Change breakpoint_re_set_default to a method
[binutils-gdb.git] / gdb / valarith.c
1 /* Perform arithmetic and other operations on values, for GDB.
2
3 Copyright (C) 1986-2022 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "value.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "expression.h"
25 #include "target.h"
26 #include "language.h"
27 #include "target-float.h"
28 #include "infcall.h"
29 #include "gdbsupport/byte-vector.h"
30 #include "gdbarch.h"
31
32 /* Forward declarations. */
33 static struct value *value_subscripted_rvalue (struct value *array,
34 LONGEST index,
35 LONGEST lowerbound);
36
37 /* Define whether or not the C operator '/' truncates towards zero for
38 differently signed operands (truncation direction is undefined in C). */
39
40 #ifndef TRUNCATION_TOWARDS_ZERO
41 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
42 #endif
43
44 /* Given a pointer, return the size of its target.
45 If the pointer type is void *, then return 1.
46 If the target type is incomplete, then error out.
47 This isn't a general purpose function, but just a
48 helper for value_ptradd. */
49
50 static LONGEST
51 find_size_for_pointer_math (struct type *ptr_type)
52 {
53 LONGEST sz = -1;
54 struct type *ptr_target;
55
56 gdb_assert (ptr_type->code () == TYPE_CODE_PTR);
57 ptr_target = check_typedef (TYPE_TARGET_TYPE (ptr_type));
58
59 sz = type_length_units (ptr_target);
60 if (sz == 0)
61 {
62 if (ptr_type->code () == TYPE_CODE_VOID)
63 sz = 1;
64 else
65 {
66 const char *name;
67
68 name = ptr_target->name ();
69 if (name == NULL)
70 error (_("Cannot perform pointer math on incomplete types, "
71 "try casting to a known type, or void *."));
72 else
73 error (_("Cannot perform pointer math on incomplete type \"%s\", "
74 "try casting to a known type, or void *."), name);
75 }
76 }
77 return sz;
78 }
79
80 /* Given a pointer ARG1 and an integral value ARG2, return the
81 result of C-style pointer arithmetic ARG1 + ARG2. */
82
83 struct value *
84 value_ptradd (struct value *arg1, LONGEST arg2)
85 {
86 struct type *valptrtype;
87 LONGEST sz;
88 struct value *result;
89
90 arg1 = coerce_array (arg1);
91 valptrtype = check_typedef (value_type (arg1));
92 sz = find_size_for_pointer_math (valptrtype);
93
94 result = value_from_pointer (valptrtype,
95 value_as_address (arg1) + sz * arg2);
96 if (VALUE_LVAL (result) != lval_internalvar)
97 set_value_component_location (result, arg1);
98 return result;
99 }
100
101 /* Given two compatible pointer values ARG1 and ARG2, return the
102 result of C-style pointer arithmetic ARG1 - ARG2. */
103
104 LONGEST
105 value_ptrdiff (struct value *arg1, struct value *arg2)
106 {
107 struct type *type1, *type2;
108 LONGEST sz;
109
110 arg1 = coerce_array (arg1);
111 arg2 = coerce_array (arg2);
112 type1 = check_typedef (value_type (arg1));
113 type2 = check_typedef (value_type (arg2));
114
115 gdb_assert (type1->code () == TYPE_CODE_PTR);
116 gdb_assert (type2->code () == TYPE_CODE_PTR);
117
118 if (TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)))
119 != TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type2))))
120 error (_("First argument of `-' is a pointer and "
121 "second argument is neither\n"
122 "an integer nor a pointer of the same type."));
123
124 sz = type_length_units (check_typedef (TYPE_TARGET_TYPE (type1)));
125 if (sz == 0)
126 {
127 warning (_("Type size unknown, assuming 1. "
128 "Try casting to a known type, or void *."));
129 sz = 1;
130 }
131
132 return (value_as_long (arg1) - value_as_long (arg2)) / sz;
133 }
134
135 /* Return the value of ARRAY[IDX].
136
137 ARRAY may be of type TYPE_CODE_ARRAY or TYPE_CODE_STRING. If the
138 current language supports C-style arrays, it may also be TYPE_CODE_PTR.
139
140 See comments in value_coerce_array() for rationale for reason for
141 doing lower bounds adjustment here rather than there.
142 FIXME: Perhaps we should validate that the index is valid and if
143 verbosity is set, warn about invalid indices (but still use them). */
144
145 struct value *
146 value_subscript (struct value *array, LONGEST index)
147 {
148 bool c_style = current_language->c_style_arrays_p ();
149 struct type *tarray;
150
151 array = coerce_ref (array);
152 tarray = check_typedef (value_type (array));
153
154 if (tarray->code () == TYPE_CODE_ARRAY
155 || tarray->code () == TYPE_CODE_STRING)
156 {
157 struct type *range_type = tarray->index_type ();
158 gdb::optional<LONGEST> lowerbound = get_discrete_low_bound (range_type);
159 if (!lowerbound.has_value ())
160 lowerbound = 0;
161
162 if (VALUE_LVAL (array) != lval_memory)
163 return value_subscripted_rvalue (array, index, *lowerbound);
164
165 gdb::optional<LONGEST> upperbound
166 = get_discrete_high_bound (range_type);
167
168 if (!upperbound.has_value ())
169 upperbound = -1;
170
171 if (index >= *lowerbound && index <= *upperbound)
172 return value_subscripted_rvalue (array, index, *lowerbound);
173
174 if (!c_style)
175 {
176 /* Emit warning unless we have an array of unknown size.
177 An array of unknown size has lowerbound 0 and upperbound -1. */
178 if (*upperbound > -1)
179 warning (_("array or string index out of range"));
180 /* fall doing C stuff */
181 c_style = true;
182 }
183
184 index -= *lowerbound;
185 array = value_coerce_array (array);
186 }
187
188 if (c_style)
189 return value_ind (value_ptradd (array, index));
190 else
191 error (_("not an array or string"));
192 }
193
194 /* Return the value of EXPR[IDX], expr an aggregate rvalue
195 (eg, a vector register). This routine used to promote floats
196 to doubles, but no longer does. */
197
198 static struct value *
199 value_subscripted_rvalue (struct value *array, LONGEST index,
200 LONGEST lowerbound)
201 {
202 struct type *array_type = check_typedef (value_type (array));
203 struct type *elt_type = TYPE_TARGET_TYPE (array_type);
204 LONGEST elt_size = type_length_units (elt_type);
205
206 /* Fetch the bit stride and convert it to a byte stride, assuming 8 bits
207 in a byte. */
208 LONGEST stride = array_type->bit_stride ();
209 if (stride != 0)
210 {
211 struct gdbarch *arch = elt_type->arch ();
212 int unit_size = gdbarch_addressable_memory_unit_size (arch);
213 elt_size = stride / (unit_size * 8);
214 }
215
216 LONGEST elt_offs = elt_size * (index - lowerbound);
217 bool array_upper_bound_undefined
218 = array_type->bounds ()->high.kind () == PROP_UNDEFINED;
219
220 if (index < lowerbound
221 || (!array_upper_bound_undefined
222 && elt_offs >= type_length_units (array_type))
223 || (VALUE_LVAL (array) != lval_memory && array_upper_bound_undefined))
224 {
225 if (type_not_associated (array_type))
226 error (_("no such vector element (vector not associated)"));
227 else if (type_not_allocated (array_type))
228 error (_("no such vector element (vector not allocated)"));
229 else
230 error (_("no such vector element"));
231 }
232
233 if (is_dynamic_type (elt_type))
234 {
235 CORE_ADDR address;
236
237 address = value_address (array) + elt_offs;
238 elt_type = resolve_dynamic_type (elt_type, {}, address);
239 }
240
241 return value_from_component (array, elt_type, elt_offs);
242 }
243
244 \f
245 /* Check to see if either argument is a structure, or a reference to
246 one. This is called so we know whether to go ahead with the normal
247 binop or look for a user defined function instead.
248
249 For now, we do not overload the `=' operator. */
250
251 int
252 binop_types_user_defined_p (enum exp_opcode op,
253 struct type *type1, struct type *type2)
254 {
255 if (op == BINOP_ASSIGN)
256 return 0;
257
258 type1 = check_typedef (type1);
259 if (TYPE_IS_REFERENCE (type1))
260 type1 = check_typedef (TYPE_TARGET_TYPE (type1));
261
262 type2 = check_typedef (type2);
263 if (TYPE_IS_REFERENCE (type2))
264 type2 = check_typedef (TYPE_TARGET_TYPE (type2));
265
266 return (type1->code () == TYPE_CODE_STRUCT
267 || type2->code () == TYPE_CODE_STRUCT);
268 }
269
270 /* Check to see if either argument is a structure, or a reference to
271 one. This is called so we know whether to go ahead with the normal
272 binop or look for a user defined function instead.
273
274 For now, we do not overload the `=' operator. */
275
276 int
277 binop_user_defined_p (enum exp_opcode op,
278 struct value *arg1, struct value *arg2)
279 {
280 return binop_types_user_defined_p (op, value_type (arg1), value_type (arg2));
281 }
282
283 /* Check to see if argument is a structure. This is called so
284 we know whether to go ahead with the normal unop or look for a
285 user defined function instead.
286
287 For now, we do not overload the `&' operator. */
288
289 int
290 unop_user_defined_p (enum exp_opcode op, struct value *arg1)
291 {
292 struct type *type1;
293
294 if (op == UNOP_ADDR)
295 return 0;
296 type1 = check_typedef (value_type (arg1));
297 if (TYPE_IS_REFERENCE (type1))
298 type1 = check_typedef (TYPE_TARGET_TYPE (type1));
299 return type1->code () == TYPE_CODE_STRUCT;
300 }
301
302 /* Try to find an operator named OPERATOR which takes NARGS arguments
303 specified in ARGS. If the operator found is a static member operator
304 *STATIC_MEMFUNP will be set to 1, and otherwise 0.
305 The search if performed through find_overload_match which will handle
306 member operators, non member operators, operators imported implicitly or
307 explicitly, and perform correct overload resolution in all of the above
308 situations or combinations thereof. */
309
310 static struct value *
311 value_user_defined_cpp_op (gdb::array_view<value *> args, char *oper,
312 int *static_memfuncp, enum noside noside)
313 {
314
315 struct symbol *symp = NULL;
316 struct value *valp = NULL;
317
318 find_overload_match (args, oper, BOTH /* could be method */,
319 &args[0] /* objp */,
320 NULL /* pass NULL symbol since symbol is unknown */,
321 &valp, &symp, static_memfuncp, 0, noside);
322
323 if (valp)
324 return valp;
325
326 if (symp)
327 {
328 /* This is a non member function and does not
329 expect a reference as its first argument
330 rather the explicit structure. */
331 args[0] = value_ind (args[0]);
332 return value_of_variable (symp, 0);
333 }
334
335 error (_("Could not find %s."), oper);
336 }
337
338 /* Lookup user defined operator NAME. Return a value representing the
339 function, otherwise return NULL. */
340
341 static struct value *
342 value_user_defined_op (struct value **argp, gdb::array_view<value *> args,
343 char *name, int *static_memfuncp, enum noside noside)
344 {
345 struct value *result = NULL;
346
347 if (current_language->la_language == language_cplus)
348 {
349 result = value_user_defined_cpp_op (args, name, static_memfuncp,
350 noside);
351 }
352 else
353 result = value_struct_elt (argp, args, name, static_memfuncp,
354 "structure");
355
356 return result;
357 }
358
359 /* We know either arg1 or arg2 is a structure, so try to find the right
360 user defined function. Create an argument vector that calls
361 arg1.operator @ (arg1,arg2) and return that value (where '@' is any
362 binary operator which is legal for GNU C++).
363
364 OP is the operator, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP
365 is the opcode saying how to modify it. Otherwise, OTHEROP is
366 unused. */
367
368 struct value *
369 value_x_binop (struct value *arg1, struct value *arg2, enum exp_opcode op,
370 enum exp_opcode otherop, enum noside noside)
371 {
372 char *ptr;
373 char tstr[13];
374 int static_memfuncp;
375
376 arg1 = coerce_ref (arg1);
377 arg2 = coerce_ref (arg2);
378
379 /* now we know that what we have to do is construct our
380 arg vector and find the right function to call it with. */
381
382 if (check_typedef (value_type (arg1))->code () != TYPE_CODE_STRUCT)
383 error (_("Can't do that binary op on that type")); /* FIXME be explicit */
384
385 value *argvec_storage[3];
386 gdb::array_view<value *> argvec = argvec_storage;
387
388 argvec[1] = value_addr (arg1);
389 argvec[2] = arg2;
390
391 /* Make the right function name up. */
392 strcpy (tstr, "operator__");
393 ptr = tstr + 8;
394 switch (op)
395 {
396 case BINOP_ADD:
397 strcpy (ptr, "+");
398 break;
399 case BINOP_SUB:
400 strcpy (ptr, "-");
401 break;
402 case BINOP_MUL:
403 strcpy (ptr, "*");
404 break;
405 case BINOP_DIV:
406 strcpy (ptr, "/");
407 break;
408 case BINOP_REM:
409 strcpy (ptr, "%");
410 break;
411 case BINOP_LSH:
412 strcpy (ptr, "<<");
413 break;
414 case BINOP_RSH:
415 strcpy (ptr, ">>");
416 break;
417 case BINOP_BITWISE_AND:
418 strcpy (ptr, "&");
419 break;
420 case BINOP_BITWISE_IOR:
421 strcpy (ptr, "|");
422 break;
423 case BINOP_BITWISE_XOR:
424 strcpy (ptr, "^");
425 break;
426 case BINOP_LOGICAL_AND:
427 strcpy (ptr, "&&");
428 break;
429 case BINOP_LOGICAL_OR:
430 strcpy (ptr, "||");
431 break;
432 case BINOP_MIN:
433 strcpy (ptr, "<?");
434 break;
435 case BINOP_MAX:
436 strcpy (ptr, ">?");
437 break;
438 case BINOP_ASSIGN:
439 strcpy (ptr, "=");
440 break;
441 case BINOP_ASSIGN_MODIFY:
442 switch (otherop)
443 {
444 case BINOP_ADD:
445 strcpy (ptr, "+=");
446 break;
447 case BINOP_SUB:
448 strcpy (ptr, "-=");
449 break;
450 case BINOP_MUL:
451 strcpy (ptr, "*=");
452 break;
453 case BINOP_DIV:
454 strcpy (ptr, "/=");
455 break;
456 case BINOP_REM:
457 strcpy (ptr, "%=");
458 break;
459 case BINOP_BITWISE_AND:
460 strcpy (ptr, "&=");
461 break;
462 case BINOP_BITWISE_IOR:
463 strcpy (ptr, "|=");
464 break;
465 case BINOP_BITWISE_XOR:
466 strcpy (ptr, "^=");
467 break;
468 case BINOP_MOD: /* invalid */
469 default:
470 error (_("Invalid binary operation specified."));
471 }
472 break;
473 case BINOP_SUBSCRIPT:
474 strcpy (ptr, "[]");
475 break;
476 case BINOP_EQUAL:
477 strcpy (ptr, "==");
478 break;
479 case BINOP_NOTEQUAL:
480 strcpy (ptr, "!=");
481 break;
482 case BINOP_LESS:
483 strcpy (ptr, "<");
484 break;
485 case BINOP_GTR:
486 strcpy (ptr, ">");
487 break;
488 case BINOP_GEQ:
489 strcpy (ptr, ">=");
490 break;
491 case BINOP_LEQ:
492 strcpy (ptr, "<=");
493 break;
494 case BINOP_MOD: /* invalid */
495 default:
496 error (_("Invalid binary operation specified."));
497 }
498
499 argvec[0] = value_user_defined_op (&arg1, argvec.slice (1), tstr,
500 &static_memfuncp, noside);
501
502 if (argvec[0])
503 {
504 if (static_memfuncp)
505 {
506 argvec[1] = argvec[0];
507 argvec = argvec.slice (1);
508 }
509 if (value_type (argvec[0])->code () == TYPE_CODE_XMETHOD)
510 {
511 /* Static xmethods are not supported yet. */
512 gdb_assert (static_memfuncp == 0);
513 if (noside == EVAL_AVOID_SIDE_EFFECTS)
514 {
515 struct type *return_type
516 = result_type_of_xmethod (argvec[0], argvec.slice (1));
517
518 if (return_type == NULL)
519 error (_("Xmethod is missing return type."));
520 return value_zero (return_type, VALUE_LVAL (arg1));
521 }
522 return call_xmethod (argvec[0], argvec.slice (1));
523 }
524 if (noside == EVAL_AVOID_SIDE_EFFECTS)
525 {
526 struct type *return_type;
527
528 return_type
529 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
530 return value_zero (return_type, VALUE_LVAL (arg1));
531 }
532 return call_function_by_hand (argvec[0], NULL,
533 argvec.slice (1, 2 - static_memfuncp));
534 }
535 throw_error (NOT_FOUND_ERROR,
536 _("member function %s not found"), tstr);
537 }
538
539 /* We know that arg1 is a structure, so try to find a unary user
540 defined operator that matches the operator in question.
541 Create an argument vector that calls arg1.operator @ (arg1)
542 and return that value (where '@' is (almost) any unary operator which
543 is legal for GNU C++). */
544
545 struct value *
546 value_x_unop (struct value *arg1, enum exp_opcode op, enum noside noside)
547 {
548 struct gdbarch *gdbarch = value_type (arg1)->arch ();
549 char *ptr;
550 char tstr[13], mangle_tstr[13];
551 int static_memfuncp, nargs;
552
553 arg1 = coerce_ref (arg1);
554
555 /* now we know that what we have to do is construct our
556 arg vector and find the right function to call it with. */
557
558 if (check_typedef (value_type (arg1))->code () != TYPE_CODE_STRUCT)
559 error (_("Can't do that unary op on that type")); /* FIXME be explicit */
560
561 value *argvec_storage[3];
562 gdb::array_view<value *> argvec = argvec_storage;
563
564 argvec[1] = value_addr (arg1);
565 argvec[2] = 0;
566
567 nargs = 1;
568
569 /* Make the right function name up. */
570 strcpy (tstr, "operator__");
571 ptr = tstr + 8;
572 strcpy (mangle_tstr, "__");
573 switch (op)
574 {
575 case UNOP_PREINCREMENT:
576 strcpy (ptr, "++");
577 break;
578 case UNOP_PREDECREMENT:
579 strcpy (ptr, "--");
580 break;
581 case UNOP_POSTINCREMENT:
582 strcpy (ptr, "++");
583 argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
584 nargs ++;
585 break;
586 case UNOP_POSTDECREMENT:
587 strcpy (ptr, "--");
588 argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
589 nargs ++;
590 break;
591 case UNOP_LOGICAL_NOT:
592 strcpy (ptr, "!");
593 break;
594 case UNOP_COMPLEMENT:
595 strcpy (ptr, "~");
596 break;
597 case UNOP_NEG:
598 strcpy (ptr, "-");
599 break;
600 case UNOP_PLUS:
601 strcpy (ptr, "+");
602 break;
603 case UNOP_IND:
604 strcpy (ptr, "*");
605 break;
606 case STRUCTOP_PTR:
607 strcpy (ptr, "->");
608 break;
609 default:
610 error (_("Invalid unary operation specified."));
611 }
612
613 argvec[0] = value_user_defined_op (&arg1, argvec.slice (1, nargs), tstr,
614 &static_memfuncp, noside);
615
616 if (argvec[0])
617 {
618 if (static_memfuncp)
619 {
620 argvec[1] = argvec[0];
621 argvec = argvec.slice (1);
622 }
623 if (value_type (argvec[0])->code () == TYPE_CODE_XMETHOD)
624 {
625 /* Static xmethods are not supported yet. */
626 gdb_assert (static_memfuncp == 0);
627 if (noside == EVAL_AVOID_SIDE_EFFECTS)
628 {
629 struct type *return_type
630 = result_type_of_xmethod (argvec[0], argvec[1]);
631
632 if (return_type == NULL)
633 error (_("Xmethod is missing return type."));
634 return value_zero (return_type, VALUE_LVAL (arg1));
635 }
636 return call_xmethod (argvec[0], argvec[1]);
637 }
638 if (noside == EVAL_AVOID_SIDE_EFFECTS)
639 {
640 struct type *return_type;
641
642 return_type
643 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
644 return value_zero (return_type, VALUE_LVAL (arg1));
645 }
646 return call_function_by_hand (argvec[0], NULL,
647 argvec.slice (1, nargs));
648 }
649 throw_error (NOT_FOUND_ERROR,
650 _("member function %s not found"), tstr);
651 }
652 \f
653
654 /* Concatenate two values. One value must be an array; and the other
655 value must either be an array with the same element type, or be of
656 the array's element type. */
657
658 struct value *
659 value_concat (struct value *arg1, struct value *arg2)
660 {
661 struct type *type1 = check_typedef (value_type (arg1));
662 struct type *type2 = check_typedef (value_type (arg2));
663
664 if (type1->code () != TYPE_CODE_ARRAY && type2->code () != TYPE_CODE_ARRAY)
665 error ("no array provided to concatenation");
666
667 LONGEST low1, high1;
668 struct type *elttype1 = type1;
669 if (elttype1->code () == TYPE_CODE_ARRAY)
670 {
671 elttype1 = TYPE_TARGET_TYPE (elttype1);
672 if (!get_array_bounds (type1, &low1, &high1))
673 error (_("could not determine array bounds on left-hand-side of "
674 "array concatenation"));
675 }
676 else
677 {
678 low1 = 0;
679 high1 = 0;
680 }
681
682 LONGEST low2, high2;
683 struct type *elttype2 = type2;
684 if (elttype2->code () == TYPE_CODE_ARRAY)
685 {
686 elttype2 = TYPE_TARGET_TYPE (elttype2);
687 if (!get_array_bounds (type2, &low2, &high2))
688 error (_("could not determine array bounds on right-hand-side of "
689 "array concatenation"));
690 }
691 else
692 {
693 low2 = 0;
694 high2 = 0;
695 }
696
697 if (!types_equal (elttype1, elttype2))
698 error (_("concatenation with different element types"));
699
700 LONGEST lowbound = current_language->c_style_arrays_p () ? 0 : 1;
701 LONGEST n_elts = (high1 - low1 + 1) + (high2 - low2 + 1);
702 struct type *atype = lookup_array_range_type (elttype1,
703 lowbound,
704 lowbound + n_elts - 1);
705
706 struct value *result = allocate_value (atype);
707 gdb::array_view<gdb_byte> contents = value_contents_raw (result);
708 gdb::array_view<const gdb_byte> lhs_contents = value_contents (arg1);
709 gdb::array_view<const gdb_byte> rhs_contents = value_contents (arg2);
710 gdb::copy (lhs_contents, contents.slice (0, lhs_contents.size ()));
711 gdb::copy (rhs_contents, contents.slice (lhs_contents.size ()));
712
713 return result;
714 }
715 \f
716 /* Integer exponentiation: V1**V2, where both arguments are
717 integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */
718
719 static LONGEST
720 integer_pow (LONGEST v1, LONGEST v2)
721 {
722 if (v2 < 0)
723 {
724 if (v1 == 0)
725 error (_("Attempt to raise 0 to negative power."));
726 else
727 return 0;
728 }
729 else
730 {
731 /* The Russian Peasant's Algorithm. */
732 LONGEST v;
733
734 v = 1;
735 for (;;)
736 {
737 if (v2 & 1L)
738 v *= v1;
739 v2 >>= 1;
740 if (v2 == 0)
741 return v;
742 v1 *= v1;
743 }
744 }
745 }
746
747 /* Obtain argument values for binary operation, converting from
748 other types if one of them is not floating point. */
749 static void
750 value_args_as_target_float (struct value *arg1, struct value *arg2,
751 gdb_byte *x, struct type **eff_type_x,
752 gdb_byte *y, struct type **eff_type_y)
753 {
754 struct type *type1, *type2;
755
756 type1 = check_typedef (value_type (arg1));
757 type2 = check_typedef (value_type (arg2));
758
759 /* At least one of the arguments must be of floating-point type. */
760 gdb_assert (is_floating_type (type1) || is_floating_type (type2));
761
762 if (is_floating_type (type1) && is_floating_type (type2)
763 && type1->code () != type2->code ())
764 /* The DFP extension to the C language does not allow mixing of
765 * decimal float types with other float types in expressions
766 * (see WDTR 24732, page 12). */
767 error (_("Mixing decimal floating types with "
768 "other floating types is not allowed."));
769
770 /* Obtain value of arg1, converting from other types if necessary. */
771
772 if (is_floating_type (type1))
773 {
774 *eff_type_x = type1;
775 memcpy (x, value_contents (arg1).data (), TYPE_LENGTH (type1));
776 }
777 else if (is_integral_type (type1))
778 {
779 *eff_type_x = type2;
780 if (type1->is_unsigned ())
781 target_float_from_ulongest (x, *eff_type_x, value_as_long (arg1));
782 else
783 target_float_from_longest (x, *eff_type_x, value_as_long (arg1));
784 }
785 else
786 error (_("Don't know how to convert from %s to %s."), type1->name (),
787 type2->name ());
788
789 /* Obtain value of arg2, converting from other types if necessary. */
790
791 if (is_floating_type (type2))
792 {
793 *eff_type_y = type2;
794 memcpy (y, value_contents (arg2).data (), TYPE_LENGTH (type2));
795 }
796 else if (is_integral_type (type2))
797 {
798 *eff_type_y = type1;
799 if (type2->is_unsigned ())
800 target_float_from_ulongest (y, *eff_type_y, value_as_long (arg2));
801 else
802 target_float_from_longest (y, *eff_type_y, value_as_long (arg2));
803 }
804 else
805 error (_("Don't know how to convert from %s to %s."), type1->name (),
806 type2->name ());
807 }
808
809 /* Assuming at last one of ARG1 or ARG2 is a fixed point value,
810 perform the binary operation OP on these two operands, and return
811 the resulting value (also as a fixed point). */
812
813 static struct value *
814 fixed_point_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
815 {
816 struct type *type1 = check_typedef (value_type (arg1));
817 struct type *type2 = check_typedef (value_type (arg2));
818 const struct language_defn *language = current_language;
819
820 struct gdbarch *gdbarch = type1->arch ();
821 struct value *val;
822
823 gdb_mpq v1, v2, res;
824
825 gdb_assert (is_fixed_point_type (type1) || is_fixed_point_type (type2));
826 if (op == BINOP_MUL || op == BINOP_DIV)
827 {
828 v1 = value_to_gdb_mpq (arg1);
829 v2 = value_to_gdb_mpq (arg2);
830
831 /* The code below uses TYPE1 for the result type, so make sure
832 it is set properly. */
833 if (!is_fixed_point_type (type1))
834 type1 = type2;
835 }
836 else
837 {
838 if (!is_fixed_point_type (type1))
839 {
840 arg1 = value_cast (type2, arg1);
841 type1 = type2;
842 }
843 if (!is_fixed_point_type (type2))
844 {
845 arg2 = value_cast (type1, arg2);
846 type2 = type1;
847 }
848
849 v1.read_fixed_point (value_contents (arg1),
850 type_byte_order (type1), type1->is_unsigned (),
851 type1->fixed_point_scaling_factor ());
852 v2.read_fixed_point (value_contents (arg2),
853 type_byte_order (type2), type2->is_unsigned (),
854 type2->fixed_point_scaling_factor ());
855 }
856
857 auto fixed_point_to_value = [type1] (const gdb_mpq &fp)
858 {
859 value *fp_val = allocate_value (type1);
860
861 fp.write_fixed_point
862 (value_contents_raw (fp_val),
863 type_byte_order (type1),
864 type1->is_unsigned (),
865 type1->fixed_point_scaling_factor ());
866
867 return fp_val;
868 };
869
870 switch (op)
871 {
872 case BINOP_ADD:
873 mpq_add (res.val, v1.val, v2.val);
874 val = fixed_point_to_value (res);
875 break;
876
877 case BINOP_SUB:
878 mpq_sub (res.val, v1.val, v2.val);
879 val = fixed_point_to_value (res);
880 break;
881
882 case BINOP_MIN:
883 val = fixed_point_to_value (mpq_cmp (v1.val, v2.val) < 0 ? v1 : v2);
884 break;
885
886 case BINOP_MAX:
887 val = fixed_point_to_value (mpq_cmp (v1.val, v2.val) > 0 ? v1 : v2);
888 break;
889
890 case BINOP_MUL:
891 mpq_mul (res.val, v1.val, v2.val);
892 val = fixed_point_to_value (res);
893 break;
894
895 case BINOP_DIV:
896 if (mpq_sgn (v2.val) == 0)
897 error (_("Division by zero"));
898 mpq_div (res.val, v1.val, v2.val);
899 val = fixed_point_to_value (res);
900 break;
901
902 case BINOP_EQUAL:
903 val = value_from_ulongest (language_bool_type (language, gdbarch),
904 mpq_cmp (v1.val, v2.val) == 0 ? 1 : 0);
905 break;
906
907 case BINOP_LESS:
908 val = value_from_ulongest (language_bool_type (language, gdbarch),
909 mpq_cmp (v1.val, v2.val) < 0 ? 1 : 0);
910 break;
911
912 default:
913 error (_("Integer-only operation on fixed point number."));
914 }
915
916 return val;
917 }
918
919 /* A helper function that finds the type to use for a binary operation
920 involving TYPE1 and TYPE2. */
921
922 static struct type *
923 promotion_type (struct type *type1, struct type *type2)
924 {
925 struct type *result_type;
926
927 if (is_floating_type (type1) || is_floating_type (type2))
928 {
929 /* If only one type is floating-point, use its type.
930 Otherwise use the bigger type. */
931 if (!is_floating_type (type1))
932 result_type = type2;
933 else if (!is_floating_type (type2))
934 result_type = type1;
935 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
936 result_type = type2;
937 else
938 result_type = type1;
939 }
940 else
941 {
942 /* Integer types. */
943 if (TYPE_LENGTH (type1) > TYPE_LENGTH (type2))
944 result_type = type1;
945 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
946 result_type = type2;
947 else if (type1->is_unsigned ())
948 result_type = type1;
949 else if (type2->is_unsigned ())
950 result_type = type2;
951 else
952 result_type = type1;
953 }
954
955 return result_type;
956 }
957
958 static struct value *scalar_binop (struct value *arg1, struct value *arg2,
959 enum exp_opcode op);
960
961 /* Perform a binary operation on complex operands. */
962
963 static struct value *
964 complex_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
965 {
966 struct type *arg1_type = check_typedef (value_type (arg1));
967 struct type *arg2_type = check_typedef (value_type (arg2));
968
969 struct value *arg1_real, *arg1_imag, *arg2_real, *arg2_imag;
970 if (arg1_type->code () == TYPE_CODE_COMPLEX)
971 {
972 arg1_real = value_real_part (arg1);
973 arg1_imag = value_imaginary_part (arg1);
974 }
975 else
976 {
977 arg1_real = arg1;
978 arg1_imag = value_zero (arg1_type, not_lval);
979 }
980 if (arg2_type->code () == TYPE_CODE_COMPLEX)
981 {
982 arg2_real = value_real_part (arg2);
983 arg2_imag = value_imaginary_part (arg2);
984 }
985 else
986 {
987 arg2_real = arg2;
988 arg2_imag = value_zero (arg2_type, not_lval);
989 }
990
991 struct type *comp_type = promotion_type (value_type (arg1_real),
992 value_type (arg2_real));
993 if (!can_create_complex_type (comp_type))
994 error (_("Argument to complex arithmetic operation not supported."));
995
996 arg1_real = value_cast (comp_type, arg1_real);
997 arg1_imag = value_cast (comp_type, arg1_imag);
998 arg2_real = value_cast (comp_type, arg2_real);
999 arg2_imag = value_cast (comp_type, arg2_imag);
1000
1001 struct type *result_type = init_complex_type (nullptr, comp_type);
1002
1003 struct value *result_real, *result_imag;
1004 switch (op)
1005 {
1006 case BINOP_ADD:
1007 case BINOP_SUB:
1008 result_real = scalar_binop (arg1_real, arg2_real, op);
1009 result_imag = scalar_binop (arg1_imag, arg2_imag, op);
1010 break;
1011
1012 case BINOP_MUL:
1013 {
1014 struct value *x1 = scalar_binop (arg1_real, arg2_real, op);
1015 struct value *x2 = scalar_binop (arg1_imag, arg2_imag, op);
1016 result_real = scalar_binop (x1, x2, BINOP_SUB);
1017
1018 x1 = scalar_binop (arg1_real, arg2_imag, op);
1019 x2 = scalar_binop (arg1_imag, arg2_real, op);
1020 result_imag = scalar_binop (x1, x2, BINOP_ADD);
1021 }
1022 break;
1023
1024 case BINOP_DIV:
1025 {
1026 if (arg2_type->code () == TYPE_CODE_COMPLEX)
1027 {
1028 struct value *conjugate = value_complement (arg2);
1029 /* We have to reconstruct ARG1, in case the type was
1030 promoted. */
1031 arg1 = value_literal_complex (arg1_real, arg1_imag, result_type);
1032
1033 struct value *numerator = scalar_binop (arg1, conjugate,
1034 BINOP_MUL);
1035 arg1_real = value_real_part (numerator);
1036 arg1_imag = value_imaginary_part (numerator);
1037
1038 struct value *x1 = scalar_binop (arg2_real, arg2_real, BINOP_MUL);
1039 struct value *x2 = scalar_binop (arg2_imag, arg2_imag, BINOP_MUL);
1040 arg2_real = scalar_binop (x1, x2, BINOP_ADD);
1041 }
1042
1043 result_real = scalar_binop (arg1_real, arg2_real, op);
1044 result_imag = scalar_binop (arg1_imag, arg2_real, op);
1045 }
1046 break;
1047
1048 case BINOP_EQUAL:
1049 case BINOP_NOTEQUAL:
1050 {
1051 struct value *x1 = scalar_binop (arg1_real, arg2_real, op);
1052 struct value *x2 = scalar_binop (arg1_imag, arg2_imag, op);
1053
1054 LONGEST v1 = value_as_long (x1);
1055 LONGEST v2 = value_as_long (x2);
1056
1057 if (op == BINOP_EQUAL)
1058 v1 = v1 && v2;
1059 else
1060 v1 = v1 || v2;
1061
1062 return value_from_longest (value_type (x1), v1);
1063 }
1064 break;
1065
1066 default:
1067 error (_("Invalid binary operation on numbers."));
1068 }
1069
1070 return value_literal_complex (result_real, result_imag, result_type);
1071 }
1072
1073 /* Return the type's length in bits. */
1074
1075 static int
1076 type_length_bits (type *type)
1077 {
1078 int unit_size = gdbarch_addressable_memory_unit_size (type->arch ());
1079 return unit_size * 8 * TYPE_LENGTH (type);
1080 }
1081
1082 /* Check whether the RHS value of a shift is valid in C/C++ semantics.
1083 SHIFT_COUNT is the shift amount, SHIFT_COUNT_TYPE is the type of
1084 the shift count value, used to determine whether the type is
1085 signed, and RESULT_TYPE is the result type. This is used to avoid
1086 both negative and too-large shift amounts, which are undefined, and
1087 would crash a GDB built with UBSan. Depending on the current
1088 language, if the shift is not valid, this either warns and returns
1089 false, or errors out. Returns true if valid. */
1090
1091 static bool
1092 check_valid_shift_count (int op, type *result_type,
1093 type *shift_count_type, ULONGEST shift_count)
1094 {
1095 if (!shift_count_type->is_unsigned () && (LONGEST) shift_count < 0)
1096 {
1097 auto error_or_warning = [] (const char *msg)
1098 {
1099 /* Shifts by a negative amount are always an error in Go. Other
1100 languages are more permissive and their compilers just warn or
1101 have modes to disable the errors. */
1102 if (current_language->la_language == language_go)
1103 error (("%s"), msg);
1104 else
1105 warning (("%s"), msg);
1106 };
1107
1108 if (op == BINOP_RSH)
1109 error_or_warning (_("right shift count is negative"));
1110 else
1111 error_or_warning (_("left shift count is negative"));
1112 return false;
1113 }
1114
1115 if (shift_count >= type_length_bits (result_type))
1116 {
1117 /* In Go, shifting by large amounts is defined. Be silent and
1118 still return false, as the caller's error path does the right
1119 thing for Go. */
1120 if (current_language->la_language != language_go)
1121 {
1122 if (op == BINOP_RSH)
1123 warning (_("right shift count >= width of type"));
1124 else
1125 warning (_("left shift count >= width of type"));
1126 }
1127 return false;
1128 }
1129
1130 return true;
1131 }
1132
1133 /* Perform a binary operation on two operands which have reasonable
1134 representations as integers or floats. This includes booleans,
1135 characters, integers, or floats.
1136 Does not support addition and subtraction on pointers;
1137 use value_ptradd, value_ptrsub or value_ptrdiff for those operations. */
1138
1139 static struct value *
1140 scalar_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
1141 {
1142 struct value *val;
1143 struct type *type1, *type2, *result_type;
1144
1145 arg1 = coerce_ref (arg1);
1146 arg2 = coerce_ref (arg2);
1147
1148 type1 = check_typedef (value_type (arg1));
1149 type2 = check_typedef (value_type (arg2));
1150
1151 if (type1->code () == TYPE_CODE_COMPLEX
1152 || type2->code () == TYPE_CODE_COMPLEX)
1153 return complex_binop (arg1, arg2, op);
1154
1155 if ((!is_floating_value (arg1)
1156 && !is_integral_type (type1)
1157 && !is_fixed_point_type (type1))
1158 || (!is_floating_value (arg2)
1159 && !is_integral_type (type2)
1160 && !is_fixed_point_type (type2)))
1161 error (_("Argument to arithmetic operation not a number or boolean."));
1162
1163 if (is_fixed_point_type (type1) || is_fixed_point_type (type2))
1164 return fixed_point_binop (arg1, arg2, op);
1165
1166 if (is_floating_type (type1) || is_floating_type (type2))
1167 {
1168 result_type = promotion_type (type1, type2);
1169 val = allocate_value (result_type);
1170
1171 struct type *eff_type_v1, *eff_type_v2;
1172 gdb::byte_vector v1, v2;
1173 v1.resize (TYPE_LENGTH (result_type));
1174 v2.resize (TYPE_LENGTH (result_type));
1175
1176 value_args_as_target_float (arg1, arg2,
1177 v1.data (), &eff_type_v1,
1178 v2.data (), &eff_type_v2);
1179 target_float_binop (op, v1.data (), eff_type_v1,
1180 v2.data (), eff_type_v2,
1181 value_contents_raw (val).data (), result_type);
1182 }
1183 else if (type1->code () == TYPE_CODE_BOOL
1184 || type2->code () == TYPE_CODE_BOOL)
1185 {
1186 LONGEST v1, v2, v = 0;
1187
1188 v1 = value_as_long (arg1);
1189 v2 = value_as_long (arg2);
1190
1191 switch (op)
1192 {
1193 case BINOP_BITWISE_AND:
1194 v = v1 & v2;
1195 break;
1196
1197 case BINOP_BITWISE_IOR:
1198 v = v1 | v2;
1199 break;
1200
1201 case BINOP_BITWISE_XOR:
1202 v = v1 ^ v2;
1203 break;
1204
1205 case BINOP_EQUAL:
1206 v = v1 == v2;
1207 break;
1208
1209 case BINOP_NOTEQUAL:
1210 v = v1 != v2;
1211 break;
1212
1213 default:
1214 error (_("Invalid operation on booleans."));
1215 }
1216
1217 result_type = type1;
1218
1219 val = allocate_value (result_type);
1220 store_signed_integer (value_contents_raw (val).data (),
1221 TYPE_LENGTH (result_type),
1222 type_byte_order (result_type),
1223 v);
1224 }
1225 else
1226 /* Integral operations here. */
1227 {
1228 /* Determine type length of the result, and if the operation should
1229 be done unsigned. For exponentiation and shift operators,
1230 use the length and type of the left operand. Otherwise,
1231 use the signedness of the operand with the greater length.
1232 If both operands are of equal length, use unsigned operation
1233 if one of the operands is unsigned. */
1234 if (op == BINOP_RSH || op == BINOP_LSH || op == BINOP_EXP)
1235 result_type = type1;
1236 else
1237 result_type = promotion_type (type1, type2);
1238
1239 if (result_type->is_unsigned ())
1240 {
1241 LONGEST v2_signed = value_as_long (arg2);
1242 ULONGEST v1, v2, v = 0;
1243
1244 v1 = (ULONGEST) value_as_long (arg1);
1245 v2 = (ULONGEST) v2_signed;
1246
1247 switch (op)
1248 {
1249 case BINOP_ADD:
1250 v = v1 + v2;
1251 break;
1252
1253 case BINOP_SUB:
1254 v = v1 - v2;
1255 break;
1256
1257 case BINOP_MUL:
1258 v = v1 * v2;
1259 break;
1260
1261 case BINOP_DIV:
1262 case BINOP_INTDIV:
1263 if (v2 != 0)
1264 v = v1 / v2;
1265 else
1266 error (_("Division by zero"));
1267 break;
1268
1269 case BINOP_EXP:
1270 v = uinteger_pow (v1, v2_signed);
1271 break;
1272
1273 case BINOP_REM:
1274 if (v2 != 0)
1275 v = v1 % v2;
1276 else
1277 error (_("Division by zero"));
1278 break;
1279
1280 case BINOP_MOD:
1281 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1282 v1 mod 0 has a defined value, v1. */
1283 if (v2 == 0)
1284 {
1285 v = v1;
1286 }
1287 else
1288 {
1289 v = v1 / v2;
1290 /* Note floor(v1/v2) == v1/v2 for unsigned. */
1291 v = v1 - (v2 * v);
1292 }
1293 break;
1294
1295 case BINOP_LSH:
1296 if (!check_valid_shift_count (op, result_type, type2, v2))
1297 v = 0;
1298 else
1299 v = v1 << v2;
1300 break;
1301
1302 case BINOP_RSH:
1303 if (!check_valid_shift_count (op, result_type, type2, v2))
1304 v = 0;
1305 else
1306 v = v1 >> v2;
1307 break;
1308
1309 case BINOP_BITWISE_AND:
1310 v = v1 & v2;
1311 break;
1312
1313 case BINOP_BITWISE_IOR:
1314 v = v1 | v2;
1315 break;
1316
1317 case BINOP_BITWISE_XOR:
1318 v = v1 ^ v2;
1319 break;
1320
1321 case BINOP_LOGICAL_AND:
1322 v = v1 && v2;
1323 break;
1324
1325 case BINOP_LOGICAL_OR:
1326 v = v1 || v2;
1327 break;
1328
1329 case BINOP_MIN:
1330 v = v1 < v2 ? v1 : v2;
1331 break;
1332
1333 case BINOP_MAX:
1334 v = v1 > v2 ? v1 : v2;
1335 break;
1336
1337 case BINOP_EQUAL:
1338 v = v1 == v2;
1339 break;
1340
1341 case BINOP_NOTEQUAL:
1342 v = v1 != v2;
1343 break;
1344
1345 case BINOP_LESS:
1346 v = v1 < v2;
1347 break;
1348
1349 case BINOP_GTR:
1350 v = v1 > v2;
1351 break;
1352
1353 case BINOP_LEQ:
1354 v = v1 <= v2;
1355 break;
1356
1357 case BINOP_GEQ:
1358 v = v1 >= v2;
1359 break;
1360
1361 default:
1362 error (_("Invalid binary operation on numbers."));
1363 }
1364
1365 val = allocate_value (result_type);
1366 store_unsigned_integer (value_contents_raw (val).data (),
1367 TYPE_LENGTH (value_type (val)),
1368 type_byte_order (result_type),
1369 v);
1370 }
1371 else
1372 {
1373 LONGEST v1, v2, v = 0;
1374
1375 v1 = value_as_long (arg1);
1376 v2 = value_as_long (arg2);
1377
1378 switch (op)
1379 {
1380 case BINOP_ADD:
1381 v = v1 + v2;
1382 break;
1383
1384 case BINOP_SUB:
1385 /* Avoid runtime error: signed integer overflow: \
1386 0 - -9223372036854775808 cannot be represented in type
1387 'long int'. */
1388 v = (ULONGEST)v1 - (ULONGEST)v2;
1389 break;
1390
1391 case BINOP_MUL:
1392 v = v1 * v2;
1393 break;
1394
1395 case BINOP_DIV:
1396 case BINOP_INTDIV:
1397 if (v2 != 0)
1398 v = v1 / v2;
1399 else
1400 error (_("Division by zero"));
1401 break;
1402
1403 case BINOP_EXP:
1404 v = integer_pow (v1, v2);
1405 break;
1406
1407 case BINOP_REM:
1408 if (v2 != 0)
1409 v = v1 % v2;
1410 else
1411 error (_("Division by zero"));
1412 break;
1413
1414 case BINOP_MOD:
1415 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1416 X mod 0 has a defined value, X. */
1417 if (v2 == 0)
1418 {
1419 v = v1;
1420 }
1421 else
1422 {
1423 v = v1 / v2;
1424 /* Compute floor. */
1425 if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0))
1426 {
1427 v--;
1428 }
1429 v = v1 - (v2 * v);
1430 }
1431 break;
1432
1433 case BINOP_LSH:
1434 if (!check_valid_shift_count (op, result_type, type2, v2))
1435 v = 0;
1436 else
1437 {
1438 /* Cast to unsigned to avoid undefined behavior on
1439 signed shift overflow (unless C++20 or later),
1440 which would crash GDB when built with UBSan.
1441 Note we don't warn on left signed shift overflow,
1442 because starting with C++20, that is actually
1443 defined behavior. Also, note GDB assumes 2's
1444 complement throughout. */
1445 v = (ULONGEST) v1 << v2;
1446 }
1447 break;
1448
1449 case BINOP_RSH:
1450 if (!check_valid_shift_count (op, result_type, type2, v2))
1451 {
1452 /* Pretend the too-large shift was decomposed in a
1453 number of smaller shifts. An arithmetic signed
1454 right shift of a negative number always yields -1
1455 with such semantics. This is the right thing to
1456 do for Go, and we might as well do it for
1457 languages where it is undefined. Also, pretend a
1458 shift by a negative number was a shift by the
1459 negative number cast to unsigned, which is the
1460 same as shifting by a too-large number. */
1461 if (v1 < 0)
1462 v = -1;
1463 else
1464 v = 0;
1465 }
1466 else
1467 v = v1 >> v2;
1468 break;
1469
1470 case BINOP_BITWISE_AND:
1471 v = v1 & v2;
1472 break;
1473
1474 case BINOP_BITWISE_IOR:
1475 v = v1 | v2;
1476 break;
1477
1478 case BINOP_BITWISE_XOR:
1479 v = v1 ^ v2;
1480 break;
1481
1482 case BINOP_LOGICAL_AND:
1483 v = v1 && v2;
1484 break;
1485
1486 case BINOP_LOGICAL_OR:
1487 v = v1 || v2;
1488 break;
1489
1490 case BINOP_MIN:
1491 v = v1 < v2 ? v1 : v2;
1492 break;
1493
1494 case BINOP_MAX:
1495 v = v1 > v2 ? v1 : v2;
1496 break;
1497
1498 case BINOP_EQUAL:
1499 v = v1 == v2;
1500 break;
1501
1502 case BINOP_NOTEQUAL:
1503 v = v1 != v2;
1504 break;
1505
1506 case BINOP_LESS:
1507 v = v1 < v2;
1508 break;
1509
1510 case BINOP_GTR:
1511 v = v1 > v2;
1512 break;
1513
1514 case BINOP_LEQ:
1515 v = v1 <= v2;
1516 break;
1517
1518 case BINOP_GEQ:
1519 v = v1 >= v2;
1520 break;
1521
1522 default:
1523 error (_("Invalid binary operation on numbers."));
1524 }
1525
1526 val = allocate_value (result_type);
1527 store_signed_integer (value_contents_raw (val).data (),
1528 TYPE_LENGTH (value_type (val)),
1529 type_byte_order (result_type),
1530 v);
1531 }
1532 }
1533
1534 return val;
1535 }
1536
1537 /* Widen a scalar value SCALAR_VALUE to vector type VECTOR_TYPE by
1538 replicating SCALAR_VALUE for each element of the vector. Only scalar
1539 types that can be cast to the type of one element of the vector are
1540 acceptable. The newly created vector value is returned upon success,
1541 otherwise an error is thrown. */
1542
1543 struct value *
1544 value_vector_widen (struct value *scalar_value, struct type *vector_type)
1545 {
1546 /* Widen the scalar to a vector. */
1547 struct type *eltype, *scalar_type;
1548 struct value *elval;
1549 LONGEST low_bound, high_bound;
1550 int i;
1551
1552 vector_type = check_typedef (vector_type);
1553
1554 gdb_assert (vector_type->code () == TYPE_CODE_ARRAY
1555 && vector_type->is_vector ());
1556
1557 if (!get_array_bounds (vector_type, &low_bound, &high_bound))
1558 error (_("Could not determine the vector bounds"));
1559
1560 eltype = check_typedef (TYPE_TARGET_TYPE (vector_type));
1561 elval = value_cast (eltype, scalar_value);
1562
1563 scalar_type = check_typedef (value_type (scalar_value));
1564
1565 /* If we reduced the length of the scalar then check we didn't loose any
1566 important bits. */
1567 if (TYPE_LENGTH (eltype) < TYPE_LENGTH (scalar_type)
1568 && !value_equal (elval, scalar_value))
1569 error (_("conversion of scalar to vector involves truncation"));
1570
1571 value *val = allocate_value (vector_type);
1572 gdb::array_view<gdb_byte> val_contents = value_contents_writeable (val);
1573 int elt_len = TYPE_LENGTH (eltype);
1574
1575 for (i = 0; i < high_bound - low_bound + 1; i++)
1576 /* Duplicate the contents of elval into the destination vector. */
1577 copy (value_contents_all (elval),
1578 val_contents.slice (i * elt_len, elt_len));
1579
1580 return val;
1581 }
1582
1583 /* Performs a binary operation on two vector operands by calling scalar_binop
1584 for each pair of vector components. */
1585
1586 static struct value *
1587 vector_binop (struct value *val1, struct value *val2, enum exp_opcode op)
1588 {
1589 struct type *type1, *type2, *eltype1, *eltype2;
1590 int t1_is_vec, t2_is_vec, elsize, i;
1591 LONGEST low_bound1, high_bound1, low_bound2, high_bound2;
1592
1593 type1 = check_typedef (value_type (val1));
1594 type2 = check_typedef (value_type (val2));
1595
1596 t1_is_vec = (type1->code () == TYPE_CODE_ARRAY
1597 && type1->is_vector ()) ? 1 : 0;
1598 t2_is_vec = (type2->code () == TYPE_CODE_ARRAY
1599 && type2->is_vector ()) ? 1 : 0;
1600
1601 if (!t1_is_vec || !t2_is_vec)
1602 error (_("Vector operations are only supported among vectors"));
1603
1604 if (!get_array_bounds (type1, &low_bound1, &high_bound1)
1605 || !get_array_bounds (type2, &low_bound2, &high_bound2))
1606 error (_("Could not determine the vector bounds"));
1607
1608 eltype1 = check_typedef (TYPE_TARGET_TYPE (type1));
1609 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2));
1610 elsize = TYPE_LENGTH (eltype1);
1611
1612 if (eltype1->code () != eltype2->code ()
1613 || elsize != TYPE_LENGTH (eltype2)
1614 || eltype1->is_unsigned () != eltype2->is_unsigned ()
1615 || low_bound1 != low_bound2 || high_bound1 != high_bound2)
1616 error (_("Cannot perform operation on vectors with different types"));
1617
1618 value *val = allocate_value (type1);
1619 gdb::array_view<gdb_byte> val_contents = value_contents_writeable (val);
1620 value *mark = value_mark ();
1621 for (i = 0; i < high_bound1 - low_bound1 + 1; i++)
1622 {
1623 value *tmp = value_binop (value_subscript (val1, i),
1624 value_subscript (val2, i), op);
1625 copy (value_contents_all (tmp),
1626 val_contents.slice (i * elsize, elsize));
1627 }
1628 value_free_to_mark (mark);
1629
1630 return val;
1631 }
1632
1633 /* Perform a binary operation on two operands. */
1634
1635 struct value *
1636 value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
1637 {
1638 struct value *val;
1639 struct type *type1 = check_typedef (value_type (arg1));
1640 struct type *type2 = check_typedef (value_type (arg2));
1641 int t1_is_vec = (type1->code () == TYPE_CODE_ARRAY
1642 && type1->is_vector ());
1643 int t2_is_vec = (type2->code () == TYPE_CODE_ARRAY
1644 && type2->is_vector ());
1645
1646 if (!t1_is_vec && !t2_is_vec)
1647 val = scalar_binop (arg1, arg2, op);
1648 else if (t1_is_vec && t2_is_vec)
1649 val = vector_binop (arg1, arg2, op);
1650 else
1651 {
1652 /* Widen the scalar operand to a vector. */
1653 struct value **v = t1_is_vec ? &arg2 : &arg1;
1654 struct type *t = t1_is_vec ? type2 : type1;
1655
1656 if (t->code () != TYPE_CODE_FLT
1657 && t->code () != TYPE_CODE_DECFLOAT
1658 && !is_integral_type (t))
1659 error (_("Argument to operation not a number or boolean."));
1660
1661 /* Replicate the scalar value to make a vector value. */
1662 *v = value_vector_widen (*v, t1_is_vec ? type1 : type2);
1663
1664 val = vector_binop (arg1, arg2, op);
1665 }
1666
1667 return val;
1668 }
1669 \f
1670 /* See value.h. */
1671
1672 bool
1673 value_logical_not (struct value *arg1)
1674 {
1675 int len;
1676 const gdb_byte *p;
1677 struct type *type1;
1678
1679 arg1 = coerce_array (arg1);
1680 type1 = check_typedef (value_type (arg1));
1681
1682 if (is_floating_value (arg1))
1683 return target_float_is_zero (value_contents (arg1).data (), type1);
1684
1685 len = TYPE_LENGTH (type1);
1686 p = value_contents (arg1).data ();
1687
1688 while (--len >= 0)
1689 {
1690 if (*p++)
1691 break;
1692 }
1693
1694 return len < 0;
1695 }
1696
1697 /* Perform a comparison on two string values (whose content are not
1698 necessarily null terminated) based on their length. */
1699
1700 static int
1701 value_strcmp (struct value *arg1, struct value *arg2)
1702 {
1703 int len1 = TYPE_LENGTH (value_type (arg1));
1704 int len2 = TYPE_LENGTH (value_type (arg2));
1705 const gdb_byte *s1 = value_contents (arg1).data ();
1706 const gdb_byte *s2 = value_contents (arg2).data ();
1707 int i, len = len1 < len2 ? len1 : len2;
1708
1709 for (i = 0; i < len; i++)
1710 {
1711 if (s1[i] < s2[i])
1712 return -1;
1713 else if (s1[i] > s2[i])
1714 return 1;
1715 else
1716 continue;
1717 }
1718
1719 if (len1 < len2)
1720 return -1;
1721 else if (len1 > len2)
1722 return 1;
1723 else
1724 return 0;
1725 }
1726
1727 /* Simulate the C operator == by returning a 1
1728 iff ARG1 and ARG2 have equal contents. */
1729
1730 int
1731 value_equal (struct value *arg1, struct value *arg2)
1732 {
1733 int len;
1734 const gdb_byte *p1;
1735 const gdb_byte *p2;
1736 struct type *type1, *type2;
1737 enum type_code code1;
1738 enum type_code code2;
1739 int is_int1, is_int2;
1740
1741 arg1 = coerce_array (arg1);
1742 arg2 = coerce_array (arg2);
1743
1744 type1 = check_typedef (value_type (arg1));
1745 type2 = check_typedef (value_type (arg2));
1746 code1 = type1->code ();
1747 code2 = type2->code ();
1748 is_int1 = is_integral_type (type1);
1749 is_int2 = is_integral_type (type2);
1750
1751 if (is_int1 && is_int2)
1752 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1753 BINOP_EQUAL)));
1754 else if ((is_floating_value (arg1) || is_int1)
1755 && (is_floating_value (arg2) || is_int2))
1756 {
1757 struct type *eff_type_v1, *eff_type_v2;
1758 gdb::byte_vector v1, v2;
1759 v1.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2)));
1760 v2.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2)));
1761
1762 value_args_as_target_float (arg1, arg2,
1763 v1.data (), &eff_type_v1,
1764 v2.data (), &eff_type_v2);
1765
1766 return target_float_compare (v1.data (), eff_type_v1,
1767 v2.data (), eff_type_v2) == 0;
1768 }
1769
1770 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1771 is bigger. */
1772 else if (code1 == TYPE_CODE_PTR && is_int2)
1773 return value_as_address (arg1) == (CORE_ADDR) value_as_long (arg2);
1774 else if (code2 == TYPE_CODE_PTR && is_int1)
1775 return (CORE_ADDR) value_as_long (arg1) == value_as_address (arg2);
1776
1777 else if (code1 == code2
1778 && ((len = (int) TYPE_LENGTH (type1))
1779 == (int) TYPE_LENGTH (type2)))
1780 {
1781 p1 = value_contents (arg1).data ();
1782 p2 = value_contents (arg2).data ();
1783 while (--len >= 0)
1784 {
1785 if (*p1++ != *p2++)
1786 break;
1787 }
1788 return len < 0;
1789 }
1790 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1791 {
1792 return value_strcmp (arg1, arg2) == 0;
1793 }
1794 else
1795 error (_("Invalid type combination in equality test."));
1796 }
1797
1798 /* Compare values based on their raw contents. Useful for arrays since
1799 value_equal coerces them to pointers, thus comparing just the address
1800 of the array instead of its contents. */
1801
1802 int
1803 value_equal_contents (struct value *arg1, struct value *arg2)
1804 {
1805 struct type *type1, *type2;
1806
1807 type1 = check_typedef (value_type (arg1));
1808 type2 = check_typedef (value_type (arg2));
1809
1810 return (type1->code () == type2->code ()
1811 && TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
1812 && memcmp (value_contents (arg1).data (),
1813 value_contents (arg2).data (),
1814 TYPE_LENGTH (type1)) == 0);
1815 }
1816
1817 /* Simulate the C operator < by returning 1
1818 iff ARG1's contents are less than ARG2's. */
1819
1820 int
1821 value_less (struct value *arg1, struct value *arg2)
1822 {
1823 enum type_code code1;
1824 enum type_code code2;
1825 struct type *type1, *type2;
1826 int is_int1, is_int2;
1827
1828 arg1 = coerce_array (arg1);
1829 arg2 = coerce_array (arg2);
1830
1831 type1 = check_typedef (value_type (arg1));
1832 type2 = check_typedef (value_type (arg2));
1833 code1 = type1->code ();
1834 code2 = type2->code ();
1835 is_int1 = is_integral_type (type1);
1836 is_int2 = is_integral_type (type2);
1837
1838 if ((is_int1 && is_int2)
1839 || (is_fixed_point_type (type1) && is_fixed_point_type (type2)))
1840 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1841 BINOP_LESS)));
1842 else if ((is_floating_value (arg1) || is_int1)
1843 && (is_floating_value (arg2) || is_int2))
1844 {
1845 struct type *eff_type_v1, *eff_type_v2;
1846 gdb::byte_vector v1, v2;
1847 v1.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2)));
1848 v2.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2)));
1849
1850 value_args_as_target_float (arg1, arg2,
1851 v1.data (), &eff_type_v1,
1852 v2.data (), &eff_type_v2);
1853
1854 return target_float_compare (v1.data (), eff_type_v1,
1855 v2.data (), eff_type_v2) == -1;
1856 }
1857 else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
1858 return value_as_address (arg1) < value_as_address (arg2);
1859
1860 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1861 is bigger. */
1862 else if (code1 == TYPE_CODE_PTR && is_int2)
1863 return value_as_address (arg1) < (CORE_ADDR) value_as_long (arg2);
1864 else if (code2 == TYPE_CODE_PTR && is_int1)
1865 return (CORE_ADDR) value_as_long (arg1) < value_as_address (arg2);
1866 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1867 return value_strcmp (arg1, arg2) < 0;
1868 else
1869 {
1870 error (_("Invalid type combination in ordering comparison."));
1871 return 0;
1872 }
1873 }
1874 \f
1875 /* The unary operators +, - and ~. They free the argument ARG1. */
1876
1877 struct value *
1878 value_pos (struct value *arg1)
1879 {
1880 struct type *type;
1881
1882 arg1 = coerce_ref (arg1);
1883 type = check_typedef (value_type (arg1));
1884
1885 if (is_integral_type (type) || is_floating_value (arg1)
1886 || (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
1887 || type->code () == TYPE_CODE_COMPLEX)
1888 return value_from_contents (type, value_contents (arg1).data ());
1889 else
1890 error (_("Argument to positive operation not a number."));
1891 }
1892
1893 struct value *
1894 value_neg (struct value *arg1)
1895 {
1896 struct type *type;
1897
1898 arg1 = coerce_ref (arg1);
1899 type = check_typedef (value_type (arg1));
1900
1901 if (is_integral_type (type) || is_floating_type (type))
1902 return value_binop (value_from_longest (type, 0), arg1, BINOP_SUB);
1903 else if (is_fixed_point_type (type))
1904 return value_binop (value_zero (type, not_lval), arg1, BINOP_SUB);
1905 else if (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
1906 {
1907 struct value *val = allocate_value (type);
1908 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
1909 int i;
1910 LONGEST low_bound, high_bound;
1911
1912 if (!get_array_bounds (type, &low_bound, &high_bound))
1913 error (_("Could not determine the vector bounds"));
1914
1915 gdb::array_view<gdb_byte> val_contents = value_contents_writeable (val);
1916 int elt_len = TYPE_LENGTH (eltype);
1917
1918 for (i = 0; i < high_bound - low_bound + 1; i++)
1919 {
1920 value *tmp = value_neg (value_subscript (arg1, i));
1921 copy (value_contents_all (tmp),
1922 val_contents.slice (i * elt_len, elt_len));
1923 }
1924 return val;
1925 }
1926 else if (type->code () == TYPE_CODE_COMPLEX)
1927 {
1928 struct value *real = value_real_part (arg1);
1929 struct value *imag = value_imaginary_part (arg1);
1930
1931 real = value_neg (real);
1932 imag = value_neg (imag);
1933 return value_literal_complex (real, imag, type);
1934 }
1935 else
1936 error (_("Argument to negate operation not a number."));
1937 }
1938
1939 struct value *
1940 value_complement (struct value *arg1)
1941 {
1942 struct type *type;
1943 struct value *val;
1944
1945 arg1 = coerce_ref (arg1);
1946 type = check_typedef (value_type (arg1));
1947
1948 if (is_integral_type (type))
1949 val = value_from_longest (type, ~value_as_long (arg1));
1950 else if (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
1951 {
1952 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
1953 int i;
1954 LONGEST low_bound, high_bound;
1955
1956 if (!get_array_bounds (type, &low_bound, &high_bound))
1957 error (_("Could not determine the vector bounds"));
1958
1959 val = allocate_value (type);
1960 gdb::array_view<gdb_byte> val_contents = value_contents_writeable (val);
1961 int elt_len = TYPE_LENGTH (eltype);
1962
1963 for (i = 0; i < high_bound - low_bound + 1; i++)
1964 {
1965 value *tmp = value_complement (value_subscript (arg1, i));
1966 copy (value_contents_all (tmp),
1967 val_contents.slice (i * elt_len, elt_len));
1968 }
1969 }
1970 else if (type->code () == TYPE_CODE_COMPLEX)
1971 {
1972 /* GCC has an extension that treats ~complex as the complex
1973 conjugate. */
1974 struct value *real = value_real_part (arg1);
1975 struct value *imag = value_imaginary_part (arg1);
1976
1977 imag = value_neg (imag);
1978 return value_literal_complex (real, imag, type);
1979 }
1980 else
1981 error (_("Argument to complement operation not an integer, boolean."));
1982
1983 return val;
1984 }
1985 \f
1986 /* The INDEX'th bit of SET value whose value_type is TYPE,
1987 and whose value_contents is valaddr.
1988 Return -1 if out of range, -2 other error. */
1989
1990 int
1991 value_bit_index (struct type *type, const gdb_byte *valaddr, int index)
1992 {
1993 struct gdbarch *gdbarch = type->arch ();
1994 LONGEST low_bound, high_bound;
1995 LONGEST word;
1996 unsigned rel_index;
1997 struct type *range = type->index_type ();
1998
1999 if (!get_discrete_bounds (range, &low_bound, &high_bound))
2000 return -2;
2001 if (index < low_bound || index > high_bound)
2002 return -1;
2003 rel_index = index - low_bound;
2004 word = extract_unsigned_integer (valaddr + (rel_index / TARGET_CHAR_BIT), 1,
2005 type_byte_order (type));
2006 rel_index %= TARGET_CHAR_BIT;
2007 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2008 rel_index = TARGET_CHAR_BIT - 1 - rel_index;
2009 return (word >> rel_index) & 1;
2010 }
2011
2012 int
2013 value_in (struct value *element, struct value *set)
2014 {
2015 int member;
2016 struct type *settype = check_typedef (value_type (set));
2017 struct type *eltype = check_typedef (value_type (element));
2018
2019 if (eltype->code () == TYPE_CODE_RANGE)
2020 eltype = TYPE_TARGET_TYPE (eltype);
2021 if (settype->code () != TYPE_CODE_SET)
2022 error (_("Second argument of 'IN' has wrong type"));
2023 if (eltype->code () != TYPE_CODE_INT
2024 && eltype->code () != TYPE_CODE_CHAR
2025 && eltype->code () != TYPE_CODE_ENUM
2026 && eltype->code () != TYPE_CODE_BOOL)
2027 error (_("First argument of 'IN' has wrong type"));
2028 member = value_bit_index (settype, value_contents (set).data (),
2029 value_as_long (element));
2030 if (member < 0)
2031 error (_("First argument of 'IN' not in range"));
2032 return member;
2033 }