gdb/darwin: remove not-so-harmless spurious call to `wait4`
[binutils-gdb.git] / gdb / v850-tdep.c
1 /* Target-dependent code for the NEC V850 for GDB, the GNU debugger.
2
3 Copyright (C) 1996-2022 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "frame-base.h"
23 #include "trad-frame.h"
24 #include "frame-unwind.h"
25 #include "dwarf2/frame.h"
26 #include "gdbtypes.h"
27 #include "inferior.h"
28 #include "gdbcore.h"
29 #include "arch-utils.h"
30 #include "regcache.h"
31 #include "dis-asm.h"
32 #include "osabi.h"
33 #include "elf-bfd.h"
34 #include "elf/v850.h"
35 #include "gdbarch.h"
36
37 enum
38 {
39 /* General purpose registers. */
40 E_R0_REGNUM,
41 E_R1_REGNUM,
42 E_R2_REGNUM,
43 E_R3_REGNUM, E_SP_REGNUM = E_R3_REGNUM,
44 E_R4_REGNUM,
45 E_R5_REGNUM,
46 E_R6_REGNUM, E_ARG0_REGNUM = E_R6_REGNUM,
47 E_R7_REGNUM,
48 E_R8_REGNUM,
49 E_R9_REGNUM, E_ARGLAST_REGNUM = E_R9_REGNUM,
50 E_R10_REGNUM, E_V0_REGNUM = E_R10_REGNUM,
51 E_R11_REGNUM, E_V1_REGNUM = E_R11_REGNUM,
52 E_R12_REGNUM,
53 E_R13_REGNUM,
54 E_R14_REGNUM,
55 E_R15_REGNUM,
56 E_R16_REGNUM,
57 E_R17_REGNUM,
58 E_R18_REGNUM,
59 E_R19_REGNUM,
60 E_R20_REGNUM,
61 E_R21_REGNUM,
62 E_R22_REGNUM,
63 E_R23_REGNUM,
64 E_R24_REGNUM,
65 E_R25_REGNUM,
66 E_R26_REGNUM,
67 E_R27_REGNUM,
68 E_R28_REGNUM,
69 E_R29_REGNUM, E_FP_REGNUM = E_R29_REGNUM,
70 E_R30_REGNUM, E_EP_REGNUM = E_R30_REGNUM,
71 E_R31_REGNUM, E_LP_REGNUM = E_R31_REGNUM,
72
73 /* System registers - main banks. */
74 E_R32_REGNUM, E_SR0_REGNUM = E_R32_REGNUM,
75 E_R33_REGNUM,
76 E_R34_REGNUM,
77 E_R35_REGNUM,
78 E_R36_REGNUM,
79 E_R37_REGNUM, E_PS_REGNUM = E_R37_REGNUM,
80 E_R38_REGNUM,
81 E_R39_REGNUM,
82 E_R40_REGNUM,
83 E_R41_REGNUM,
84 E_R42_REGNUM,
85 E_R43_REGNUM,
86 E_R44_REGNUM,
87 E_R45_REGNUM,
88 E_R46_REGNUM,
89 E_R47_REGNUM,
90 E_R48_REGNUM,
91 E_R49_REGNUM,
92 E_R50_REGNUM,
93 E_R51_REGNUM,
94 E_R52_REGNUM, E_CTBP_REGNUM = E_R52_REGNUM,
95 E_R53_REGNUM,
96 E_R54_REGNUM,
97 E_R55_REGNUM,
98 E_R56_REGNUM,
99 E_R57_REGNUM,
100 E_R58_REGNUM,
101 E_R59_REGNUM,
102 E_R60_REGNUM,
103 E_R61_REGNUM,
104 E_R62_REGNUM,
105 E_R63_REGNUM,
106
107 /* PC. */
108 E_R64_REGNUM, E_PC_REGNUM = E_R64_REGNUM,
109 E_R65_REGNUM,
110 E_NUM_OF_V850_REGS,
111 E_NUM_OF_V850E_REGS = E_NUM_OF_V850_REGS,
112
113 /* System registers - MPV (PROT00) bank. */
114 E_R66_REGNUM = E_NUM_OF_V850_REGS,
115 E_R67_REGNUM,
116 E_R68_REGNUM,
117 E_R69_REGNUM,
118 E_R70_REGNUM,
119 E_R71_REGNUM,
120 E_R72_REGNUM,
121 E_R73_REGNUM,
122 E_R74_REGNUM,
123 E_R75_REGNUM,
124 E_R76_REGNUM,
125 E_R77_REGNUM,
126 E_R78_REGNUM,
127 E_R79_REGNUM,
128 E_R80_REGNUM,
129 E_R81_REGNUM,
130 E_R82_REGNUM,
131 E_R83_REGNUM,
132 E_R84_REGNUM,
133 E_R85_REGNUM,
134 E_R86_REGNUM,
135 E_R87_REGNUM,
136 E_R88_REGNUM,
137 E_R89_REGNUM,
138 E_R90_REGNUM,
139 E_R91_REGNUM,
140 E_R92_REGNUM,
141 E_R93_REGNUM,
142
143 /* System registers - MPU (PROT01) bank. */
144 E_R94_REGNUM,
145 E_R95_REGNUM,
146 E_R96_REGNUM,
147 E_R97_REGNUM,
148 E_R98_REGNUM,
149 E_R99_REGNUM,
150 E_R100_REGNUM,
151 E_R101_REGNUM,
152 E_R102_REGNUM,
153 E_R103_REGNUM,
154 E_R104_REGNUM,
155 E_R105_REGNUM,
156 E_R106_REGNUM,
157 E_R107_REGNUM,
158 E_R108_REGNUM,
159 E_R109_REGNUM,
160 E_R110_REGNUM,
161 E_R111_REGNUM,
162 E_R112_REGNUM,
163 E_R113_REGNUM,
164 E_R114_REGNUM,
165 E_R115_REGNUM,
166 E_R116_REGNUM,
167 E_R117_REGNUM,
168 E_R118_REGNUM,
169 E_R119_REGNUM,
170 E_R120_REGNUM,
171 E_R121_REGNUM,
172
173 /* FPU system registers. */
174 E_R122_REGNUM,
175 E_R123_REGNUM,
176 E_R124_REGNUM,
177 E_R125_REGNUM,
178 E_R126_REGNUM,
179 E_R127_REGNUM,
180 E_R128_REGNUM, E_FPSR_REGNUM = E_R128_REGNUM,
181 E_R129_REGNUM, E_FPEPC_REGNUM = E_R129_REGNUM,
182 E_R130_REGNUM, E_FPST_REGNUM = E_R130_REGNUM,
183 E_R131_REGNUM, E_FPCC_REGNUM = E_R131_REGNUM,
184 E_R132_REGNUM, E_FPCFG_REGNUM = E_R132_REGNUM,
185 E_R133_REGNUM,
186 E_R134_REGNUM,
187 E_R135_REGNUM,
188 E_R136_REGNUM,
189 E_R137_REGNUM,
190 E_R138_REGNUM,
191 E_R139_REGNUM,
192 E_R140_REGNUM,
193 E_R141_REGNUM,
194 E_R142_REGNUM,
195 E_R143_REGNUM,
196 E_R144_REGNUM,
197 E_R145_REGNUM,
198 E_R146_REGNUM,
199 E_R147_REGNUM,
200 E_R148_REGNUM,
201 E_R149_REGNUM,
202 E_NUM_OF_V850E2_REGS,
203
204 /* v850e3v5 system registers, selID 1 thru 7. */
205 E_SELID_1_R0_REGNUM = E_NUM_OF_V850E2_REGS,
206 E_SELID_1_R31_REGNUM = E_SELID_1_R0_REGNUM + 31,
207
208 E_SELID_2_R0_REGNUM,
209 E_SELID_2_R31_REGNUM = E_SELID_2_R0_REGNUM + 31,
210
211 E_SELID_3_R0_REGNUM,
212 E_SELID_3_R31_REGNUM = E_SELID_3_R0_REGNUM + 31,
213
214 E_SELID_4_R0_REGNUM,
215 E_SELID_4_R31_REGNUM = E_SELID_4_R0_REGNUM + 31,
216
217 E_SELID_5_R0_REGNUM,
218 E_SELID_5_R31_REGNUM = E_SELID_5_R0_REGNUM + 31,
219
220 E_SELID_6_R0_REGNUM,
221 E_SELID_6_R31_REGNUM = E_SELID_6_R0_REGNUM + 31,
222
223 E_SELID_7_R0_REGNUM,
224 E_SELID_7_R31_REGNUM = E_SELID_7_R0_REGNUM + 31,
225
226 /* v850e3v5 vector registers. */
227 E_VR0_REGNUM,
228 E_VR31_REGNUM = E_VR0_REGNUM + 31,
229
230 E_NUM_OF_V850E3V5_REGS,
231
232 /* Total number of possible registers. */
233 E_NUM_REGS = E_NUM_OF_V850E3V5_REGS
234 };
235
236 enum
237 {
238 v850_reg_size = 4
239 };
240
241 /* Size of return datatype which fits into all return registers. */
242 enum
243 {
244 E_MAX_RETTYPE_SIZE_IN_REGS = 2 * v850_reg_size
245 };
246
247 /* When v850 support was added to GCC in the late nineties, the intention
248 was to follow the Green Hills ABI for v850. In fact, the authors of
249 that support at the time thought that they were doing so. As far as
250 I can tell, the calling conventions are correct, but the return value
251 conventions were not quite right. Over time, the return value code
252 in this file was modified to mostly reflect what GCC was actually
253 doing instead of to actually follow the Green Hills ABI as it did
254 when the code was first written.
255
256 Renesas defined the RH850 ABI which they use in their compiler. It
257 is similar to the original Green Hills ABI with some minor
258 differences. */
259
260 enum v850_abi
261 {
262 V850_ABI_GCC,
263 V850_ABI_RH850
264 };
265
266 /* Architecture specific data. */
267
268 struct v850_gdbarch_tdep : gdbarch_tdep
269 {
270 /* Fields from the ELF header. */
271 int e_flags = 0;
272 int e_machine = 0;
273
274 /* Which ABI are we using? */
275 enum v850_abi abi {};
276 int eight_byte_align = 0;
277 };
278
279 struct v850_frame_cache
280 {
281 /* Base address. */
282 CORE_ADDR base;
283 LONGEST sp_offset;
284 CORE_ADDR pc;
285
286 /* Flag showing that a frame has been created in the prologue code. */
287 int uses_fp;
288
289 /* Saved registers. */
290 trad_frame_saved_reg *saved_regs;
291 };
292
293 /* Info gleaned from scanning a function's prologue. */
294 struct pifsr /* Info about one saved register. */
295 {
296 int offset; /* Offset from sp or fp. */
297 int cur_frameoffset; /* Current frameoffset. */
298 int reg; /* Saved register number. */
299 };
300
301 static const char *
302 v850_register_name (struct gdbarch *gdbarch, int regnum)
303 {
304 static const char *v850_reg_names[] =
305 { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
306 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
307 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
308 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
309 "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
310 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
311 "sr16", "sr17", "sr18", "sr19", "sr20", "sr21", "sr22", "sr23",
312 "sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
313 "pc", "fp"
314 };
315 if (regnum < 0 || regnum > E_NUM_OF_V850_REGS)
316 return NULL;
317 return v850_reg_names[regnum];
318 }
319
320 static const char *
321 v850e_register_name (struct gdbarch *gdbarch, int regnum)
322 {
323 static const char *v850e_reg_names[] =
324 {
325 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
326 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
327 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
328 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
329 "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
330 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
331 "ctpc", "ctpsw", "dbpc", "dbpsw", "ctbp", "sr21", "sr22", "sr23",
332 "sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
333 "pc", "fp"
334 };
335 if (regnum < 0 || regnum > E_NUM_OF_V850E_REGS)
336 return NULL;
337 return v850e_reg_names[regnum];
338 }
339
340 static const char *
341 v850e2_register_name (struct gdbarch *gdbarch, int regnum)
342 {
343 static const char *v850e2_reg_names[] =
344 {
345 /* General purpose registers. */
346 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
347 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
348 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
349 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
350
351 /* System registers - main banks. */
352 "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "pid", "cfg",
353 "", "", "", "sccfg", "scbp", "eiic", "feic", "dbic",
354 "ctpc", "ctpsw", "dbpc", "dbpsw", "ctbp", "dir", "", "",
355 "", "", "", "", "eiwr", "fewr", "dbwr", "bsel",
356
357
358 /* PC. */
359 "pc", "",
360
361 /* System registers - MPV (PROT00) bank. */
362 "vsecr", "vstid", "vsadr", "", "vmecr", "vmtid", "vmadr", "",
363 "vpecr", "vptid", "vpadr", "", "", "", "", "",
364 "", "", "", "", "", "", "", "",
365 "mca", "mcs", "mcc", "mcr",
366
367 /* System registers - MPU (PROT01) bank. */
368 "mpm", "mpc", "tid", "", "", "", "ipa0l", "ipa0u",
369 "ipa1l", "ipa1u", "ipa2l", "ipa2u", "ipa3l", "ipa3u", "ipa4l", "ipa4u",
370 "dpa0l", "dpa0u", "dpa1l", "dpa1u", "dpa2l", "dpa2u", "dpa3l", "dpa3u",
371 "dpa4l", "dpa4u", "dpa5l", "dpa5u",
372
373 /* FPU system registers. */
374 "", "", "", "", "", "", "fpsr", "fpepc",
375 "fpst", "fpcc", "fpcfg", "fpec", "", "", "", "",
376 "", "", "", "", "", "", "", "",
377 "", "", "", "fpspc"
378 };
379 if (regnum < 0 || regnum >= E_NUM_OF_V850E2_REGS)
380 return NULL;
381 return v850e2_reg_names[regnum];
382 }
383
384 /* Implement the "register_name" gdbarch method for v850e3v5. */
385
386 static const char *
387 v850e3v5_register_name (struct gdbarch *gdbarch, int regnum)
388 {
389 static const char *v850e3v5_reg_names[] =
390 {
391 /* General purpose registers. */
392 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
393 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
394 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
395 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
396
397 /* selID 0, not including FPU registers. The FPU registers are
398 listed later on. */
399 "eipc", "eipsw", "fepc", "fepsw",
400 "", "psw", "" /* fpsr */, "" /* fpepc */,
401 "" /* fpst */, "" /* fpcc */, "" /* fpcfg */, "" /* fpec */,
402 "sesr", "eiic", "feic", "",
403 "ctpc", "ctpsw", "", "", "ctbp", "", "", "",
404 "", "", "", "", "eiwr", "fewr", "", "bsel",
405
406
407 /* PC. */
408 "pc", "",
409
410 /* v850e2 MPV bank. */
411 "", "", "", "", "", "", "", "",
412 "", "", "", "", "", "", "", "",
413 "", "", "", "", "", "", "", "",
414 "", "", "", "",
415
416 /* Skip v850e2 MPU bank. It's tempting to reuse these, but we need
417 32 entries for this bank. */
418 "", "", "", "", "", "", "", "",
419 "", "", "", "", "", "", "", "",
420 "", "", "", "", "", "", "", "",
421 "", "", "", "",
422
423 /* FPU system registers. These are actually in selID 0, but
424 are placed here to preserve register numbering compatibility
425 with previous architectures. */
426 "", "", "", "", "", "", "fpsr", "fpepc",
427 "fpst", "fpcc", "fpcfg", "fpec", "", "", "", "",
428 "", "", "", "", "", "", "", "",
429 "", "", "", "",
430
431 /* selID 1. */
432 "mcfg0", "mcfg1", "rbase", "ebase", "intbp", "mctl", "pid", "fpipr",
433 "", "", "tcsel", "sccfg", "scbp", "hvccfg", "hvcbp", "vsel",
434 "vmprt0", "vmprt1", "vmprt2", "", "", "", "", "vmscctl",
435 "vmsctbl0", "vmsctbl1", "vmsctbl2", "vmsctbl3", "", "", "", "",
436
437 /* selID 2. */
438 "htcfg0", "", "", "", "", "htctl", "mea", "asid",
439 "mei", "ispr", "pmr", "icsr", "intcfg", "", "", "",
440 "tlbsch", "", "", "", "", "", "", "htscctl",
441 "htsctbl0", "htsctbl1", "htsctbl2", "htsctbl3",
442 "htsctbl4", "htsctbl5", "htsctbl6", "htsctbl7",
443
444 /* selID 3. */
445 "", "", "", "", "", "", "", "",
446 "", "", "", "", "", "", "", "",
447 "", "", "", "", "", "", "", "",
448 "", "", "", "", "", "", "", "",
449
450 /* selID 4. */
451 "tlbidx", "", "", "", "telo0", "telo1", "tehi0", "tehi1",
452 "", "", "tlbcfg", "", "bwerrl", "bwerrh", "brerrl", "brerrh",
453 "ictagl", "ictagh", "icdatl", "icdath",
454 "dctagl", "dctagh", "dcdatl", "dcdath",
455 "icctrl", "dcctrl", "iccfg", "dccfg", "icerr", "dcerr", "", "",
456
457 /* selID 5. */
458 "mpm", "mprc", "", "", "mpbrgn", "mptrgn", "", "",
459 "mca", "mcs", "mcc", "mcr", "", "", "", "",
460 "", "", "", "", "mpprt0", "mpprt1", "mpprt2", "",
461 "", "", "", "", "", "", "", "",
462
463 /* selID 6. */
464 "mpla0", "mpua0", "mpat0", "", "mpla1", "mpua1", "mpat1", "",
465 "mpla2", "mpua2", "mpat2", "", "mpla3", "mpua3", "mpat3", "",
466 "mpla4", "mpua4", "mpat4", "", "mpla5", "mpua5", "mpat5", "",
467 "mpla6", "mpua6", "mpat6", "", "mpla7", "mpua7", "mpat7", "",
468
469 /* selID 7. */
470 "mpla8", "mpua8", "mpat8", "", "mpla9", "mpua9", "mpat9", "",
471 "mpla10", "mpua10", "mpat10", "", "mpla11", "mpua11", "mpat11", "",
472 "mpla12", "mpua12", "mpat12", "", "mpla13", "mpua13", "mpat13", "",
473 "mpla14", "mpua14", "mpat14", "", "mpla15", "mpua15", "mpat15", "",
474
475 /* Vector Registers */
476 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
477 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
478 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
479 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31",
480 };
481
482 if (regnum < 0 || regnum >= E_NUM_OF_V850E3V5_REGS)
483 return NULL;
484 return v850e3v5_reg_names[regnum];
485 }
486
487 /* Returns the default type for register N. */
488
489 static struct type *
490 v850_register_type (struct gdbarch *gdbarch, int regnum)
491 {
492 if (regnum == E_PC_REGNUM)
493 return builtin_type (gdbarch)->builtin_func_ptr;
494 else if (E_VR0_REGNUM <= regnum && regnum <= E_VR31_REGNUM)
495 return builtin_type (gdbarch)->builtin_uint64;
496 return builtin_type (gdbarch)->builtin_int32;
497 }
498
499 static int
500 v850_type_is_scalar (struct type *t)
501 {
502 return (t->code () != TYPE_CODE_STRUCT
503 && t->code () != TYPE_CODE_UNION
504 && t->code () != TYPE_CODE_ARRAY);
505 }
506
507 /* Should call_function allocate stack space for a struct return? */
508
509 static int
510 v850_use_struct_convention (struct gdbarch *gdbarch, struct type *type)
511 {
512 int i;
513 struct type *fld_type, *tgt_type;
514 v850_gdbarch_tdep *tdep = (v850_gdbarch_tdep *) gdbarch_tdep (gdbarch);
515
516 if (tdep->abi == V850_ABI_RH850)
517 {
518 if (v850_type_is_scalar (type) && TYPE_LENGTH(type) <= 8)
519 return 0;
520
521 /* Structs are never returned in registers for this ABI. */
522 return 1;
523 }
524 /* 1. The value is greater than 8 bytes -> returned by copying. */
525 if (TYPE_LENGTH (type) > 8)
526 return 1;
527
528 /* 2. The value is a single basic type -> returned in register. */
529 if (v850_type_is_scalar (type))
530 return 0;
531
532 /* The value is a structure or union with a single element and that
533 element is either a single basic type or an array of a single basic
534 type whose size is greater than or equal to 4 -> returned in register. */
535 if ((type->code () == TYPE_CODE_STRUCT
536 || type->code () == TYPE_CODE_UNION)
537 && type->num_fields () == 1)
538 {
539 fld_type = type->field (0).type ();
540 if (v850_type_is_scalar (fld_type) && TYPE_LENGTH (fld_type) >= 4)
541 return 0;
542
543 if (fld_type->code () == TYPE_CODE_ARRAY)
544 {
545 tgt_type = TYPE_TARGET_TYPE (fld_type);
546 if (v850_type_is_scalar (tgt_type) && TYPE_LENGTH (tgt_type) >= 4)
547 return 0;
548 }
549 }
550
551 /* The value is a structure whose first element is an integer or a float,
552 and which contains no arrays of more than two elements -> returned in
553 register. */
554 if (type->code () == TYPE_CODE_STRUCT
555 && v850_type_is_scalar (type->field (0).type ())
556 && TYPE_LENGTH (type->field (0).type ()) == 4)
557 {
558 for (i = 1; i < type->num_fields (); ++i)
559 {
560 fld_type = type->field (0).type ();
561 if (fld_type->code () == TYPE_CODE_ARRAY)
562 {
563 tgt_type = TYPE_TARGET_TYPE (fld_type);
564 if (TYPE_LENGTH (tgt_type) > 0
565 && TYPE_LENGTH (fld_type) / TYPE_LENGTH (tgt_type) > 2)
566 return 1;
567 }
568 }
569 return 0;
570 }
571
572 /* The value is a union which contains at least one field which
573 would be returned in registers according to these rules ->
574 returned in register. */
575 if (type->code () == TYPE_CODE_UNION)
576 {
577 for (i = 0; i < type->num_fields (); ++i)
578 {
579 fld_type = type->field (0).type ();
580 if (!v850_use_struct_convention (gdbarch, fld_type))
581 return 0;
582 }
583 }
584
585 return 1;
586 }
587
588 /* Structure for mapping bits in register lists to register numbers. */
589
590 struct reg_list
591 {
592 long mask;
593 int regno;
594 };
595
596 /* Helper function for v850_scan_prologue to handle prepare instruction. */
597
598 static void
599 v850_handle_prepare (int insn, int insn2, CORE_ADDR * current_pc_ptr,
600 struct v850_frame_cache *pi, struct pifsr **pifsr_ptr)
601 {
602 CORE_ADDR current_pc = *current_pc_ptr;
603 struct pifsr *pifsr = *pifsr_ptr;
604 long next = insn2 & 0xffff;
605 long list12 = ((insn & 1) << 16) + (next & 0xffe0);
606 long offset = (insn & 0x3e) << 1;
607 static struct reg_list reg_table[] =
608 {
609 {0x00800, 20}, /* r20 */
610 {0x00400, 21}, /* r21 */
611 {0x00200, 22}, /* r22 */
612 {0x00100, 23}, /* r23 */
613 {0x08000, 24}, /* r24 */
614 {0x04000, 25}, /* r25 */
615 {0x02000, 26}, /* r26 */
616 {0x01000, 27}, /* r27 */
617 {0x00080, 28}, /* r28 */
618 {0x00040, 29}, /* r29 */
619 {0x10000, 30}, /* ep */
620 {0x00020, 31}, /* lp */
621 {0, 0} /* end of table */
622 };
623 int i;
624
625 if ((next & 0x1f) == 0x0b) /* skip imm16 argument */
626 current_pc += 2;
627 else if ((next & 0x1f) == 0x13) /* skip imm16 argument */
628 current_pc += 2;
629 else if ((next & 0x1f) == 0x1b) /* skip imm32 argument */
630 current_pc += 4;
631
632 /* Calculate the total size of the saved registers, and add it to the
633 immediate value used to adjust SP. */
634 for (i = 0; reg_table[i].mask != 0; i++)
635 if (list12 & reg_table[i].mask)
636 offset += v850_reg_size;
637 pi->sp_offset -= offset;
638
639 /* Calculate the offsets of the registers relative to the value the SP
640 will have after the registers have been pushed and the imm5 value has
641 been subtracted from it. */
642 if (pifsr)
643 {
644 for (i = 0; reg_table[i].mask != 0; i++)
645 {
646 if (list12 & reg_table[i].mask)
647 {
648 int reg = reg_table[i].regno;
649 offset -= v850_reg_size;
650 pifsr->reg = reg;
651 pifsr->offset = offset;
652 pifsr->cur_frameoffset = pi->sp_offset;
653 pifsr++;
654 }
655 }
656 }
657
658 /* Set result parameters. */
659 *current_pc_ptr = current_pc;
660 *pifsr_ptr = pifsr;
661 }
662
663
664 /* Helper function for v850_scan_prologue to handle pushm/pushl instructions.
665 The SR bit of the register list is not supported. gcc does not generate
666 this bit. */
667
668 static void
669 v850_handle_pushm (int insn, int insn2, struct v850_frame_cache *pi,
670 struct pifsr **pifsr_ptr)
671 {
672 struct pifsr *pifsr = *pifsr_ptr;
673 long list12 = ((insn & 0x0f) << 16) + (insn2 & 0xfff0);
674 long offset = 0;
675 static struct reg_list pushml_reg_table[] =
676 {
677 {0x80000, E_PS_REGNUM}, /* PSW */
678 {0x40000, 1}, /* r1 */
679 {0x20000, 2}, /* r2 */
680 {0x10000, 3}, /* r3 */
681 {0x00800, 4}, /* r4 */
682 {0x00400, 5}, /* r5 */
683 {0x00200, 6}, /* r6 */
684 {0x00100, 7}, /* r7 */
685 {0x08000, 8}, /* r8 */
686 {0x04000, 9}, /* r9 */
687 {0x02000, 10}, /* r10 */
688 {0x01000, 11}, /* r11 */
689 {0x00080, 12}, /* r12 */
690 {0x00040, 13}, /* r13 */
691 {0x00020, 14}, /* r14 */
692 {0x00010, 15}, /* r15 */
693 {0, 0} /* end of table */
694 };
695 static struct reg_list pushmh_reg_table[] =
696 {
697 {0x80000, 16}, /* r16 */
698 {0x40000, 17}, /* r17 */
699 {0x20000, 18}, /* r18 */
700 {0x10000, 19}, /* r19 */
701 {0x00800, 20}, /* r20 */
702 {0x00400, 21}, /* r21 */
703 {0x00200, 22}, /* r22 */
704 {0x00100, 23}, /* r23 */
705 {0x08000, 24}, /* r24 */
706 {0x04000, 25}, /* r25 */
707 {0x02000, 26}, /* r26 */
708 {0x01000, 27}, /* r27 */
709 {0x00080, 28}, /* r28 */
710 {0x00040, 29}, /* r29 */
711 {0x00010, 30}, /* r30 */
712 {0x00020, 31}, /* r31 */
713 {0, 0} /* end of table */
714 };
715 struct reg_list *reg_table;
716 int i;
717
718 /* Is this a pushml or a pushmh? */
719 if ((insn2 & 7) == 1)
720 reg_table = pushml_reg_table;
721 else
722 reg_table = pushmh_reg_table;
723
724 /* Calculate the total size of the saved registers, and add it to the
725 immediate value used to adjust SP. */
726 for (i = 0; reg_table[i].mask != 0; i++)
727 if (list12 & reg_table[i].mask)
728 offset += v850_reg_size;
729 pi->sp_offset -= offset;
730
731 /* Calculate the offsets of the registers relative to the value the SP
732 will have after the registers have been pushed and the imm5 value is
733 subtracted from it. */
734 if (pifsr)
735 {
736 for (i = 0; reg_table[i].mask != 0; i++)
737 {
738 if (list12 & reg_table[i].mask)
739 {
740 int reg = reg_table[i].regno;
741 offset -= v850_reg_size;
742 pifsr->reg = reg;
743 pifsr->offset = offset;
744 pifsr->cur_frameoffset = pi->sp_offset;
745 pifsr++;
746 }
747 }
748 }
749
750 /* Set result parameters. */
751 *pifsr_ptr = pifsr;
752 }
753
754 /* Helper function to evaluate if register is one of the "save" registers.
755 This allows to simplify conditionals in v850_analyze_prologue a lot. */
756
757 static int
758 v850_is_save_register (int reg)
759 {
760 /* The caller-save registers are R2, R20 - R29 and R31. All other
761 registers are either special purpose (PC, SP), argument registers,
762 or just considered free for use in the caller. */
763 return reg == E_R2_REGNUM
764 || (reg >= E_R20_REGNUM && reg <= E_R29_REGNUM)
765 || reg == E_R31_REGNUM;
766 }
767
768 /* Scan the prologue of the function that contains PC, and record what
769 we find in PI. Returns the pc after the prologue. Note that the
770 addresses saved in frame->saved_regs are just frame relative (negative
771 offsets from the frame pointer). This is because we don't know the
772 actual value of the frame pointer yet. In some circumstances, the
773 frame pointer can't be determined till after we have scanned the
774 prologue. */
775
776 static CORE_ADDR
777 v850_analyze_prologue (struct gdbarch *gdbarch,
778 CORE_ADDR func_addr, CORE_ADDR pc,
779 struct v850_frame_cache *pi, ULONGEST ctbp)
780 {
781 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
782 CORE_ADDR prologue_end, current_pc;
783 struct pifsr pifsrs[E_NUM_REGS + 1];
784 struct pifsr *pifsr, *pifsr_tmp;
785 int ep_used;
786 int reg;
787 CORE_ADDR save_pc, save_end;
788 int regsave_func_p;
789 int r12_tmp;
790
791 memset (&pifsrs, 0, sizeof pifsrs);
792 pifsr = &pifsrs[0];
793
794 prologue_end = pc;
795
796 /* Now, search the prologue looking for instructions that setup fp, save
797 rp, adjust sp and such. We also record the frame offset of any saved
798 registers. */
799
800 pi->sp_offset = 0;
801 pi->uses_fp = 0;
802 ep_used = 0;
803 regsave_func_p = 0;
804 save_pc = 0;
805 save_end = 0;
806 r12_tmp = 0;
807
808 for (current_pc = func_addr; current_pc < prologue_end;)
809 {
810 int insn;
811 int insn2 = -1; /* dummy value */
812
813 insn = read_memory_integer (current_pc, 2, byte_order);
814 current_pc += 2;
815 if ((insn & 0x0780) >= 0x0600) /* Four byte instruction? */
816 {
817 insn2 = read_memory_integer (current_pc, 2, byte_order);
818 current_pc += 2;
819 }
820
821 if ((insn & 0xffc0) == ((10 << 11) | 0x0780) && !regsave_func_p)
822 { /* jarl <func>,10 */
823 long low_disp = insn2 & ~(long) 1;
824 long disp = (((((insn & 0x3f) << 16) + low_disp)
825 & ~(long) 1) ^ 0x00200000) - 0x00200000;
826
827 save_pc = current_pc;
828 save_end = prologue_end;
829 regsave_func_p = 1;
830 current_pc += disp - 4;
831 prologue_end = (current_pc
832 + (2 * 3) /* moves to/from ep */
833 + 4 /* addi <const>,sp,sp */
834 + 2 /* jmp [r10] */
835 + (2 * 12) /* sst.w to save r2, r20-r29, r31 */
836 + 20); /* slop area */
837 }
838 else if ((insn & 0xffc0) == 0x0200 && !regsave_func_p)
839 { /* callt <imm6> */
840 long adr = ctbp + ((insn & 0x3f) << 1);
841
842 save_pc = current_pc;
843 save_end = prologue_end;
844 regsave_func_p = 1;
845 current_pc = ctbp + (read_memory_unsigned_integer (adr, 2, byte_order)
846 & 0xffff);
847 prologue_end = (current_pc
848 + (2 * 3) /* prepare list2,imm5,sp/imm */
849 + 4 /* ctret */
850 + 20); /* slop area */
851 continue;
852 }
853 else if ((insn & 0xffc0) == 0x0780) /* prepare list2,imm5 */
854 {
855 v850_handle_prepare (insn, insn2, &current_pc, pi, &pifsr);
856 continue;
857 }
858 else if (insn == 0x07e0 && regsave_func_p && insn2 == 0x0144)
859 { /* ctret after processing register save. */
860 current_pc = save_pc;
861 prologue_end = save_end;
862 regsave_func_p = 0;
863 continue;
864 }
865 else if ((insn & 0xfff0) == 0x07e0 && (insn2 & 5) == 1)
866 { /* pushml, pushmh */
867 v850_handle_pushm (insn, insn2, pi, &pifsr);
868 continue;
869 }
870 else if ((insn & 0xffe0) == 0x0060 && regsave_func_p)
871 { /* jmp after processing register save. */
872 current_pc = save_pc;
873 prologue_end = save_end;
874 regsave_func_p = 0;
875 continue;
876 }
877 else if ((insn & 0x07c0) == 0x0780 /* jarl or jr */
878 || (insn & 0xffe0) == 0x0060 /* jmp */
879 || (insn & 0x0780) == 0x0580) /* branch */
880 {
881 break; /* Ran into end of prologue. */
882 }
883
884 else if ((insn & 0xffe0) == ((E_SP_REGNUM << 11) | 0x0240))
885 /* add <imm>,sp */
886 pi->sp_offset += ((insn & 0x1f) ^ 0x10) - 0x10;
887 else if (insn == ((E_SP_REGNUM << 11) | 0x0600 | E_SP_REGNUM))
888 /* addi <imm>,sp,sp */
889 pi->sp_offset += insn2;
890 else if (insn == ((E_FP_REGNUM << 11) | 0x0000 | E_SP_REGNUM))
891 /* mov sp,fp */
892 pi->uses_fp = 1;
893 else if (insn == ((E_R12_REGNUM << 11) | 0x0640 | E_R0_REGNUM))
894 /* movhi hi(const),r0,r12 */
895 r12_tmp = insn2 << 16;
896 else if (insn == ((E_R12_REGNUM << 11) | 0x0620 | E_R12_REGNUM))
897 /* movea lo(const),r12,r12 */
898 r12_tmp += insn2;
899 else if (insn == ((E_SP_REGNUM << 11) | 0x01c0 | E_R12_REGNUM) && r12_tmp)
900 /* add r12,sp */
901 pi->sp_offset += r12_tmp;
902 else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_SP_REGNUM))
903 /* mov sp,ep */
904 ep_used = 1;
905 else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_R1_REGNUM))
906 /* mov r1,ep */
907 ep_used = 0;
908 else if (((insn & 0x07ff) == (0x0760 | E_SP_REGNUM)
909 || (pi->uses_fp
910 && (insn & 0x07ff) == (0x0760 | E_FP_REGNUM)))
911 && pifsr
912 && v850_is_save_register (reg = (insn >> 11) & 0x1f))
913 {
914 /* st.w <reg>,<offset>[sp] or st.w <reg>,<offset>[fp] */
915 pifsr->reg = reg;
916 pifsr->offset = insn2 & ~1;
917 pifsr->cur_frameoffset = pi->sp_offset;
918 pifsr++;
919 }
920 else if (ep_used
921 && ((insn & 0x0781) == 0x0501)
922 && pifsr
923 && v850_is_save_register (reg = (insn >> 11) & 0x1f))
924 {
925 /* sst.w <reg>,<offset>[ep] */
926 pifsr->reg = reg;
927 pifsr->offset = (insn & 0x007e) << 1;
928 pifsr->cur_frameoffset = pi->sp_offset;
929 pifsr++;
930 }
931 }
932
933 /* Fix up any offsets to the final offset. If a frame pointer was created,
934 use it instead of the stack pointer. */
935 for (pifsr_tmp = pifsrs; pifsr_tmp != pifsr; pifsr_tmp++)
936 {
937 pifsr_tmp->offset -= pi->sp_offset - pifsr_tmp->cur_frameoffset;
938 pi->saved_regs[pifsr_tmp->reg].set_addr (pifsr_tmp->offset);
939 }
940
941 return current_pc;
942 }
943
944 /* Return the address of the first code past the prologue of the function. */
945
946 static CORE_ADDR
947 v850_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
948 {
949 CORE_ADDR func_addr, func_end;
950
951 /* See what the symbol table says. */
952
953 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
954 {
955 struct symtab_and_line sal;
956
957 sal = find_pc_line (func_addr, 0);
958 if (sal.line != 0 && sal.end < func_end)
959 return sal.end;
960
961 /* Either there's no line info, or the line after the prologue is after
962 the end of the function. In this case, there probably isn't a
963 prologue. */
964 return pc;
965 }
966
967 /* We can't find the start of this function, so there's nothing we
968 can do. */
969 return pc;
970 }
971
972 /* Return 1 if the data structure has any 8-byte fields that'll require
973 the entire data structure to be aligned. Otherwise, return 0. */
974
975 static int
976 v850_eight_byte_align_p (struct type *type)
977 {
978 type = check_typedef (type);
979
980 if (v850_type_is_scalar (type))
981 return (TYPE_LENGTH (type) == 8);
982 else
983 {
984 int i;
985
986 for (i = 0; i < type->num_fields (); i++)
987 {
988 if (v850_eight_byte_align_p (type->field (i).type ()))
989 return 1;
990 }
991 }
992 return 0;
993 }
994
995 static CORE_ADDR
996 v850_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
997 {
998 return sp & ~3;
999 }
1000
1001 /* Setup arguments and LP for a call to the target. First four args
1002 go in R6->R9, subsequent args go into sp + 16 -> sp + ... Structs
1003 are passed by reference. 64 bit quantities (doubles and long longs)
1004 may be split between the regs and the stack. When calling a function
1005 that returns a struct, a pointer to the struct is passed in as a secret
1006 first argument (always in R6).
1007
1008 Stack space for the args has NOT been allocated: that job is up to us. */
1009
1010 static CORE_ADDR
1011 v850_push_dummy_call (struct gdbarch *gdbarch,
1012 struct value *function,
1013 struct regcache *regcache,
1014 CORE_ADDR bp_addr,
1015 int nargs,
1016 struct value **args,
1017 CORE_ADDR sp,
1018 function_call_return_method return_method,
1019 CORE_ADDR struct_addr)
1020 {
1021 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1022 int argreg;
1023 int argnum;
1024 int arg_space = 0;
1025 int stack_offset;
1026 v850_gdbarch_tdep *tdep = (v850_gdbarch_tdep *) gdbarch_tdep (gdbarch);
1027
1028 if (tdep->abi == V850_ABI_RH850)
1029 stack_offset = 0;
1030 else
1031 {
1032 /* The offset onto the stack at which we will start copying parameters
1033 (after the registers are used up) begins at 16 rather than at zero.
1034 That's how the ABI is defined, though there's no indication that these
1035 16 bytes are used for anything, not even for saving incoming
1036 argument registers. */
1037 stack_offset = 16;
1038 }
1039
1040 /* Now make space on the stack for the args. */
1041 for (argnum = 0; argnum < nargs; argnum++)
1042 arg_space += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3);
1043 sp -= arg_space + stack_offset;
1044
1045 argreg = E_ARG0_REGNUM;
1046 /* The struct_return pointer occupies the first parameter register. */
1047 if (return_method == return_method_struct)
1048 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
1049
1050 /* Now load as many as possible of the first arguments into
1051 registers, and push the rest onto the stack. There are 16 bytes
1052 in four registers available. Loop thru args from first to last. */
1053 for (argnum = 0; argnum < nargs; argnum++)
1054 {
1055 int len;
1056 gdb_byte *val;
1057 gdb_byte valbuf[v850_reg_size];
1058
1059 if (!v850_type_is_scalar (value_type (*args))
1060 && tdep->abi == V850_ABI_GCC
1061 && TYPE_LENGTH (value_type (*args)) > E_MAX_RETTYPE_SIZE_IN_REGS)
1062 {
1063 store_unsigned_integer (valbuf, 4, byte_order,
1064 value_address (*args));
1065 len = 4;
1066 val = valbuf;
1067 }
1068 else
1069 {
1070 len = TYPE_LENGTH (value_type (*args));
1071 val = (gdb_byte *) value_contents (*args).data ();
1072 }
1073
1074 if (tdep->eight_byte_align
1075 && v850_eight_byte_align_p (value_type (*args)))
1076 {
1077 if (argreg <= E_ARGLAST_REGNUM && (argreg & 1))
1078 argreg++;
1079 else if (stack_offset & 0x4)
1080 stack_offset += 4;
1081 }
1082
1083 while (len > 0)
1084 if (argreg <= E_ARGLAST_REGNUM)
1085 {
1086 CORE_ADDR regval;
1087
1088 regval = extract_unsigned_integer (val, v850_reg_size, byte_order);
1089 regcache_cooked_write_unsigned (regcache, argreg, regval);
1090
1091 len -= v850_reg_size;
1092 val += v850_reg_size;
1093 argreg++;
1094 }
1095 else
1096 {
1097 write_memory (sp + stack_offset, val, 4);
1098
1099 len -= 4;
1100 val += 4;
1101 stack_offset += 4;
1102 }
1103 args++;
1104 }
1105
1106 /* Store return address. */
1107 regcache_cooked_write_unsigned (regcache, E_LP_REGNUM, bp_addr);
1108
1109 /* Update stack pointer. */
1110 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
1111
1112 return sp;
1113 }
1114
1115 static void
1116 v850_extract_return_value (struct type *type, struct regcache *regcache,
1117 gdb_byte *valbuf)
1118 {
1119 struct gdbarch *gdbarch = regcache->arch ();
1120 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1121 int len = TYPE_LENGTH (type);
1122
1123 if (len <= v850_reg_size)
1124 {
1125 ULONGEST val;
1126
1127 regcache_cooked_read_unsigned (regcache, E_V0_REGNUM, &val);
1128 store_unsigned_integer (valbuf, len, byte_order, val);
1129 }
1130 else if (len <= 2 * v850_reg_size)
1131 {
1132 int i, regnum = E_V0_REGNUM;
1133 gdb_byte buf[v850_reg_size];
1134 for (i = 0; len > 0; i += 4, len -= 4)
1135 {
1136 regcache->raw_read (regnum++, buf);
1137 memcpy (valbuf + i, buf, len > 4 ? 4 : len);
1138 }
1139 }
1140 }
1141
1142 static void
1143 v850_store_return_value (struct type *type, struct regcache *regcache,
1144 const gdb_byte *valbuf)
1145 {
1146 struct gdbarch *gdbarch = regcache->arch ();
1147 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1148 int len = TYPE_LENGTH (type);
1149
1150 if (len <= v850_reg_size)
1151 regcache_cooked_write_unsigned
1152 (regcache, E_V0_REGNUM,
1153 extract_unsigned_integer (valbuf, len, byte_order));
1154 else if (len <= 2 * v850_reg_size)
1155 {
1156 int i, regnum = E_V0_REGNUM;
1157 for (i = 0; i < len; i += 4)
1158 regcache->raw_write (regnum++, valbuf + i);
1159 }
1160 }
1161
1162 static enum return_value_convention
1163 v850_return_value (struct gdbarch *gdbarch, struct value *function,
1164 struct type *type, struct regcache *regcache,
1165 gdb_byte *readbuf, const gdb_byte *writebuf)
1166 {
1167 if (v850_use_struct_convention (gdbarch, type))
1168 return RETURN_VALUE_STRUCT_CONVENTION;
1169 if (writebuf)
1170 v850_store_return_value (type, regcache, writebuf);
1171 else if (readbuf)
1172 v850_extract_return_value (type, regcache, readbuf);
1173 return RETURN_VALUE_REGISTER_CONVENTION;
1174 }
1175
1176 /* Implement the breakpoint_kind_from_pc gdbarch method. */
1177
1178 static int
1179 v850_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
1180 {
1181 return 2;
1182 }
1183
1184 /* Implement the sw_breakpoint_from_kind gdbarch method. */
1185
1186 static const gdb_byte *
1187 v850_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
1188 {
1189 *size = kind;
1190
1191 switch (gdbarch_bfd_arch_info (gdbarch)->mach)
1192 {
1193 case bfd_mach_v850e2:
1194 case bfd_mach_v850e2v3:
1195 case bfd_mach_v850e3v5:
1196 {
1197 /* Implement software breakpoints by using the dbtrap instruction.
1198 Older architectures had no such instruction. For those, an
1199 unconditional branch to self instruction is used. */
1200
1201 static unsigned char dbtrap_breakpoint[] = { 0x40, 0xf8 };
1202
1203 return dbtrap_breakpoint;
1204 }
1205 break;
1206 default:
1207 {
1208 static unsigned char breakpoint[] = { 0x85, 0x05 };
1209
1210 return breakpoint;
1211 }
1212 break;
1213 }
1214 }
1215
1216 static struct v850_frame_cache *
1217 v850_alloc_frame_cache (struct frame_info *this_frame)
1218 {
1219 struct v850_frame_cache *cache;
1220
1221 cache = FRAME_OBSTACK_ZALLOC (struct v850_frame_cache);
1222 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1223
1224 /* Base address. */
1225 cache->base = 0;
1226 cache->sp_offset = 0;
1227 cache->pc = 0;
1228
1229 /* Frameless until proven otherwise. */
1230 cache->uses_fp = 0;
1231
1232 return cache;
1233 }
1234
1235 static struct v850_frame_cache *
1236 v850_frame_cache (struct frame_info *this_frame, void **this_cache)
1237 {
1238 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1239 struct v850_frame_cache *cache;
1240 CORE_ADDR current_pc;
1241 int i;
1242
1243 if (*this_cache)
1244 return (struct v850_frame_cache *) *this_cache;
1245
1246 cache = v850_alloc_frame_cache (this_frame);
1247 *this_cache = cache;
1248
1249 /* In principle, for normal frames, fp holds the frame pointer,
1250 which holds the base address for the current stack frame.
1251 However, for functions that don't need it, the frame pointer is
1252 optional. For these "frameless" functions the frame pointer is
1253 actually the frame pointer of the calling frame. */
1254 cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM);
1255 if (cache->base == 0)
1256 return cache;
1257
1258 cache->pc = get_frame_func (this_frame);
1259 current_pc = get_frame_pc (this_frame);
1260 if (cache->pc != 0)
1261 {
1262 ULONGEST ctbp;
1263 ctbp = get_frame_register_unsigned (this_frame, E_CTBP_REGNUM);
1264 v850_analyze_prologue (gdbarch, cache->pc, current_pc, cache, ctbp);
1265 }
1266
1267 if (!cache->uses_fp)
1268 {
1269 /* We didn't find a valid frame, which means that CACHE->base
1270 currently holds the frame pointer for our calling frame. If
1271 we're at the start of a function, or somewhere half-way its
1272 prologue, the function's frame probably hasn't been fully
1273 setup yet. Try to reconstruct the base address for the stack
1274 frame by looking at the stack pointer. For truly "frameless"
1275 functions this might work too. */
1276 cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
1277 }
1278
1279 /* Now that we have the base address for the stack frame we can
1280 calculate the value of sp in the calling frame. */
1281 cache->saved_regs[E_SP_REGNUM].set_value (cache->base - cache->sp_offset);
1282
1283 /* Adjust all the saved registers such that they contain addresses
1284 instead of offsets. */
1285 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1286 if (cache->saved_regs[i].is_addr ())
1287 cache->saved_regs[i].set_addr (cache->saved_regs[i].addr ()
1288 + cache->base);
1289
1290 /* The call instruction moves the caller's PC in the callee's LP.
1291 Since this is an unwind, do the reverse. Copy the location of LP
1292 into PC (the address / regnum) so that a request for PC will be
1293 converted into a request for the LP. */
1294
1295 cache->saved_regs[E_PC_REGNUM] = cache->saved_regs[E_LP_REGNUM];
1296
1297 return cache;
1298 }
1299
1300
1301 static struct value *
1302 v850_frame_prev_register (struct frame_info *this_frame,
1303 void **this_cache, int regnum)
1304 {
1305 struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache);
1306
1307 gdb_assert (regnum >= 0);
1308
1309 return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
1310 }
1311
1312 static void
1313 v850_frame_this_id (struct frame_info *this_frame, void **this_cache,
1314 struct frame_id *this_id)
1315 {
1316 struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache);
1317
1318 /* This marks the outermost frame. */
1319 if (cache->base == 0)
1320 return;
1321
1322 *this_id = frame_id_build (cache->saved_regs[E_SP_REGNUM].addr (), cache->pc);
1323 }
1324
1325 static const struct frame_unwind v850_frame_unwind = {
1326 "v850 prologue",
1327 NORMAL_FRAME,
1328 default_frame_unwind_stop_reason,
1329 v850_frame_this_id,
1330 v850_frame_prev_register,
1331 NULL,
1332 default_frame_sniffer
1333 };
1334
1335 static CORE_ADDR
1336 v850_frame_base_address (struct frame_info *this_frame, void **this_cache)
1337 {
1338 struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache);
1339
1340 return cache->base;
1341 }
1342
1343 static const struct frame_base v850_frame_base = {
1344 &v850_frame_unwind,
1345 v850_frame_base_address,
1346 v850_frame_base_address,
1347 v850_frame_base_address
1348 };
1349
1350 static struct gdbarch *
1351 v850_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1352 {
1353 struct gdbarch *gdbarch;
1354 int e_flags, e_machine;
1355
1356 /* Extract the elf_flags if available. */
1357 if (info.abfd != NULL
1358 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1359 {
1360 e_flags = elf_elfheader (info.abfd)->e_flags;
1361 e_machine = elf_elfheader (info.abfd)->e_machine;
1362 }
1363 else
1364 {
1365 e_flags = 0;
1366 e_machine = 0;
1367 }
1368
1369
1370 /* Try to find the architecture in the list of already defined
1371 architectures. */
1372 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1373 arches != NULL;
1374 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1375 {
1376 v850_gdbarch_tdep *tdep
1377 = (v850_gdbarch_tdep *) gdbarch_tdep (arches->gdbarch);
1378
1379 if (tdep->e_flags != e_flags || tdep->e_machine != e_machine)
1380 continue;
1381
1382 return arches->gdbarch;
1383 }
1384
1385 v850_gdbarch_tdep *tdep = new v850_gdbarch_tdep;
1386 tdep->e_flags = e_flags;
1387 tdep->e_machine = e_machine;
1388
1389 switch (tdep->e_machine)
1390 {
1391 case EM_V800:
1392 tdep->abi = V850_ABI_RH850;
1393 break;
1394 default:
1395 tdep->abi = V850_ABI_GCC;
1396 break;
1397 }
1398
1399 tdep->eight_byte_align = (tdep->e_flags & EF_RH850_DATA_ALIGN8) ? 1 : 0;
1400 gdbarch = gdbarch_alloc (&info, tdep);
1401
1402 switch (info.bfd_arch_info->mach)
1403 {
1404 case bfd_mach_v850:
1405 set_gdbarch_register_name (gdbarch, v850_register_name);
1406 set_gdbarch_num_regs (gdbarch, E_NUM_OF_V850_REGS);
1407 break;
1408 case bfd_mach_v850e:
1409 case bfd_mach_v850e1:
1410 set_gdbarch_register_name (gdbarch, v850e_register_name);
1411 set_gdbarch_num_regs (gdbarch, E_NUM_OF_V850E_REGS);
1412 break;
1413 case bfd_mach_v850e2:
1414 case bfd_mach_v850e2v3:
1415 set_gdbarch_register_name (gdbarch, v850e2_register_name);
1416 set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
1417 break;
1418 case bfd_mach_v850e3v5:
1419 set_gdbarch_register_name (gdbarch, v850e3v5_register_name);
1420 set_gdbarch_num_regs (gdbarch, E_NUM_OF_V850E3V5_REGS);
1421 break;
1422 }
1423
1424 set_gdbarch_num_pseudo_regs (gdbarch, 0);
1425 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
1426 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
1427 set_gdbarch_fp0_regnum (gdbarch, -1);
1428
1429 set_gdbarch_register_type (gdbarch, v850_register_type);
1430
1431 set_gdbarch_char_signed (gdbarch, 1);
1432 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1433 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1434 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1435 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1436
1437 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1438 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1439 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1440
1441 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1442 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1443
1444 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1445
1446 set_gdbarch_breakpoint_kind_from_pc (gdbarch, v850_breakpoint_kind_from_pc);
1447 set_gdbarch_sw_breakpoint_from_kind (gdbarch, v850_sw_breakpoint_from_kind);
1448 set_gdbarch_return_value (gdbarch, v850_return_value);
1449 set_gdbarch_push_dummy_call (gdbarch, v850_push_dummy_call);
1450 set_gdbarch_skip_prologue (gdbarch, v850_skip_prologue);
1451
1452 set_gdbarch_frame_align (gdbarch, v850_frame_align);
1453 frame_base_set_default (gdbarch, &v850_frame_base);
1454
1455 /* Hook in ABI-specific overrides, if they have been registered. */
1456 gdbarch_init_osabi (info, gdbarch);
1457
1458 dwarf2_append_unwinders (gdbarch);
1459 frame_unwind_append_unwinder (gdbarch, &v850_frame_unwind);
1460
1461 return gdbarch;
1462 }
1463
1464 void _initialize_v850_tdep ();
1465 void
1466 _initialize_v850_tdep ()
1467 {
1468 register_gdbarch_init (bfd_arch_v850, v850_gdbarch_init);
1469 register_gdbarch_init (bfd_arch_v850_rh850, v850_gdbarch_init);
1470 }