* config/i386/nm-linux.h: Enable prototypes that were #ifdef out.
[binutils-gdb.git] / gdb / utils.c
1 /* General utility routines for GDB, the GNU debugger.
2 Copyright 1986, 89, 90, 91, 92, 95, 1996 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 #include "defs.h"
21 #ifdef ANSI_PROTOTYPES
22 #include <stdarg.h>
23 #else
24 #include <varargs.h>
25 #endif
26 #include <ctype.h>
27 #include "gdb_string.h"
28 #ifdef HAVE_UNISTD_H
29 #include <unistd.h>
30 #endif
31
32 #include "signals.h"
33 #include "gdbcmd.h"
34 #include "serial.h"
35 #include "bfd.h"
36 #include "target.h"
37 #include "demangle.h"
38 #include "expression.h"
39 #include "language.h"
40 #include "annotate.h"
41
42 #include "readline.h"
43
44 /* readline defines this. */
45 #undef savestring
46
47 /* Prototypes for local functions */
48
49 static void vfprintf_maybe_filtered PARAMS ((FILE *, const char *, va_list, int));
50
51 static void fputs_maybe_filtered PARAMS ((const char *, FILE *, int));
52
53 #if !defined (NO_MMALLOC) && !defined (NO_MMCHECK)
54 static void malloc_botch PARAMS ((void));
55 #endif
56
57 static void
58 fatal_dump_core PARAMS((char *, ...));
59
60 static void
61 prompt_for_continue PARAMS ((void));
62
63 static void
64 set_width_command PARAMS ((char *, int, struct cmd_list_element *));
65
66 /* If this definition isn't overridden by the header files, assume
67 that isatty and fileno exist on this system. */
68 #ifndef ISATTY
69 #define ISATTY(FP) (isatty (fileno (FP)))
70 #endif
71
72 /* Chain of cleanup actions established with make_cleanup,
73 to be executed if an error happens. */
74
75 static struct cleanup *cleanup_chain; /* cleaned up after a failed command */
76 static struct cleanup *final_cleanup_chain; /* cleaned up when gdb exits */
77
78 /* Nonzero if we have job control. */
79
80 int job_control;
81
82 /* Nonzero means a quit has been requested. */
83
84 int quit_flag;
85
86 /* Nonzero means quit immediately if Control-C is typed now, rather
87 than waiting until QUIT is executed. Be careful in setting this;
88 code which executes with immediate_quit set has to be very careful
89 about being able to deal with being interrupted at any time. It is
90 almost always better to use QUIT; the only exception I can think of
91 is being able to quit out of a system call (using EINTR loses if
92 the SIGINT happens between the previous QUIT and the system call).
93 To immediately quit in the case in which a SIGINT happens between
94 the previous QUIT and setting immediate_quit (desirable anytime we
95 expect to block), call QUIT after setting immediate_quit. */
96
97 int immediate_quit;
98
99 /* Nonzero means that encoded C++ names should be printed out in their
100 C++ form rather than raw. */
101
102 int demangle = 1;
103
104 /* Nonzero means that encoded C++ names should be printed out in their
105 C++ form even in assembler language displays. If this is set, but
106 DEMANGLE is zero, names are printed raw, i.e. DEMANGLE controls. */
107
108 int asm_demangle = 0;
109
110 /* Nonzero means that strings with character values >0x7F should be printed
111 as octal escapes. Zero means just print the value (e.g. it's an
112 international character, and the terminal or window can cope.) */
113
114 int sevenbit_strings = 0;
115
116 /* String to be printed before error messages, if any. */
117
118 char *error_pre_print;
119
120 /* String to be printed before quit messages, if any. */
121
122 char *quit_pre_print;
123
124 /* String to be printed before warning messages, if any. */
125
126 char *warning_pre_print = "\nwarning: ";
127 \f
128 /* Add a new cleanup to the cleanup_chain,
129 and return the previous chain pointer
130 to be passed later to do_cleanups or discard_cleanups.
131 Args are FUNCTION to clean up with, and ARG to pass to it. */
132
133 struct cleanup *
134 make_cleanup (function, arg)
135 void (*function) PARAMS ((PTR));
136 PTR arg;
137 {
138 return make_my_cleanup (&cleanup_chain, function, arg);
139 }
140
141 struct cleanup *
142 make_final_cleanup (function, arg)
143 void (*function) PARAMS ((PTR));
144 PTR arg;
145 {
146 return make_my_cleanup (&final_cleanup_chain, function, arg);
147 }
148 struct cleanup *
149 make_my_cleanup (pmy_chain, function, arg)
150 struct cleanup **pmy_chain;
151 void (*function) PARAMS ((PTR));
152 PTR arg;
153 {
154 register struct cleanup *new
155 = (struct cleanup *) xmalloc (sizeof (struct cleanup));
156 register struct cleanup *old_chain = *pmy_chain;
157
158 new->next = *pmy_chain;
159 new->function = function;
160 new->arg = arg;
161 *pmy_chain = new;
162
163 return old_chain;
164 }
165
166 /* Discard cleanups and do the actions they describe
167 until we get back to the point OLD_CHAIN in the cleanup_chain. */
168
169 void
170 do_cleanups (old_chain)
171 register struct cleanup *old_chain;
172 {
173 do_my_cleanups (&cleanup_chain, old_chain);
174 }
175
176 void
177 do_final_cleanups (old_chain)
178 register struct cleanup *old_chain;
179 {
180 do_my_cleanups (&final_cleanup_chain, old_chain);
181 }
182
183 void
184 do_my_cleanups (pmy_chain, old_chain)
185 register struct cleanup **pmy_chain;
186 register struct cleanup *old_chain;
187 {
188 register struct cleanup *ptr;
189 while ((ptr = *pmy_chain) != old_chain)
190 {
191 *pmy_chain = ptr->next; /* Do this first incase recursion */
192 (*ptr->function) (ptr->arg);
193 free (ptr);
194 }
195 }
196
197 /* Discard cleanups, not doing the actions they describe,
198 until we get back to the point OLD_CHAIN in the cleanup_chain. */
199
200 void
201 discard_cleanups (old_chain)
202 register struct cleanup *old_chain;
203 {
204 discard_my_cleanups (&cleanup_chain, old_chain);
205 }
206
207 void
208 discard_final_cleanups (old_chain)
209 register struct cleanup *old_chain;
210 {
211 discard_my_cleanups (&final_cleanup_chain, old_chain);
212 }
213
214 void
215 discard_my_cleanups (pmy_chain, old_chain)
216 register struct cleanup **pmy_chain;
217 register struct cleanup *old_chain;
218 {
219 register struct cleanup *ptr;
220 while ((ptr = *pmy_chain) != old_chain)
221 {
222 *pmy_chain = ptr->next;
223 free ((PTR)ptr);
224 }
225 }
226
227 /* Set the cleanup_chain to 0, and return the old cleanup chain. */
228 struct cleanup *
229 save_cleanups ()
230 {
231 return save_my_cleanups (&cleanup_chain);
232 }
233
234 struct cleanup *
235 save_final_cleanups ()
236 {
237 return save_my_cleanups (&final_cleanup_chain);
238 }
239
240 struct cleanup *
241 save_my_cleanups (pmy_chain)
242 struct cleanup **pmy_chain;
243 {
244 struct cleanup *old_chain = *pmy_chain;
245
246 *pmy_chain = 0;
247 return old_chain;
248 }
249
250 /* Restore the cleanup chain from a previously saved chain. */
251 void
252 restore_cleanups (chain)
253 struct cleanup *chain;
254 {
255 restore_my_cleanups (&cleanup_chain, chain);
256 }
257
258 void
259 restore_final_cleanups (chain)
260 struct cleanup *chain;
261 {
262 restore_my_cleanups (&final_cleanup_chain, chain);
263 }
264
265 void
266 restore_my_cleanups (pmy_chain, chain)
267 struct cleanup **pmy_chain;
268 struct cleanup *chain;
269 {
270 *pmy_chain = chain;
271 }
272
273 /* This function is useful for cleanups.
274 Do
275
276 foo = xmalloc (...);
277 old_chain = make_cleanup (free_current_contents, &foo);
278
279 to arrange to free the object thus allocated. */
280
281 void
282 free_current_contents (location)
283 char **location;
284 {
285 free (*location);
286 }
287
288 /* Provide a known function that does nothing, to use as a base for
289 for a possibly long chain of cleanups. This is useful where we
290 use the cleanup chain for handling normal cleanups as well as dealing
291 with cleanups that need to be done as a result of a call to error().
292 In such cases, we may not be certain where the first cleanup is, unless
293 we have a do-nothing one to always use as the base. */
294
295 /* ARGSUSED */
296 void
297 null_cleanup (arg)
298 PTR arg;
299 {
300 }
301
302 \f
303 /* Print a warning message. Way to use this is to call warning_begin,
304 output the warning message (use unfiltered output to gdb_stderr),
305 ending in a newline. There is not currently a warning_end that you
306 call afterwards, but such a thing might be added if it is useful
307 for a GUI to separate warning messages from other output.
308
309 FIXME: Why do warnings use unfiltered output and errors filtered?
310 Is this anything other than a historical accident? */
311
312 void
313 warning_begin ()
314 {
315 target_terminal_ours ();
316 wrap_here(""); /* Force out any buffered output */
317 gdb_flush (gdb_stdout);
318 if (warning_pre_print)
319 fprintf_unfiltered (gdb_stderr, warning_pre_print);
320 }
321
322 /* Print a warning message.
323 The first argument STRING is the warning message, used as a fprintf string,
324 and the remaining args are passed as arguments to it.
325 The primary difference between warnings and errors is that a warning
326 does not force the return to command level. */
327
328 /* VARARGS */
329 void
330 #ifdef ANSI_PROTOTYPES
331 warning (const char *string, ...)
332 #else
333 warning (va_alist)
334 va_dcl
335 #endif
336 {
337 va_list args;
338 #ifdef ANSI_PROTOTYPES
339 va_start (args, string);
340 #else
341 char *string;
342
343 va_start (args);
344 string = va_arg (args, char *);
345 #endif
346 warning_begin ();
347 vfprintf_unfiltered (gdb_stderr, string, args);
348 fprintf_unfiltered (gdb_stderr, "\n");
349 va_end (args);
350 }
351
352 /* Start the printing of an error message. Way to use this is to call
353 this, output the error message (use filtered output to gdb_stderr
354 (FIXME: Some callers, like memory_error, use gdb_stdout)), ending
355 in a newline, and then call return_to_top_level (RETURN_ERROR).
356 error() provides a convenient way to do this for the special case
357 that the error message can be formatted with a single printf call,
358 but this is more general. */
359 void
360 error_begin ()
361 {
362 target_terminal_ours ();
363 wrap_here (""); /* Force out any buffered output */
364 gdb_flush (gdb_stdout);
365
366 annotate_error_begin ();
367
368 if (error_pre_print)
369 fprintf_filtered (gdb_stderr, error_pre_print);
370 }
371
372 /* Print an error message and return to command level.
373 The first argument STRING is the error message, used as a fprintf string,
374 and the remaining args are passed as arguments to it. */
375
376 /* VARARGS */
377 NORETURN void
378 #ifdef ANSI_PROTOTYPES
379 error (const char *string, ...)
380 #else
381 void
382 error (va_alist)
383 va_dcl
384 #endif
385 {
386 va_list args;
387 #ifdef ANSI_PROTOTYPES
388 va_start (args, string);
389 #else
390 va_start (args);
391 #endif
392 if (error_hook)
393 (*error_hook) ();
394 else
395 {
396 error_begin ();
397 #ifdef ANSI_PROTOTYPES
398 vfprintf_filtered (gdb_stderr, string, args);
399 #else
400 {
401 char *string1;
402
403 string1 = va_arg (args, char *);
404 vfprintf_filtered (gdb_stderr, string1, args);
405 }
406 #endif
407 fprintf_filtered (gdb_stderr, "\n");
408 va_end (args);
409 return_to_top_level (RETURN_ERROR);
410 }
411 }
412
413
414 /* Print an error message and exit reporting failure.
415 This is for a error that we cannot continue from.
416 The arguments are printed a la printf.
417
418 This function cannot be declared volatile (NORETURN) in an
419 ANSI environment because exit() is not declared volatile. */
420
421 /* VARARGS */
422 NORETURN void
423 #ifdef ANSI_PROTOTYPES
424 fatal (char *string, ...)
425 #else
426 fatal (va_alist)
427 va_dcl
428 #endif
429 {
430 va_list args;
431 #ifdef ANSI_PROTOTYPES
432 va_start (args, string);
433 #else
434 char *string;
435 va_start (args);
436 string = va_arg (args, char *);
437 #endif
438 fprintf_unfiltered (gdb_stderr, "\ngdb: ");
439 vfprintf_unfiltered (gdb_stderr, string, args);
440 fprintf_unfiltered (gdb_stderr, "\n");
441 va_end (args);
442 exit (1);
443 }
444
445 /* Print an error message and exit, dumping core.
446 The arguments are printed a la printf (). */
447
448 /* VARARGS */
449 static void
450 #ifdef ANSI_PROTOTYPES
451 fatal_dump_core (char *string, ...)
452 #else
453 fatal_dump_core (va_alist)
454 va_dcl
455 #endif
456 {
457 va_list args;
458 #ifdef ANSI_PROTOTYPES
459 va_start (args, string);
460 #else
461 char *string;
462
463 va_start (args);
464 string = va_arg (args, char *);
465 #endif
466 /* "internal error" is always correct, since GDB should never dump
467 core, no matter what the input. */
468 fprintf_unfiltered (gdb_stderr, "\ngdb internal error: ");
469 vfprintf_unfiltered (gdb_stderr, string, args);
470 fprintf_unfiltered (gdb_stderr, "\n");
471 va_end (args);
472
473 signal (SIGQUIT, SIG_DFL);
474 kill (getpid (), SIGQUIT);
475 /* We should never get here, but just in case... */
476 exit (1);
477 }
478
479 /* The strerror() function can return NULL for errno values that are
480 out of range. Provide a "safe" version that always returns a
481 printable string. */
482
483 char *
484 safe_strerror (errnum)
485 int errnum;
486 {
487 char *msg;
488 static char buf[32];
489
490 if ((msg = strerror (errnum)) == NULL)
491 {
492 sprintf (buf, "(undocumented errno %d)", errnum);
493 msg = buf;
494 }
495 return (msg);
496 }
497
498 /* The strsignal() function can return NULL for signal values that are
499 out of range. Provide a "safe" version that always returns a
500 printable string. */
501
502 char *
503 safe_strsignal (signo)
504 int signo;
505 {
506 char *msg;
507 static char buf[32];
508
509 if ((msg = strsignal (signo)) == NULL)
510 {
511 sprintf (buf, "(undocumented signal %d)", signo);
512 msg = buf;
513 }
514 return (msg);
515 }
516
517
518 /* Print the system error message for errno, and also mention STRING
519 as the file name for which the error was encountered.
520 Then return to command level. */
521
522 NORETURN void
523 perror_with_name (string)
524 char *string;
525 {
526 char *err;
527 char *combined;
528
529 err = safe_strerror (errno);
530 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
531 strcpy (combined, string);
532 strcat (combined, ": ");
533 strcat (combined, err);
534
535 /* I understand setting these is a matter of taste. Still, some people
536 may clear errno but not know about bfd_error. Doing this here is not
537 unreasonable. */
538 bfd_set_error (bfd_error_no_error);
539 errno = 0;
540
541 error ("%s.", combined);
542 }
543
544 /* Print the system error message for ERRCODE, and also mention STRING
545 as the file name for which the error was encountered. */
546
547 void
548 print_sys_errmsg (string, errcode)
549 char *string;
550 int errcode;
551 {
552 char *err;
553 char *combined;
554
555 err = safe_strerror (errcode);
556 combined = (char *) alloca (strlen (err) + strlen (string) + 3);
557 strcpy (combined, string);
558 strcat (combined, ": ");
559 strcat (combined, err);
560
561 /* We want anything which was printed on stdout to come out first, before
562 this message. */
563 gdb_flush (gdb_stdout);
564 fprintf_unfiltered (gdb_stderr, "%s.\n", combined);
565 }
566
567 /* Control C eventually causes this to be called, at a convenient time. */
568
569 void
570 quit ()
571 {
572 serial_t gdb_stdout_serial = serial_fdopen (1);
573
574 target_terminal_ours ();
575
576 /* We want all output to appear now, before we print "Quit". We
577 have 3 levels of buffering we have to flush (it's possible that
578 some of these should be changed to flush the lower-level ones
579 too): */
580
581 /* 1. The _filtered buffer. */
582 wrap_here ((char *)0);
583
584 /* 2. The stdio buffer. */
585 gdb_flush (gdb_stdout);
586 gdb_flush (gdb_stderr);
587
588 /* 3. The system-level buffer. */
589 SERIAL_FLUSH_OUTPUT (gdb_stdout_serial);
590 SERIAL_UN_FDOPEN (gdb_stdout_serial);
591
592 annotate_error_begin ();
593
594 /* Don't use *_filtered; we don't want to prompt the user to continue. */
595 if (quit_pre_print)
596 fprintf_unfiltered (gdb_stderr, quit_pre_print);
597
598 if (job_control
599 /* If there is no terminal switching for this target, then we can't
600 possibly get screwed by the lack of job control. */
601 || current_target.to_terminal_ours == NULL)
602 fprintf_unfiltered (gdb_stderr, "Quit\n");
603 else
604 fprintf_unfiltered (gdb_stderr,
605 "Quit (expect signal SIGINT when the program is resumed)\n");
606 return_to_top_level (RETURN_QUIT);
607 }
608
609
610 #if defined(__GO32__) || defined (_WIN32)
611
612 #ifndef _MSC_VER
613 /* In the absence of signals, poll keyboard for a quit.
614 Called from #define QUIT pollquit() in xm-go32.h. */
615
616 void
617 pollquit()
618 {
619 if (kbhit ())
620 {
621 int k = getkey ();
622 if (k == 1) {
623 quit_flag = 1;
624 quit();
625 }
626 else if (k == 2) {
627 immediate_quit = 1;
628 quit ();
629 }
630 else
631 {
632 /* We just ignore it */
633 /* FIXME!! Don't think this actually works! */
634 fprintf_unfiltered (gdb_stderr, "CTRL-A to quit, CTRL-B to quit harder\n");
635 }
636 }
637 }
638 #else /* !_MSC_VER */
639
640 /* This above code is not valid for wingdb unless
641 * getkey and kbhit were to be rewritten.
642 * Windows translates all keyboard and mouse events
643 * into a message which is appended to the message
644 * queue for the process.
645 */
646 void
647 pollquit()
648 {
649 int k = win32pollquit();
650 if (k == 1)
651 {
652 quit_flag = 1;
653 quit ();
654 }
655 else if (k == 2)
656 {
657 immediate_quit = 1;
658 quit ();
659 }
660 }
661 #endif /* !_MSC_VER */
662
663
664 #ifndef _MSC_VER
665 void notice_quit()
666 {
667 if (kbhit ())
668 {
669 int k = getkey ();
670 if (k == 1) {
671 quit_flag = 1;
672 }
673 else if (k == 2)
674 {
675 immediate_quit = 1;
676 }
677 else
678 {
679 fprintf_unfiltered (gdb_stderr, "CTRL-A to quit, CTRL-B to quit harder\n");
680 }
681 }
682 }
683 #else /* !_MSC_VER */
684
685 void notice_quit()
686 {
687 int k = win32pollquit();
688 if (k == 1)
689 quit_flag = 1;
690 else if (k == 2)
691 immediate_quit = 1;
692 }
693 #endif /* !_MSC_VER */
694
695 #else
696 void notice_quit()
697 {
698 /* Done by signals */
699 }
700 #endif /* defined(__GO32__) || defined(_WIN32) */
701
702 /* Control C comes here */
703
704 void
705 request_quit (signo)
706 int signo;
707 {
708 quit_flag = 1;
709 /* Restore the signal handler. Harmless with BSD-style signals, needed
710 for System V-style signals. So just always do it, rather than worrying
711 about USG defines and stuff like that. */
712 signal (signo, request_quit);
713
714 /* start-sanitize-gm */
715 #ifdef GENERAL_MAGIC
716 target_kill ();
717 #endif /* GENERAL_MAGIC */
718 /* end-sanitize-gm */
719
720 #ifdef REQUEST_QUIT
721 REQUEST_QUIT;
722 #else
723 if (immediate_quit)
724 quit ();
725 #endif
726 }
727
728 \f
729 /* Memory management stuff (malloc friends). */
730
731 /* Make a substitute size_t for non-ANSI compilers. */
732
733 #ifndef HAVE_STDDEF_H
734 #ifndef size_t
735 #define size_t unsigned int
736 #endif
737 #endif
738
739 #if defined (NO_MMALLOC)
740
741 PTR
742 mmalloc (md, size)
743 PTR md;
744 size_t size;
745 {
746 return malloc (size);
747 }
748
749 PTR
750 mrealloc (md, ptr, size)
751 PTR md;
752 PTR ptr;
753 size_t size;
754 {
755 if (ptr == 0) /* Guard against old realloc's */
756 return malloc (size);
757 else
758 return realloc (ptr, size);
759 }
760
761 void
762 mfree (md, ptr)
763 PTR md;
764 PTR ptr;
765 {
766 free (ptr);
767 }
768
769 #endif /* NO_MMALLOC */
770
771 #if defined (NO_MMALLOC) || defined (NO_MMCHECK)
772
773 void
774 init_malloc (md)
775 PTR md;
776 {
777 }
778
779 #else /* Have mmalloc and want corruption checking */
780
781 static void
782 malloc_botch ()
783 {
784 fatal_dump_core ("Memory corruption");
785 }
786
787 /* Attempt to install hooks in mmalloc/mrealloc/mfree for the heap specified
788 by MD, to detect memory corruption. Note that MD may be NULL to specify
789 the default heap that grows via sbrk.
790
791 Note that for freshly created regions, we must call mmcheckf prior to any
792 mallocs in the region. Otherwise, any region which was allocated prior to
793 installing the checking hooks, which is later reallocated or freed, will
794 fail the checks! The mmcheck function only allows initial hooks to be
795 installed before the first mmalloc. However, anytime after we have called
796 mmcheck the first time to install the checking hooks, we can call it again
797 to update the function pointer to the memory corruption handler.
798
799 Returns zero on failure, non-zero on success. */
800
801 #ifndef MMCHECK_FORCE
802 #define MMCHECK_FORCE 0
803 #endif
804
805 void
806 init_malloc (md)
807 PTR md;
808 {
809 if (!mmcheckf (md, malloc_botch, MMCHECK_FORCE))
810 {
811 /* Don't use warning(), which relies on current_target being set
812 to something other than dummy_target, until after
813 initialize_all_files(). */
814
815 fprintf_unfiltered
816 (gdb_stderr, "warning: failed to install memory consistency checks; ");
817 fprintf_unfiltered
818 (gdb_stderr, "configuration should define NO_MMCHECK or MMCHECK_FORCE\n");
819 }
820
821 mmtrace ();
822 }
823
824 #endif /* Have mmalloc and want corruption checking */
825
826 /* Called when a memory allocation fails, with the number of bytes of
827 memory requested in SIZE. */
828
829 NORETURN void
830 nomem (size)
831 long size;
832 {
833 if (size > 0)
834 {
835 fatal ("virtual memory exhausted: can't allocate %ld bytes.", size);
836 }
837 else
838 {
839 fatal ("virtual memory exhausted.");
840 }
841 }
842
843 /* Like mmalloc but get error if no storage available, and protect against
844 the caller wanting to allocate zero bytes. Whether to return NULL for
845 a zero byte request, or translate the request into a request for one
846 byte of zero'd storage, is a religious issue. */
847
848 PTR
849 xmmalloc (md, size)
850 PTR md;
851 long size;
852 {
853 register PTR val;
854
855 if (size == 0)
856 {
857 val = NULL;
858 }
859 else if ((val = mmalloc (md, size)) == NULL)
860 {
861 nomem (size);
862 }
863 return (val);
864 }
865
866 /* Like mrealloc but get error if no storage available. */
867
868 PTR
869 xmrealloc (md, ptr, size)
870 PTR md;
871 PTR ptr;
872 long size;
873 {
874 register PTR val;
875
876 if (ptr != NULL)
877 {
878 val = mrealloc (md, ptr, size);
879 }
880 else
881 {
882 val = mmalloc (md, size);
883 }
884 if (val == NULL)
885 {
886 nomem (size);
887 }
888 return (val);
889 }
890
891 /* Like malloc but get error if no storage available, and protect against
892 the caller wanting to allocate zero bytes. */
893
894 PTR
895 xmalloc (size)
896 size_t size;
897 {
898 return (xmmalloc ((PTR) NULL, size));
899 }
900
901 /* Like mrealloc but get error if no storage available. */
902
903 PTR
904 xrealloc (ptr, size)
905 PTR ptr;
906 size_t size;
907 {
908 return (xmrealloc ((PTR) NULL, ptr, size));
909 }
910
911 \f
912 /* My replacement for the read system call.
913 Used like `read' but keeps going if `read' returns too soon. */
914
915 int
916 myread (desc, addr, len)
917 int desc;
918 char *addr;
919 int len;
920 {
921 register int val;
922 int orglen = len;
923
924 while (len > 0)
925 {
926 val = read (desc, addr, len);
927 if (val < 0)
928 return val;
929 if (val == 0)
930 return orglen - len;
931 len -= val;
932 addr += val;
933 }
934 return orglen;
935 }
936 \f
937 /* Make a copy of the string at PTR with SIZE characters
938 (and add a null character at the end in the copy).
939 Uses malloc to get the space. Returns the address of the copy. */
940
941 char *
942 savestring (ptr, size)
943 const char *ptr;
944 int size;
945 {
946 register char *p = (char *) xmalloc (size + 1);
947 memcpy (p, ptr, size);
948 p[size] = 0;
949 return p;
950 }
951
952 char *
953 msavestring (md, ptr, size)
954 PTR md;
955 const char *ptr;
956 int size;
957 {
958 register char *p = (char *) xmmalloc (md, size + 1);
959 memcpy (p, ptr, size);
960 p[size] = 0;
961 return p;
962 }
963
964 /* The "const" is so it compiles under DGUX (which prototypes strsave
965 in <string.h>. FIXME: This should be named "xstrsave", shouldn't it?
966 Doesn't real strsave return NULL if out of memory? */
967 char *
968 strsave (ptr)
969 const char *ptr;
970 {
971 return savestring (ptr, strlen (ptr));
972 }
973
974 char *
975 mstrsave (md, ptr)
976 PTR md;
977 const char *ptr;
978 {
979 return (msavestring (md, ptr, strlen (ptr)));
980 }
981
982 void
983 print_spaces (n, file)
984 register int n;
985 register FILE *file;
986 {
987 while (n-- > 0)
988 fputc (' ', file);
989 }
990
991 /* Print a host address. */
992
993 void
994 gdb_print_address (addr, stream)
995 PTR addr;
996 GDB_FILE *stream;
997 {
998
999 /* We could use the %p conversion specifier to fprintf if we had any
1000 way of knowing whether this host supports it. But the following
1001 should work on the Alpha and on 32 bit machines. */
1002
1003 fprintf_filtered (stream, "0x%lx", (unsigned long)addr);
1004 }
1005
1006 /* Ask user a y-or-n question and return 1 iff answer is yes.
1007 Takes three args which are given to printf to print the question.
1008 The first, a control string, should end in "? ".
1009 It should not say how to answer, because we do that. */
1010
1011 /* VARARGS */
1012 int
1013 #ifdef ANSI_PROTOTYPES
1014 query (char *ctlstr, ...)
1015 #else
1016 query (va_alist)
1017 va_dcl
1018 #endif
1019 {
1020 va_list args;
1021 register int answer;
1022 register int ans2;
1023 int retval;
1024
1025 #ifdef ANSI_PROTOTYPES
1026 va_start (args, ctlstr);
1027 #else
1028 char *ctlstr;
1029 va_start (args);
1030 ctlstr = va_arg (args, char *);
1031 #endif
1032
1033 if (query_hook)
1034 {
1035 return query_hook (ctlstr, args);
1036 }
1037
1038 /* Automatically answer "yes" if input is not from a terminal. */
1039 if (!input_from_terminal_p ())
1040 return 1;
1041 #ifdef MPW
1042 /* FIXME Automatically answer "yes" if called from MacGDB. */
1043 if (mac_app)
1044 return 1;
1045 #endif /* MPW */
1046
1047 while (1)
1048 {
1049 wrap_here (""); /* Flush any buffered output */
1050 gdb_flush (gdb_stdout);
1051
1052 if (annotation_level > 1)
1053 printf_filtered ("\n\032\032pre-query\n");
1054
1055 vfprintf_filtered (gdb_stdout, ctlstr, args);
1056 printf_filtered ("(y or n) ");
1057
1058 if (annotation_level > 1)
1059 printf_filtered ("\n\032\032query\n");
1060
1061 #ifdef MPW
1062 /* If not in MacGDB, move to a new line so the entered line doesn't
1063 have a prompt on the front of it. */
1064 if (!mac_app)
1065 fputs_unfiltered ("\n", gdb_stdout);
1066 #endif /* MPW */
1067
1068 gdb_flush (gdb_stdout);
1069 answer = fgetc (stdin);
1070 clearerr (stdin); /* in case of C-d */
1071 if (answer == EOF) /* C-d */
1072 {
1073 retval = 1;
1074 break;
1075 }
1076 if (answer != '\n') /* Eat rest of input line, to EOF or newline */
1077 do
1078 {
1079 ans2 = fgetc (stdin);
1080 clearerr (stdin);
1081 }
1082 while (ans2 != EOF && ans2 != '\n');
1083 if (answer >= 'a')
1084 answer -= 040;
1085 if (answer == 'Y')
1086 {
1087 retval = 1;
1088 break;
1089 }
1090 if (answer == 'N')
1091 {
1092 retval = 0;
1093 break;
1094 }
1095 printf_filtered ("Please answer y or n.\n");
1096 }
1097
1098 if (annotation_level > 1)
1099 printf_filtered ("\n\032\032post-query\n");
1100 return retval;
1101 }
1102
1103 \f
1104 /* Parse a C escape sequence. STRING_PTR points to a variable
1105 containing a pointer to the string to parse. That pointer
1106 should point to the character after the \. That pointer
1107 is updated past the characters we use. The value of the
1108 escape sequence is returned.
1109
1110 A negative value means the sequence \ newline was seen,
1111 which is supposed to be equivalent to nothing at all.
1112
1113 If \ is followed by a null character, we return a negative
1114 value and leave the string pointer pointing at the null character.
1115
1116 If \ is followed by 000, we return 0 and leave the string pointer
1117 after the zeros. A value of 0 does not mean end of string. */
1118
1119 int
1120 parse_escape (string_ptr)
1121 char **string_ptr;
1122 {
1123 register int c = *(*string_ptr)++;
1124 switch (c)
1125 {
1126 case 'a':
1127 return 007; /* Bell (alert) char */
1128 case 'b':
1129 return '\b';
1130 case 'e': /* Escape character */
1131 return 033;
1132 case 'f':
1133 return '\f';
1134 case 'n':
1135 return '\n';
1136 case 'r':
1137 return '\r';
1138 case 't':
1139 return '\t';
1140 case 'v':
1141 return '\v';
1142 case '\n':
1143 return -2;
1144 case 0:
1145 (*string_ptr)--;
1146 return 0;
1147 case '^':
1148 c = *(*string_ptr)++;
1149 if (c == '\\')
1150 c = parse_escape (string_ptr);
1151 if (c == '?')
1152 return 0177;
1153 return (c & 0200) | (c & 037);
1154
1155 case '0':
1156 case '1':
1157 case '2':
1158 case '3':
1159 case '4':
1160 case '5':
1161 case '6':
1162 case '7':
1163 {
1164 register int i = c - '0';
1165 register int count = 0;
1166 while (++count < 3)
1167 {
1168 if ((c = *(*string_ptr)++) >= '0' && c <= '7')
1169 {
1170 i *= 8;
1171 i += c - '0';
1172 }
1173 else
1174 {
1175 (*string_ptr)--;
1176 break;
1177 }
1178 }
1179 return i;
1180 }
1181 default:
1182 return c;
1183 }
1184 }
1185 \f
1186 /* Print the character C on STREAM as part of the contents of a literal
1187 string whose delimiter is QUOTER. Note that this routine should only
1188 be call for printing things which are independent of the language
1189 of the program being debugged. */
1190
1191 void
1192 gdb_printchar (c, stream, quoter)
1193 register int c;
1194 FILE *stream;
1195 int quoter;
1196 {
1197
1198 c &= 0xFF; /* Avoid sign bit follies */
1199
1200 if ( c < 0x20 || /* Low control chars */
1201 (c >= 0x7F && c < 0xA0) || /* DEL, High controls */
1202 (sevenbit_strings && c >= 0x80)) { /* high order bit set */
1203 switch (c)
1204 {
1205 case '\n':
1206 fputs_filtered ("\\n", stream);
1207 break;
1208 case '\b':
1209 fputs_filtered ("\\b", stream);
1210 break;
1211 case '\t':
1212 fputs_filtered ("\\t", stream);
1213 break;
1214 case '\f':
1215 fputs_filtered ("\\f", stream);
1216 break;
1217 case '\r':
1218 fputs_filtered ("\\r", stream);
1219 break;
1220 case '\033':
1221 fputs_filtered ("\\e", stream);
1222 break;
1223 case '\007':
1224 fputs_filtered ("\\a", stream);
1225 break;
1226 default:
1227 fprintf_filtered (stream, "\\%.3o", (unsigned int) c);
1228 break;
1229 }
1230 } else {
1231 if (c == '\\' || c == quoter)
1232 fputs_filtered ("\\", stream);
1233 fprintf_filtered (stream, "%c", c);
1234 }
1235 }
1236 \f
1237 /* Number of lines per page or UINT_MAX if paging is disabled. */
1238 static unsigned int lines_per_page;
1239 /* Number of chars per line or UNIT_MAX is line folding is disabled. */
1240 static unsigned int chars_per_line;
1241 /* Current count of lines printed on this page, chars on this line. */
1242 static unsigned int lines_printed, chars_printed;
1243
1244 /* Buffer and start column of buffered text, for doing smarter word-
1245 wrapping. When someone calls wrap_here(), we start buffering output
1246 that comes through fputs_filtered(). If we see a newline, we just
1247 spit it out and forget about the wrap_here(). If we see another
1248 wrap_here(), we spit it out and remember the newer one. If we see
1249 the end of the line, we spit out a newline, the indent, and then
1250 the buffered output. */
1251
1252 /* Malloc'd buffer with chars_per_line+2 bytes. Contains characters which
1253 are waiting to be output (they have already been counted in chars_printed).
1254 When wrap_buffer[0] is null, the buffer is empty. */
1255 static char *wrap_buffer;
1256
1257 /* Pointer in wrap_buffer to the next character to fill. */
1258 static char *wrap_pointer;
1259
1260 /* String to indent by if the wrap occurs. Must not be NULL if wrap_column
1261 is non-zero. */
1262 static char *wrap_indent;
1263
1264 /* Column number on the screen where wrap_buffer begins, or 0 if wrapping
1265 is not in effect. */
1266 static int wrap_column;
1267
1268 /* ARGSUSED */
1269 static void
1270 set_width_command (args, from_tty, c)
1271 char *args;
1272 int from_tty;
1273 struct cmd_list_element *c;
1274 {
1275 if (!wrap_buffer)
1276 {
1277 wrap_buffer = (char *) xmalloc (chars_per_line + 2);
1278 wrap_buffer[0] = '\0';
1279 }
1280 else
1281 wrap_buffer = (char *) xrealloc (wrap_buffer, chars_per_line + 2);
1282 wrap_pointer = wrap_buffer; /* Start it at the beginning */
1283 }
1284
1285 /* Wait, so the user can read what's on the screen. Prompt the user
1286 to continue by pressing RETURN. */
1287
1288 static void
1289 prompt_for_continue ()
1290 {
1291 char *ignore;
1292 char cont_prompt[120];
1293
1294 if (annotation_level > 1)
1295 printf_unfiltered ("\n\032\032pre-prompt-for-continue\n");
1296
1297 strcpy (cont_prompt,
1298 "---Type <return> to continue, or q <return> to quit---");
1299 if (annotation_level > 1)
1300 strcat (cont_prompt, "\n\032\032prompt-for-continue\n");
1301
1302 /* We must do this *before* we call gdb_readline, else it will eventually
1303 call us -- thinking that we're trying to print beyond the end of the
1304 screen. */
1305 reinitialize_more_filter ();
1306
1307 immediate_quit++;
1308 /* On a real operating system, the user can quit with SIGINT.
1309 But not on GO32.
1310
1311 'q' is provided on all systems so users don't have to change habits
1312 from system to system, and because telling them what to do in
1313 the prompt is more user-friendly than expecting them to think of
1314 SIGINT. */
1315 /* Call readline, not gdb_readline, because GO32 readline handles control-C
1316 whereas control-C to gdb_readline will cause the user to get dumped
1317 out to DOS. */
1318 ignore = readline (cont_prompt);
1319
1320 if (annotation_level > 1)
1321 printf_unfiltered ("\n\032\032post-prompt-for-continue\n");
1322
1323 if (ignore)
1324 {
1325 char *p = ignore;
1326 while (*p == ' ' || *p == '\t')
1327 ++p;
1328 if (p[0] == 'q')
1329 request_quit (SIGINT);
1330 free (ignore);
1331 }
1332 immediate_quit--;
1333
1334 /* Now we have to do this again, so that GDB will know that it doesn't
1335 need to save the ---Type <return>--- line at the top of the screen. */
1336 reinitialize_more_filter ();
1337
1338 dont_repeat (); /* Forget prev cmd -- CR won't repeat it. */
1339 }
1340
1341 /* Reinitialize filter; ie. tell it to reset to original values. */
1342
1343 void
1344 reinitialize_more_filter ()
1345 {
1346 lines_printed = 0;
1347 chars_printed = 0;
1348 }
1349
1350 /* Indicate that if the next sequence of characters overflows the line,
1351 a newline should be inserted here rather than when it hits the end.
1352 If INDENT is non-null, it is a string to be printed to indent the
1353 wrapped part on the next line. INDENT must remain accessible until
1354 the next call to wrap_here() or until a newline is printed through
1355 fputs_filtered().
1356
1357 If the line is already overfull, we immediately print a newline and
1358 the indentation, and disable further wrapping.
1359
1360 If we don't know the width of lines, but we know the page height,
1361 we must not wrap words, but should still keep track of newlines
1362 that were explicitly printed.
1363
1364 INDENT should not contain tabs, as that will mess up the char count
1365 on the next line. FIXME.
1366
1367 This routine is guaranteed to force out any output which has been
1368 squirreled away in the wrap_buffer, so wrap_here ((char *)0) can be
1369 used to force out output from the wrap_buffer. */
1370
1371 void
1372 wrap_here(indent)
1373 char *indent;
1374 {
1375 /* This should have been allocated, but be paranoid anyway. */
1376 if (!wrap_buffer)
1377 abort ();
1378
1379 if (wrap_buffer[0])
1380 {
1381 *wrap_pointer = '\0';
1382 fputs_unfiltered (wrap_buffer, gdb_stdout);
1383 }
1384 wrap_pointer = wrap_buffer;
1385 wrap_buffer[0] = '\0';
1386 if (chars_per_line == UINT_MAX) /* No line overflow checking */
1387 {
1388 wrap_column = 0;
1389 }
1390 else if (chars_printed >= chars_per_line)
1391 {
1392 puts_filtered ("\n");
1393 if (indent != NULL)
1394 puts_filtered (indent);
1395 wrap_column = 0;
1396 }
1397 else
1398 {
1399 wrap_column = chars_printed;
1400 if (indent == NULL)
1401 wrap_indent = "";
1402 else
1403 wrap_indent = indent;
1404 }
1405 }
1406
1407 /* Ensure that whatever gets printed next, using the filtered output
1408 commands, starts at the beginning of the line. I.E. if there is
1409 any pending output for the current line, flush it and start a new
1410 line. Otherwise do nothing. */
1411
1412 void
1413 begin_line ()
1414 {
1415 if (chars_printed > 0)
1416 {
1417 puts_filtered ("\n");
1418 }
1419 }
1420
1421
1422 GDB_FILE *
1423 gdb_fopen (name, mode)
1424 char * name;
1425 char * mode;
1426 {
1427 return fopen (name, mode);
1428 }
1429
1430 void
1431 gdb_flush (stream)
1432 FILE *stream;
1433 {
1434 if (flush_hook
1435 && (stream == gdb_stdout
1436 || stream == gdb_stderr))
1437 {
1438 flush_hook (stream);
1439 return;
1440 }
1441
1442 fflush (stream);
1443 }
1444
1445 /* Like fputs but if FILTER is true, pause after every screenful.
1446
1447 Regardless of FILTER can wrap at points other than the final
1448 character of a line.
1449
1450 Unlike fputs, fputs_maybe_filtered does not return a value.
1451 It is OK for LINEBUFFER to be NULL, in which case just don't print
1452 anything.
1453
1454 Note that a longjmp to top level may occur in this routine (only if
1455 FILTER is true) (since prompt_for_continue may do so) so this
1456 routine should not be called when cleanups are not in place. */
1457
1458 static void
1459 fputs_maybe_filtered (linebuffer, stream, filter)
1460 const char *linebuffer;
1461 FILE *stream;
1462 int filter;
1463 {
1464 const char *lineptr;
1465
1466 if (linebuffer == 0)
1467 return;
1468
1469 /* Don't do any filtering if it is disabled. */
1470 if (stream != gdb_stdout
1471 || (lines_per_page == UINT_MAX && chars_per_line == UINT_MAX))
1472 {
1473 fputs_unfiltered (linebuffer, stream);
1474 return;
1475 }
1476
1477 /* Go through and output each character. Show line extension
1478 when this is necessary; prompt user for new page when this is
1479 necessary. */
1480
1481 lineptr = linebuffer;
1482 while (*lineptr)
1483 {
1484 /* Possible new page. */
1485 if (filter &&
1486 (lines_printed >= lines_per_page - 1))
1487 prompt_for_continue ();
1488
1489 while (*lineptr && *lineptr != '\n')
1490 {
1491 /* Print a single line. */
1492 if (*lineptr == '\t')
1493 {
1494 if (wrap_column)
1495 *wrap_pointer++ = '\t';
1496 else
1497 fputc_unfiltered ('\t', stream);
1498 /* Shifting right by 3 produces the number of tab stops
1499 we have already passed, and then adding one and
1500 shifting left 3 advances to the next tab stop. */
1501 chars_printed = ((chars_printed >> 3) + 1) << 3;
1502 lineptr++;
1503 }
1504 else
1505 {
1506 if (wrap_column)
1507 *wrap_pointer++ = *lineptr;
1508 else
1509 fputc_unfiltered (*lineptr, stream);
1510 chars_printed++;
1511 lineptr++;
1512 }
1513
1514 if (chars_printed >= chars_per_line)
1515 {
1516 unsigned int save_chars = chars_printed;
1517
1518 chars_printed = 0;
1519 lines_printed++;
1520 /* If we aren't actually wrapping, don't output newline --
1521 if chars_per_line is right, we probably just overflowed
1522 anyway; if it's wrong, let us keep going. */
1523 if (wrap_column)
1524 fputc_unfiltered ('\n', stream);
1525
1526 /* Possible new page. */
1527 if (lines_printed >= lines_per_page - 1)
1528 prompt_for_continue ();
1529
1530 /* Now output indentation and wrapped string */
1531 if (wrap_column)
1532 {
1533 fputs_unfiltered (wrap_indent, stream);
1534 *wrap_pointer = '\0'; /* Null-terminate saved stuff */
1535 fputs_unfiltered (wrap_buffer, stream); /* and eject it */
1536 /* FIXME, this strlen is what prevents wrap_indent from
1537 containing tabs. However, if we recurse to print it
1538 and count its chars, we risk trouble if wrap_indent is
1539 longer than (the user settable) chars_per_line.
1540 Note also that this can set chars_printed > chars_per_line
1541 if we are printing a long string. */
1542 chars_printed = strlen (wrap_indent)
1543 + (save_chars - wrap_column);
1544 wrap_pointer = wrap_buffer; /* Reset buffer */
1545 wrap_buffer[0] = '\0';
1546 wrap_column = 0; /* And disable fancy wrap */
1547 }
1548 }
1549 }
1550
1551 if (*lineptr == '\n')
1552 {
1553 chars_printed = 0;
1554 wrap_here ((char *)0); /* Spit out chars, cancel further wraps */
1555 lines_printed++;
1556 fputc_unfiltered ('\n', stream);
1557 lineptr++;
1558 }
1559 }
1560 }
1561
1562 void
1563 fputs_filtered (linebuffer, stream)
1564 const char *linebuffer;
1565 FILE *stream;
1566 {
1567 fputs_maybe_filtered (linebuffer, stream, 1);
1568 }
1569
1570 int
1571 putchar_unfiltered (c)
1572 int c;
1573 {
1574 char buf[2];
1575
1576 buf[0] = c;
1577 buf[1] = 0;
1578 fputs_unfiltered (buf, gdb_stdout);
1579 return c;
1580 }
1581
1582 int
1583 fputc_unfiltered (c, stream)
1584 int c;
1585 FILE * stream;
1586 {
1587 char buf[2];
1588
1589 buf[0] = c;
1590 buf[1] = 0;
1591 fputs_unfiltered (buf, stream);
1592 return c;
1593 }
1594
1595
1596 /* Print a variable number of ARGS using format FORMAT. If this
1597 information is going to put the amount written (since the last call
1598 to REINITIALIZE_MORE_FILTER or the last page break) over the page size,
1599 call prompt_for_continue to get the users permision to continue.
1600
1601 Unlike fprintf, this function does not return a value.
1602
1603 We implement three variants, vfprintf (takes a vararg list and stream),
1604 fprintf (takes a stream to write on), and printf (the usual).
1605
1606 Note also that a longjmp to top level may occur in this routine
1607 (since prompt_for_continue may do so) so this routine should not be
1608 called when cleanups are not in place. */
1609
1610 static void
1611 vfprintf_maybe_filtered (stream, format, args, filter)
1612 FILE *stream;
1613 const char *format;
1614 va_list args;
1615 int filter;
1616 {
1617 char *linebuffer;
1618 struct cleanup *old_cleanups;
1619
1620 vasprintf (&linebuffer, format, args);
1621 if (linebuffer == NULL)
1622 {
1623 fputs_unfiltered ("\ngdb: virtual memory exhausted.\n", gdb_stderr);
1624 exit (1);
1625 }
1626 old_cleanups = make_cleanup (free, linebuffer);
1627 fputs_maybe_filtered (linebuffer, stream, filter);
1628 do_cleanups (old_cleanups);
1629 }
1630
1631
1632 void
1633 vfprintf_filtered (stream, format, args)
1634 FILE *stream;
1635 const char *format;
1636 va_list args;
1637 {
1638 vfprintf_maybe_filtered (stream, format, args, 1);
1639 }
1640
1641 void
1642 vfprintf_unfiltered (stream, format, args)
1643 FILE *stream;
1644 const char *format;
1645 va_list args;
1646 {
1647 char *linebuffer;
1648 struct cleanup *old_cleanups;
1649
1650 vasprintf (&linebuffer, format, args);
1651 if (linebuffer == NULL)
1652 {
1653 fputs_unfiltered ("\ngdb: virtual memory exhausted.\n", gdb_stderr);
1654 exit (1);
1655 }
1656 old_cleanups = make_cleanup (free, linebuffer);
1657 fputs_unfiltered (linebuffer, stream);
1658 do_cleanups (old_cleanups);
1659 }
1660
1661 void
1662 vprintf_filtered (format, args)
1663 const char *format;
1664 va_list args;
1665 {
1666 vfprintf_maybe_filtered (gdb_stdout, format, args, 1);
1667 }
1668
1669 void
1670 vprintf_unfiltered (format, args)
1671 const char *format;
1672 va_list args;
1673 {
1674 vfprintf_unfiltered (gdb_stdout, format, args);
1675 }
1676
1677 /* VARARGS */
1678 void
1679 #ifdef ANSI_PROTOTYPES
1680 fprintf_filtered (FILE *stream, const char *format, ...)
1681 #else
1682 fprintf_filtered (va_alist)
1683 va_dcl
1684 #endif
1685 {
1686 va_list args;
1687 #ifdef ANSI_PROTOTYPES
1688 va_start (args, format);
1689 #else
1690 FILE *stream;
1691 char *format;
1692
1693 va_start (args);
1694 stream = va_arg (args, FILE *);
1695 format = va_arg (args, char *);
1696 #endif
1697 vfprintf_filtered (stream, format, args);
1698 va_end (args);
1699 }
1700
1701 /* VARARGS */
1702 void
1703 #ifdef ANSI_PROTOTYPES
1704 fprintf_unfiltered (FILE *stream, const char *format, ...)
1705 #else
1706 fprintf_unfiltered (va_alist)
1707 va_dcl
1708 #endif
1709 {
1710 va_list args;
1711 #ifdef ANSI_PROTOTYPES
1712 va_start (args, format);
1713 #else
1714 FILE *stream;
1715 char *format;
1716
1717 va_start (args);
1718 stream = va_arg (args, FILE *);
1719 format = va_arg (args, char *);
1720 #endif
1721 vfprintf_unfiltered (stream, format, args);
1722 va_end (args);
1723 }
1724
1725 /* Like fprintf_filtered, but prints its result indented.
1726 Called as fprintfi_filtered (spaces, stream, format, ...); */
1727
1728 /* VARARGS */
1729 void
1730 #ifdef ANSI_PROTOTYPES
1731 fprintfi_filtered (int spaces, FILE *stream, const char *format, ...)
1732 #else
1733 fprintfi_filtered (va_alist)
1734 va_dcl
1735 #endif
1736 {
1737 va_list args;
1738 #ifdef ANSI_PROTOTYPES
1739 va_start (args, format);
1740 #else
1741 int spaces;
1742 FILE *stream;
1743 char *format;
1744
1745 va_start (args);
1746 spaces = va_arg (args, int);
1747 stream = va_arg (args, FILE *);
1748 format = va_arg (args, char *);
1749 #endif
1750 print_spaces_filtered (spaces, stream);
1751
1752 vfprintf_filtered (stream, format, args);
1753 va_end (args);
1754 }
1755
1756
1757 /* VARARGS */
1758 void
1759 #ifdef ANSI_PROTOTYPES
1760 printf_filtered (const char *format, ...)
1761 #else
1762 printf_filtered (va_alist)
1763 va_dcl
1764 #endif
1765 {
1766 va_list args;
1767 #ifdef ANSI_PROTOTYPES
1768 va_start (args, format);
1769 #else
1770 char *format;
1771
1772 va_start (args);
1773 format = va_arg (args, char *);
1774 #endif
1775 vfprintf_filtered (gdb_stdout, format, args);
1776 va_end (args);
1777 }
1778
1779
1780 /* VARARGS */
1781 void
1782 #ifdef ANSI_PROTOTYPES
1783 printf_unfiltered (const char *format, ...)
1784 #else
1785 printf_unfiltered (va_alist)
1786 va_dcl
1787 #endif
1788 {
1789 va_list args;
1790 #ifdef ANSI_PROTOTYPES
1791 va_start (args, format);
1792 #else
1793 char *format;
1794
1795 va_start (args);
1796 format = va_arg (args, char *);
1797 #endif
1798 vfprintf_unfiltered (gdb_stdout, format, args);
1799 va_end (args);
1800 }
1801
1802 /* Like printf_filtered, but prints it's result indented.
1803 Called as printfi_filtered (spaces, format, ...); */
1804
1805 /* VARARGS */
1806 void
1807 #ifdef ANSI_PROTOTYPES
1808 printfi_filtered (int spaces, const char *format, ...)
1809 #else
1810 printfi_filtered (va_alist)
1811 va_dcl
1812 #endif
1813 {
1814 va_list args;
1815 #ifdef ANSI_PROTOTYPES
1816 va_start (args, format);
1817 #else
1818 int spaces;
1819 char *format;
1820
1821 va_start (args);
1822 spaces = va_arg (args, int);
1823 format = va_arg (args, char *);
1824 #endif
1825 print_spaces_filtered (spaces, gdb_stdout);
1826 vfprintf_filtered (gdb_stdout, format, args);
1827 va_end (args);
1828 }
1829
1830 /* Easy -- but watch out!
1831
1832 This routine is *not* a replacement for puts()! puts() appends a newline.
1833 This one doesn't, and had better not! */
1834
1835 void
1836 puts_filtered (string)
1837 const char *string;
1838 {
1839 fputs_filtered (string, gdb_stdout);
1840 }
1841
1842 void
1843 puts_unfiltered (string)
1844 const char *string;
1845 {
1846 fputs_unfiltered (string, gdb_stdout);
1847 }
1848
1849 /* Return a pointer to N spaces and a null. The pointer is good
1850 until the next call to here. */
1851 char *
1852 n_spaces (n)
1853 int n;
1854 {
1855 register char *t;
1856 static char *spaces;
1857 static int max_spaces;
1858
1859 if (n > max_spaces)
1860 {
1861 if (spaces)
1862 free (spaces);
1863 spaces = (char *) xmalloc (n+1);
1864 for (t = spaces+n; t != spaces;)
1865 *--t = ' ';
1866 spaces[n] = '\0';
1867 max_spaces = n;
1868 }
1869
1870 return spaces + max_spaces - n;
1871 }
1872
1873 /* Print N spaces. */
1874 void
1875 print_spaces_filtered (n, stream)
1876 int n;
1877 FILE *stream;
1878 {
1879 fputs_filtered (n_spaces (n), stream);
1880 }
1881 \f
1882 /* C++ demangler stuff. */
1883
1884 /* fprintf_symbol_filtered attempts to demangle NAME, a symbol in language
1885 LANG, using demangling args ARG_MODE, and print it filtered to STREAM.
1886 If the name is not mangled, or the language for the name is unknown, or
1887 demangling is off, the name is printed in its "raw" form. */
1888
1889 void
1890 fprintf_symbol_filtered (stream, name, lang, arg_mode)
1891 FILE *stream;
1892 char *name;
1893 enum language lang;
1894 int arg_mode;
1895 {
1896 char *demangled;
1897
1898 if (name != NULL)
1899 {
1900 /* If user wants to see raw output, no problem. */
1901 if (!demangle)
1902 {
1903 fputs_filtered (name, stream);
1904 }
1905 else
1906 {
1907 switch (lang)
1908 {
1909 case language_cplus:
1910 demangled = cplus_demangle (name, arg_mode);
1911 break;
1912 case language_chill:
1913 demangled = chill_demangle (name);
1914 break;
1915 default:
1916 demangled = NULL;
1917 break;
1918 }
1919 fputs_filtered (demangled ? demangled : name, stream);
1920 if (demangled != NULL)
1921 {
1922 free (demangled);
1923 }
1924 }
1925 }
1926 }
1927
1928 /* Do a strcmp() type operation on STRING1 and STRING2, ignoring any
1929 differences in whitespace. Returns 0 if they match, non-zero if they
1930 don't (slightly different than strcmp()'s range of return values).
1931
1932 As an extra hack, string1=="FOO(ARGS)" matches string2=="FOO".
1933 This "feature" is useful when searching for matching C++ function names
1934 (such as if the user types 'break FOO', where FOO is a mangled C++
1935 function). */
1936
1937 int
1938 strcmp_iw (string1, string2)
1939 const char *string1;
1940 const char *string2;
1941 {
1942 while ((*string1 != '\0') && (*string2 != '\0'))
1943 {
1944 while (isspace (*string1))
1945 {
1946 string1++;
1947 }
1948 while (isspace (*string2))
1949 {
1950 string2++;
1951 }
1952 if (*string1 != *string2)
1953 {
1954 break;
1955 }
1956 if (*string1 != '\0')
1957 {
1958 string1++;
1959 string2++;
1960 }
1961 }
1962 return (*string1 != '\0' && *string1 != '(') || (*string2 != '\0');
1963 }
1964
1965 \f
1966 void
1967 initialize_utils ()
1968 {
1969 struct cmd_list_element *c;
1970
1971 c = add_set_cmd ("width", class_support, var_uinteger,
1972 (char *)&chars_per_line,
1973 "Set number of characters gdb thinks are in a line.",
1974 &setlist);
1975 add_show_from_set (c, &showlist);
1976 c->function.sfunc = set_width_command;
1977
1978 add_show_from_set
1979 (add_set_cmd ("height", class_support,
1980 var_uinteger, (char *)&lines_per_page,
1981 "Set number of lines gdb thinks are in a page.", &setlist),
1982 &showlist);
1983
1984 /* These defaults will be used if we are unable to get the correct
1985 values from termcap. */
1986 #if defined(__GO32__)
1987 lines_per_page = ScreenRows();
1988 chars_per_line = ScreenCols();
1989 #else
1990 lines_per_page = 24;
1991 chars_per_line = 80;
1992
1993 #if !defined (MPW) && !defined (_WIN32)
1994 /* No termcap under MPW, although might be cool to do something
1995 by looking at worksheet or console window sizes. */
1996 /* Initialize the screen height and width from termcap. */
1997 {
1998 char *termtype = getenv ("TERM");
1999
2000 /* Positive means success, nonpositive means failure. */
2001 int status;
2002
2003 /* 2048 is large enough for all known terminals, according to the
2004 GNU termcap manual. */
2005 char term_buffer[2048];
2006
2007 if (termtype)
2008 {
2009 status = tgetent (term_buffer, termtype);
2010 if (status > 0)
2011 {
2012 int val;
2013
2014 val = tgetnum ("li");
2015 if (val >= 0)
2016 lines_per_page = val;
2017 else
2018 /* The number of lines per page is not mentioned
2019 in the terminal description. This probably means
2020 that paging is not useful (e.g. emacs shell window),
2021 so disable paging. */
2022 lines_per_page = UINT_MAX;
2023
2024 val = tgetnum ("co");
2025 if (val >= 0)
2026 chars_per_line = val;
2027 }
2028 }
2029 }
2030 #endif /* MPW */
2031
2032 #if defined(SIGWINCH) && defined(SIGWINCH_HANDLER)
2033
2034 /* If there is a better way to determine the window size, use it. */
2035 SIGWINCH_HANDLER ();
2036 #endif
2037 #endif
2038 /* If the output is not a terminal, don't paginate it. */
2039 if (!ISATTY (gdb_stdout))
2040 lines_per_page = UINT_MAX;
2041
2042 set_width_command ((char *)NULL, 0, c);
2043
2044 add_show_from_set
2045 (add_set_cmd ("demangle", class_support, var_boolean,
2046 (char *)&demangle,
2047 "Set demangling of encoded C++ names when displaying symbols.",
2048 &setprintlist),
2049 &showprintlist);
2050
2051 add_show_from_set
2052 (add_set_cmd ("sevenbit-strings", class_support, var_boolean,
2053 (char *)&sevenbit_strings,
2054 "Set printing of 8-bit characters in strings as \\nnn.",
2055 &setprintlist),
2056 &showprintlist);
2057
2058 add_show_from_set
2059 (add_set_cmd ("asm-demangle", class_support, var_boolean,
2060 (char *)&asm_demangle,
2061 "Set demangling of C++ names in disassembly listings.",
2062 &setprintlist),
2063 &showprintlist);
2064 }
2065
2066 /* Machine specific function to handle SIGWINCH signal. */
2067
2068 #ifdef SIGWINCH_HANDLER_BODY
2069 SIGWINCH_HANDLER_BODY
2070 #endif
2071 \f
2072 /* Support for converting target fp numbers into host DOUBLEST format. */
2073
2074 /* XXX - This code should really be in libiberty/floatformat.c, however
2075 configuration issues with libiberty made this very difficult to do in the
2076 available time. */
2077
2078 #include "floatformat.h"
2079 #include <math.h> /* ldexp */
2080
2081 /* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
2082 going to bother with trying to muck around with whether it is defined in
2083 a system header, what we do if not, etc. */
2084 #define FLOATFORMAT_CHAR_BIT 8
2085
2086 static unsigned long get_field PARAMS ((unsigned char *,
2087 enum floatformat_byteorders,
2088 unsigned int,
2089 unsigned int,
2090 unsigned int));
2091
2092 /* Extract a field which starts at START and is LEN bytes long. DATA and
2093 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
2094 static unsigned long
2095 get_field (data, order, total_len, start, len)
2096 unsigned char *data;
2097 enum floatformat_byteorders order;
2098 unsigned int total_len;
2099 unsigned int start;
2100 unsigned int len;
2101 {
2102 unsigned long result;
2103 unsigned int cur_byte;
2104 int cur_bitshift;
2105
2106 /* Start at the least significant part of the field. */
2107 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2108 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2109 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT) - cur_byte - 1;
2110 cur_bitshift =
2111 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2112 result = *(data + cur_byte) >> (-cur_bitshift);
2113 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2114 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2115 ++cur_byte;
2116 else
2117 --cur_byte;
2118
2119 /* Move towards the most significant part of the field. */
2120 while (cur_bitshift < len)
2121 {
2122 if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
2123 /* This is the last byte; zero out the bits which are not part of
2124 this field. */
2125 result |=
2126 (*(data + cur_byte) & ((1 << (len - cur_bitshift)) - 1))
2127 << cur_bitshift;
2128 else
2129 result |= *(data + cur_byte) << cur_bitshift;
2130 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2131 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2132 ++cur_byte;
2133 else
2134 --cur_byte;
2135 }
2136 return result;
2137 }
2138
2139 /* Convert from FMT to a DOUBLEST.
2140 FROM is the address of the extended float.
2141 Store the DOUBLEST in *TO. */
2142
2143 void
2144 floatformat_to_doublest (fmt, from, to)
2145 const struct floatformat *fmt;
2146 char *from;
2147 DOUBLEST *to;
2148 {
2149 unsigned char *ufrom = (unsigned char *)from;
2150 DOUBLEST dto;
2151 long exponent;
2152 unsigned long mant;
2153 unsigned int mant_bits, mant_off;
2154 int mant_bits_left;
2155 int special_exponent; /* It's a NaN, denorm or zero */
2156
2157 /* If the mantissa bits are not contiguous from one end of the
2158 mantissa to the other, we need to make a private copy of the
2159 source bytes that is in the right order since the unpacking
2160 algorithm assumes that the bits are contiguous.
2161
2162 Swap the bytes individually rather than accessing them through
2163 "long *" since we have no guarantee that they start on a long
2164 alignment, and also sizeof(long) for the host could be different
2165 than sizeof(long) for the target. FIXME: Assumes sizeof(long)
2166 for the target is 4. */
2167
2168 if (fmt -> byteorder == floatformat_littlebyte_bigword)
2169 {
2170 static unsigned char *newfrom;
2171 unsigned char *swapin, *swapout;
2172 int longswaps;
2173
2174 longswaps = fmt -> totalsize / FLOATFORMAT_CHAR_BIT;
2175 longswaps >>= 3;
2176
2177 if (newfrom == NULL)
2178 {
2179 newfrom = xmalloc (fmt -> totalsize);
2180 }
2181 swapout = newfrom;
2182 swapin = ufrom;
2183 ufrom = newfrom;
2184 while (longswaps-- > 0)
2185 {
2186 /* This is ugly, but efficient */
2187 *swapout++ = swapin[4];
2188 *swapout++ = swapin[5];
2189 *swapout++ = swapin[6];
2190 *swapout++ = swapin[7];
2191 *swapout++ = swapin[0];
2192 *swapout++ = swapin[1];
2193 *swapout++ = swapin[2];
2194 *swapout++ = swapin[3];
2195 swapin += 8;
2196 }
2197 }
2198
2199 exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize,
2200 fmt->exp_start, fmt->exp_len);
2201 /* Note that if exponent indicates a NaN, we can't really do anything useful
2202 (not knowing if the host has NaN's, or how to build one). So it will
2203 end up as an infinity or something close; that is OK. */
2204
2205 mant_bits_left = fmt->man_len;
2206 mant_off = fmt->man_start;
2207 dto = 0.0;
2208
2209 special_exponent = exponent == 0 || exponent == fmt->exp_nan;
2210
2211 /* Don't bias zero's, denorms or NaNs. */
2212 if (!special_exponent)
2213 exponent -= fmt->exp_bias;
2214
2215 /* Build the result algebraically. Might go infinite, underflow, etc;
2216 who cares. */
2217
2218 /* If this format uses a hidden bit, explicitly add it in now. Otherwise,
2219 increment the exponent by one to account for the integer bit. */
2220
2221 if (!special_exponent)
2222 if (fmt->intbit == floatformat_intbit_no)
2223 dto = ldexp (1.0, exponent);
2224 else
2225 exponent++;
2226
2227 while (mant_bits_left > 0)
2228 {
2229 mant_bits = min (mant_bits_left, 32);
2230
2231 mant = get_field (ufrom, fmt->byteorder, fmt->totalsize,
2232 mant_off, mant_bits);
2233
2234 dto += ldexp ((double)mant, exponent - mant_bits);
2235 exponent -= mant_bits;
2236 mant_off += mant_bits;
2237 mant_bits_left -= mant_bits;
2238 }
2239
2240 /* Negate it if negative. */
2241 if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1))
2242 dto = -dto;
2243 *to = dto;
2244 }
2245 \f
2246 static void put_field PARAMS ((unsigned char *, enum floatformat_byteorders,
2247 unsigned int,
2248 unsigned int,
2249 unsigned int,
2250 unsigned long));
2251
2252 /* Set a field which starts at START and is LEN bytes long. DATA and
2253 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
2254 static void
2255 put_field (data, order, total_len, start, len, stuff_to_put)
2256 unsigned char *data;
2257 enum floatformat_byteorders order;
2258 unsigned int total_len;
2259 unsigned int start;
2260 unsigned int len;
2261 unsigned long stuff_to_put;
2262 {
2263 unsigned int cur_byte;
2264 int cur_bitshift;
2265
2266 /* Start at the least significant part of the field. */
2267 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
2268 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2269 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT) - cur_byte - 1;
2270 cur_bitshift =
2271 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
2272 *(data + cur_byte) &=
2273 ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1) << (-cur_bitshift));
2274 *(data + cur_byte) |=
2275 (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
2276 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2277 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2278 ++cur_byte;
2279 else
2280 --cur_byte;
2281
2282 /* Move towards the most significant part of the field. */
2283 while (cur_bitshift < len)
2284 {
2285 if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
2286 {
2287 /* This is the last byte. */
2288 *(data + cur_byte) &=
2289 ~((1 << (len - cur_bitshift)) - 1);
2290 *(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
2291 }
2292 else
2293 *(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
2294 & ((1 << FLOATFORMAT_CHAR_BIT) - 1));
2295 cur_bitshift += FLOATFORMAT_CHAR_BIT;
2296 if (order == floatformat_little || order == floatformat_littlebyte_bigword)
2297 ++cur_byte;
2298 else
2299 --cur_byte;
2300 }
2301 }
2302
2303 #ifdef HAVE_LONG_DOUBLE
2304 /* Return the fractional part of VALUE, and put the exponent of VALUE in *EPTR.
2305 The range of the returned value is >= 0.5 and < 1.0. This is equivalent to
2306 frexp, but operates on the long double data type. */
2307
2308 static long double ldfrexp PARAMS ((long double value, int *eptr));
2309
2310 static long double
2311 ldfrexp (value, eptr)
2312 long double value;
2313 int *eptr;
2314 {
2315 long double tmp;
2316 int exp;
2317
2318 /* Unfortunately, there are no portable functions for extracting the exponent
2319 of a long double, so we have to do it iteratively by multiplying or dividing
2320 by two until the fraction is between 0.5 and 1.0. */
2321
2322 if (value < 0.0l)
2323 value = -value;
2324
2325 tmp = 1.0l;
2326 exp = 0;
2327
2328 if (value >= tmp) /* Value >= 1.0 */
2329 while (value >= tmp)
2330 {
2331 tmp *= 2.0l;
2332 exp++;
2333 }
2334 else if (value != 0.0l) /* Value < 1.0 and > 0.0 */
2335 {
2336 while (value < tmp)
2337 {
2338 tmp /= 2.0l;
2339 exp--;
2340 }
2341 tmp *= 2.0l;
2342 exp++;
2343 }
2344
2345 *eptr = exp;
2346 return value/tmp;
2347 }
2348 #endif /* HAVE_LONG_DOUBLE */
2349
2350
2351 /* The converse: convert the DOUBLEST *FROM to an extended float
2352 and store where TO points. Neither FROM nor TO have any alignment
2353 restrictions. */
2354
2355 void
2356 floatformat_from_doublest (fmt, from, to)
2357 CONST struct floatformat *fmt;
2358 DOUBLEST *from;
2359 char *to;
2360 {
2361 DOUBLEST dfrom;
2362 int exponent;
2363 DOUBLEST mant;
2364 unsigned int mant_bits, mant_off;
2365 int mant_bits_left;
2366 unsigned char *uto = (unsigned char *)to;
2367
2368 memcpy (&dfrom, from, sizeof (dfrom));
2369 memset (uto, 0, fmt->totalsize / FLOATFORMAT_CHAR_BIT);
2370 if (dfrom == 0)
2371 return; /* Result is zero */
2372 if (dfrom != dfrom) /* Result is NaN */
2373 {
2374 /* From is NaN */
2375 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
2376 fmt->exp_len, fmt->exp_nan);
2377 /* Be sure it's not infinity, but NaN value is irrel */
2378 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
2379 32, 1);
2380 return;
2381 }
2382
2383 /* If negative, set the sign bit. */
2384 if (dfrom < 0)
2385 {
2386 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1, 1);
2387 dfrom = -dfrom;
2388 }
2389
2390 if (dfrom + 1 == dfrom) /* Result is Infinity */
2391 {
2392 /* Infinity exponent is same as NaN's. */
2393 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
2394 fmt->exp_len, fmt->exp_nan);
2395 /* Infinity mantissa is all zeroes. */
2396 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
2397 fmt->man_len, 0);
2398 return;
2399 }
2400
2401 #ifdef HAVE_LONG_DOUBLE
2402 mant = ldfrexp (dfrom, &exponent);
2403 #else
2404 mant = frexp (dfrom, &exponent);
2405 #endif
2406
2407 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start, fmt->exp_len,
2408 exponent + fmt->exp_bias - 1);
2409
2410 mant_bits_left = fmt->man_len;
2411 mant_off = fmt->man_start;
2412 while (mant_bits_left > 0)
2413 {
2414 unsigned long mant_long;
2415 mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
2416
2417 mant *= 4294967296.0;
2418 mant_long = (unsigned long)mant;
2419 mant -= mant_long;
2420
2421 /* If the integer bit is implicit, then we need to discard it.
2422 If we are discarding a zero, we should be (but are not) creating
2423 a denormalized number which means adjusting the exponent
2424 (I think). */
2425 if (mant_bits_left == fmt->man_len
2426 && fmt->intbit == floatformat_intbit_no)
2427 {
2428 mant_long <<= 1;
2429 mant_bits -= 1;
2430 }
2431
2432 if (mant_bits < 32)
2433 {
2434 /* The bits we want are in the most significant MANT_BITS bits of
2435 mant_long. Move them to the least significant. */
2436 mant_long >>= 32 - mant_bits;
2437 }
2438
2439 put_field (uto, fmt->byteorder, fmt->totalsize,
2440 mant_off, mant_bits, mant_long);
2441 mant_off += mant_bits;
2442 mant_bits_left -= mant_bits;
2443 }
2444 if (fmt -> byteorder == floatformat_littlebyte_bigword)
2445 {
2446 int count;
2447 unsigned char *swaplow = uto;
2448 unsigned char *swaphigh = uto + 4;
2449 unsigned char tmp;
2450
2451 for (count = 0; count < 4; count++)
2452 {
2453 tmp = *swaplow;
2454 *swaplow++ = *swaphigh;
2455 *swaphigh++ = tmp;
2456 }
2457 }
2458 }
2459
2460 /* temporary storage using circular buffer */
2461 #define NUMCELLS 16
2462 #define CELLSIZE 32
2463 static char*
2464 get_cell()
2465 {
2466 static char buf[NUMCELLS][CELLSIZE];
2467 static int cell=0;
2468 if (++cell>=NUMCELLS) cell=0;
2469 return buf[cell];
2470 }
2471
2472 /* print routines to handle variable size regs, etc.
2473
2474 FIXME: Note that t_addr is a bfd_vma, which is currently either an
2475 unsigned long or unsigned long long, determined at configure time.
2476 If t_addr is an unsigned long long and sizeof (unsigned long long)
2477 is greater than sizeof (unsigned long), then I believe this code will
2478 probably lose, at least for little endian machines. I believe that
2479 it would also be better to eliminate the switch on the absolute size
2480 of t_addr and replace it with a sequence of if statements that compare
2481 sizeof t_addr with sizeof the various types and do the right thing,
2482 which includes knowing whether or not the host supports long long.
2483 -fnf
2484
2485 */
2486
2487 static int thirty_two = 32; /* eliminate warning from compiler on 32-bit systems */
2488
2489 char*
2490 paddr(addr)
2491 t_addr addr;
2492 {
2493 char *paddr_str=get_cell();
2494 switch (sizeof(t_addr))
2495 {
2496 case 8:
2497 sprintf (paddr_str, "%08lx%08lx",
2498 (unsigned long) (addr >> thirty_two), (unsigned long) (addr & 0xffffffff));
2499 break;
2500 case 4:
2501 sprintf (paddr_str, "%08lx", (unsigned long) addr);
2502 break;
2503 case 2:
2504 sprintf (paddr_str, "%04x", (unsigned short) (addr & 0xffff));
2505 break;
2506 default:
2507 sprintf (paddr_str, "%lx", (unsigned long) addr);
2508 }
2509 return paddr_str;
2510 }
2511
2512 char*
2513 preg(reg)
2514 t_reg reg;
2515 {
2516 char *preg_str=get_cell();
2517 switch (sizeof(t_reg))
2518 {
2519 case 8:
2520 sprintf (preg_str, "%08lx%08lx",
2521 (unsigned long) (reg >> thirty_two), (unsigned long) (reg & 0xffffffff));
2522 break;
2523 case 4:
2524 sprintf (preg_str, "%08lx", (unsigned long) reg);
2525 break;
2526 case 2:
2527 sprintf (preg_str, "%04x", (unsigned short) (reg & 0xffff));
2528 break;
2529 default:
2530 sprintf (preg_str, "%lx", (unsigned long) reg);
2531 }
2532 return preg_str;
2533 }
2534
2535 char*
2536 paddr_nz(addr)
2537 t_addr addr;
2538 {
2539 char *paddr_str=get_cell();
2540 switch (sizeof(t_addr))
2541 {
2542 case 8:
2543 {
2544 unsigned long high = (unsigned long) (addr >> thirty_two);
2545 if (high == 0)
2546 sprintf (paddr_str, "%lx", (unsigned long) (addr & 0xffffffff));
2547 else
2548 sprintf (paddr_str, "%lx%08lx",
2549 high, (unsigned long) (addr & 0xffffffff));
2550 break;
2551 }
2552 case 4:
2553 sprintf (paddr_str, "%lx", (unsigned long) addr);
2554 break;
2555 case 2:
2556 sprintf (paddr_str, "%x", (unsigned short) (addr & 0xffff));
2557 break;
2558 default:
2559 sprintf (paddr_str,"%lx", (unsigned long) addr);
2560 }
2561 return paddr_str;
2562 }
2563
2564 char*
2565 preg_nz(reg)
2566 t_reg reg;
2567 {
2568 char *preg_str=get_cell();
2569 switch (sizeof(t_reg))
2570 {
2571 case 8:
2572 {
2573 unsigned long high = (unsigned long) (reg >> thirty_two);
2574 if (high == 0)
2575 sprintf (preg_str, "%lx", (unsigned long) (reg & 0xffffffff));
2576 else
2577 sprintf (preg_str, "%lx%08lx",
2578 high, (unsigned long) (reg & 0xffffffff));
2579 break;
2580 }
2581 case 4:
2582 sprintf (preg_str, "%lx", (unsigned long) reg);
2583 break;
2584 case 2:
2585 sprintf (preg_str, "%x", (unsigned short) (reg & 0xffff));
2586 break;
2587 default:
2588 sprintf (preg_str, "%lx", (unsigned long) reg);
2589 }
2590 return preg_str;
2591 }