing of
526 the preexisting continuations will not be affected. */
527 continuation_ptr = intermediate_continuation;
528 intermediate_continuation = NULL;
529
530 /* Work now on the list we have set aside. */
531 while (continuation_ptr)
532 {
533 (continuation_ptr->continuation_hook) (continuation_ptr->arg_list);
534 saved_continuation = continuation_ptr;
535 continuation_ptr = continuation_ptr->next;
536 xfree (saved_continuation);
537 }
538 }
539
540 /* Walk down the cmd_continuation list, and get rid of all the
541 continuations. */
542 void
543 discard_all_intermediate_continuations (void)
544 {
545 struct continuation *continuation_ptr;
546
547 while (intermediate_continuation)
548 {
549 continuation_ptr = intermediate_continuation;
550 intermediate_continuation = continuation_ptr->next;
551 xfree (continuation_ptr);
552 }
553 }
554
555 \f
556
557 /* Print a warning message. Way to use this is to call warning_begin,
558 output the warning message (use unfiltered output to gdb_stderr),
559 ending in a newline. There is not currently a warning_end that you
560 call afterwards, but such a thing might be added if it is useful
561 for a GUI to separate warning messages from other output.
562
563 FIXME: Why do warnings use unfiltered output and errors filtered?
564 Is this anything other than a historical accident? */
565
566 void
567 warning_begin (void)
568 {
569 target_terminal_ours ();
570 wrap_here (""); /* Force out any buffered output */
571 gdb_flush (gdb_stdout);
572 if (warning_pre_print)
573 fprintf_unfiltered (gdb_stderr, warning_pre_print);
574 }
575
576 /* Print a warning message.
577 The first argument STRING is the warning message, used as a fprintf string,
578 and the remaining args are passed as arguments to it.
579 The primary difference between warnings and errors is that a warning
580 does not force the return to command level. */
581
582 void
583 warning (const char *string,...)
584 {
585 va_list args;
586 va_start (args, string);
587 if (warning_hook)
588 (*warning_hook) (string, args);
589 else
590 {
591 warning_begin ();
592 vfprintf_unfiltered (gdb_stderr, string, args);
593 fprintf_unfiltered (gdb_stderr, "\n");
594 va_end (args);
595 }
596 }
597
598 /* Start the printing of an error message. Way to use this is to call
599 this, output the error message (use filtered output to gdb_stderr
600 (FIXME: Some callers, like memory_error, use gdb_stdout)), ending
601 in a newline, and then call return_to_top_level (RETURN_ERROR).
602 error() provides a convenient way to do this for the special case
603 that the error message can be formatted with a single printf call,
604 but this is more general. */
605 void
606 error_begin (void)
607 {
608 if (error_begin_hook)
609 error_begin_hook ();
610
611 target_terminal_ours ();
612 wrap_here (""); /* Force out any buffered output */
613 gdb_flush (gdb_stdout);
614
615 annotate_error_begin ();
616
617 if (error_pre_print)
618 fprintf_filtered (gdb_stderr, error_pre_print);
619 }
620
621 /* Print an error message and return to command level.
622 The first argument STRING is the error message, used as a fprintf string,
623 and the remaining args are passed as arguments to it. */
624
625 NORETURN void
626 verror (const char *string, va_list args)
627 {
628 char *err_string;
629 struct cleanup *err_string_cleanup;
630 /* FIXME: cagney/1999-11-10: All error calls should come here.
631 Unfortunately some code uses the sequence: error_begin(); print
632 error message; return_to_top_level. That code should be
633 flushed. */
634 error_begin ();
635 /* NOTE: It's tempting to just do the following...
636 vfprintf_filtered (gdb_stderr, string, args);
637 and then follow with a similar looking statement to cause the message
638 to also go to gdb_lasterr. But if we do this, we'll be traversing the
639 va_list twice which works on some platforms and fails miserably on
640 others. */
641 /* Save it as the last error */
642 ui_file_rewind (gdb_lasterr);
643 vfprintf_filtered (gdb_lasterr, string, args);
644 /* Retrieve the last error and print it to gdb_stderr */
645 err_string = error_last_message ();
646 err_string_cleanup = make_cleanup (xfree, err_string);
647 fputs_filtered (err_string, gdb_stderr);
648 fprintf_filtered (gdb_stderr, "\n");
649 do_cleanups (err_string_cleanup);
650 return_to_top_level (RETURN_ERROR);
651 }
652
653 NORETURN void
654 error (const char *string,...)
655 {
656 va_list args;
657 va_start (args, string);
658 verror (string, args);
659 va_end (args);
660 }
661
662 NORETURN void
663 error_stream (struct ui_file *stream)
664 {
665 long size;
666 char *msg = ui_file_xstrdup (stream, &size);
667 make_cleanup (xfree, msg);
668 error ("%s", msg);
669 }
670
671 /* Get the last error message issued by gdb */
672
673 char *
674 error_last_message (void)
675 {
676 long len;
677 return ui_file_xstrdup (gdb_lasterr, &len);
678 }
679
680 /* This is to be called by main() at the very beginning */
681
682 void
683 error_init (void)
684 {
685 gdb_lasterr = mem_fileopen ();
686 }
687
688 /* Print a message reporting an internal error. Ask the user if they
689 want to continue, dump core, or just exit. */
690
691 NORETURN void
692 internal_verror (const char *file, int line,
693 const char *fmt, va_list ap)
694 {
695 static char msg[] = "Internal GDB error: recursive internal error.\n";
696 static int dejavu = 0;
697 int continue_p;
698 int dump_core_p;
699
700 /* don't allow infinite error recursion. */
701 switch (dejavu)
702 {
703 case 0:
704 dejavu = 1;
705 break;
706 case 1:
707 dejavu = 2;
708 fputs_unfiltered (msg, gdb_stderr);
709 abort (); /* NOTE: GDB has only three calls to abort(). */
710 default:
711 dejavu = 3;
712 write (STDERR_FILENO, msg, sizeof (msg));
713 exit (1);
714 }
715
716 /* Try to get the message out */
717 target_terminal_ours ();
718 fprintf_unfiltered (gdb_stderr, "%s:%d: gdb-internal-error: ", file, line);
719 vfprintf_unfiltered (gdb_stderr, fmt, ap);
720 fputs_unfiltered ("\n", gdb_stderr);
721
722 /* Default (no case) is to quit GDB. When in batch mode this
723 lessens the likelhood of GDB going into an infinate loop. */
724 continue_p = query ("\
725 An internal GDB error was detected. This may make further\n\
726 debugging unreliable. Continue this debugging session? ");
727
728 /* Default (no case) is to not dump core. Lessen the chance of GDB
729 leaving random core files around. */
730 dump_core_p = query ("\
731 Create a core file containing the current state of GDB? ");
732
733 if (continue_p)
734 {
735 if (dump_core_p)
736 {
737 if (fork () == 0)
738 abort (); /* NOTE: GDB has only three calls to abort(). */
739 }
740 }
741 else
742 {
743 if (dump_core_p)
744 abort (); /* NOTE: GDB has only three calls to abort(). */
745 else
746 exit (1);
747 }
748
749 dejavu = 0;
750 return_to_top_level (RETURN_ERROR);
751 }
752
753 NORETURN void
754 internal_error (const char *file, int line, const char *string, ...)
755 {
756 va_list ap;
757 va_start (ap, string);
758
759 internal_verror (file, line, string, ap);
760 va_end (ap);
761 }
762
763 /* The strerror() function can return NULL for errno values that are
764 out of range. Provide a "safe" version that always returns a
765 printable string. */
766
767 char *
768 safe_strerror (int errnum)
769 {
770 char *msg;
771 static char buf[32];
772
773 if ((msg = strerror (errnum)) == NULL)
774 {
775 sprintf (buf, "(undocumented errno %d)", errnum);
776 msg = buf;
777 }
778 return (msg);
779 }
780
781 /* Print the system error message for errno, and also mention STRING
782 as the file name for which the error was encountered.
783 Then return to command level. */
784
785 NORETURN void
786 perror_with_name (char *string)
787 {
788 char *err;
789 char *combined;
790
791 err = safe_strerror (errno);
792 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
793 strcpy (combined, string);
794 strcat (combined, ": ");
795 strcat (combined, err);
796
797 /* I understand setting these is a matter of taste. Still, some people
798 may clear errno but not know about bfd_error. Doing this here is not
799 unreasonable. */
800 bfd_set_error (bfd_error_no_error);
801 errno = 0;
802
803 error ("%s.", combined);
804 }
805
806 /* Print the system error message for ERRCODE, and also mention STRING
807 as the file name for which the error was encountered. */
808
809 void
810 print_sys_errmsg (char *string, int errcode)
811 {
812 char *err;
813 char *combined;
814
815 err = safe_strerror (errcode);
816 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
817 strcpy (combined, string);
818 strcat (combined, ": ");
819 strcat (combined, err);
820
821 /* We want anything which was printed on stdout to come out first, before
822 this message. */
823 gdb_flush (gdb_stdout);
824 fprintf_unfiltered (gdb_stderr, "%s.\n", combined);
825 }
826
827 /* Control C eventually causes this to be called, at a convenient time. */
828
829 void
830 quit (void)
831 {
832 struct serial *gdb_stdout_serial = serial_fdopen (1);
833
834 target_terminal_ours ();
835
836 /* We want all output to appear now, before we print "Quit". We
837 have 3 levels of buffering we have to flush (it's possible that
838 some of these should be changed to flush the lower-level ones
839 too): */
840
841 /* 1. The _filtered buffer. */
842 wrap_here ((char *) 0);
843
844 /* 2. The stdio buffer. */
845 gdb_flush (gdb_stdout);
846 gdb_flush (gdb_stderr);
847
848 /* 3. The system-level buffer. */
849 serial_drain_output (gdb_stdout_serial);
850 serial_un_fdopen (gdb_stdout_serial);
851
852 annotate_error_begin ();
853
854 /* Don't use *_filtered; we don't want to prompt the user to continue. */
855 if (quit_pre_print)
856 fprintf_unfiltered (gdb_stderr, quit_pre_print);
857
858 #ifdef __MSDOS__
859 /* No steenking SIGINT will ever be coming our way when the
860 program is resumed. Don't lie. */
861 fprintf_unfiltered (gdb_stderr, "Quit\n");
862 #else
863 if (job_control
864 /* If there is no terminal switching for this target, then we can't
865 possibly get screwed by the lack of job control. */
866 || current_target.to_terminal_ours == NULL)
867 fprintf_unfiltered (gdb_stderr, "Quit\n");
868 else
869 fprintf_unfiltered (gdb_stderr,
870 "Quit (expect signal SIGINT when the program is resumed)\n");
871 #endif
872 return_to_top_level (RETURN_QUIT);
873 }
874
875 /* Control C comes here */
876 void
877 request_quit (int signo)
878 {
879 quit_flag = 1;
880 /* Restore the signal handler. Harmless with BSD-style signals, needed
881 for System V-style signals. So just always do it, rather than worrying
882 about USG defines and stuff like that. */
883 signal (signo, request_quit);
884
885 #ifdef REQUEST_QUIT
886 REQUEST_QUIT;
887 #else
888 if (immediate_quit)
889 quit ();
890 #endif
891 }
892 \f
893 /* Memory management stuff (malloc friends). */
894
895 #if !defined (USE_MMALLOC)
896
897 /* NOTE: These must use PTR so that their definition matches the
898 declaration found in "mmalloc.h". */
899
900 static void *
901 mmalloc (void *md, size_t size)
902 {
903 return malloc (size); /* NOTE: GDB's only call to malloc() */
904 }
905
906 static void *
907 mrealloc (void *md, void *ptr, size_t size)
908 {
909 if (ptr == 0) /* Guard against old realloc's */
910 return mmalloc (md, size);
911 else
912 return realloc (ptr, size); /* NOTE: GDB's only call to ralloc() */
913 }
914
915 static void *
916 mcalloc (void *md, size_t number, size_t size)
917 {
918 return calloc (number, size); /* NOTE: GDB's only call to calloc() */
919 }
920
921 static void
922 mfree (void *md, void *ptr)
923 {
924 free (ptr); /* NOTE: GDB's only call to free() */
925 }
926
927 #endif /* USE_MMALLOC */
928
929 #if !defined (USE_MMALLOC) || defined (NO_MMCHECK)
930
931 void
932 init_malloc (void *md)
933 {
934 }
935
936 #else /* Have mmalloc and want corruption checking */
937
938 static void
939 malloc_botch (void)
940 {
941 fprintf_unfiltered (gdb_stderr, "Memory corruption\n");
942 internal_error (__FILE__, __LINE__, "failed internal consistency check");
943 }
944
945 /* Attempt to install hooks in mmalloc/mrealloc/mfree for the heap specified
946 by MD, to detect memory corruption. Note that MD may be NULL to specify
947 the default heap that grows via sbrk.
948
949 Note that for freshly created regions, we must call mmcheckf prior to any
950 mallocs in the region. Otherwise, any region which was allocated prior to
951 installing the checking hooks, which is later reallocated or freed, will
952 fail the checks! The mmcheck function only allows initial hooks to be
953 installed before the first mmalloc. However, anytime after we have called
954 mmcheck the first time to install the checking hooks, we can call it again
955 to update the function pointer to the memory corruption handler.
956
957 Returns zero on failure, non-zero on success. */
958
959 #ifndef MMCHECK_FORCE
960 #define MMCHECK_FORCE 0
961 #endif
962
963 void
964 init_malloc (void *md)
965 {
966 if (!mmcheckf (md, malloc_botch, MMCHECK_FORCE))
967 {
968 /* Don't use warning(), which relies on current_target being set
969 to something other than dummy_target, until after
970 initialize_all_files(). */
971
972 fprintf_unfiltered
973 (gdb_stderr, "warning: failed to install memory consistency checks; ");
974 fprintf_unfiltered
975 (gdb_stderr, "configuration should define NO_MMCHECK or MMCHECK_FORCE\n");
976 }
977
978 mmtrace ();
979 }
980
981 #endif /* Have mmalloc and want corruption checking */
982
983 /* Called when a memory allocation fails, with the number of bytes of
984 memory requested in SIZE. */
985
986 NORETURN void
987 nomem (long size)
988 {
989 if (size > 0)
990 {
991 internal_error (__FILE__, __LINE__,
992 "virtual memory exhausted: can't allocate %ld bytes.", size);
993 }
994 else
995 {
996 internal_error (__FILE__, __LINE__,
997 "virtual memory exhausted.");
998 }
999 }
1000
1001 /* The xmmalloc() family of memory management routines.
1002
1003 These are are like the mmalloc() family except that they implement
1004 consistent semantics and guard against typical memory management
1005 problems: if a malloc fails, an internal error is thrown; if
1006 free(NULL) is called, it is ignored; if *alloc(0) is called, NULL
1007 is returned.
1008
1009 All these routines are implemented using the mmalloc() family. */
1010
1011 void *
1012 xmmalloc (void *md, size_t size)
1013 {
1014 void *val;
1015
1016 if (size == 0)
1017 {
1018 val = NULL;
1019 }
1020 else
1021 {
1022 val = mmalloc (md, size);
1023 if (val == NULL)
1024 nomem (size);
1025 }
1026 return (val);
1027 }
1028
1029 void *
1030 xmrealloc (void *md, void *ptr, size_t size)
1031 {
1032 void *val;
1033
1034 if (size == 0)
1035 {
1036 if (ptr != NULL)
1037 mfree (md, ptr);
1038 val = NULL;
1039 }
1040 else
1041 {
1042 if (ptr != NULL)
1043 {
1044 val = mrealloc (md, ptr, size);
1045 }
1046 else
1047 {
1048 val = mmalloc (md, size);
1049 }
1050 if (val == NULL)
1051 {
1052 nomem (size);
1053 }
1054 }
1055 return (val);
1056 }
1057
1058 void *
1059 xmcalloc (void *md, size_t number, size_t size)
1060 {
1061 void *mem;
1062 if (number == 0 || size == 0)
1063 mem = NULL;
1064 else
1065 {
1066 mem = mcalloc (md, number, size);
1067 if (mem == NULL)
1068 nomem (number * size);
1069 }
1070 return mem;
1071 }
1072
1073 void
1074 xmfree (void *md, void *ptr)
1075 {
1076 if (ptr != NULL)
1077 mfree (md, ptr);
1078 }
1079
1080 /* The xmalloc() (libiberty.h) family of memory management routines.
1081
1082 These are like the ISO-C malloc() family except that they implement
1083 consistent semantics and guard against typical memory management
1084 problems. See xmmalloc() above for further information.
1085
1086 All these routines are wrappers to the xmmalloc() family. */
1087
1088 /* NOTE: These are declared using PTR to ensure consistency with
1089 "libiberty.h". xfree() is GDB local. */
1090
1091 PTR
1092 xmalloc (size_t size)
1093 {
1094 return xmmalloc (NULL, size);
1095 }
1096
1097 PTR
1098 xrealloc (PTR ptr, size_t size)
1099 {
1100 return xmrealloc (NULL, ptr, size);
1101 }
1102
1103 PTR
1104 xcalloc (size_t number, size_t size)
1105 {
1106 return xmcalloc (NULL, number, size);
1107 }
1108
1109 void
1110 xfree (void *ptr)
1111 {
1112 xmfree (NULL, ptr);
1113 }
1114 \f
1115
1116 /* Like asprintf/vasprintf but get an internal_error if the call
1117 fails. */
1118
1119 void
1120 xasprintf (char **ret, const char *format, ...)
1121 {
1122 va_list args;
1123 va_start (args, format);
1124 xvasprintf (ret, format, args);
1125 va_end (args);
1126 }
1127
1128 void
1129 xvasprintf (char **ret, const char *format, va_list ap)
1130 {
1131 int status = vasprintf (ret, format, ap);
1132 /* NULL could be returned due to a memory allocation problem; a
1133 badly format string; or something else. */
1134 if ((*ret) == NULL)
1135 internal_error (__FILE__, __LINE__,
1136 "vasprintf returned NULL buffer (errno %d)",
1137 errno);
1138 /* A negative status with a non-NULL buffer shouldn't never
1139 happen. But to be sure. */
1140 if (status < 0)
1141 internal_error (__FILE__, __LINE__,
1142 "vasprintf call failed (errno %d)",
1143 errno);
1144 }
1145
1146
1147 /* My replacement for the read system call.
1148 Used like `read' but keeps going if `read' returns too soon. */
1149
1150 int
1151 myread (int desc, char *addr, int len)
1152 {
1153 register int val;
1154 int orglen = len;
1155
1156 while (len > 0)
1157 {
1158 val = read (desc, addr, len);
1159 if (val < 0)
1160 return val;
1161 if (val == 0)
1162 return orglen - len;
1163 len -= val;
1164 addr += val;
1165 }
1166 return orglen;
1167 }
1168 \f
1169 /* Make a copy of the string at PTR with SIZE characters
1170 (and add a null character at the end in the copy).
1171 Uses malloc to get the space. Returns the address of the copy. */
1172
1173 char *
1174 savestring (const char *ptr, size_t size)
1175 {
1176 register char *p = (char *) xmalloc (size + 1);
1177 memcpy (p, ptr, size);
1178 p[size] = 0;
1179 return p;
1180 }
1181
1182 char *
1183 msavestring (void *md, const char *ptr, size_t size)
1184 {
1185 register char *p = (char *) xmmalloc (md, size + 1);
1186 memcpy (p, ptr, size);
1187 p[size] = 0;
1188 return p;
1189 }
1190
1191 char *
1192 mstrsave (void *md, const char *ptr)
1193 {
1194 return (msavestring (md, ptr, strlen (ptr)));
1195 }
1196
1197 void
1198 print_spaces (register int n, register struct ui_file *file)
1199 {
1200 fputs_unfiltered (n_spaces (n), file);
1201 }
1202
1203 /* Print a host address. */
1204
1205 void
1206 gdb_print_host_address (void *addr, struct ui_file *stream)
1207 {
1208
1209 /* We could use the %p conversion specifier to fprintf if we had any
1210 way of knowing whether this host supports it. But the following
1211 should work on the Alpha and on 32 bit machines. */
1212
1213 fprintf_filtered (stream, "0x%lx", (unsigned long) addr);
1214 }
1215
1216 /* Ask user a y-or-n question and return 1 iff answer is yes.
1217 Takes three args which are given to printf to print the question.
1218 The first, a control string, should end in "? ".
1219 It should not say how to answer, because we do that. */
1220
1221 /* VARARGS */
1222 int
1223 query (char *ctlstr,...)
1224 {
1225 va_list args;
1226 register int answer;
1227 register int ans2;
1228 int retval;
1229
1230 va_start (args, ctlstr);
1231
1232 if (query_hook)
1233 {
1234 return query_hook (ctlstr, args);
1235 }
1236
1237 /* Automatically answer "yes" if input is not from a terminal. */
1238 if (!input_from_terminal_p ())
1239 return 1;
1240 /* OBSOLETE #ifdef MPW */
1241 /* OBSOLETE *//* FIXME Automatically answer "yes" if called from MacGDB. */
1242 /* OBSOLETE if (mac_app) */
1243 /* OBSOLETE return 1; */
1244 /* OBSOLETE #endif *//* MPW */
1245
1246 while (1)
1247 {
1248 wrap_here (""); /* Flush any buffered output */
1249 gdb_flush (gdb_stdout);
1250
1251 if (annotation_level > 1)
1252 printf_filtered ("\n\032\032pre-query\n");
1253
1254 vfprintf_filtered (gdb_stdout, ctlstr, args);
1255 printf_filtered ("(y or n) ");
1256
1257 if (annotation_level > 1)
1258 printf_filtered ("\n\032\032query\n");
1259
1260 /* OBSOLETE #ifdef MPW */
1261 /* OBSOLETE *//* If not in MacGDB, move to a new line so the entered line doesn't */
1262 /* OBSOLETE have a prompt on the front of it. */
1263 /* OBSOLETE if (!mac_app) */
1264 /* OBSOLETE fputs_unfiltered ("\n", gdb_stdout); */
1265 /* OBSOLETE #endif *//* MPW */
1266
1267 wrap_here ("");
1268 gdb_flush (gdb_stdout);
1269
1270 answer = fgetc (stdin);
1271 clearerr (stdin); /* in case of C-d */
1272 if (answer == EOF) /* C-d */
1273 {
1274 retval = 1;
1275 break;
1276 }
1277 /* Eat rest of input line, to EOF or newline */
1278 if (answer != '\n')
1279 do
1280 {
1281 ans2 = fgetc (stdin);
1282 clearerr (stdin);
1283 }
1284 while (ans2 != EOF && ans2 != '\n' && ans2 != '\r');
1285
1286 if (answer >= 'a')
1287 answer -= 040;
1288 if (answer == 'Y')
1289 {
1290 retval = 1;
1291 break;
1292 }
1293 if (answer == 'N')
1294 {
1295 retval = 0;
1296 break;
1297 }
1298 printf_filtered ("Please answer y or n.\n");
1299 }
1300
1301 if (annotation_level > 1)
1302 printf_filtered ("\n\032\032post-query\n");
1303 return retval;
1304 }
1305 \f
1306
1307 /* Parse a C escape sequence. STRING_PTR points to a variable
1308 containing a pointer to the string to parse. That pointer
1309 should point to the character after the \. That pointer
1310 is updated past the characters we use. The value of the
1311 escape sequence is returned.
1312
1313 A negative value means the sequence \ newline was seen,
1314 which is supposed to be equivalent to nothing at all.
1315
1316 If \ is followed by a null character, we return a negative
1317 value and leave the string pointer pointing at the null character.
1318
1319 If \ is followed by 000, we return 0 and leave the string pointer
1320 after the zeros. A value of 0 does not mean end of string. */
1321
1322 int
1323 parse_escape (char **string_ptr)
1324 {
1325 register int c = *(*string_ptr)++;
1326 switch (c)
1327 {
1328 case 'a':
1329 return 007; /* Bell (alert) char */
1330 case 'b':
1331 return '\b';
1332 case 'e': /* Escape character */
1333 return 033;
1334 case 'f':
1335 return '\f';
1336 case 'n':
1337 return '\n';
1338 case 'r':
1339 return '\r';
1340 case 't':
1341 return '\t';
1342 case 'v':
1343 return '\v';
1344 case '\n':
1345 return -2;
1346 case 0:
1347 (*string_ptr)--;
1348 return 0;
1349 case '^':
1350 c = *(*string_ptr)++;
1351 if (c == '\\')
1352 c = parse_escape (string_ptr);
1353 if (c == '?')
1354 return 0177;
1355 return (c & 0200) | (c & 037);
1356
1357 case '0':
1358 case '1':
1359 case '2':
1360 case '3':
1361 case '4':
1362 case '5':
1363 case '6':
1364 case '7':
1365 {
1366 register int i = c - '0';
1367 register int count = 0;
1368 while (++count < 3)
1369 {
1370 if ((c = *(*string_ptr)++) >= '0' && c <= '7')
1371 {
1372 i *= 8;
1373 i += c - '0';
1374 }
1375 else
1376 {
1377 (*string_ptr)--;
1378 break;
1379 }
1380 }
1381 return i;
1382 }
1383 default:
1384 return c;
1385 }
1386 }
1387 \f
1388 /* Print the character C on STREAM as part of the contents of a literal
1389 string whose delimiter is QUOTER. Note that this routine should only
1390 be call for printing things which are independent of the language
1391 of the program being debugged. */
1392
1393 static void
1394 printchar (int c, void (*do_fputs) (const char *, struct ui_file *),
1395 void (*do_fprintf) (struct ui_file *, const char *, ...),
1396 struct ui_file *stream, int quoter)
1397 {
1398
1399 c &= 0xFF; /* Avoid sign bit follies */
1400
1401 if (c < 0x20 || /* Low control chars */
1402 (c >= 0x7F && c < 0xA0) || /* DEL, High controls */
1403 (sevenbit_strings && c >= 0x80))
1404 { /* high order bit set */
1405 switch (c)
1406 {
1407 case '\n':
1408 do_fputs ("\\n", stream);
1409 break;
1410 case '\b':
1411 do_fputs ("\\b", stream);
1412 break;
1413 case '\t':
1414 do_fputs ("\\t", stream);
1415 break;
1416 case '\f':
1417 do_fputs ("\\f", stream);
1418 break;
1419 case '\r':
1420 do_fputs ("\\r", stream);
1421 break;
1422 case '\033':
1423 do_fputs ("\\e", stream);
1424 break;
1425 case '\007':
1426 do_fputs ("\\a", stream);
1427 break;
1428 default:
1429 do_fprintf (stream, "\\%.3o", (unsigned int) c);
1430 break;
1431 }
1432 }
1433 else
1434 {
1435 if (c == '\\' || c == quoter)
1436 do_fputs ("\\", stream);
1437 do_fprintf (stream, "%c", c);
1438 }
1439 }
1440
1441 /* Print the character C on STREAM as part of the contents of a
1442 literal string whose delimiter is QUOTER. Note that these routines
1443 should only be call for printing things which are independent of
1444 the language of the program being debugged. */
1445
1446 void
1447 fputstr_filtered (const char *str, int quoter, struct ui_file *stream)
1448 {
1449 while (*str)
1450 printchar (*str++, fputs_filtered, fprintf_filtered, stream, quoter);
1451 }
1452
1453 void
1454 fputstr_unfiltered (const char *str, int quoter, struct ui_file *stream)
1455 {
1456 while (*str)
1457 printchar (*str++, fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1458 }
1459
1460 void
1461 fputstrn_unfiltered (const char *str, int n, int quoter, struct ui_file *stream)
1462 {
1463 int i;
1464 for (i = 0; i < n; i++)
1465 printchar (str[i], fputs_unfiltered, fprintf_unfiltered, stream, quoter);
1466 }
1467
1468 \f
1469
1470 /* Number of lines per page or UINT_MAX if paging is disabled. */
1471 static unsigned int lines_per_page;
1472 /* Number of chars per line or UINT_MAX if line folding is disabled. */
1473 static unsigned int chars_per_line;
1474 /* Current count of lines printed on this page, chars on this line. */
1475 static unsigned int lines_printed, chars_printed;
1476
1477 /* Buffer and start column of buffered text, for doing smarter word-
1478 wrapping. When someone calls wrap_here(), we start buffering output
1479 that comes through fputs_filtered(). If we see a newline, we just
1480 spit it out and forget about the wrap_here(). If we see another
1481 wrap_here(), we spit it out and remember the newer one. If we see
1482 the end of the line, we spit out a newline, the indent, and then
1483 the buffered output. */
1484
1485 /* Malloc'd buffer with chars_per_line+2 bytes. Contains characters which
1486 are waiting to be output (they have already been counted in chars_printed).
1487 When wrap_buffer[0] is null, the buffer is empty. */
1488 static char *wrap_buffer;
1489
1490 /* Pointer in wrap_buffer to the next character to fill. */
1491 static char *wrap_pointer;
1492
1493 /* String to indent by if the wrap occurs. Must not be NULL if wrap_column
1494 is non-zero. */
1495 static char *wrap_indent;
1496
1497 /* Column number on the screen where wrap_buffer begins, or 0 if wrapping
1498 is not in effect. */
1499 static int wrap_column;
1500 \f
1501
1502 /* Inialize the lines and chars per page */
1503 void
1504 init_page_info (void)
1505 {
1506 #if defined(TUI)
1507 if (!tui_get_command_dimension (&chars_per_line, &lines_per_page))
1508 #endif
1509 {
1510 /* These defaults will be used if we are unable to get the correct
1511 values from termcap. */
1512 #if defined(__GO32__)
1513 lines_per_page = ScreenRows ();
1514 chars_per_line = ScreenCols ();
1515 #else
1516 lines_per_page = 24;
1517 chars_per_line = 80;
1518
1519 #if !defined (_WIN32)
1520 /* No termcap under MPW, although might be cool to do something
1521 by looking at worksheet or console window sizes. */
1522 /* Initialize the screen height and width from termcap. */
1523 {
1524 char *termtype = getenv ("TERM");
1525
1526 /* Positive means success, nonpositive means failure. */
1527 int status;
1528
1529 /* 2048 is large enough for all known terminals, according to the
1530 GNU termcap manual. */
1531 char term_buffer[2048];
1532
1533 if (termtype)
1534 {
1535 status = tgetent (term_buffer, termtype);
1536 if (status > 0)
1537 {
1538 int val;
1539 int running_in_emacs = getenv ("EMACS") != NULL;
1540
1541 val = tgetnum ("li");
1542 if (val >= 0 && !running_in_emacs)
1543 lines_per_page = val;
1544 else
1545 /* The number of lines per page is not mentioned
1546 in the terminal description. This probably means
1547 that paging is not useful (e.g. emacs shell window),
1548 so disable paging. */
1549 lines_per_page = UINT_MAX;
1550
1551 val = tgetnum ("co");
1552 if (val >= 0)
1553 chars_per_line = val;
1554 }
1555 }
1556 }
1557 #endif /* MPW */
1558
1559 #if defined(SIGWINCH) && defined(SIGWINCH_HANDLER)
1560
1561 /* If there is a better way to determine the window size, use it. */
1562 SIGWINCH_HANDLER (SIGWINCH);
1563 #endif
1564 #endif
1565 /* If the output is not a terminal, don't paginate it. */
1566 if (!ui_file_isatty (gdb_stdout))
1567 lines_per_page = UINT_MAX;
1568 } /* the command_line_version */
1569 set_width ();
1570 }
1571
1572 static void
1573 set_width (void)
1574 {
1575 if (chars_per_line == 0)
1576 init_page_info ();
1577
1578 if (!wrap_buffer)
1579 {
1580 wrap_buffer = (char *) xmalloc (chars_per_line + 2);
1581 wrap_buffer[0] = '\0';
1582 }
1583 else
1584 wrap_buffer = (char *) xrealloc (wrap_buffer, chars_per_line + 2);
1585 wrap_pointer = wrap_buffer; /* Start it at the beginning */
1586 }
1587
1588 /* ARGSUSED */
1589 static void
1590 set_width_command (char *args, int from_tty, struct cmd_list_element *c)
1591 {
1592 set_width ();
1593 }
1594
1595 /* Wait, so the user can read what's on the screen. Prompt the user
1596 to continue by pressing RETURN. */
1597
1598 static void
1599 prompt_for_continue (void)
1600 {
1601 char *ignore;
1602 char cont_prompt[120];
1603
1604 if (annotation_level > 1)
1605 printf_unfiltered ("\n\032\032pre-prompt-for-continue\n");
1606
1607 strcpy (cont_prompt,
1608 "---Type <return> to continue, or q <return> to quit---");
1609 if (annotation_level > 1)
1610 strcat (cont_prompt, "\n\032\032prompt-for-continue\n");
1611
1612 /* We must do this *before* we call gdb_readline, else it will eventually
1613 call us -- thinking that we're trying to print beyond the end of the
1614 screen. */
1615 reinitialize_more_filter ();
1616
1617 immediate_quit++;
1618 /* On a real operating system, the user can quit with SIGINT.
1619 But not on GO32.
1620
1621 'q' is provided on all systems so users don't have to change habits
1622 from system to system, and because telling them what to do in
1623 the prompt is more user-friendly than expecting them to think of
1624 SIGINT. */
1625 /* Call readline, not gdb_readline, because GO32 readline handles control-C
1626 whereas control-C to gdb_readline will cause the user to get dumped
1627 out to DOS. */
1628 ignore = readline (cont_prompt);
1629
1630 if (annotation_level > 1)
1631 printf_unfiltered ("\n\032\032post-prompt-for-continue\n");
1632
1633 if (ignore)
1634 {
1635 char *p = ignore;
1636 while (*p == ' ' || *p == '\t')
1637 ++p;
1638 if (p[0] == 'q')
1639 {
1640 if (!event_loop_p)
1641 request_quit (SIGINT);
1642 else
1643 async_request_quit (0);
1644 }
1645 xfree (ignore);
1646 }
1647 immediate_quit--;
1648
1649 /* Now we have to do this again, so that GDB will know that it doesn't
1650 need to save the ---Type <return>--- line at the top of the screen. */
1651 reinitialize_more_filter ();
1652
1653 dont_repeat (); /* Forget prev cmd -- CR won't repeat it. */
1654 }
1655
1656 /* Reinitialize filter; ie. tell it to reset to original values. */
1657
1658 void
1659 reinitialize_more_filter (void)
1660 {
1661 lines_printed = 0;
1662 chars_printed = 0;
1663 }
1664
1665 /* Indicate that if the next sequence of characters overflows the line,
1666 a newline should be inserted here rather than when it hits the end.
1667 If INDENT is non-null, it is a string to be printed to indent the
1668 wrapped part on the next line. INDENT must remain accessible until
1669 the next call to wrap_here() or until a newline is printed through
1670 fputs_filtered().
1671
1672 If the line is already overfull, we immediately print a newline and
1673 the indentation, and disable further wrapping.
1674
1675 If we don't know the width of lines, but we know the page height,
1676 we must not wrap words, but should still keep track of newlines
1677 that were explicitly printed.
1678
1679 INDENT should not contain tabs, as that will mess up the char count
1680 on the next line. FIXME.
1681
1682 This routine is guaranteed to force out any output which has been
1683 squirreled away in the wrap_buffer, so wrap_here ((char *)0) can be
1684 used to force out output from the wrap_buffer. */
1685
1686 void
1687 wrap_here (char *indent)
1688 {
1689 /* This should have been allocated, but be paranoid anyway. */
1690 if (!wrap_buffer)
1691 internal_error (__FILE__, __LINE__, "failed internal consistency check");
1692
1693 if (wrap_buffer[0])
1694 {
1695 *wrap_pointer = '\0';
1696 fputs_unfiltered (wrap_buffer, gdb_stdout);
1697 }
1698 wrap_pointer = wrap_buffer;
1699 wrap_buffer[0] = '\0';
1700 if (chars_per_line == UINT_MAX) /* No line overflow checking */
1701 {
1702 wrap_column = 0;
1703 }
1704 else if (chars_printed >= chars_per_line)
1705 {
1706 puts_filtered ("\n");
1707 if (indent != NULL)
1708 puts_filtered (indent);
1709 wrap_column = 0;
1710 }
1711 else
1712 {
1713 wrap_column = chars_printed;
1714 if (indent == NULL)
1715 wrap_indent = "";
1716 else
1717 wrap_indent = indent;
1718 }
1719 }
1720
1721 /* Ensure that whatever gets printed next, using the filtered output
1722 commands, starts at the beginning of the line. I.E. if there is
1723 any pending output for the current line, flush it and start a new
1724 line. Otherwise do nothing. */
1725
1726 void
1727 begin_line (void)
1728 {
1729 if (chars_printed > 0)
1730 {
1731 puts_filtered ("\n");
1732 }
1733 }
1734
1735
1736 /* Like fputs but if FILTER is true, pause after every screenful.
1737
1738 Regardless of FILTER can wrap at points other than the final
1739 character of a line.
1740
1741 Unlike fputs, fputs_maybe_filtered does not return a value.
1742 It is OK for LINEBUFFER to be NULL, in which case just don't print
1743 anything.
1744
1745 Note that a longjmp to top level may occur in this routine (only if
1746 FILTER is true) (since prompt_for_continue may do so) so this
1747 routine should not be called when cleanups are not in place. */
1748
1749 static void
1750 fputs_maybe_filtered (const char *linebuffer, struct ui_file *stream,
1751 int filter)
1752 {
1753 const char *lineptr;
1754
1755 if (linebuffer == 0)
1756 return;
1757
1758 /* Don't do any filtering if it is disabled. */
1759 if ((stream != gdb_stdout) || !pagination_enabled
1760 || (lines_per_page == UINT_MAX && chars_per_line == UINT_MAX))
1761 {
1762 fputs_unfiltered (linebuffer, stream);
1763 return;
1764 }
1765
1766 /* Go through and output each character. Show line extension
1767 when this is necessary; prompt user for new page when this is
1768 necessary. */
1769
1770 lineptr = linebuffer;
1771 while (*lineptr)
1772 {
1773 /* Possible new page. */
1774 if (filter &&
1775 (lines_printed >= lines_per_page - 1))
1776 prompt_for_continue ();
1777
1778 while (*lineptr && *lineptr != '\n')
1779 {
1780 /* Print a single line. */
1781 if (*lineptr == '\t')
1782 {
1783 if (wrap_column)
1784 *wrap_pointer++ = '\t';
1785 else
1786 fputc_unfiltered ('\t', stream);
1787 /* Shifting right by 3 produces the number of tab stops
1788 we have already passed, and then adding one and
1789 shifting left 3 advances to the next tab stop. */
1790 chars_printed = ((chars_printed >> 3) + 1) << 3;
1791 lineptr++;
1792 }
1793 else
1794 {
1795 if (wrap_column)
1796 *wrap_pointer++ = *lineptr;
1797 else
1798 fputc_unfiltered (*lineptr, stream);
1799 chars_printed++;
1800 lineptr++;
1801 }
1802
1803 if (chars_printed >= chars_per_line)
1804 {
1805 unsigned int save_chars = chars_printed;
1806
1807 chars_printed = 0;
1808 lines_printed++;
1809 /* If we aren't actually wrapping, don't output newline --
1810 if chars_per_line is right, we probably just overflowed
1811 anyway; if it's wrong, let us keep going. */
1812 if (wrap_column)
1813 fputc_unfiltered ('\n', stream);
1814
1815 /* Possible new page. */
1816 if (lines_printed >= lines_per_page - 1)
1817 prompt_for_continue ();
1818
1819 /* Now output indentation and wrapped string */
1820 if (wrap_column)
1821 {
1822 fputs_unfiltered (wrap_indent, stream);
1823 *wrap_pointer = '\0'; /* Null-terminate saved stuff */
1824 fputs_unfiltered (wrap_buffer, stream); /* and eject it */
1825 /* FIXME, this strlen is what prevents wrap_indent from
1826 containing tabs. However, if we recurse to print it
1827 and count its chars, we risk trouble if wrap_indent is
1828 longer than (the user settable) chars_per_line.
1829 Note also that this can set chars_printed > chars_per_line
1830 if we are printing a long string. */
1831 chars_printed = strlen (wrap_indent)
1832 + (save_chars - wrap_column);
1833 wrap_pointer = wrap_buffer; /* Reset buffer */
1834 wrap_buffer[0] = '\0';
1835 wrap_column = 0; /* And disable fancy wrap */
1836 }
1837 }
1838 }
1839
1840 if (*lineptr == '\n')
1841 {
1842 chars_printed = 0;
1843 wrap_here ((char *) 0); /* Spit out chars, cancel further wraps */
1844 lines_printed++;
1845 fputc_unfiltered ('\n', stream);
1846 lineptr++;
1847 }
1848 }
1849 }
1850
1851 void
1852 fputs_filtered (const char *linebuffer, struct ui_file *stream)
1853 {
1854 fputs_maybe_filtered (linebuffer, stream, 1);
1855 }
1856
1857 int
1858 putchar_unfiltered (int c)
1859 {
1860 char buf = c;
1861 ui_file_write (gdb_stdout, &buf, 1);
1862 return c;
1863 }
1864
1865 /* Write character C to gdb_stdout using GDB's paging mechanism and return C.
1866 May return nonlocally. */
1867
1868 int
1869 putchar_filtered (int c)
1870 {
1871 return fputc_filtered (c, gdb_stdout);
1872 }
1873
1874 int
1875 fputc_unfiltered (int c, struct ui_file *stream)
1876 {
1877 char buf = c;
1878 ui_file_write (stream, &buf, 1);
1879 return c;
1880 }
1881
1882 int
1883 fputc_filtered (int c, struct ui_file *stream)
1884 {
1885 char buf[2];
1886
1887 buf[0] = c;
1888 buf[1] = 0;
1889 fputs_filtered (buf, stream);
1890 return c;
1891 }
1892
1893 /* puts_debug is like fputs_unfiltered, except it prints special
1894 characters in printable fashion. */
1895
1896 void
1897 puts_debug (char *prefix, char *string, char *suffix)
1898 {
1899 int ch;
1900
1901 /* Print prefix and suffix after each line. */
1902 static int new_line = 1;
1903 static int return_p = 0;
1904 static char *prev_prefix = "";
1905 static char *prev_suffix = "";
1906
1907 if (*string == '\n')
1908 return_p = 0;
1909
1910 /* If the prefix is changing, print the previous suffix, a new line,
1911 and the new prefix. */
1912 if ((return_p || (strcmp (prev_prefix, prefix) != 0)) && !new_line)
1913 {
1914 fputs_unfiltered (prev_suffix, gdb_stdlog);
1915 fputs_unfiltered ("\n", gdb_stdlog);
1916 fputs_unfiltered (prefix, gdb_stdlog);
1917 }
1918
1919 /* Print prefix if we printed a newline during the previous call. */
1920 if (new_line)
1921 {
1922 new_line = 0;
1923 fputs_unfiltered (prefix, gdb_stdlog);
1924 }
1925
1926 prev_prefix = prefix;
1927 prev_suffix = suffix;
1928
1929 /* Output characters in a printable format. */
1930 while ((ch = *string++) != '\0')
1931 {
1932 switch (ch)
1933 {
1934 default:
1935 if (isprint (ch))
1936 fputc_unfiltered (ch, gdb_stdlog);
1937
1938 else
1939 fprintf_unfiltered (gdb_stdlog, "\\x%02x", ch & 0xff);
1940 break;
1941
1942 case '\\':
1943 fputs_unfiltered ("\\\\", gdb_stdlog);
1944 break;
1945 case '\b':
1946 fputs_unfiltered ("\\b", gdb_stdlog);
1947 break;
1948 case '\f':
1949 fputs_unfiltered ("\\f", gdb_stdlog);
1950 break;
1951 case '\n':
1952 new_line = 1;
1953 fputs_unfiltered ("\\n", gdb_stdlog);
1954 break;
1955 case '\r':
1956 fputs_unfiltered ("\\r", gdb_stdlog);
1957 break;
1958 case '\t':
1959 fputs_unfiltered ("\\t", gdb_stdlog);
1960 break;
1961 case '\v':
1962 fputs_unfiltered ("\\v", gdb_stdlog);
1963 break;
1964 }
1965
1966 return_p = ch == '\r';
1967 }
1968
1969 /* Print suffix if we printed a newline. */
1970 if (new_line)
1971 {
1972 fputs_unfiltered (suffix, gdb_stdlog);
1973 fputs_unfiltered ("\n", gdb_stdlog);
1974 }
1975 }
1976
1977
1978 /* Print a variable number of ARGS using format FORMAT. If this
1979 information is going to put the amount written (since the last call
1980 to REINITIALIZE_MORE_FILTER or the last page break) over the page size,
1981 call prompt_for_continue to get the users permision to continue.
1982
1983 Unlike fprintf, this function does not return a value.
1984
1985 We implement three variants, vfprintf (takes a vararg list and stream),
1986 fprintf (takes a stream to write on), and printf (the usual).
1987
1988 Note also that a longjmp to top level may occur in this routine
1989 (since prompt_for_continue may do so) so this routine should not be
1990 called when cleanups are not in place. */
1991
1992 static void
1993 vfprintf_maybe_filtered (struct ui_file *stream, const char *format,
1994 va_list args, int filter)
1995 {
1996 char *linebuffer;
1997 struct cleanup *old_cleanups;
1998
1999 xvasprintf (&linebuffer, format, args);
2000 old_cleanups = make_cleanup (xfree, linebuffer);
2001 fputs_maybe_filtered (linebuffer, stream, filter);
2002 do_cleanups (old_cleanups);
2003 }
2004
2005
2006 void
2007 vfprintf_filtered (struct ui_file *stream, const char *format, va_list args)
2008 {
2009 vfprintf_maybe_filtered (stream, format, args, 1);
2010 }
2011
2012 void
2013 vfprintf_unfiltered (struct ui_file *stream, const char *format, va_list args)
2014 {
2015 char *linebuffer;
2016 struct cleanup *old_cleanups;
2017
2018 xvasprintf (&linebuffer, format, args);
2019 old_cleanups = make_cleanup (xfree, linebuffer);
2020 fputs_unfiltered (linebuffer, stream);
2021 do_cleanups (old_cleanups);
2022 }
2023
2024 void
2025 vprintf_filtered (const char *format, va_list args)
2026 {
2027 vfprintf_maybe_filtered (gdb_stdout, format, args, 1);
2028 }
2029
2030 void
2031 vprintf_unfiltered (const char *format, va_list args)
2032 {
2033 vfprintf_unfiltered (gdb_stdout, format, args);
2034 }
2035
2036 void
2037 fprintf_filtered (struct ui_file * stream, const char *format,...)
2038 {
2039 va_list args;
2040 va_start (args, format);
2041 vfprintf_filtered (stream, format, args);
2042 va_end (args);
2043 }
2044
2045 void
2046 fprintf_unfiltered (struct ui_file * stream, const char *format,...)
2047 {
2048 va_list args;
2049 va_start (args, format);
2050 vfprintf_unfiltered (stream, format, args);
2051 va_end (args);
2052 }
2053
2054 /* Like fprintf_filtered, but prints its result indented.
2055 Called as fprintfi_filtered (spaces, stream, format, ...); */
2056
2057 void
2058 fprintfi_filtered (int spaces, struct ui_file * stream, const char *format,...)
2059 {
2060 va_list args;
2061 va_start (args, format);
2062 print_spaces_filtered (spaces, stream);
2063
2064 vfprintf_filtered (stream, format, args);
2065 va_end (args);
2066 }
2067
2068
2069 void
2070 printf_filtered (const char *format,...)
2071 {
2072 va_list args;
2073 va_start (args, format);
2074 vfprintf_filtered (gdb_stdout, format, args);
2075 va_end (args);
2076 }
2077
2078
2079 void
2080 printf_unfiltered (const char *format,...)
2081 {
2082 va_list args;
2083 va_start (args, format);
2084 vfprintf_unfiltered (gdb_stdout, format, args);
2085 va_end (args);
2086 }
2087
2088 /* Like printf_filtered, but prints it's result indented.
2089 Called as printfi_filtered (spaces, format, ...); */
2090
2091 void
2092 printfi_filtered (int spaces, const char *format,...)
2093 {
2094 va_list args;
2095 va_start (args, format);
2096 print_spaces_filtered (spaces, gdb_stdout);
2097 vfprintf_filtered (gdb_stdout, format, args);
2098 va_end (args);
2099 }
2100
2101 /* Easy -- but watch out!
2102
2103 This routine is *not* a replacement for puts()! puts() appends a newline.
2104 This one doesn't, and had better not! */
2105
2106 void
2107 puts_filtered (const char *string)
2108 {
2109 fputs_filtered (string, gdb_stdout);
2110 }
2111
2112 void
2113 puts_unfiltered (const char *string)
2114 {
2115 fputs_unfiltered (string, gdb_stdout);
2116 }
2117
2118 /* Return a pointer to N spaces and a null. The pointer is good
2119 until the next call to here. */
2120 char *
2121 n_spaces (int n)
2122 {
2123 char *t;
2124 static char *spaces = 0;
2125 static int max_spaces = -1;
2126
2127 if (n > max_spaces)
2128 {
2129 if (spaces)
2130 xfree (spaces);
2131 spaces = (char *) xmalloc (n + 1);
2132 for (t = spaces + n; t != spaces;)
2133 *--t = ' ';
2134 spaces[n] = '\0';
2135 max_spaces = n;
2136 }
2137
2138 return spaces + max_spaces - n;
2139 }
2140
2141 /* Print N spaces. */
2142 void
2143 print_spaces_filtered (int n, struct ui_file *stream)
2144 {
2145 fputs_filtered (n_spaces (n), stream);
2146 }
2147 \f
2148 /* C++ demangler stuff. */
2149
2150 /* fprintf_symbol_filtered attempts to demangle NAME, a symbol in language
2151 LANG, using demangling args ARG_MODE, and print it filtered to STREAM.
2152 If the name is not mangled, or the language for the name is unknown, or
2153 demangling is off, the name is printed in its "raw" form. */
2154
2155 void
2156 fprintf_symbol_filtered (struct ui_file *stream, char *name, enum language lang,
2157 int arg_mode)
2158 {
2159 char *demangled;
2160
2161 if (name != NULL)
2162 {
2163 /* If user wants to see raw output, no problem. */
2164 if (!demangle)
2165 {
2166 fputs_filtered (name, stream);
2167 }
2168 else
2169 {
2170 switch (lang)
2171 {
2172 case language_cplus:
2173 demangled = cplus_demangle (name, arg_mode);
2174 break;
2175 case language_java:
2176 demangled = cplus_demangle (name, arg_mode | DMGL_JAVA);
2177 break;
2178 case language_chill:
2179 demangled = chill_demangle (name);
2180 break;
2181 default:
2182 demangled = NULL;
2183 break;
2184 }
2185 fputs_filtered (demangled ? demangled : name, stream);
2186 if (demangled != NULL)
2187 {
2188 xfree (demangled);
2189 }
2190 }
2191 }
2192 }
2193
2194 /* Do a strcmp() type operation on STRING1 and STRING2, ignoring any
2195 differences in whitespace. Returns 0 if they match, non-zero if they
2196 don't (slightly different than strcmp()'s range of return values).
2197
2198 As an extra hack, string1=="FOO(ARGS)" matches string2=="FOO".
2199 This "feature" is useful when searching for matching C++ function names
2200 (such as if the user types 'break FOO', where FOO is a mangled C++
2201 function). */
2202
2203 int
2204 strcmp_iw (const char *string1, const char *string2)
2205 {
2206 while ((*string1 != '\0') && (*string2 != '\0'))
2207 {
2208 while (isspace (*string1))
2209 {
2210 string1++;
2211 }
2212 while (isspace (*string2))
2213 {
2214 string2++;
2215 }
2216 if (*string1 != *string2)
2217 {
2218 break;
2219 }
2220 if (*string1 != '\0')
2221 {
2222 string1++;
2223 string2++;
2224 }
2225 }
2226 return (*string1 != '\0' && *string1 != '(') || (*string2 != '\0');
2227 }
2228 \f
2229
2230 /*
2231 ** subset_compare()
2232 ** Answer whether string_to_compare is a full or partial match to
2233 ** template_string. The partial match must be in sequence starting
2234 ** at index 0.
2235 */
2236 int
2237 subset_compare (char *string_to_compare, char *template_string)
2238 {
2239 int match;
2240 if (template_string != (char *) NULL && string_to_compare != (char *) NULL &&
2241 strlen (string_to_compare) <= strlen (template_string))
2242 match = (strncmp (template_string,
2243 string_to_compare,
2244 strlen (string_to_compare)) == 0);
2245 else
2246 match = 0;
2247 return match;
2248 }
2249
2250
2251 static void pagination_on_command (char *arg, int from_tty);
2252 static void
2253 pagination_on_command (char *arg, int from_tty)
2254 {
2255 pagination_enabled = 1;
2256 }
2257
2258 static void pagination_on_command (char *arg, int from_tty);
2259 static void
2260 pagination_off_command (char *arg, int from_tty)
2261 {
2262 pagination_enabled = 0;
2263 }
2264 \f
2265
2266 void
2267 initialize_utils (void)
2268 {
2269 struct cmd_list_element *c;
2270
2271 c = add_set_cmd ("width", class_support, var_uinteger,
2272 (char *) &chars_per_line,
2273 "Set number of characters gdb thinks are in a line.",
2274 &setlist);
2275 add_show_from_set (c, &showlist);
2276 c->function.sfunc = set_width_command;
2277
2278 add_show_from_set
2279 (add_set_cmd ("height", class_support,
2280 var_uinteger, (char *) &lines_per_page,
2281 "Set number of lines gdb thinks are in a page.", &setlist),
2282 &showlist);
2283
2284 init_page_info ();
2285
2286 /* If the output is not a terminal, don't paginate it. */
2287 if (!ui_file_isatty (gdb_stdout))
2288 lines_per_page = UINT_MAX;
2289
2290 set_width_command ((char *) NULL, 0, c);
2291
2292 add_show_from_set
2293 (add_set_cmd ("demangle", class_support, var_boolean,
2294 (char *) &demangle,
2295 "Set demangling of encoded C++ names when displaying symbols.",
2296 &setprintlist),
2297 &showprintlist);
2298
2299 add_show_from_set
2300 (add_set_cmd ("pagination", class_support,
2301 var_boolean, (char *) &pagination_enabled,
2302 "Set state of pagination.", &setlist),
2303 &showlist);
2304
2305 if (xdb_commands)
2306 {
2307 add_com ("am", class_support, pagination_on_command,
2308 "Enable pagination");
2309 add_com ("sm", class_support, pagination_off_command,
2310 "Disable pagination");
2311 }
2312
2313 add_show_from_set
2314 (add_set_cmd ("sevenbit-strings", class_support, var_boolean,
2315 (char *) &sevenbit_strings,
2316 "Set printing of 8-bit characters in strings as \\nnn.",
2317 &setprintlist),
2318 &showprintlist);
2319
2320 add_show_from_set
2321 (add_set_cmd ("asm-demangle", class_support, var_boolean,
2322 (char *) &asm_demangle,
2323 "Set demangling of C++ names in disassembly listings.",
2324 &setprintlist),
2325 &showprintlist);
2326 }
2327
2328 /* Machine specific function to handle SIGWINCH signal. */
2329
2330 #ifdef SIGWINCH_HANDLER_BODY
2331 SIGWINCH_HANDLER_BODY
2332 #endif
2333
2334 /* print routines to handle variable size regs, etc. */
2335
2336 /* temporary storage using circular buffer */
2337 #define NUMCELLS 16
2338 #define CELLSIZE 32
2339 static char *
2340 get_cell (void)
2341 {
2342 static char buf[NUMCELLS][CELLSIZE];
2343 static int cell = 0;
2344 if (++cell >= NUMCELLS)
2345 cell = 0;
2346 return buf[cell];
2347 }
2348
2349 int
2350 strlen_paddr (void)
2351 {
2352 return (TARGET_ADDR_BIT / 8 * 2);
2353 }
2354
2355 char *
2356 paddr (CORE_ADDR addr)
2357 {
2358 return phex (addr, TARGET_ADDR_BIT / 8);
2359 }
2360
2361 char *
2362 paddr_nz (CORE_ADDR addr)
2363 {
2364 return phex_nz (addr, TARGET_ADDR_BIT / 8);
2365 }
2366
2367 static void
2368 decimal2str (char *paddr_str, char *sign, ULONGEST addr)
2369 {
2370 /* steal code from valprint.c:print_decimal(). Should this worry
2371 about the real size of addr as the above does? */
2372 unsigned long temp[3];
2373 int i = 0;
2374 do
2375 {
2376 temp[i] = addr % (1000 * 1000 * 1000);
2377 addr /= (1000 * 1000 * 1000);
2378 i++;
2379 }
2380 while (addr != 0 && i < (sizeof (temp) / sizeof (temp[0])));
2381 switch (i)
2382 {
2383 case 1:
2384 sprintf (paddr_str, "%s%lu",
2385 sign, temp[0]);
2386 break;
2387 case 2:
2388 sprintf (paddr_str, "%s%lu%09lu",
2389 sign, temp[1], temp[0]);
2390 break;
2391 case 3:
2392 sprintf (paddr_str, "%s%lu%09lu%09lu",
2393 sign, temp[2], temp[1], temp[0]);
2394 break;
2395 default:
2396 internal_error (__FILE__, __LINE__, "failed internal consistency check");
2397 }
2398 }
2399
2400 char *
2401 paddr_u (CORE_ADDR addr)
2402 {
2403 char *paddr_str = get_cell ();
2404 decimal2str (paddr_str, "", addr);
2405 return paddr_str;
2406 }
2407
2408 char *
2409 paddr_d (LONGEST addr)
2410 {
2411 char *paddr_str = get_cell ();
2412 if (addr < 0)
2413 decimal2str (paddr_str, "-", -addr);
2414 else
2415 decimal2str (paddr_str, "", addr);
2416 return paddr_str;
2417 }
2418
2419 /* eliminate warning from compiler on 32-bit systems */
2420 static int thirty_two = 32;
2421
2422 char *
2423 phex (ULONGEST l, int sizeof_l)
2424 {
2425 char *str;
2426 switch (sizeof_l)
2427 {
2428 case 8:
2429 str = get_cell ();
2430 sprintf (str, "%08lx%08lx",
2431 (unsigned long) (l >> thirty_two),
2432 (unsigned long) (l & 0xffffffff));
2433 break;
2434 case 4:
2435 str = get_cell ();
2436 sprintf (str, "%08lx", (unsigned long) l);
2437 break;
2438 case 2:
2439 str = get_cell ();
2440 sprintf (str, "%04x", (unsigned short) (l & 0xffff));
2441 break;
2442 default:
2443 str = phex (l, sizeof (l));
2444 break;
2445 }
2446 return str;
2447 }
2448
2449 char *
2450 phex_nz (ULONGEST l, int sizeof_l)
2451 {
2452 char *str;
2453 switch (sizeof_l)
2454 {
2455 case 8:
2456 {
2457 unsigned long high = (unsigned long) (l >> thirty_two);
2458 str = get_cell ();
2459 if (high == 0)
2460 sprintf (str, "%lx", (unsigned long) (l & 0xffffffff));
2461 else
2462 sprintf (str, "%lx%08lx",
2463 high, (unsigned long) (l & 0xffffffff));
2464 break;
2465 }
2466 case 4:
2467 str = get_cell ();
2468 sprintf (str, "%lx", (unsigned long) l);
2469 break;
2470 case 2:
2471 str = get_cell ();
2472 sprintf (str, "%x", (unsigned short) (l & 0xffff));
2473 break;
2474 default:
2475 str = phex_nz (l, sizeof (l));
2476 break;
2477 }
2478 return str;
2479 }
2480
2481
2482 /* Convert to / from the hosts pointer to GDB's internal CORE_ADDR
2483 using the target's conversion routines. */
2484 CORE_ADDR
2485 host_pointer_to_address (void *ptr)
2486 {
2487 if (sizeof (ptr) != TYPE_LENGTH (builtin_type_void_data_ptr))
2488 internal_error (__FILE__, __LINE__,
2489 "core_addr_to_void_ptr: bad cast");
2490 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
2491 }
2492
2493 void *
2494 address_to_host_pointer (CORE_ADDR addr)
2495 {
2496 void *ptr;
2497 if (sizeof (ptr) != TYPE_LENGTH (builtin_type_void_data_ptr))
2498 internal_error (__FILE__, __LINE__,
2499 "core_addr_to_void_ptr: bad cast");
2500 ADDRESS_TO_POINTER (builtin_type_void_data_ptr, &ptr, addr);
2501 return ptr;
2502 }
2503
2504 /* Convert a CORE_ADDR into a string. */
2505 const char *
2506 core_addr_to_string (const CORE_ADDR addr)
2507 {
2508 char *str = get_cell ();
2509 strcpy (str, "0x");
2510 strcat (str, phex_nz (addr, sizeof (addr)));
2511 return str;
2512 }
2513
2514 /* Convert a string back into a CORE_ADDR. */
2515 CORE_ADDR
2516 string_to_core_addr (const char *my_string)
2517 {
2518 CORE_ADDR addr = 0;
2519 if (my_string[0] == '0' && tolower (my_string[1]) == 'x')
2520 {
2521 /* Assume that it is in decimal. */
2522 int i;
2523 for (i = 2; my_string[i] != '\0'; i++)
2524 {
2525 if (isdigit (my_string[i]))
2526 addr = (my_string[i] - '0') + (addr * 16);
2527 else if (isxdigit (my_string[i]))
2528 addr = (tolower (my_string[i]) - 'a' + 0xa) + (addr * 16);
2529 else
2530 internal_error (__FILE__, __LINE__, "invalid hex");
2531 }
2532 }
2533 else
2534 {
2535 /* Assume that it is in decimal. */
2536 int i;
2537 for (i = 0; my_string[i] != '\0'; i++)
2538 {
2539 if (isdigit (my_string[i]))
2540 addr = (my_string[i] - '0') + (addr * 10);
2541 else
2542 internal_error (__FILE__, __LINE__, "invalid decimal");
2543 }
2544 }
2545 return addr;
2546 }
2547
2548 char *
2549 gdb_realpath (const char *filename)
2550 {
2551 #ifdef HAVE_REALPATH
2552 char buf[PATH_MAX];
2553 char *rp = realpath (filename, buf);
2554 return xstrdup (rp ? rp : filename);
2555 #else
2556 return xstrdup (filename);
2557 #endif
2558 }