SHF_GNU_RETAIN 7a and 7b tests
[binutils-gdb.git] / gdb / valarith.c
1 /* Perform arithmetic and other operations on values, for GDB.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "value.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "expression.h"
25 #include "target.h"
26 #include "language.h"
27 #include "target-float.h"
28 #include "infcall.h"
29 #include "gdbsupport/byte-vector.h"
30 #include "gdbarch.h"
31
32 /* Define whether or not the C operator '/' truncates towards zero for
33 differently signed operands (truncation direction is undefined in C). */
34
35 #ifndef TRUNCATION_TOWARDS_ZERO
36 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
37 #endif
38
39 /* Given a pointer, return the size of its target.
40 If the pointer type is void *, then return 1.
41 If the target type is incomplete, then error out.
42 This isn't a general purpose function, but just a
43 helper for value_ptradd. */
44
45 static LONGEST
46 find_size_for_pointer_math (struct type *ptr_type)
47 {
48 LONGEST sz = -1;
49 struct type *ptr_target;
50
51 gdb_assert (ptr_type->code () == TYPE_CODE_PTR);
52 ptr_target = check_typedef (TYPE_TARGET_TYPE (ptr_type));
53
54 sz = type_length_units (ptr_target);
55 if (sz == 0)
56 {
57 if (ptr_type->code () == TYPE_CODE_VOID)
58 sz = 1;
59 else
60 {
61 const char *name;
62
63 name = ptr_target->name ();
64 if (name == NULL)
65 error (_("Cannot perform pointer math on incomplete types, "
66 "try casting to a known type, or void *."));
67 else
68 error (_("Cannot perform pointer math on incomplete type \"%s\", "
69 "try casting to a known type, or void *."), name);
70 }
71 }
72 return sz;
73 }
74
75 /* Given a pointer ARG1 and an integral value ARG2, return the
76 result of C-style pointer arithmetic ARG1 + ARG2. */
77
78 struct value *
79 value_ptradd (struct value *arg1, LONGEST arg2)
80 {
81 struct type *valptrtype;
82 LONGEST sz;
83 struct value *result;
84
85 arg1 = coerce_array (arg1);
86 valptrtype = check_typedef (value_type (arg1));
87 sz = find_size_for_pointer_math (valptrtype);
88
89 result = value_from_pointer (valptrtype,
90 value_as_address (arg1) + sz * arg2);
91 if (VALUE_LVAL (result) != lval_internalvar)
92 set_value_component_location (result, arg1);
93 return result;
94 }
95
96 /* Given two compatible pointer values ARG1 and ARG2, return the
97 result of C-style pointer arithmetic ARG1 - ARG2. */
98
99 LONGEST
100 value_ptrdiff (struct value *arg1, struct value *arg2)
101 {
102 struct type *type1, *type2;
103 LONGEST sz;
104
105 arg1 = coerce_array (arg1);
106 arg2 = coerce_array (arg2);
107 type1 = check_typedef (value_type (arg1));
108 type2 = check_typedef (value_type (arg2));
109
110 gdb_assert (type1->code () == TYPE_CODE_PTR);
111 gdb_assert (type2->code () == TYPE_CODE_PTR);
112
113 if (TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)))
114 != TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type2))))
115 error (_("First argument of `-' is a pointer and "
116 "second argument is neither\n"
117 "an integer nor a pointer of the same type."));
118
119 sz = type_length_units (check_typedef (TYPE_TARGET_TYPE (type1)));
120 if (sz == 0)
121 {
122 warning (_("Type size unknown, assuming 1. "
123 "Try casting to a known type, or void *."));
124 sz = 1;
125 }
126
127 return (value_as_long (arg1) - value_as_long (arg2)) / sz;
128 }
129
130 /* Return the value of ARRAY[IDX].
131
132 ARRAY may be of type TYPE_CODE_ARRAY or TYPE_CODE_STRING. If the
133 current language supports C-style arrays, it may also be TYPE_CODE_PTR.
134
135 See comments in value_coerce_array() for rationale for reason for
136 doing lower bounds adjustment here rather than there.
137 FIXME: Perhaps we should validate that the index is valid and if
138 verbosity is set, warn about invalid indices (but still use them). */
139
140 struct value *
141 value_subscript (struct value *array, LONGEST index)
142 {
143 bool c_style = current_language->c_style_arrays_p ();
144 struct type *tarray;
145
146 array = coerce_ref (array);
147 tarray = check_typedef (value_type (array));
148
149 if (tarray->code () == TYPE_CODE_ARRAY
150 || tarray->code () == TYPE_CODE_STRING)
151 {
152 struct type *range_type = tarray->index_type ();
153 gdb::optional<LONGEST> lowerbound = get_discrete_low_bound (range_type);
154 if (!lowerbound.has_value ())
155 lowerbound = 0;
156
157 if (VALUE_LVAL (array) != lval_memory)
158 return value_subscripted_rvalue (array, index, *lowerbound);
159
160 if (!c_style)
161 {
162 gdb::optional<LONGEST> upperbound
163 = get_discrete_high_bound (range_type);
164
165 if (!upperbound.has_value ())
166 upperbound = 0;
167
168 if (index >= *lowerbound && index <= *upperbound)
169 return value_subscripted_rvalue (array, index, *lowerbound);
170
171 /* Emit warning unless we have an array of unknown size.
172 An array of unknown size has lowerbound 0 and upperbound -1. */
173 if (*upperbound > -1)
174 warning (_("array or string index out of range"));
175 /* fall doing C stuff */
176 c_style = true;
177 }
178
179 index -= *lowerbound;
180 array = value_coerce_array (array);
181 }
182
183 if (c_style)
184 return value_ind (value_ptradd (array, index));
185 else
186 error (_("not an array or string"));
187 }
188
189 /* Return the value of EXPR[IDX], expr an aggregate rvalue
190 (eg, a vector register). This routine used to promote floats
191 to doubles, but no longer does. */
192
193 struct value *
194 value_subscripted_rvalue (struct value *array, LONGEST index, LONGEST lowerbound)
195 {
196 struct type *array_type = check_typedef (value_type (array));
197 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type));
198 LONGEST elt_size = type_length_units (elt_type);
199
200 /* Fetch the bit stride and convert it to a byte stride, assuming 8 bits
201 in a byte. */
202 LONGEST stride = array_type->bit_stride ();
203 if (stride != 0)
204 {
205 struct gdbarch *arch = get_type_arch (elt_type);
206 int unit_size = gdbarch_addressable_memory_unit_size (arch);
207 elt_size = stride / (unit_size * 8);
208 }
209
210 LONGEST elt_offs = elt_size * (index - lowerbound);
211 bool array_upper_bound_undefined
212 = array_type->bounds ()->high.kind () == PROP_UNDEFINED;
213
214 if (index < lowerbound
215 || (!array_upper_bound_undefined
216 && elt_offs >= type_length_units (array_type))
217 || (VALUE_LVAL (array) != lval_memory && array_upper_bound_undefined))
218 {
219 if (type_not_associated (array_type))
220 error (_("no such vector element (vector not associated)"));
221 else if (type_not_allocated (array_type))
222 error (_("no such vector element (vector not allocated)"));
223 else
224 error (_("no such vector element"));
225 }
226
227 if (is_dynamic_type (elt_type))
228 {
229 CORE_ADDR address;
230
231 address = value_address (array) + elt_offs;
232 elt_type = resolve_dynamic_type (elt_type, {}, address);
233 }
234
235 return value_from_component (array, elt_type, elt_offs);
236 }
237
238 \f
239 /* Check to see if either argument is a structure, or a reference to
240 one. This is called so we know whether to go ahead with the normal
241 binop or look for a user defined function instead.
242
243 For now, we do not overload the `=' operator. */
244
245 int
246 binop_types_user_defined_p (enum exp_opcode op,
247 struct type *type1, struct type *type2)
248 {
249 if (op == BINOP_ASSIGN || op == BINOP_CONCAT)
250 return 0;
251
252 type1 = check_typedef (type1);
253 if (TYPE_IS_REFERENCE (type1))
254 type1 = check_typedef (TYPE_TARGET_TYPE (type1));
255
256 type2 = check_typedef (type2);
257 if (TYPE_IS_REFERENCE (type2))
258 type2 = check_typedef (TYPE_TARGET_TYPE (type2));
259
260 return (type1->code () == TYPE_CODE_STRUCT
261 || type2->code () == TYPE_CODE_STRUCT);
262 }
263
264 /* Check to see if either argument is a structure, or a reference to
265 one. This is called so we know whether to go ahead with the normal
266 binop or look for a user defined function instead.
267
268 For now, we do not overload the `=' operator. */
269
270 int
271 binop_user_defined_p (enum exp_opcode op,
272 struct value *arg1, struct value *arg2)
273 {
274 return binop_types_user_defined_p (op, value_type (arg1), value_type (arg2));
275 }
276
277 /* Check to see if argument is a structure. This is called so
278 we know whether to go ahead with the normal unop or look for a
279 user defined function instead.
280
281 For now, we do not overload the `&' operator. */
282
283 int
284 unop_user_defined_p (enum exp_opcode op, struct value *arg1)
285 {
286 struct type *type1;
287
288 if (op == UNOP_ADDR)
289 return 0;
290 type1 = check_typedef (value_type (arg1));
291 if (TYPE_IS_REFERENCE (type1))
292 type1 = check_typedef (TYPE_TARGET_TYPE (type1));
293 return type1->code () == TYPE_CODE_STRUCT;
294 }
295
296 /* Try to find an operator named OPERATOR which takes NARGS arguments
297 specified in ARGS. If the operator found is a static member operator
298 *STATIC_MEMFUNP will be set to 1, and otherwise 0.
299 The search if performed through find_overload_match which will handle
300 member operators, non member operators, operators imported implicitly or
301 explicitly, and perform correct overload resolution in all of the above
302 situations or combinations thereof. */
303
304 static struct value *
305 value_user_defined_cpp_op (gdb::array_view<value *> args, char *oper,
306 int *static_memfuncp, enum noside noside)
307 {
308
309 struct symbol *symp = NULL;
310 struct value *valp = NULL;
311
312 find_overload_match (args, oper, BOTH /* could be method */,
313 &args[0] /* objp */,
314 NULL /* pass NULL symbol since symbol is unknown */,
315 &valp, &symp, static_memfuncp, 0, noside);
316
317 if (valp)
318 return valp;
319
320 if (symp)
321 {
322 /* This is a non member function and does not
323 expect a reference as its first argument
324 rather the explicit structure. */
325 args[0] = value_ind (args[0]);
326 return value_of_variable (symp, 0);
327 }
328
329 error (_("Could not find %s."), oper);
330 }
331
332 /* Lookup user defined operator NAME. Return a value representing the
333 function, otherwise return NULL. */
334
335 static struct value *
336 value_user_defined_op (struct value **argp, gdb::array_view<value *> args,
337 char *name, int *static_memfuncp, enum noside noside)
338 {
339 struct value *result = NULL;
340
341 if (current_language->la_language == language_cplus)
342 {
343 result = value_user_defined_cpp_op (args, name, static_memfuncp,
344 noside);
345 }
346 else
347 result = value_struct_elt (argp, args.data (), name, static_memfuncp,
348 "structure");
349
350 return result;
351 }
352
353 /* We know either arg1 or arg2 is a structure, so try to find the right
354 user defined function. Create an argument vector that calls
355 arg1.operator @ (arg1,arg2) and return that value (where '@' is any
356 binary operator which is legal for GNU C++).
357
358 OP is the operator, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP
359 is the opcode saying how to modify it. Otherwise, OTHEROP is
360 unused. */
361
362 struct value *
363 value_x_binop (struct value *arg1, struct value *arg2, enum exp_opcode op,
364 enum exp_opcode otherop, enum noside noside)
365 {
366 char *ptr;
367 char tstr[13];
368 int static_memfuncp;
369
370 arg1 = coerce_ref (arg1);
371 arg2 = coerce_ref (arg2);
372
373 /* now we know that what we have to do is construct our
374 arg vector and find the right function to call it with. */
375
376 if (check_typedef (value_type (arg1))->code () != TYPE_CODE_STRUCT)
377 error (_("Can't do that binary op on that type")); /* FIXME be explicit */
378
379 value *argvec_storage[3];
380 gdb::array_view<value *> argvec = argvec_storage;
381
382 argvec[1] = value_addr (arg1);
383 argvec[2] = arg2;
384
385 /* Make the right function name up. */
386 strcpy (tstr, "operator__");
387 ptr = tstr + 8;
388 switch (op)
389 {
390 case BINOP_ADD:
391 strcpy (ptr, "+");
392 break;
393 case BINOP_SUB:
394 strcpy (ptr, "-");
395 break;
396 case BINOP_MUL:
397 strcpy (ptr, "*");
398 break;
399 case BINOP_DIV:
400 strcpy (ptr, "/");
401 break;
402 case BINOP_REM:
403 strcpy (ptr, "%");
404 break;
405 case BINOP_LSH:
406 strcpy (ptr, "<<");
407 break;
408 case BINOP_RSH:
409 strcpy (ptr, ">>");
410 break;
411 case BINOP_BITWISE_AND:
412 strcpy (ptr, "&");
413 break;
414 case BINOP_BITWISE_IOR:
415 strcpy (ptr, "|");
416 break;
417 case BINOP_BITWISE_XOR:
418 strcpy (ptr, "^");
419 break;
420 case BINOP_LOGICAL_AND:
421 strcpy (ptr, "&&");
422 break;
423 case BINOP_LOGICAL_OR:
424 strcpy (ptr, "||");
425 break;
426 case BINOP_MIN:
427 strcpy (ptr, "<?");
428 break;
429 case BINOP_MAX:
430 strcpy (ptr, ">?");
431 break;
432 case BINOP_ASSIGN:
433 strcpy (ptr, "=");
434 break;
435 case BINOP_ASSIGN_MODIFY:
436 switch (otherop)
437 {
438 case BINOP_ADD:
439 strcpy (ptr, "+=");
440 break;
441 case BINOP_SUB:
442 strcpy (ptr, "-=");
443 break;
444 case BINOP_MUL:
445 strcpy (ptr, "*=");
446 break;
447 case BINOP_DIV:
448 strcpy (ptr, "/=");
449 break;
450 case BINOP_REM:
451 strcpy (ptr, "%=");
452 break;
453 case BINOP_BITWISE_AND:
454 strcpy (ptr, "&=");
455 break;
456 case BINOP_BITWISE_IOR:
457 strcpy (ptr, "|=");
458 break;
459 case BINOP_BITWISE_XOR:
460 strcpy (ptr, "^=");
461 break;
462 case BINOP_MOD: /* invalid */
463 default:
464 error (_("Invalid binary operation specified."));
465 }
466 break;
467 case BINOP_SUBSCRIPT:
468 strcpy (ptr, "[]");
469 break;
470 case BINOP_EQUAL:
471 strcpy (ptr, "==");
472 break;
473 case BINOP_NOTEQUAL:
474 strcpy (ptr, "!=");
475 break;
476 case BINOP_LESS:
477 strcpy (ptr, "<");
478 break;
479 case BINOP_GTR:
480 strcpy (ptr, ">");
481 break;
482 case BINOP_GEQ:
483 strcpy (ptr, ">=");
484 break;
485 case BINOP_LEQ:
486 strcpy (ptr, "<=");
487 break;
488 case BINOP_MOD: /* invalid */
489 default:
490 error (_("Invalid binary operation specified."));
491 }
492
493 argvec[0] = value_user_defined_op (&arg1, argvec.slice (1), tstr,
494 &static_memfuncp, noside);
495
496 if (argvec[0])
497 {
498 if (static_memfuncp)
499 {
500 argvec[1] = argvec[0];
501 argvec = argvec.slice (1);
502 }
503 if (value_type (argvec[0])->code () == TYPE_CODE_XMETHOD)
504 {
505 /* Static xmethods are not supported yet. */
506 gdb_assert (static_memfuncp == 0);
507 if (noside == EVAL_AVOID_SIDE_EFFECTS)
508 {
509 struct type *return_type
510 = result_type_of_xmethod (argvec[0], argvec.slice (1));
511
512 if (return_type == NULL)
513 error (_("Xmethod is missing return type."));
514 return value_zero (return_type, VALUE_LVAL (arg1));
515 }
516 return call_xmethod (argvec[0], argvec.slice (1));
517 }
518 if (noside == EVAL_AVOID_SIDE_EFFECTS)
519 {
520 struct type *return_type;
521
522 return_type
523 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
524 return value_zero (return_type, VALUE_LVAL (arg1));
525 }
526 return call_function_by_hand (argvec[0], NULL,
527 argvec.slice (1, 2 - static_memfuncp));
528 }
529 throw_error (NOT_FOUND_ERROR,
530 _("member function %s not found"), tstr);
531 }
532
533 /* We know that arg1 is a structure, so try to find a unary user
534 defined operator that matches the operator in question.
535 Create an argument vector that calls arg1.operator @ (arg1)
536 and return that value (where '@' is (almost) any unary operator which
537 is legal for GNU C++). */
538
539 struct value *
540 value_x_unop (struct value *arg1, enum exp_opcode op, enum noside noside)
541 {
542 struct gdbarch *gdbarch = get_type_arch (value_type (arg1));
543 char *ptr;
544 char tstr[13], mangle_tstr[13];
545 int static_memfuncp, nargs;
546
547 arg1 = coerce_ref (arg1);
548
549 /* now we know that what we have to do is construct our
550 arg vector and find the right function to call it with. */
551
552 if (check_typedef (value_type (arg1))->code () != TYPE_CODE_STRUCT)
553 error (_("Can't do that unary op on that type")); /* FIXME be explicit */
554
555 value *argvec_storage[3];
556 gdb::array_view<value *> argvec = argvec_storage;
557
558 argvec[1] = value_addr (arg1);
559 argvec[2] = 0;
560
561 nargs = 1;
562
563 /* Make the right function name up. */
564 strcpy (tstr, "operator__");
565 ptr = tstr + 8;
566 strcpy (mangle_tstr, "__");
567 switch (op)
568 {
569 case UNOP_PREINCREMENT:
570 strcpy (ptr, "++");
571 break;
572 case UNOP_PREDECREMENT:
573 strcpy (ptr, "--");
574 break;
575 case UNOP_POSTINCREMENT:
576 strcpy (ptr, "++");
577 argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
578 nargs ++;
579 break;
580 case UNOP_POSTDECREMENT:
581 strcpy (ptr, "--");
582 argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
583 nargs ++;
584 break;
585 case UNOP_LOGICAL_NOT:
586 strcpy (ptr, "!");
587 break;
588 case UNOP_COMPLEMENT:
589 strcpy (ptr, "~");
590 break;
591 case UNOP_NEG:
592 strcpy (ptr, "-");
593 break;
594 case UNOP_PLUS:
595 strcpy (ptr, "+");
596 break;
597 case UNOP_IND:
598 strcpy (ptr, "*");
599 break;
600 case STRUCTOP_PTR:
601 strcpy (ptr, "->");
602 break;
603 default:
604 error (_("Invalid unary operation specified."));
605 }
606
607 argvec[0] = value_user_defined_op (&arg1, argvec.slice (1, nargs), tstr,
608 &static_memfuncp, noside);
609
610 if (argvec[0])
611 {
612 if (static_memfuncp)
613 {
614 argvec[1] = argvec[0];
615 argvec = argvec.slice (1);
616 }
617 if (value_type (argvec[0])->code () == TYPE_CODE_XMETHOD)
618 {
619 /* Static xmethods are not supported yet. */
620 gdb_assert (static_memfuncp == 0);
621 if (noside == EVAL_AVOID_SIDE_EFFECTS)
622 {
623 struct type *return_type
624 = result_type_of_xmethod (argvec[0], argvec[1]);
625
626 if (return_type == NULL)
627 error (_("Xmethod is missing return type."));
628 return value_zero (return_type, VALUE_LVAL (arg1));
629 }
630 return call_xmethod (argvec[0], argvec[1]);
631 }
632 if (noside == EVAL_AVOID_SIDE_EFFECTS)
633 {
634 struct type *return_type;
635
636 return_type
637 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
638 return value_zero (return_type, VALUE_LVAL (arg1));
639 }
640 return call_function_by_hand (argvec[0], NULL,
641 argvec.slice (1, nargs));
642 }
643 throw_error (NOT_FOUND_ERROR,
644 _("member function %s not found"), tstr);
645 }
646 \f
647
648 /* Concatenate two values with the following conditions:
649
650 (1) Both values must be either bitstring values or character string
651 values and the resulting value consists of the concatenation of
652 ARG1 followed by ARG2.
653
654 or
655
656 One value must be an integer value and the other value must be
657 either a bitstring value or character string value, which is
658 to be repeated by the number of times specified by the integer
659 value.
660
661
662 (2) Boolean values are also allowed and are treated as bit string
663 values of length 1.
664
665 (3) Character values are also allowed and are treated as character
666 string values of length 1. */
667
668 struct value *
669 value_concat (struct value *arg1, struct value *arg2)
670 {
671 struct value *inval1;
672 struct value *inval2;
673 struct value *outval = NULL;
674 int inval1len, inval2len;
675 int count, idx;
676 char inchar;
677 struct type *type1 = check_typedef (value_type (arg1));
678 struct type *type2 = check_typedef (value_type (arg2));
679 struct type *char_type;
680
681 /* First figure out if we are dealing with two values to be concatenated
682 or a repeat count and a value to be repeated. INVAL1 is set to the
683 first of two concatenated values, or the repeat count. INVAL2 is set
684 to the second of the two concatenated values or the value to be
685 repeated. */
686
687 if (type2->code () == TYPE_CODE_INT)
688 {
689 struct type *tmp = type1;
690
691 type1 = tmp;
692 tmp = type2;
693 inval1 = arg2;
694 inval2 = arg1;
695 }
696 else
697 {
698 inval1 = arg1;
699 inval2 = arg2;
700 }
701
702 /* Now process the input values. */
703
704 if (type1->code () == TYPE_CODE_INT)
705 {
706 /* We have a repeat count. Validate the second value and then
707 construct a value repeated that many times. */
708 if (type2->code () == TYPE_CODE_STRING
709 || type2->code () == TYPE_CODE_CHAR)
710 {
711 count = longest_to_int (value_as_long (inval1));
712 inval2len = TYPE_LENGTH (type2);
713 std::vector<char> ptr (count * inval2len);
714 if (type2->code () == TYPE_CODE_CHAR)
715 {
716 char_type = type2;
717
718 inchar = (char) unpack_long (type2,
719 value_contents (inval2));
720 for (idx = 0; idx < count; idx++)
721 {
722 ptr[idx] = inchar;
723 }
724 }
725 else
726 {
727 char_type = TYPE_TARGET_TYPE (type2);
728
729 for (idx = 0; idx < count; idx++)
730 {
731 memcpy (&ptr[idx * inval2len], value_contents (inval2),
732 inval2len);
733 }
734 }
735 outval = value_string (ptr.data (), count * inval2len, char_type);
736 }
737 else if (type2->code () == TYPE_CODE_BOOL)
738 {
739 error (_("unimplemented support for boolean repeats"));
740 }
741 else
742 {
743 error (_("can't repeat values of that type"));
744 }
745 }
746 else if (type1->code () == TYPE_CODE_STRING
747 || type1->code () == TYPE_CODE_CHAR)
748 {
749 /* We have two character strings to concatenate. */
750 if (type2->code () != TYPE_CODE_STRING
751 && type2->code () != TYPE_CODE_CHAR)
752 {
753 error (_("Strings can only be concatenated with other strings."));
754 }
755 inval1len = TYPE_LENGTH (type1);
756 inval2len = TYPE_LENGTH (type2);
757 std::vector<char> ptr (inval1len + inval2len);
758 if (type1->code () == TYPE_CODE_CHAR)
759 {
760 char_type = type1;
761
762 ptr[0] = (char) unpack_long (type1, value_contents (inval1));
763 }
764 else
765 {
766 char_type = TYPE_TARGET_TYPE (type1);
767
768 memcpy (ptr.data (), value_contents (inval1), inval1len);
769 }
770 if (type2->code () == TYPE_CODE_CHAR)
771 {
772 ptr[inval1len] =
773 (char) unpack_long (type2, value_contents (inval2));
774 }
775 else
776 {
777 memcpy (&ptr[inval1len], value_contents (inval2), inval2len);
778 }
779 outval = value_string (ptr.data (), inval1len + inval2len, char_type);
780 }
781 else if (type1->code () == TYPE_CODE_BOOL)
782 {
783 /* We have two bitstrings to concatenate. */
784 if (type2->code () != TYPE_CODE_BOOL)
785 {
786 error (_("Booleans can only be concatenated "
787 "with other bitstrings or booleans."));
788 }
789 error (_("unimplemented support for boolean concatenation."));
790 }
791 else
792 {
793 /* We don't know how to concatenate these operands. */
794 error (_("illegal operands for concatenation."));
795 }
796 return (outval);
797 }
798 \f
799 /* Integer exponentiation: V1**V2, where both arguments are
800 integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */
801
802 static LONGEST
803 integer_pow (LONGEST v1, LONGEST v2)
804 {
805 if (v2 < 0)
806 {
807 if (v1 == 0)
808 error (_("Attempt to raise 0 to negative power."));
809 else
810 return 0;
811 }
812 else
813 {
814 /* The Russian Peasant's Algorithm. */
815 LONGEST v;
816
817 v = 1;
818 for (;;)
819 {
820 if (v2 & 1L)
821 v *= v1;
822 v2 >>= 1;
823 if (v2 == 0)
824 return v;
825 v1 *= v1;
826 }
827 }
828 }
829
830 /* Obtain argument values for binary operation, converting from
831 other types if one of them is not floating point. */
832 static void
833 value_args_as_target_float (struct value *arg1, struct value *arg2,
834 gdb_byte *x, struct type **eff_type_x,
835 gdb_byte *y, struct type **eff_type_y)
836 {
837 struct type *type1, *type2;
838
839 type1 = check_typedef (value_type (arg1));
840 type2 = check_typedef (value_type (arg2));
841
842 /* At least one of the arguments must be of floating-point type. */
843 gdb_assert (is_floating_type (type1) || is_floating_type (type2));
844
845 if (is_floating_type (type1) && is_floating_type (type2)
846 && type1->code () != type2->code ())
847 /* The DFP extension to the C language does not allow mixing of
848 * decimal float types with other float types in expressions
849 * (see WDTR 24732, page 12). */
850 error (_("Mixing decimal floating types with "
851 "other floating types is not allowed."));
852
853 /* Obtain value of arg1, converting from other types if necessary. */
854
855 if (is_floating_type (type1))
856 {
857 *eff_type_x = type1;
858 memcpy (x, value_contents (arg1), TYPE_LENGTH (type1));
859 }
860 else if (is_integral_type (type1))
861 {
862 *eff_type_x = type2;
863 if (type1->is_unsigned ())
864 target_float_from_ulongest (x, *eff_type_x, value_as_long (arg1));
865 else
866 target_float_from_longest (x, *eff_type_x, value_as_long (arg1));
867 }
868 else
869 error (_("Don't know how to convert from %s to %s."), type1->name (),
870 type2->name ());
871
872 /* Obtain value of arg2, converting from other types if necessary. */
873
874 if (is_floating_type (type2))
875 {
876 *eff_type_y = type2;
877 memcpy (y, value_contents (arg2), TYPE_LENGTH (type2));
878 }
879 else if (is_integral_type (type2))
880 {
881 *eff_type_y = type1;
882 if (type2->is_unsigned ())
883 target_float_from_ulongest (y, *eff_type_y, value_as_long (arg2));
884 else
885 target_float_from_longest (y, *eff_type_y, value_as_long (arg2));
886 }
887 else
888 error (_("Don't know how to convert from %s to %s."), type1->name (),
889 type2->name ());
890 }
891
892 /* Assuming at last one of ARG1 or ARG2 is a fixed point value,
893 perform the binary operation OP on these two operands, and return
894 the resulting value (also as a fixed point). */
895
896 static struct value *
897 fixed_point_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
898 {
899 struct type *type1 = check_typedef (value_type (arg1));
900 struct type *type2 = check_typedef (value_type (arg2));
901 const struct language_defn *language = current_language;
902
903 struct gdbarch *gdbarch = get_type_arch (type1);
904 struct value *val;
905
906 gdb_assert (is_fixed_point_type (type1) || is_fixed_point_type (type2));
907 if (!is_fixed_point_type (type1))
908 {
909 arg1 = value_cast (type2, arg1);
910 type1 = type2;
911 }
912 if (!is_fixed_point_type (type2))
913 {
914 arg2 = value_cast (type1, arg2);
915 type2 = type1;
916 }
917
918 gdb_mpq v1, v2, res;
919 v1.read_fixed_point (gdb::make_array_view (value_contents (arg1),
920 TYPE_LENGTH (type1)),
921 type_byte_order (type1), type1->is_unsigned (),
922 type1->fixed_point_scaling_factor ());
923 v2.read_fixed_point (gdb::make_array_view (value_contents (arg2),
924 TYPE_LENGTH (type2)),
925 type_byte_order (type2), type2->is_unsigned (),
926 type2->fixed_point_scaling_factor ());
927
928 auto fixed_point_to_value = [type1] (const gdb_mpq &fp)
929 {
930 value *fp_val = allocate_value (type1);
931
932 fp.write_fixed_point
933 (gdb::make_array_view (value_contents_raw (fp_val),
934 TYPE_LENGTH (type1)),
935 type_byte_order (type1),
936 type1->is_unsigned (),
937 type1->fixed_point_scaling_factor ());
938
939 return fp_val;
940 };
941
942 switch (op)
943 {
944 case BINOP_ADD:
945 mpq_add (res.val, v1.val, v2.val);
946 val = fixed_point_to_value (res);
947 break;
948
949 case BINOP_SUB:
950 mpq_sub (res.val, v1.val, v2.val);
951 val = fixed_point_to_value (res);
952 break;
953
954 case BINOP_MIN:
955 val = fixed_point_to_value (mpq_cmp (v1.val, v2.val) < 0 ? v1 : v2);
956 break;
957
958 case BINOP_MAX:
959 val = fixed_point_to_value (mpq_cmp (v1.val, v2.val) > 0 ? v1 : v2);
960 break;
961
962 case BINOP_MUL:
963 mpq_mul (res.val, v1.val, v2.val);
964 val = fixed_point_to_value (res);
965 break;
966
967 case BINOP_DIV:
968 if (mpq_sgn (v2.val) == 0)
969 error (_("Division by zero"));
970 mpq_div (res.val, v1.val, v2.val);
971 val = fixed_point_to_value (res);
972 break;
973
974 case BINOP_EQUAL:
975 val = value_from_ulongest (language_bool_type (language, gdbarch),
976 mpq_cmp (v1.val, v2.val) == 0 ? 1 : 0);
977 break;
978
979 case BINOP_LESS:
980 val = value_from_ulongest (language_bool_type (language, gdbarch),
981 mpq_cmp (v1.val, v2.val) < 0 ? 1 : 0);
982 break;
983
984 default:
985 error (_("Integer-only operation on fixed point number."));
986 }
987
988 return val;
989 }
990
991 /* A helper function that finds the type to use for a binary operation
992 involving TYPE1 and TYPE2. */
993
994 static struct type *
995 promotion_type (struct type *type1, struct type *type2)
996 {
997 struct type *result_type;
998
999 if (is_floating_type (type1) || is_floating_type (type2))
1000 {
1001 /* If only one type is floating-point, use its type.
1002 Otherwise use the bigger type. */
1003 if (!is_floating_type (type1))
1004 result_type = type2;
1005 else if (!is_floating_type (type2))
1006 result_type = type1;
1007 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
1008 result_type = type2;
1009 else
1010 result_type = type1;
1011 }
1012 else
1013 {
1014 /* Integer types. */
1015 if (TYPE_LENGTH (type1) > TYPE_LENGTH (type2))
1016 result_type = type1;
1017 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
1018 result_type = type2;
1019 else if (type1->is_unsigned ())
1020 result_type = type1;
1021 else if (type2->is_unsigned ())
1022 result_type = type2;
1023 else
1024 result_type = type1;
1025 }
1026
1027 return result_type;
1028 }
1029
1030 static struct value *scalar_binop (struct value *arg1, struct value *arg2,
1031 enum exp_opcode op);
1032
1033 /* Perform a binary operation on complex operands. */
1034
1035 static struct value *
1036 complex_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
1037 {
1038 struct type *arg1_type = check_typedef (value_type (arg1));
1039 struct type *arg2_type = check_typedef (value_type (arg2));
1040
1041 struct value *arg1_real, *arg1_imag, *arg2_real, *arg2_imag;
1042 if (arg1_type->code () == TYPE_CODE_COMPLEX)
1043 {
1044 arg1_real = value_real_part (arg1);
1045 arg1_imag = value_imaginary_part (arg1);
1046 }
1047 else
1048 {
1049 arg1_real = arg1;
1050 arg1_imag = value_zero (arg1_type, not_lval);
1051 }
1052 if (arg2_type->code () == TYPE_CODE_COMPLEX)
1053 {
1054 arg2_real = value_real_part (arg2);
1055 arg2_imag = value_imaginary_part (arg2);
1056 }
1057 else
1058 {
1059 arg2_real = arg2;
1060 arg2_imag = value_zero (arg2_type, not_lval);
1061 }
1062
1063 struct type *comp_type = promotion_type (value_type (arg1_real),
1064 value_type (arg2_real));
1065 arg1_real = value_cast (comp_type, arg1_real);
1066 arg1_imag = value_cast (comp_type, arg1_imag);
1067 arg2_real = value_cast (comp_type, arg2_real);
1068 arg2_imag = value_cast (comp_type, arg2_imag);
1069
1070 struct type *result_type = init_complex_type (nullptr, comp_type);
1071
1072 struct value *result_real, *result_imag;
1073 switch (op)
1074 {
1075 case BINOP_ADD:
1076 case BINOP_SUB:
1077 result_real = scalar_binop (arg1_real, arg2_real, op);
1078 result_imag = scalar_binop (arg1_imag, arg2_imag, op);
1079 break;
1080
1081 case BINOP_MUL:
1082 {
1083 struct value *x1 = scalar_binop (arg1_real, arg2_real, op);
1084 struct value *x2 = scalar_binop (arg1_imag, arg2_imag, op);
1085 result_real = scalar_binop (x1, x2, BINOP_SUB);
1086
1087 x1 = scalar_binop (arg1_real, arg2_imag, op);
1088 x2 = scalar_binop (arg1_imag, arg2_real, op);
1089 result_imag = scalar_binop (x1, x2, BINOP_ADD);
1090 }
1091 break;
1092
1093 case BINOP_DIV:
1094 {
1095 if (arg2_type->code () == TYPE_CODE_COMPLEX)
1096 {
1097 struct value *conjugate = value_complement (arg2);
1098 /* We have to reconstruct ARG1, in case the type was
1099 promoted. */
1100 arg1 = value_literal_complex (arg1_real, arg1_imag, result_type);
1101
1102 struct value *numerator = scalar_binop (arg1, conjugate,
1103 BINOP_MUL);
1104 arg1_real = value_real_part (numerator);
1105 arg1_imag = value_imaginary_part (numerator);
1106
1107 struct value *x1 = scalar_binop (arg2_real, arg2_real, BINOP_MUL);
1108 struct value *x2 = scalar_binop (arg2_imag, arg2_imag, BINOP_MUL);
1109 arg2_real = scalar_binop (x1, x2, BINOP_ADD);
1110 }
1111
1112 result_real = scalar_binop (arg1_real, arg2_real, op);
1113 result_imag = scalar_binop (arg1_imag, arg2_real, op);
1114 }
1115 break;
1116
1117 case BINOP_EQUAL:
1118 case BINOP_NOTEQUAL:
1119 {
1120 struct value *x1 = scalar_binop (arg1_real, arg2_real, op);
1121 struct value *x2 = scalar_binop (arg1_imag, arg2_imag, op);
1122
1123 LONGEST v1 = value_as_long (x1);
1124 LONGEST v2 = value_as_long (x2);
1125
1126 if (op == BINOP_EQUAL)
1127 v1 = v1 && v2;
1128 else
1129 v1 = v1 || v2;
1130
1131 return value_from_longest (value_type (x1), v1);
1132 }
1133 break;
1134
1135 default:
1136 error (_("Invalid binary operation on numbers."));
1137 }
1138
1139 return value_literal_complex (result_real, result_imag, result_type);
1140 }
1141
1142 /* Perform a binary operation on two operands which have reasonable
1143 representations as integers or floats. This includes booleans,
1144 characters, integers, or floats.
1145 Does not support addition and subtraction on pointers;
1146 use value_ptradd, value_ptrsub or value_ptrdiff for those operations. */
1147
1148 static struct value *
1149 scalar_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
1150 {
1151 struct value *val;
1152 struct type *type1, *type2, *result_type;
1153
1154 arg1 = coerce_ref (arg1);
1155 arg2 = coerce_ref (arg2);
1156
1157 type1 = check_typedef (value_type (arg1));
1158 type2 = check_typedef (value_type (arg2));
1159
1160 if (type1->code () == TYPE_CODE_COMPLEX
1161 || type2->code () == TYPE_CODE_COMPLEX)
1162 return complex_binop (arg1, arg2, op);
1163
1164 if ((!is_floating_value (arg1)
1165 && !is_integral_type (type1)
1166 && !is_fixed_point_type (type1))
1167 || (!is_floating_value (arg2)
1168 && !is_integral_type (type2)
1169 && !is_fixed_point_type (type2)))
1170 error (_("Argument to arithmetic operation not a number or boolean."));
1171
1172 if (is_fixed_point_type (type1) || is_fixed_point_type (type2))
1173 return fixed_point_binop (arg1, arg2, op);
1174
1175 if (is_floating_type (type1) || is_floating_type (type2))
1176 {
1177 result_type = promotion_type (type1, type2);
1178 val = allocate_value (result_type);
1179
1180 struct type *eff_type_v1, *eff_type_v2;
1181 gdb::byte_vector v1, v2;
1182 v1.resize (TYPE_LENGTH (result_type));
1183 v2.resize (TYPE_LENGTH (result_type));
1184
1185 value_args_as_target_float (arg1, arg2,
1186 v1.data (), &eff_type_v1,
1187 v2.data (), &eff_type_v2);
1188 target_float_binop (op, v1.data (), eff_type_v1,
1189 v2.data (), eff_type_v2,
1190 value_contents_raw (val), result_type);
1191 }
1192 else if (type1->code () == TYPE_CODE_BOOL
1193 || type2->code () == TYPE_CODE_BOOL)
1194 {
1195 LONGEST v1, v2, v = 0;
1196
1197 v1 = value_as_long (arg1);
1198 v2 = value_as_long (arg2);
1199
1200 switch (op)
1201 {
1202 case BINOP_BITWISE_AND:
1203 v = v1 & v2;
1204 break;
1205
1206 case BINOP_BITWISE_IOR:
1207 v = v1 | v2;
1208 break;
1209
1210 case BINOP_BITWISE_XOR:
1211 v = v1 ^ v2;
1212 break;
1213
1214 case BINOP_EQUAL:
1215 v = v1 == v2;
1216 break;
1217
1218 case BINOP_NOTEQUAL:
1219 v = v1 != v2;
1220 break;
1221
1222 default:
1223 error (_("Invalid operation on booleans."));
1224 }
1225
1226 result_type = type1;
1227
1228 val = allocate_value (result_type);
1229 store_signed_integer (value_contents_raw (val),
1230 TYPE_LENGTH (result_type),
1231 type_byte_order (result_type),
1232 v);
1233 }
1234 else
1235 /* Integral operations here. */
1236 {
1237 /* Determine type length of the result, and if the operation should
1238 be done unsigned. For exponentiation and shift operators,
1239 use the length and type of the left operand. Otherwise,
1240 use the signedness of the operand with the greater length.
1241 If both operands are of equal length, use unsigned operation
1242 if one of the operands is unsigned. */
1243 if (op == BINOP_RSH || op == BINOP_LSH || op == BINOP_EXP)
1244 result_type = type1;
1245 else
1246 result_type = promotion_type (type1, type2);
1247
1248 if (result_type->is_unsigned ())
1249 {
1250 LONGEST v2_signed = value_as_long (arg2);
1251 ULONGEST v1, v2, v = 0;
1252
1253 v1 = (ULONGEST) value_as_long (arg1);
1254 v2 = (ULONGEST) v2_signed;
1255
1256 switch (op)
1257 {
1258 case BINOP_ADD:
1259 v = v1 + v2;
1260 break;
1261
1262 case BINOP_SUB:
1263 v = v1 - v2;
1264 break;
1265
1266 case BINOP_MUL:
1267 v = v1 * v2;
1268 break;
1269
1270 case BINOP_DIV:
1271 case BINOP_INTDIV:
1272 if (v2 != 0)
1273 v = v1 / v2;
1274 else
1275 error (_("Division by zero"));
1276 break;
1277
1278 case BINOP_EXP:
1279 v = uinteger_pow (v1, v2_signed);
1280 break;
1281
1282 case BINOP_REM:
1283 if (v2 != 0)
1284 v = v1 % v2;
1285 else
1286 error (_("Division by zero"));
1287 break;
1288
1289 case BINOP_MOD:
1290 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1291 v1 mod 0 has a defined value, v1. */
1292 if (v2 == 0)
1293 {
1294 v = v1;
1295 }
1296 else
1297 {
1298 v = v1 / v2;
1299 /* Note floor(v1/v2) == v1/v2 for unsigned. */
1300 v = v1 - (v2 * v);
1301 }
1302 break;
1303
1304 case BINOP_LSH:
1305 v = v1 << v2;
1306 break;
1307
1308 case BINOP_RSH:
1309 v = v1 >> v2;
1310 break;
1311
1312 case BINOP_BITWISE_AND:
1313 v = v1 & v2;
1314 break;
1315
1316 case BINOP_BITWISE_IOR:
1317 v = v1 | v2;
1318 break;
1319
1320 case BINOP_BITWISE_XOR:
1321 v = v1 ^ v2;
1322 break;
1323
1324 case BINOP_LOGICAL_AND:
1325 v = v1 && v2;
1326 break;
1327
1328 case BINOP_LOGICAL_OR:
1329 v = v1 || v2;
1330 break;
1331
1332 case BINOP_MIN:
1333 v = v1 < v2 ? v1 : v2;
1334 break;
1335
1336 case BINOP_MAX:
1337 v = v1 > v2 ? v1 : v2;
1338 break;
1339
1340 case BINOP_EQUAL:
1341 v = v1 == v2;
1342 break;
1343
1344 case BINOP_NOTEQUAL:
1345 v = v1 != v2;
1346 break;
1347
1348 case BINOP_LESS:
1349 v = v1 < v2;
1350 break;
1351
1352 case BINOP_GTR:
1353 v = v1 > v2;
1354 break;
1355
1356 case BINOP_LEQ:
1357 v = v1 <= v2;
1358 break;
1359
1360 case BINOP_GEQ:
1361 v = v1 >= v2;
1362 break;
1363
1364 default:
1365 error (_("Invalid binary operation on numbers."));
1366 }
1367
1368 val = allocate_value (result_type);
1369 store_unsigned_integer (value_contents_raw (val),
1370 TYPE_LENGTH (value_type (val)),
1371 type_byte_order (result_type),
1372 v);
1373 }
1374 else
1375 {
1376 LONGEST v1, v2, v = 0;
1377
1378 v1 = value_as_long (arg1);
1379 v2 = value_as_long (arg2);
1380
1381 switch (op)
1382 {
1383 case BINOP_ADD:
1384 v = v1 + v2;
1385 break;
1386
1387 case BINOP_SUB:
1388 v = v1 - v2;
1389 break;
1390
1391 case BINOP_MUL:
1392 v = v1 * v2;
1393 break;
1394
1395 case BINOP_DIV:
1396 case BINOP_INTDIV:
1397 if (v2 != 0)
1398 v = v1 / v2;
1399 else
1400 error (_("Division by zero"));
1401 break;
1402
1403 case BINOP_EXP:
1404 v = integer_pow (v1, v2);
1405 break;
1406
1407 case BINOP_REM:
1408 if (v2 != 0)
1409 v = v1 % v2;
1410 else
1411 error (_("Division by zero"));
1412 break;
1413
1414 case BINOP_MOD:
1415 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1416 X mod 0 has a defined value, X. */
1417 if (v2 == 0)
1418 {
1419 v = v1;
1420 }
1421 else
1422 {
1423 v = v1 / v2;
1424 /* Compute floor. */
1425 if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0))
1426 {
1427 v--;
1428 }
1429 v = v1 - (v2 * v);
1430 }
1431 break;
1432
1433 case BINOP_LSH:
1434 v = v1 << v2;
1435 break;
1436
1437 case BINOP_RSH:
1438 v = v1 >> v2;
1439 break;
1440
1441 case BINOP_BITWISE_AND:
1442 v = v1 & v2;
1443 break;
1444
1445 case BINOP_BITWISE_IOR:
1446 v = v1 | v2;
1447 break;
1448
1449 case BINOP_BITWISE_XOR:
1450 v = v1 ^ v2;
1451 break;
1452
1453 case BINOP_LOGICAL_AND:
1454 v = v1 && v2;
1455 break;
1456
1457 case BINOP_LOGICAL_OR:
1458 v = v1 || v2;
1459 break;
1460
1461 case BINOP_MIN:
1462 v = v1 < v2 ? v1 : v2;
1463 break;
1464
1465 case BINOP_MAX:
1466 v = v1 > v2 ? v1 : v2;
1467 break;
1468
1469 case BINOP_EQUAL:
1470 v = v1 == v2;
1471 break;
1472
1473 case BINOP_NOTEQUAL:
1474 v = v1 != v2;
1475 break;
1476
1477 case BINOP_LESS:
1478 v = v1 < v2;
1479 break;
1480
1481 case BINOP_GTR:
1482 v = v1 > v2;
1483 break;
1484
1485 case BINOP_LEQ:
1486 v = v1 <= v2;
1487 break;
1488
1489 case BINOP_GEQ:
1490 v = v1 >= v2;
1491 break;
1492
1493 default:
1494 error (_("Invalid binary operation on numbers."));
1495 }
1496
1497 val = allocate_value (result_type);
1498 store_signed_integer (value_contents_raw (val),
1499 TYPE_LENGTH (value_type (val)),
1500 type_byte_order (result_type),
1501 v);
1502 }
1503 }
1504
1505 return val;
1506 }
1507
1508 /* Widen a scalar value SCALAR_VALUE to vector type VECTOR_TYPE by
1509 replicating SCALAR_VALUE for each element of the vector. Only scalar
1510 types that can be cast to the type of one element of the vector are
1511 acceptable. The newly created vector value is returned upon success,
1512 otherwise an error is thrown. */
1513
1514 struct value *
1515 value_vector_widen (struct value *scalar_value, struct type *vector_type)
1516 {
1517 /* Widen the scalar to a vector. */
1518 struct type *eltype, *scalar_type;
1519 struct value *val, *elval;
1520 LONGEST low_bound, high_bound;
1521 int i;
1522
1523 vector_type = check_typedef (vector_type);
1524
1525 gdb_assert (vector_type->code () == TYPE_CODE_ARRAY
1526 && vector_type->is_vector ());
1527
1528 if (!get_array_bounds (vector_type, &low_bound, &high_bound))
1529 error (_("Could not determine the vector bounds"));
1530
1531 eltype = check_typedef (TYPE_TARGET_TYPE (vector_type));
1532 elval = value_cast (eltype, scalar_value);
1533
1534 scalar_type = check_typedef (value_type (scalar_value));
1535
1536 /* If we reduced the length of the scalar then check we didn't loose any
1537 important bits. */
1538 if (TYPE_LENGTH (eltype) < TYPE_LENGTH (scalar_type)
1539 && !value_equal (elval, scalar_value))
1540 error (_("conversion of scalar to vector involves truncation"));
1541
1542 val = allocate_value (vector_type);
1543 for (i = 0; i < high_bound - low_bound + 1; i++)
1544 /* Duplicate the contents of elval into the destination vector. */
1545 memcpy (value_contents_writeable (val) + (i * TYPE_LENGTH (eltype)),
1546 value_contents_all (elval), TYPE_LENGTH (eltype));
1547
1548 return val;
1549 }
1550
1551 /* Performs a binary operation on two vector operands by calling scalar_binop
1552 for each pair of vector components. */
1553
1554 static struct value *
1555 vector_binop (struct value *val1, struct value *val2, enum exp_opcode op)
1556 {
1557 struct value *val, *tmp, *mark;
1558 struct type *type1, *type2, *eltype1, *eltype2;
1559 int t1_is_vec, t2_is_vec, elsize, i;
1560 LONGEST low_bound1, high_bound1, low_bound2, high_bound2;
1561
1562 type1 = check_typedef (value_type (val1));
1563 type2 = check_typedef (value_type (val2));
1564
1565 t1_is_vec = (type1->code () == TYPE_CODE_ARRAY
1566 && type1->is_vector ()) ? 1 : 0;
1567 t2_is_vec = (type2->code () == TYPE_CODE_ARRAY
1568 && type2->is_vector ()) ? 1 : 0;
1569
1570 if (!t1_is_vec || !t2_is_vec)
1571 error (_("Vector operations are only supported among vectors"));
1572
1573 if (!get_array_bounds (type1, &low_bound1, &high_bound1)
1574 || !get_array_bounds (type2, &low_bound2, &high_bound2))
1575 error (_("Could not determine the vector bounds"));
1576
1577 eltype1 = check_typedef (TYPE_TARGET_TYPE (type1));
1578 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2));
1579 elsize = TYPE_LENGTH (eltype1);
1580
1581 if (eltype1->code () != eltype2->code ()
1582 || elsize != TYPE_LENGTH (eltype2)
1583 || eltype1->is_unsigned () != eltype2->is_unsigned ()
1584 || low_bound1 != low_bound2 || high_bound1 != high_bound2)
1585 error (_("Cannot perform operation on vectors with different types"));
1586
1587 val = allocate_value (type1);
1588 mark = value_mark ();
1589 for (i = 0; i < high_bound1 - low_bound1 + 1; i++)
1590 {
1591 tmp = value_binop (value_subscript (val1, i),
1592 value_subscript (val2, i), op);
1593 memcpy (value_contents_writeable (val) + i * elsize,
1594 value_contents_all (tmp),
1595 elsize);
1596 }
1597 value_free_to_mark (mark);
1598
1599 return val;
1600 }
1601
1602 /* Perform a binary operation on two operands. */
1603
1604 struct value *
1605 value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
1606 {
1607 struct value *val;
1608 struct type *type1 = check_typedef (value_type (arg1));
1609 struct type *type2 = check_typedef (value_type (arg2));
1610 int t1_is_vec = (type1->code () == TYPE_CODE_ARRAY
1611 && type1->is_vector ());
1612 int t2_is_vec = (type2->code () == TYPE_CODE_ARRAY
1613 && type2->is_vector ());
1614
1615 if (!t1_is_vec && !t2_is_vec)
1616 val = scalar_binop (arg1, arg2, op);
1617 else if (t1_is_vec && t2_is_vec)
1618 val = vector_binop (arg1, arg2, op);
1619 else
1620 {
1621 /* Widen the scalar operand to a vector. */
1622 struct value **v = t1_is_vec ? &arg2 : &arg1;
1623 struct type *t = t1_is_vec ? type2 : type1;
1624
1625 if (t->code () != TYPE_CODE_FLT
1626 && t->code () != TYPE_CODE_DECFLOAT
1627 && !is_integral_type (t))
1628 error (_("Argument to operation not a number or boolean."));
1629
1630 /* Replicate the scalar value to make a vector value. */
1631 *v = value_vector_widen (*v, t1_is_vec ? type1 : type2);
1632
1633 val = vector_binop (arg1, arg2, op);
1634 }
1635
1636 return val;
1637 }
1638 \f
1639 /* Simulate the C operator ! -- return 1 if ARG1 contains zero. */
1640
1641 int
1642 value_logical_not (struct value *arg1)
1643 {
1644 int len;
1645 const gdb_byte *p;
1646 struct type *type1;
1647
1648 arg1 = coerce_array (arg1);
1649 type1 = check_typedef (value_type (arg1));
1650
1651 if (is_floating_value (arg1))
1652 return target_float_is_zero (value_contents (arg1), type1);
1653
1654 len = TYPE_LENGTH (type1);
1655 p = value_contents (arg1);
1656
1657 while (--len >= 0)
1658 {
1659 if (*p++)
1660 break;
1661 }
1662
1663 return len < 0;
1664 }
1665
1666 /* Perform a comparison on two string values (whose content are not
1667 necessarily null terminated) based on their length. */
1668
1669 static int
1670 value_strcmp (struct value *arg1, struct value *arg2)
1671 {
1672 int len1 = TYPE_LENGTH (value_type (arg1));
1673 int len2 = TYPE_LENGTH (value_type (arg2));
1674 const gdb_byte *s1 = value_contents (arg1);
1675 const gdb_byte *s2 = value_contents (arg2);
1676 int i, len = len1 < len2 ? len1 : len2;
1677
1678 for (i = 0; i < len; i++)
1679 {
1680 if (s1[i] < s2[i])
1681 return -1;
1682 else if (s1[i] > s2[i])
1683 return 1;
1684 else
1685 continue;
1686 }
1687
1688 if (len1 < len2)
1689 return -1;
1690 else if (len1 > len2)
1691 return 1;
1692 else
1693 return 0;
1694 }
1695
1696 /* Simulate the C operator == by returning a 1
1697 iff ARG1 and ARG2 have equal contents. */
1698
1699 int
1700 value_equal (struct value *arg1, struct value *arg2)
1701 {
1702 int len;
1703 const gdb_byte *p1;
1704 const gdb_byte *p2;
1705 struct type *type1, *type2;
1706 enum type_code code1;
1707 enum type_code code2;
1708 int is_int1, is_int2;
1709
1710 arg1 = coerce_array (arg1);
1711 arg2 = coerce_array (arg2);
1712
1713 type1 = check_typedef (value_type (arg1));
1714 type2 = check_typedef (value_type (arg2));
1715 code1 = type1->code ();
1716 code2 = type2->code ();
1717 is_int1 = is_integral_type (type1);
1718 is_int2 = is_integral_type (type2);
1719
1720 if (is_int1 && is_int2)
1721 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1722 BINOP_EQUAL)));
1723 else if ((is_floating_value (arg1) || is_int1)
1724 && (is_floating_value (arg2) || is_int2))
1725 {
1726 struct type *eff_type_v1, *eff_type_v2;
1727 gdb::byte_vector v1, v2;
1728 v1.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2)));
1729 v2.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2)));
1730
1731 value_args_as_target_float (arg1, arg2,
1732 v1.data (), &eff_type_v1,
1733 v2.data (), &eff_type_v2);
1734
1735 return target_float_compare (v1.data (), eff_type_v1,
1736 v2.data (), eff_type_v2) == 0;
1737 }
1738
1739 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1740 is bigger. */
1741 else if (code1 == TYPE_CODE_PTR && is_int2)
1742 return value_as_address (arg1) == (CORE_ADDR) value_as_long (arg2);
1743 else if (code2 == TYPE_CODE_PTR && is_int1)
1744 return (CORE_ADDR) value_as_long (arg1) == value_as_address (arg2);
1745
1746 else if (code1 == code2
1747 && ((len = (int) TYPE_LENGTH (type1))
1748 == (int) TYPE_LENGTH (type2)))
1749 {
1750 p1 = value_contents (arg1);
1751 p2 = value_contents (arg2);
1752 while (--len >= 0)
1753 {
1754 if (*p1++ != *p2++)
1755 break;
1756 }
1757 return len < 0;
1758 }
1759 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1760 {
1761 return value_strcmp (arg1, arg2) == 0;
1762 }
1763 else
1764 error (_("Invalid type combination in equality test."));
1765 }
1766
1767 /* Compare values based on their raw contents. Useful for arrays since
1768 value_equal coerces them to pointers, thus comparing just the address
1769 of the array instead of its contents. */
1770
1771 int
1772 value_equal_contents (struct value *arg1, struct value *arg2)
1773 {
1774 struct type *type1, *type2;
1775
1776 type1 = check_typedef (value_type (arg1));
1777 type2 = check_typedef (value_type (arg2));
1778
1779 return (type1->code () == type2->code ()
1780 && TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
1781 && memcmp (value_contents (arg1), value_contents (arg2),
1782 TYPE_LENGTH (type1)) == 0);
1783 }
1784
1785 /* Simulate the C operator < by returning 1
1786 iff ARG1's contents are less than ARG2's. */
1787
1788 int
1789 value_less (struct value *arg1, struct value *arg2)
1790 {
1791 enum type_code code1;
1792 enum type_code code2;
1793 struct type *type1, *type2;
1794 int is_int1, is_int2;
1795
1796 arg1 = coerce_array (arg1);
1797 arg2 = coerce_array (arg2);
1798
1799 type1 = check_typedef (value_type (arg1));
1800 type2 = check_typedef (value_type (arg2));
1801 code1 = type1->code ();
1802 code2 = type2->code ();
1803 is_int1 = is_integral_type (type1);
1804 is_int2 = is_integral_type (type2);
1805
1806 if ((is_int1 && is_int2)
1807 || (is_fixed_point_type (type1) && is_fixed_point_type (type2)))
1808 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1809 BINOP_LESS)));
1810 else if ((is_floating_value (arg1) || is_int1)
1811 && (is_floating_value (arg2) || is_int2))
1812 {
1813 struct type *eff_type_v1, *eff_type_v2;
1814 gdb::byte_vector v1, v2;
1815 v1.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2)));
1816 v2.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2)));
1817
1818 value_args_as_target_float (arg1, arg2,
1819 v1.data (), &eff_type_v1,
1820 v2.data (), &eff_type_v2);
1821
1822 return target_float_compare (v1.data (), eff_type_v1,
1823 v2.data (), eff_type_v2) == -1;
1824 }
1825 else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
1826 return value_as_address (arg1) < value_as_address (arg2);
1827
1828 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1829 is bigger. */
1830 else if (code1 == TYPE_CODE_PTR && is_int2)
1831 return value_as_address (arg1) < (CORE_ADDR) value_as_long (arg2);
1832 else if (code2 == TYPE_CODE_PTR && is_int1)
1833 return (CORE_ADDR) value_as_long (arg1) < value_as_address (arg2);
1834 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1835 return value_strcmp (arg1, arg2) < 0;
1836 else
1837 {
1838 error (_("Invalid type combination in ordering comparison."));
1839 return 0;
1840 }
1841 }
1842 \f
1843 /* The unary operators +, - and ~. They free the argument ARG1. */
1844
1845 struct value *
1846 value_pos (struct value *arg1)
1847 {
1848 struct type *type;
1849
1850 arg1 = coerce_ref (arg1);
1851 type = check_typedef (value_type (arg1));
1852
1853 if (is_integral_type (type) || is_floating_value (arg1)
1854 || (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
1855 || type->code () == TYPE_CODE_COMPLEX)
1856 return value_from_contents (type, value_contents (arg1));
1857 else
1858 error (_("Argument to positive operation not a number."));
1859 }
1860
1861 struct value *
1862 value_neg (struct value *arg1)
1863 {
1864 struct type *type;
1865
1866 arg1 = coerce_ref (arg1);
1867 type = check_typedef (value_type (arg1));
1868
1869 if (is_integral_type (type) || is_floating_type (type))
1870 return value_binop (value_from_longest (type, 0), arg1, BINOP_SUB);
1871 else if (is_fixed_point_type (type))
1872 return value_binop (value_zero (type, not_lval), arg1, BINOP_SUB);
1873 else if (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
1874 {
1875 struct value *tmp, *val = allocate_value (type);
1876 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
1877 int i;
1878 LONGEST low_bound, high_bound;
1879
1880 if (!get_array_bounds (type, &low_bound, &high_bound))
1881 error (_("Could not determine the vector bounds"));
1882
1883 for (i = 0; i < high_bound - low_bound + 1; i++)
1884 {
1885 tmp = value_neg (value_subscript (arg1, i));
1886 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
1887 value_contents_all (tmp), TYPE_LENGTH (eltype));
1888 }
1889 return val;
1890 }
1891 else if (type->code () == TYPE_CODE_COMPLEX)
1892 {
1893 struct value *real = value_real_part (arg1);
1894 struct value *imag = value_imaginary_part (arg1);
1895
1896 real = value_neg (real);
1897 imag = value_neg (imag);
1898 return value_literal_complex (real, imag, type);
1899 }
1900 else
1901 error (_("Argument to negate operation not a number."));
1902 }
1903
1904 struct value *
1905 value_complement (struct value *arg1)
1906 {
1907 struct type *type;
1908 struct value *val;
1909
1910 arg1 = coerce_ref (arg1);
1911 type = check_typedef (value_type (arg1));
1912
1913 if (is_integral_type (type))
1914 val = value_from_longest (type, ~value_as_long (arg1));
1915 else if (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
1916 {
1917 struct value *tmp;
1918 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
1919 int i;
1920 LONGEST low_bound, high_bound;
1921
1922 if (!get_array_bounds (type, &low_bound, &high_bound))
1923 error (_("Could not determine the vector bounds"));
1924
1925 val = allocate_value (type);
1926 for (i = 0; i < high_bound - low_bound + 1; i++)
1927 {
1928 tmp = value_complement (value_subscript (arg1, i));
1929 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
1930 value_contents_all (tmp), TYPE_LENGTH (eltype));
1931 }
1932 }
1933 else if (type->code () == TYPE_CODE_COMPLEX)
1934 {
1935 /* GCC has an extension that treats ~complex as the complex
1936 conjugate. */
1937 struct value *real = value_real_part (arg1);
1938 struct value *imag = value_imaginary_part (arg1);
1939
1940 imag = value_neg (imag);
1941 return value_literal_complex (real, imag, type);
1942 }
1943 else
1944 error (_("Argument to complement operation not an integer, boolean."));
1945
1946 return val;
1947 }
1948 \f
1949 /* The INDEX'th bit of SET value whose value_type is TYPE,
1950 and whose value_contents is valaddr.
1951 Return -1 if out of range, -2 other error. */
1952
1953 int
1954 value_bit_index (struct type *type, const gdb_byte *valaddr, int index)
1955 {
1956 struct gdbarch *gdbarch = get_type_arch (type);
1957 LONGEST low_bound, high_bound;
1958 LONGEST word;
1959 unsigned rel_index;
1960 struct type *range = type->index_type ();
1961
1962 if (!get_discrete_bounds (range, &low_bound, &high_bound))
1963 return -2;
1964 if (index < low_bound || index > high_bound)
1965 return -1;
1966 rel_index = index - low_bound;
1967 word = extract_unsigned_integer (valaddr + (rel_index / TARGET_CHAR_BIT), 1,
1968 type_byte_order (type));
1969 rel_index %= TARGET_CHAR_BIT;
1970 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1971 rel_index = TARGET_CHAR_BIT - 1 - rel_index;
1972 return (word >> rel_index) & 1;
1973 }
1974
1975 int
1976 value_in (struct value *element, struct value *set)
1977 {
1978 int member;
1979 struct type *settype = check_typedef (value_type (set));
1980 struct type *eltype = check_typedef (value_type (element));
1981
1982 if (eltype->code () == TYPE_CODE_RANGE)
1983 eltype = TYPE_TARGET_TYPE (eltype);
1984 if (settype->code () != TYPE_CODE_SET)
1985 error (_("Second argument of 'IN' has wrong type"));
1986 if (eltype->code () != TYPE_CODE_INT
1987 && eltype->code () != TYPE_CODE_CHAR
1988 && eltype->code () != TYPE_CODE_ENUM
1989 && eltype->code () != TYPE_CODE_BOOL)
1990 error (_("First argument of 'IN' has wrong type"));
1991 member = value_bit_index (settype, value_contents (set),
1992 value_as_long (element));
1993 if (member < 0)
1994 error (_("First argument of 'IN' not in range"));
1995 return member;
1996 }