gdbsupport: add array_view copy function
[binutils-gdb.git] / gdb / valarith.c
1 /* Perform arithmetic and other operations on values, for GDB.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "value.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "expression.h"
25 #include "target.h"
26 #include "language.h"
27 #include "target-float.h"
28 #include "infcall.h"
29 #include "gdbsupport/byte-vector.h"
30 #include "gdbarch.h"
31
32 /* Forward declarations. */
33 static struct value *value_subscripted_rvalue (struct value *array,
34 LONGEST index,
35 LONGEST lowerbound);
36
37 /* Define whether or not the C operator '/' truncates towards zero for
38 differently signed operands (truncation direction is undefined in C). */
39
40 #ifndef TRUNCATION_TOWARDS_ZERO
41 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
42 #endif
43
44 /* Given a pointer, return the size of its target.
45 If the pointer type is void *, then return 1.
46 If the target type is incomplete, then error out.
47 This isn't a general purpose function, but just a
48 helper for value_ptradd. */
49
50 static LONGEST
51 find_size_for_pointer_math (struct type *ptr_type)
52 {
53 LONGEST sz = -1;
54 struct type *ptr_target;
55
56 gdb_assert (ptr_type->code () == TYPE_CODE_PTR);
57 ptr_target = check_typedef (TYPE_TARGET_TYPE (ptr_type));
58
59 sz = type_length_units (ptr_target);
60 if (sz == 0)
61 {
62 if (ptr_type->code () == TYPE_CODE_VOID)
63 sz = 1;
64 else
65 {
66 const char *name;
67
68 name = ptr_target->name ();
69 if (name == NULL)
70 error (_("Cannot perform pointer math on incomplete types, "
71 "try casting to a known type, or void *."));
72 else
73 error (_("Cannot perform pointer math on incomplete type \"%s\", "
74 "try casting to a known type, or void *."), name);
75 }
76 }
77 return sz;
78 }
79
80 /* Given a pointer ARG1 and an integral value ARG2, return the
81 result of C-style pointer arithmetic ARG1 + ARG2. */
82
83 struct value *
84 value_ptradd (struct value *arg1, LONGEST arg2)
85 {
86 struct type *valptrtype;
87 LONGEST sz;
88 struct value *result;
89
90 arg1 = coerce_array (arg1);
91 valptrtype = check_typedef (value_type (arg1));
92 sz = find_size_for_pointer_math (valptrtype);
93
94 result = value_from_pointer (valptrtype,
95 value_as_address (arg1) + sz * arg2);
96 if (VALUE_LVAL (result) != lval_internalvar)
97 set_value_component_location (result, arg1);
98 return result;
99 }
100
101 /* Given two compatible pointer values ARG1 and ARG2, return the
102 result of C-style pointer arithmetic ARG1 - ARG2. */
103
104 LONGEST
105 value_ptrdiff (struct value *arg1, struct value *arg2)
106 {
107 struct type *type1, *type2;
108 LONGEST sz;
109
110 arg1 = coerce_array (arg1);
111 arg2 = coerce_array (arg2);
112 type1 = check_typedef (value_type (arg1));
113 type2 = check_typedef (value_type (arg2));
114
115 gdb_assert (type1->code () == TYPE_CODE_PTR);
116 gdb_assert (type2->code () == TYPE_CODE_PTR);
117
118 if (TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)))
119 != TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type2))))
120 error (_("First argument of `-' is a pointer and "
121 "second argument is neither\n"
122 "an integer nor a pointer of the same type."));
123
124 sz = type_length_units (check_typedef (TYPE_TARGET_TYPE (type1)));
125 if (sz == 0)
126 {
127 warning (_("Type size unknown, assuming 1. "
128 "Try casting to a known type, or void *."));
129 sz = 1;
130 }
131
132 return (value_as_long (arg1) - value_as_long (arg2)) / sz;
133 }
134
135 /* Return the value of ARRAY[IDX].
136
137 ARRAY may be of type TYPE_CODE_ARRAY or TYPE_CODE_STRING. If the
138 current language supports C-style arrays, it may also be TYPE_CODE_PTR.
139
140 See comments in value_coerce_array() for rationale for reason for
141 doing lower bounds adjustment here rather than there.
142 FIXME: Perhaps we should validate that the index is valid and if
143 verbosity is set, warn about invalid indices (but still use them). */
144
145 struct value *
146 value_subscript (struct value *array, LONGEST index)
147 {
148 bool c_style = current_language->c_style_arrays_p ();
149 struct type *tarray;
150
151 array = coerce_ref (array);
152 tarray = check_typedef (value_type (array));
153
154 if (tarray->code () == TYPE_CODE_ARRAY
155 || tarray->code () == TYPE_CODE_STRING)
156 {
157 struct type *range_type = tarray->index_type ();
158 gdb::optional<LONGEST> lowerbound = get_discrete_low_bound (range_type);
159 if (!lowerbound.has_value ())
160 lowerbound = 0;
161
162 if (VALUE_LVAL (array) != lval_memory)
163 return value_subscripted_rvalue (array, index, *lowerbound);
164
165 if (!c_style)
166 {
167 gdb::optional<LONGEST> upperbound
168 = get_discrete_high_bound (range_type);
169
170 if (!upperbound.has_value ())
171 upperbound = 0;
172
173 if (index >= *lowerbound && index <= *upperbound)
174 return value_subscripted_rvalue (array, index, *lowerbound);
175
176 /* Emit warning unless we have an array of unknown size.
177 An array of unknown size has lowerbound 0 and upperbound -1. */
178 if (*upperbound > -1)
179 warning (_("array or string index out of range"));
180 /* fall doing C stuff */
181 c_style = true;
182 }
183
184 index -= *lowerbound;
185 array = value_coerce_array (array);
186 }
187
188 if (c_style)
189 return value_ind (value_ptradd (array, index));
190 else
191 error (_("not an array or string"));
192 }
193
194 /* Return the value of EXPR[IDX], expr an aggregate rvalue
195 (eg, a vector register). This routine used to promote floats
196 to doubles, but no longer does. */
197
198 static struct value *
199 value_subscripted_rvalue (struct value *array, LONGEST index,
200 LONGEST lowerbound)
201 {
202 struct type *array_type = check_typedef (value_type (array));
203 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type));
204 LONGEST elt_size = type_length_units (elt_type);
205
206 /* Fetch the bit stride and convert it to a byte stride, assuming 8 bits
207 in a byte. */
208 LONGEST stride = array_type->bit_stride ();
209 if (stride != 0)
210 {
211 struct gdbarch *arch = elt_type->arch ();
212 int unit_size = gdbarch_addressable_memory_unit_size (arch);
213 elt_size = stride / (unit_size * 8);
214 }
215
216 LONGEST elt_offs = elt_size * (index - lowerbound);
217 bool array_upper_bound_undefined
218 = array_type->bounds ()->high.kind () == PROP_UNDEFINED;
219
220 if (index < lowerbound
221 || (!array_upper_bound_undefined
222 && elt_offs >= type_length_units (array_type))
223 || (VALUE_LVAL (array) != lval_memory && array_upper_bound_undefined))
224 {
225 if (type_not_associated (array_type))
226 error (_("no such vector element (vector not associated)"));
227 else if (type_not_allocated (array_type))
228 error (_("no such vector element (vector not allocated)"));
229 else
230 error (_("no such vector element"));
231 }
232
233 if (is_dynamic_type (elt_type))
234 {
235 CORE_ADDR address;
236
237 address = value_address (array) + elt_offs;
238 elt_type = resolve_dynamic_type (elt_type, {}, address);
239 }
240
241 return value_from_component (array, elt_type, elt_offs);
242 }
243
244 \f
245 /* Check to see if either argument is a structure, or a reference to
246 one. This is called so we know whether to go ahead with the normal
247 binop or look for a user defined function instead.
248
249 For now, we do not overload the `=' operator. */
250
251 int
252 binop_types_user_defined_p (enum exp_opcode op,
253 struct type *type1, struct type *type2)
254 {
255 if (op == BINOP_ASSIGN || op == BINOP_CONCAT)
256 return 0;
257
258 type1 = check_typedef (type1);
259 if (TYPE_IS_REFERENCE (type1))
260 type1 = check_typedef (TYPE_TARGET_TYPE (type1));
261
262 type2 = check_typedef (type2);
263 if (TYPE_IS_REFERENCE (type2))
264 type2 = check_typedef (TYPE_TARGET_TYPE (type2));
265
266 return (type1->code () == TYPE_CODE_STRUCT
267 || type2->code () == TYPE_CODE_STRUCT);
268 }
269
270 /* Check to see if either argument is a structure, or a reference to
271 one. This is called so we know whether to go ahead with the normal
272 binop or look for a user defined function instead.
273
274 For now, we do not overload the `=' operator. */
275
276 int
277 binop_user_defined_p (enum exp_opcode op,
278 struct value *arg1, struct value *arg2)
279 {
280 return binop_types_user_defined_p (op, value_type (arg1), value_type (arg2));
281 }
282
283 /* Check to see if argument is a structure. This is called so
284 we know whether to go ahead with the normal unop or look for a
285 user defined function instead.
286
287 For now, we do not overload the `&' operator. */
288
289 int
290 unop_user_defined_p (enum exp_opcode op, struct value *arg1)
291 {
292 struct type *type1;
293
294 if (op == UNOP_ADDR)
295 return 0;
296 type1 = check_typedef (value_type (arg1));
297 if (TYPE_IS_REFERENCE (type1))
298 type1 = check_typedef (TYPE_TARGET_TYPE (type1));
299 return type1->code () == TYPE_CODE_STRUCT;
300 }
301
302 /* Try to find an operator named OPERATOR which takes NARGS arguments
303 specified in ARGS. If the operator found is a static member operator
304 *STATIC_MEMFUNP will be set to 1, and otherwise 0.
305 The search if performed through find_overload_match which will handle
306 member operators, non member operators, operators imported implicitly or
307 explicitly, and perform correct overload resolution in all of the above
308 situations or combinations thereof. */
309
310 static struct value *
311 value_user_defined_cpp_op (gdb::array_view<value *> args, char *oper,
312 int *static_memfuncp, enum noside noside)
313 {
314
315 struct symbol *symp = NULL;
316 struct value *valp = NULL;
317
318 find_overload_match (args, oper, BOTH /* could be method */,
319 &args[0] /* objp */,
320 NULL /* pass NULL symbol since symbol is unknown */,
321 &valp, &symp, static_memfuncp, 0, noside);
322
323 if (valp)
324 return valp;
325
326 if (symp)
327 {
328 /* This is a non member function and does not
329 expect a reference as its first argument
330 rather the explicit structure. */
331 args[0] = value_ind (args[0]);
332 return value_of_variable (symp, 0);
333 }
334
335 error (_("Could not find %s."), oper);
336 }
337
338 /* Lookup user defined operator NAME. Return a value representing the
339 function, otherwise return NULL. */
340
341 static struct value *
342 value_user_defined_op (struct value **argp, gdb::array_view<value *> args,
343 char *name, int *static_memfuncp, enum noside noside)
344 {
345 struct value *result = NULL;
346
347 if (current_language->la_language == language_cplus)
348 {
349 result = value_user_defined_cpp_op (args, name, static_memfuncp,
350 noside);
351 }
352 else
353 result = value_struct_elt (argp, args, name, static_memfuncp,
354 "structure");
355
356 return result;
357 }
358
359 /* We know either arg1 or arg2 is a structure, so try to find the right
360 user defined function. Create an argument vector that calls
361 arg1.operator @ (arg1,arg2) and return that value (where '@' is any
362 binary operator which is legal for GNU C++).
363
364 OP is the operator, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP
365 is the opcode saying how to modify it. Otherwise, OTHEROP is
366 unused. */
367
368 struct value *
369 value_x_binop (struct value *arg1, struct value *arg2, enum exp_opcode op,
370 enum exp_opcode otherop, enum noside noside)
371 {
372 char *ptr;
373 char tstr[13];
374 int static_memfuncp;
375
376 arg1 = coerce_ref (arg1);
377 arg2 = coerce_ref (arg2);
378
379 /* now we know that what we have to do is construct our
380 arg vector and find the right function to call it with. */
381
382 if (check_typedef (value_type (arg1))->code () != TYPE_CODE_STRUCT)
383 error (_("Can't do that binary op on that type")); /* FIXME be explicit */
384
385 value *argvec_storage[3];
386 gdb::array_view<value *> argvec = argvec_storage;
387
388 argvec[1] = value_addr (arg1);
389 argvec[2] = arg2;
390
391 /* Make the right function name up. */
392 strcpy (tstr, "operator__");
393 ptr = tstr + 8;
394 switch (op)
395 {
396 case BINOP_ADD:
397 strcpy (ptr, "+");
398 break;
399 case BINOP_SUB:
400 strcpy (ptr, "-");
401 break;
402 case BINOP_MUL:
403 strcpy (ptr, "*");
404 break;
405 case BINOP_DIV:
406 strcpy (ptr, "/");
407 break;
408 case BINOP_REM:
409 strcpy (ptr, "%");
410 break;
411 case BINOP_LSH:
412 strcpy (ptr, "<<");
413 break;
414 case BINOP_RSH:
415 strcpy (ptr, ">>");
416 break;
417 case BINOP_BITWISE_AND:
418 strcpy (ptr, "&");
419 break;
420 case BINOP_BITWISE_IOR:
421 strcpy (ptr, "|");
422 break;
423 case BINOP_BITWISE_XOR:
424 strcpy (ptr, "^");
425 break;
426 case BINOP_LOGICAL_AND:
427 strcpy (ptr, "&&");
428 break;
429 case BINOP_LOGICAL_OR:
430 strcpy (ptr, "||");
431 break;
432 case BINOP_MIN:
433 strcpy (ptr, "<?");
434 break;
435 case BINOP_MAX:
436 strcpy (ptr, ">?");
437 break;
438 case BINOP_ASSIGN:
439 strcpy (ptr, "=");
440 break;
441 case BINOP_ASSIGN_MODIFY:
442 switch (otherop)
443 {
444 case BINOP_ADD:
445 strcpy (ptr, "+=");
446 break;
447 case BINOP_SUB:
448 strcpy (ptr, "-=");
449 break;
450 case BINOP_MUL:
451 strcpy (ptr, "*=");
452 break;
453 case BINOP_DIV:
454 strcpy (ptr, "/=");
455 break;
456 case BINOP_REM:
457 strcpy (ptr, "%=");
458 break;
459 case BINOP_BITWISE_AND:
460 strcpy (ptr, "&=");
461 break;
462 case BINOP_BITWISE_IOR:
463 strcpy (ptr, "|=");
464 break;
465 case BINOP_BITWISE_XOR:
466 strcpy (ptr, "^=");
467 break;
468 case BINOP_MOD: /* invalid */
469 default:
470 error (_("Invalid binary operation specified."));
471 }
472 break;
473 case BINOP_SUBSCRIPT:
474 strcpy (ptr, "[]");
475 break;
476 case BINOP_EQUAL:
477 strcpy (ptr, "==");
478 break;
479 case BINOP_NOTEQUAL:
480 strcpy (ptr, "!=");
481 break;
482 case BINOP_LESS:
483 strcpy (ptr, "<");
484 break;
485 case BINOP_GTR:
486 strcpy (ptr, ">");
487 break;
488 case BINOP_GEQ:
489 strcpy (ptr, ">=");
490 break;
491 case BINOP_LEQ:
492 strcpy (ptr, "<=");
493 break;
494 case BINOP_MOD: /* invalid */
495 default:
496 error (_("Invalid binary operation specified."));
497 }
498
499 argvec[0] = value_user_defined_op (&arg1, argvec.slice (1), tstr,
500 &static_memfuncp, noside);
501
502 if (argvec[0])
503 {
504 if (static_memfuncp)
505 {
506 argvec[1] = argvec[0];
507 argvec = argvec.slice (1);
508 }
509 if (value_type (argvec[0])->code () == TYPE_CODE_XMETHOD)
510 {
511 /* Static xmethods are not supported yet. */
512 gdb_assert (static_memfuncp == 0);
513 if (noside == EVAL_AVOID_SIDE_EFFECTS)
514 {
515 struct type *return_type
516 = result_type_of_xmethod (argvec[0], argvec.slice (1));
517
518 if (return_type == NULL)
519 error (_("Xmethod is missing return type."));
520 return value_zero (return_type, VALUE_LVAL (arg1));
521 }
522 return call_xmethod (argvec[0], argvec.slice (1));
523 }
524 if (noside == EVAL_AVOID_SIDE_EFFECTS)
525 {
526 struct type *return_type;
527
528 return_type
529 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
530 return value_zero (return_type, VALUE_LVAL (arg1));
531 }
532 return call_function_by_hand (argvec[0], NULL,
533 argvec.slice (1, 2 - static_memfuncp));
534 }
535 throw_error (NOT_FOUND_ERROR,
536 _("member function %s not found"), tstr);
537 }
538
539 /* We know that arg1 is a structure, so try to find a unary user
540 defined operator that matches the operator in question.
541 Create an argument vector that calls arg1.operator @ (arg1)
542 and return that value (where '@' is (almost) any unary operator which
543 is legal for GNU C++). */
544
545 struct value *
546 value_x_unop (struct value *arg1, enum exp_opcode op, enum noside noside)
547 {
548 struct gdbarch *gdbarch = value_type (arg1)->arch ();
549 char *ptr;
550 char tstr[13], mangle_tstr[13];
551 int static_memfuncp, nargs;
552
553 arg1 = coerce_ref (arg1);
554
555 /* now we know that what we have to do is construct our
556 arg vector and find the right function to call it with. */
557
558 if (check_typedef (value_type (arg1))->code () != TYPE_CODE_STRUCT)
559 error (_("Can't do that unary op on that type")); /* FIXME be explicit */
560
561 value *argvec_storage[3];
562 gdb::array_view<value *> argvec = argvec_storage;
563
564 argvec[1] = value_addr (arg1);
565 argvec[2] = 0;
566
567 nargs = 1;
568
569 /* Make the right function name up. */
570 strcpy (tstr, "operator__");
571 ptr = tstr + 8;
572 strcpy (mangle_tstr, "__");
573 switch (op)
574 {
575 case UNOP_PREINCREMENT:
576 strcpy (ptr, "++");
577 break;
578 case UNOP_PREDECREMENT:
579 strcpy (ptr, "--");
580 break;
581 case UNOP_POSTINCREMENT:
582 strcpy (ptr, "++");
583 argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
584 nargs ++;
585 break;
586 case UNOP_POSTDECREMENT:
587 strcpy (ptr, "--");
588 argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
589 nargs ++;
590 break;
591 case UNOP_LOGICAL_NOT:
592 strcpy (ptr, "!");
593 break;
594 case UNOP_COMPLEMENT:
595 strcpy (ptr, "~");
596 break;
597 case UNOP_NEG:
598 strcpy (ptr, "-");
599 break;
600 case UNOP_PLUS:
601 strcpy (ptr, "+");
602 break;
603 case UNOP_IND:
604 strcpy (ptr, "*");
605 break;
606 case STRUCTOP_PTR:
607 strcpy (ptr, "->");
608 break;
609 default:
610 error (_("Invalid unary operation specified."));
611 }
612
613 argvec[0] = value_user_defined_op (&arg1, argvec.slice (1, nargs), tstr,
614 &static_memfuncp, noside);
615
616 if (argvec[0])
617 {
618 if (static_memfuncp)
619 {
620 argvec[1] = argvec[0];
621 argvec = argvec.slice (1);
622 }
623 if (value_type (argvec[0])->code () == TYPE_CODE_XMETHOD)
624 {
625 /* Static xmethods are not supported yet. */
626 gdb_assert (static_memfuncp == 0);
627 if (noside == EVAL_AVOID_SIDE_EFFECTS)
628 {
629 struct type *return_type
630 = result_type_of_xmethod (argvec[0], argvec[1]);
631
632 if (return_type == NULL)
633 error (_("Xmethod is missing return type."));
634 return value_zero (return_type, VALUE_LVAL (arg1));
635 }
636 return call_xmethod (argvec[0], argvec[1]);
637 }
638 if (noside == EVAL_AVOID_SIDE_EFFECTS)
639 {
640 struct type *return_type;
641
642 return_type
643 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
644 return value_zero (return_type, VALUE_LVAL (arg1));
645 }
646 return call_function_by_hand (argvec[0], NULL,
647 argvec.slice (1, nargs));
648 }
649 throw_error (NOT_FOUND_ERROR,
650 _("member function %s not found"), tstr);
651 }
652 \f
653
654 /* Concatenate two values with the following conditions:
655
656 (1) Both values must be either bitstring values or character string
657 values and the resulting value consists of the concatenation of
658 ARG1 followed by ARG2.
659
660 or
661
662 One value must be an integer value and the other value must be
663 either a bitstring value or character string value, which is
664 to be repeated by the number of times specified by the integer
665 value.
666
667
668 (2) Boolean values are also allowed and are treated as bit string
669 values of length 1.
670
671 (3) Character values are also allowed and are treated as character
672 string values of length 1. */
673
674 struct value *
675 value_concat (struct value *arg1, struct value *arg2)
676 {
677 struct value *inval1;
678 struct value *inval2;
679 struct value *outval = NULL;
680 int inval1len, inval2len;
681 int count, idx;
682 char inchar;
683 struct type *type1 = check_typedef (value_type (arg1));
684 struct type *type2 = check_typedef (value_type (arg2));
685 struct type *char_type;
686
687 /* First figure out if we are dealing with two values to be concatenated
688 or a repeat count and a value to be repeated. INVAL1 is set to the
689 first of two concatenated values, or the repeat count. INVAL2 is set
690 to the second of the two concatenated values or the value to be
691 repeated. */
692
693 if (type2->code () == TYPE_CODE_INT)
694 {
695 struct type *tmp = type1;
696
697 type1 = tmp;
698 tmp = type2;
699 inval1 = arg2;
700 inval2 = arg1;
701 }
702 else
703 {
704 inval1 = arg1;
705 inval2 = arg2;
706 }
707
708 /* Now process the input values. */
709
710 if (type1->code () == TYPE_CODE_INT)
711 {
712 /* We have a repeat count. Validate the second value and then
713 construct a value repeated that many times. */
714 if (type2->code () == TYPE_CODE_STRING
715 || type2->code () == TYPE_CODE_CHAR)
716 {
717 count = longest_to_int (value_as_long (inval1));
718 inval2len = TYPE_LENGTH (type2);
719 std::vector<char> ptr (count * inval2len);
720 if (type2->code () == TYPE_CODE_CHAR)
721 {
722 char_type = type2;
723
724 inchar = (char) unpack_long (type2,
725 value_contents (inval2).data ());
726 for (idx = 0; idx < count; idx++)
727 {
728 ptr[idx] = inchar;
729 }
730 }
731 else
732 {
733 char_type = TYPE_TARGET_TYPE (type2);
734
735 for (idx = 0; idx < count; idx++)
736 memcpy (&ptr[idx * inval2len], value_contents (inval2).data (),
737 inval2len);
738 }
739 outval = value_string (ptr.data (), count * inval2len, char_type);
740 }
741 else if (type2->code () == TYPE_CODE_BOOL)
742 {
743 error (_("unimplemented support for boolean repeats"));
744 }
745 else
746 {
747 error (_("can't repeat values of that type"));
748 }
749 }
750 else if (type1->code () == TYPE_CODE_STRING
751 || type1->code () == TYPE_CODE_CHAR)
752 {
753 /* We have two character strings to concatenate. */
754 if (type2->code () != TYPE_CODE_STRING
755 && type2->code () != TYPE_CODE_CHAR)
756 {
757 error (_("Strings can only be concatenated with other strings."));
758 }
759 inval1len = TYPE_LENGTH (type1);
760 inval2len = TYPE_LENGTH (type2);
761 std::vector<char> ptr (inval1len + inval2len);
762 if (type1->code () == TYPE_CODE_CHAR)
763 {
764 char_type = type1;
765
766 ptr[0] = (char) unpack_long (type1, value_contents (inval1).data ());
767 }
768 else
769 {
770 char_type = TYPE_TARGET_TYPE (type1);
771
772 memcpy (ptr.data (), value_contents (inval1).data (), inval1len);
773 }
774 if (type2->code () == TYPE_CODE_CHAR)
775 {
776 ptr[inval1len] =
777 (char) unpack_long (type2, value_contents (inval2).data ());
778 }
779 else
780 {
781 memcpy (&ptr[inval1len], value_contents (inval2).data (), inval2len);
782 }
783 outval = value_string (ptr.data (), inval1len + inval2len, char_type);
784 }
785 else if (type1->code () == TYPE_CODE_BOOL)
786 {
787 /* We have two bitstrings to concatenate. */
788 if (type2->code () != TYPE_CODE_BOOL)
789 {
790 error (_("Booleans can only be concatenated "
791 "with other bitstrings or booleans."));
792 }
793 error (_("unimplemented support for boolean concatenation."));
794 }
795 else
796 {
797 /* We don't know how to concatenate these operands. */
798 error (_("illegal operands for concatenation."));
799 }
800 return (outval);
801 }
802 \f
803 /* Integer exponentiation: V1**V2, where both arguments are
804 integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */
805
806 static LONGEST
807 integer_pow (LONGEST v1, LONGEST v2)
808 {
809 if (v2 < 0)
810 {
811 if (v1 == 0)
812 error (_("Attempt to raise 0 to negative power."));
813 else
814 return 0;
815 }
816 else
817 {
818 /* The Russian Peasant's Algorithm. */
819 LONGEST v;
820
821 v = 1;
822 for (;;)
823 {
824 if (v2 & 1L)
825 v *= v1;
826 v2 >>= 1;
827 if (v2 == 0)
828 return v;
829 v1 *= v1;
830 }
831 }
832 }
833
834 /* Obtain argument values for binary operation, converting from
835 other types if one of them is not floating point. */
836 static void
837 value_args_as_target_float (struct value *arg1, struct value *arg2,
838 gdb_byte *x, struct type **eff_type_x,
839 gdb_byte *y, struct type **eff_type_y)
840 {
841 struct type *type1, *type2;
842
843 type1 = check_typedef (value_type (arg1));
844 type2 = check_typedef (value_type (arg2));
845
846 /* At least one of the arguments must be of floating-point type. */
847 gdb_assert (is_floating_type (type1) || is_floating_type (type2));
848
849 if (is_floating_type (type1) && is_floating_type (type2)
850 && type1->code () != type2->code ())
851 /* The DFP extension to the C language does not allow mixing of
852 * decimal float types with other float types in expressions
853 * (see WDTR 24732, page 12). */
854 error (_("Mixing decimal floating types with "
855 "other floating types is not allowed."));
856
857 /* Obtain value of arg1, converting from other types if necessary. */
858
859 if (is_floating_type (type1))
860 {
861 *eff_type_x = type1;
862 memcpy (x, value_contents (arg1).data (), TYPE_LENGTH (type1));
863 }
864 else if (is_integral_type (type1))
865 {
866 *eff_type_x = type2;
867 if (type1->is_unsigned ())
868 target_float_from_ulongest (x, *eff_type_x, value_as_long (arg1));
869 else
870 target_float_from_longest (x, *eff_type_x, value_as_long (arg1));
871 }
872 else
873 error (_("Don't know how to convert from %s to %s."), type1->name (),
874 type2->name ());
875
876 /* Obtain value of arg2, converting from other types if necessary. */
877
878 if (is_floating_type (type2))
879 {
880 *eff_type_y = type2;
881 memcpy (y, value_contents (arg2).data (), TYPE_LENGTH (type2));
882 }
883 else if (is_integral_type (type2))
884 {
885 *eff_type_y = type1;
886 if (type2->is_unsigned ())
887 target_float_from_ulongest (y, *eff_type_y, value_as_long (arg2));
888 else
889 target_float_from_longest (y, *eff_type_y, value_as_long (arg2));
890 }
891 else
892 error (_("Don't know how to convert from %s to %s."), type1->name (),
893 type2->name ());
894 }
895
896 /* Assuming at last one of ARG1 or ARG2 is a fixed point value,
897 perform the binary operation OP on these two operands, and return
898 the resulting value (also as a fixed point). */
899
900 static struct value *
901 fixed_point_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
902 {
903 struct type *type1 = check_typedef (value_type (arg1));
904 struct type *type2 = check_typedef (value_type (arg2));
905 const struct language_defn *language = current_language;
906
907 struct gdbarch *gdbarch = type1->arch ();
908 struct value *val;
909
910 gdb_mpq v1, v2, res;
911
912 gdb_assert (is_fixed_point_type (type1) || is_fixed_point_type (type2));
913 if (op == BINOP_MUL || op == BINOP_DIV)
914 {
915 v1 = value_to_gdb_mpq (arg1);
916 v2 = value_to_gdb_mpq (arg2);
917
918 /* The code below uses TYPE1 for the result type, so make sure
919 it is set properly. */
920 if (!is_fixed_point_type (type1))
921 type1 = type2;
922 }
923 else
924 {
925 if (!is_fixed_point_type (type1))
926 {
927 arg1 = value_cast (type2, arg1);
928 type1 = type2;
929 }
930 if (!is_fixed_point_type (type2))
931 {
932 arg2 = value_cast (type1, arg2);
933 type2 = type1;
934 }
935
936 v1.read_fixed_point (gdb::make_array_view (value_contents (arg1).data (),
937 TYPE_LENGTH (type1)),
938 type_byte_order (type1), type1->is_unsigned (),
939 type1->fixed_point_scaling_factor ());
940 v2.read_fixed_point (gdb::make_array_view (value_contents (arg2).data (),
941 TYPE_LENGTH (type2)),
942 type_byte_order (type2), type2->is_unsigned (),
943 type2->fixed_point_scaling_factor ());
944 }
945
946 auto fixed_point_to_value = [type1] (const gdb_mpq &fp)
947 {
948 value *fp_val = allocate_value (type1);
949
950 fp.write_fixed_point
951 (gdb::make_array_view (value_contents_raw (fp_val).data (),
952 TYPE_LENGTH (type1)),
953 type_byte_order (type1),
954 type1->is_unsigned (),
955 type1->fixed_point_scaling_factor ());
956
957 return fp_val;
958 };
959
960 switch (op)
961 {
962 case BINOP_ADD:
963 mpq_add (res.val, v1.val, v2.val);
964 val = fixed_point_to_value (res);
965 break;
966
967 case BINOP_SUB:
968 mpq_sub (res.val, v1.val, v2.val);
969 val = fixed_point_to_value (res);
970 break;
971
972 case BINOP_MIN:
973 val = fixed_point_to_value (mpq_cmp (v1.val, v2.val) < 0 ? v1 : v2);
974 break;
975
976 case BINOP_MAX:
977 val = fixed_point_to_value (mpq_cmp (v1.val, v2.val) > 0 ? v1 : v2);
978 break;
979
980 case BINOP_MUL:
981 mpq_mul (res.val, v1.val, v2.val);
982 val = fixed_point_to_value (res);
983 break;
984
985 case BINOP_DIV:
986 if (mpq_sgn (v2.val) == 0)
987 error (_("Division by zero"));
988 mpq_div (res.val, v1.val, v2.val);
989 val = fixed_point_to_value (res);
990 break;
991
992 case BINOP_EQUAL:
993 val = value_from_ulongest (language_bool_type (language, gdbarch),
994 mpq_cmp (v1.val, v2.val) == 0 ? 1 : 0);
995 break;
996
997 case BINOP_LESS:
998 val = value_from_ulongest (language_bool_type (language, gdbarch),
999 mpq_cmp (v1.val, v2.val) < 0 ? 1 : 0);
1000 break;
1001
1002 default:
1003 error (_("Integer-only operation on fixed point number."));
1004 }
1005
1006 return val;
1007 }
1008
1009 /* A helper function that finds the type to use for a binary operation
1010 involving TYPE1 and TYPE2. */
1011
1012 static struct type *
1013 promotion_type (struct type *type1, struct type *type2)
1014 {
1015 struct type *result_type;
1016
1017 if (is_floating_type (type1) || is_floating_type (type2))
1018 {
1019 /* If only one type is floating-point, use its type.
1020 Otherwise use the bigger type. */
1021 if (!is_floating_type (type1))
1022 result_type = type2;
1023 else if (!is_floating_type (type2))
1024 result_type = type1;
1025 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
1026 result_type = type2;
1027 else
1028 result_type = type1;
1029 }
1030 else
1031 {
1032 /* Integer types. */
1033 if (TYPE_LENGTH (type1) > TYPE_LENGTH (type2))
1034 result_type = type1;
1035 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
1036 result_type = type2;
1037 else if (type1->is_unsigned ())
1038 result_type = type1;
1039 else if (type2->is_unsigned ())
1040 result_type = type2;
1041 else
1042 result_type = type1;
1043 }
1044
1045 return result_type;
1046 }
1047
1048 static struct value *scalar_binop (struct value *arg1, struct value *arg2,
1049 enum exp_opcode op);
1050
1051 /* Perform a binary operation on complex operands. */
1052
1053 static struct value *
1054 complex_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
1055 {
1056 struct type *arg1_type = check_typedef (value_type (arg1));
1057 struct type *arg2_type = check_typedef (value_type (arg2));
1058
1059 struct value *arg1_real, *arg1_imag, *arg2_real, *arg2_imag;
1060 if (arg1_type->code () == TYPE_CODE_COMPLEX)
1061 {
1062 arg1_real = value_real_part (arg1);
1063 arg1_imag = value_imaginary_part (arg1);
1064 }
1065 else
1066 {
1067 arg1_real = arg1;
1068 arg1_imag = value_zero (arg1_type, not_lval);
1069 }
1070 if (arg2_type->code () == TYPE_CODE_COMPLEX)
1071 {
1072 arg2_real = value_real_part (arg2);
1073 arg2_imag = value_imaginary_part (arg2);
1074 }
1075 else
1076 {
1077 arg2_real = arg2;
1078 arg2_imag = value_zero (arg2_type, not_lval);
1079 }
1080
1081 struct type *comp_type = promotion_type (value_type (arg1_real),
1082 value_type (arg2_real));
1083 if (!can_create_complex_type (comp_type))
1084 error (_("Argument to complex arithmetic operation not supported."));
1085
1086 arg1_real = value_cast (comp_type, arg1_real);
1087 arg1_imag = value_cast (comp_type, arg1_imag);
1088 arg2_real = value_cast (comp_type, arg2_real);
1089 arg2_imag = value_cast (comp_type, arg2_imag);
1090
1091 struct type *result_type = init_complex_type (nullptr, comp_type);
1092
1093 struct value *result_real, *result_imag;
1094 switch (op)
1095 {
1096 case BINOP_ADD:
1097 case BINOP_SUB:
1098 result_real = scalar_binop (arg1_real, arg2_real, op);
1099 result_imag = scalar_binop (arg1_imag, arg2_imag, op);
1100 break;
1101
1102 case BINOP_MUL:
1103 {
1104 struct value *x1 = scalar_binop (arg1_real, arg2_real, op);
1105 struct value *x2 = scalar_binop (arg1_imag, arg2_imag, op);
1106 result_real = scalar_binop (x1, x2, BINOP_SUB);
1107
1108 x1 = scalar_binop (arg1_real, arg2_imag, op);
1109 x2 = scalar_binop (arg1_imag, arg2_real, op);
1110 result_imag = scalar_binop (x1, x2, BINOP_ADD);
1111 }
1112 break;
1113
1114 case BINOP_DIV:
1115 {
1116 if (arg2_type->code () == TYPE_CODE_COMPLEX)
1117 {
1118 struct value *conjugate = value_complement (arg2);
1119 /* We have to reconstruct ARG1, in case the type was
1120 promoted. */
1121 arg1 = value_literal_complex (arg1_real, arg1_imag, result_type);
1122
1123 struct value *numerator = scalar_binop (arg1, conjugate,
1124 BINOP_MUL);
1125 arg1_real = value_real_part (numerator);
1126 arg1_imag = value_imaginary_part (numerator);
1127
1128 struct value *x1 = scalar_binop (arg2_real, arg2_real, BINOP_MUL);
1129 struct value *x2 = scalar_binop (arg2_imag, arg2_imag, BINOP_MUL);
1130 arg2_real = scalar_binop (x1, x2, BINOP_ADD);
1131 }
1132
1133 result_real = scalar_binop (arg1_real, arg2_real, op);
1134 result_imag = scalar_binop (arg1_imag, arg2_real, op);
1135 }
1136 break;
1137
1138 case BINOP_EQUAL:
1139 case BINOP_NOTEQUAL:
1140 {
1141 struct value *x1 = scalar_binop (arg1_real, arg2_real, op);
1142 struct value *x2 = scalar_binop (arg1_imag, arg2_imag, op);
1143
1144 LONGEST v1 = value_as_long (x1);
1145 LONGEST v2 = value_as_long (x2);
1146
1147 if (op == BINOP_EQUAL)
1148 v1 = v1 && v2;
1149 else
1150 v1 = v1 || v2;
1151
1152 return value_from_longest (value_type (x1), v1);
1153 }
1154 break;
1155
1156 default:
1157 error (_("Invalid binary operation on numbers."));
1158 }
1159
1160 return value_literal_complex (result_real, result_imag, result_type);
1161 }
1162
1163 /* Perform a binary operation on two operands which have reasonable
1164 representations as integers or floats. This includes booleans,
1165 characters, integers, or floats.
1166 Does not support addition and subtraction on pointers;
1167 use value_ptradd, value_ptrsub or value_ptrdiff for those operations. */
1168
1169 static struct value *
1170 scalar_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
1171 {
1172 struct value *val;
1173 struct type *type1, *type2, *result_type;
1174
1175 arg1 = coerce_ref (arg1);
1176 arg2 = coerce_ref (arg2);
1177
1178 type1 = check_typedef (value_type (arg1));
1179 type2 = check_typedef (value_type (arg2));
1180
1181 if (type1->code () == TYPE_CODE_COMPLEX
1182 || type2->code () == TYPE_CODE_COMPLEX)
1183 return complex_binop (arg1, arg2, op);
1184
1185 if ((!is_floating_value (arg1)
1186 && !is_integral_type (type1)
1187 && !is_fixed_point_type (type1))
1188 || (!is_floating_value (arg2)
1189 && !is_integral_type (type2)
1190 && !is_fixed_point_type (type2)))
1191 error (_("Argument to arithmetic operation not a number or boolean."));
1192
1193 if (is_fixed_point_type (type1) || is_fixed_point_type (type2))
1194 return fixed_point_binop (arg1, arg2, op);
1195
1196 if (is_floating_type (type1) || is_floating_type (type2))
1197 {
1198 result_type = promotion_type (type1, type2);
1199 val = allocate_value (result_type);
1200
1201 struct type *eff_type_v1, *eff_type_v2;
1202 gdb::byte_vector v1, v2;
1203 v1.resize (TYPE_LENGTH (result_type));
1204 v2.resize (TYPE_LENGTH (result_type));
1205
1206 value_args_as_target_float (arg1, arg2,
1207 v1.data (), &eff_type_v1,
1208 v2.data (), &eff_type_v2);
1209 target_float_binop (op, v1.data (), eff_type_v1,
1210 v2.data (), eff_type_v2,
1211 value_contents_raw (val).data (), result_type);
1212 }
1213 else if (type1->code () == TYPE_CODE_BOOL
1214 || type2->code () == TYPE_CODE_BOOL)
1215 {
1216 LONGEST v1, v2, v = 0;
1217
1218 v1 = value_as_long (arg1);
1219 v2 = value_as_long (arg2);
1220
1221 switch (op)
1222 {
1223 case BINOP_BITWISE_AND:
1224 v = v1 & v2;
1225 break;
1226
1227 case BINOP_BITWISE_IOR:
1228 v = v1 | v2;
1229 break;
1230
1231 case BINOP_BITWISE_XOR:
1232 v = v1 ^ v2;
1233 break;
1234
1235 case BINOP_EQUAL:
1236 v = v1 == v2;
1237 break;
1238
1239 case BINOP_NOTEQUAL:
1240 v = v1 != v2;
1241 break;
1242
1243 default:
1244 error (_("Invalid operation on booleans."));
1245 }
1246
1247 result_type = type1;
1248
1249 val = allocate_value (result_type);
1250 store_signed_integer (value_contents_raw (val).data (),
1251 TYPE_LENGTH (result_type),
1252 type_byte_order (result_type),
1253 v);
1254 }
1255 else
1256 /* Integral operations here. */
1257 {
1258 /* Determine type length of the result, and if the operation should
1259 be done unsigned. For exponentiation and shift operators,
1260 use the length and type of the left operand. Otherwise,
1261 use the signedness of the operand with the greater length.
1262 If both operands are of equal length, use unsigned operation
1263 if one of the operands is unsigned. */
1264 if (op == BINOP_RSH || op == BINOP_LSH || op == BINOP_EXP)
1265 result_type = type1;
1266 else
1267 result_type = promotion_type (type1, type2);
1268
1269 if (result_type->is_unsigned ())
1270 {
1271 LONGEST v2_signed = value_as_long (arg2);
1272 ULONGEST v1, v2, v = 0;
1273
1274 v1 = (ULONGEST) value_as_long (arg1);
1275 v2 = (ULONGEST) v2_signed;
1276
1277 switch (op)
1278 {
1279 case BINOP_ADD:
1280 v = v1 + v2;
1281 break;
1282
1283 case BINOP_SUB:
1284 v = v1 - v2;
1285 break;
1286
1287 case BINOP_MUL:
1288 v = v1 * v2;
1289 break;
1290
1291 case BINOP_DIV:
1292 case BINOP_INTDIV:
1293 if (v2 != 0)
1294 v = v1 / v2;
1295 else
1296 error (_("Division by zero"));
1297 break;
1298
1299 case BINOP_EXP:
1300 v = uinteger_pow (v1, v2_signed);
1301 break;
1302
1303 case BINOP_REM:
1304 if (v2 != 0)
1305 v = v1 % v2;
1306 else
1307 error (_("Division by zero"));
1308 break;
1309
1310 case BINOP_MOD:
1311 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1312 v1 mod 0 has a defined value, v1. */
1313 if (v2 == 0)
1314 {
1315 v = v1;
1316 }
1317 else
1318 {
1319 v = v1 / v2;
1320 /* Note floor(v1/v2) == v1/v2 for unsigned. */
1321 v = v1 - (v2 * v);
1322 }
1323 break;
1324
1325 case BINOP_LSH:
1326 v = v1 << v2;
1327 break;
1328
1329 case BINOP_RSH:
1330 v = v1 >> v2;
1331 break;
1332
1333 case BINOP_BITWISE_AND:
1334 v = v1 & v2;
1335 break;
1336
1337 case BINOP_BITWISE_IOR:
1338 v = v1 | v2;
1339 break;
1340
1341 case BINOP_BITWISE_XOR:
1342 v = v1 ^ v2;
1343 break;
1344
1345 case BINOP_LOGICAL_AND:
1346 v = v1 && v2;
1347 break;
1348
1349 case BINOP_LOGICAL_OR:
1350 v = v1 || v2;
1351 break;
1352
1353 case BINOP_MIN:
1354 v = v1 < v2 ? v1 : v2;
1355 break;
1356
1357 case BINOP_MAX:
1358 v = v1 > v2 ? v1 : v2;
1359 break;
1360
1361 case BINOP_EQUAL:
1362 v = v1 == v2;
1363 break;
1364
1365 case BINOP_NOTEQUAL:
1366 v = v1 != v2;
1367 break;
1368
1369 case BINOP_LESS:
1370 v = v1 < v2;
1371 break;
1372
1373 case BINOP_GTR:
1374 v = v1 > v2;
1375 break;
1376
1377 case BINOP_LEQ:
1378 v = v1 <= v2;
1379 break;
1380
1381 case BINOP_GEQ:
1382 v = v1 >= v2;
1383 break;
1384
1385 default:
1386 error (_("Invalid binary operation on numbers."));
1387 }
1388
1389 val = allocate_value (result_type);
1390 store_unsigned_integer (value_contents_raw (val).data (),
1391 TYPE_LENGTH (value_type (val)),
1392 type_byte_order (result_type),
1393 v);
1394 }
1395 else
1396 {
1397 LONGEST v1, v2, v = 0;
1398
1399 v1 = value_as_long (arg1);
1400 v2 = value_as_long (arg2);
1401
1402 switch (op)
1403 {
1404 case BINOP_ADD:
1405 v = v1 + v2;
1406 break;
1407
1408 case BINOP_SUB:
1409 v = v1 - v2;
1410 break;
1411
1412 case BINOP_MUL:
1413 v = v1 * v2;
1414 break;
1415
1416 case BINOP_DIV:
1417 case BINOP_INTDIV:
1418 if (v2 != 0)
1419 v = v1 / v2;
1420 else
1421 error (_("Division by zero"));
1422 break;
1423
1424 case BINOP_EXP:
1425 v = integer_pow (v1, v2);
1426 break;
1427
1428 case BINOP_REM:
1429 if (v2 != 0)
1430 v = v1 % v2;
1431 else
1432 error (_("Division by zero"));
1433 break;
1434
1435 case BINOP_MOD:
1436 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1437 X mod 0 has a defined value, X. */
1438 if (v2 == 0)
1439 {
1440 v = v1;
1441 }
1442 else
1443 {
1444 v = v1 / v2;
1445 /* Compute floor. */
1446 if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0))
1447 {
1448 v--;
1449 }
1450 v = v1 - (v2 * v);
1451 }
1452 break;
1453
1454 case BINOP_LSH:
1455 v = v1 << v2;
1456 break;
1457
1458 case BINOP_RSH:
1459 v = v1 >> v2;
1460 break;
1461
1462 case BINOP_BITWISE_AND:
1463 v = v1 & v2;
1464 break;
1465
1466 case BINOP_BITWISE_IOR:
1467 v = v1 | v2;
1468 break;
1469
1470 case BINOP_BITWISE_XOR:
1471 v = v1 ^ v2;
1472 break;
1473
1474 case BINOP_LOGICAL_AND:
1475 v = v1 && v2;
1476 break;
1477
1478 case BINOP_LOGICAL_OR:
1479 v = v1 || v2;
1480 break;
1481
1482 case BINOP_MIN:
1483 v = v1 < v2 ? v1 : v2;
1484 break;
1485
1486 case BINOP_MAX:
1487 v = v1 > v2 ? v1 : v2;
1488 break;
1489
1490 case BINOP_EQUAL:
1491 v = v1 == v2;
1492 break;
1493
1494 case BINOP_NOTEQUAL:
1495 v = v1 != v2;
1496 break;
1497
1498 case BINOP_LESS:
1499 v = v1 < v2;
1500 break;
1501
1502 case BINOP_GTR:
1503 v = v1 > v2;
1504 break;
1505
1506 case BINOP_LEQ:
1507 v = v1 <= v2;
1508 break;
1509
1510 case BINOP_GEQ:
1511 v = v1 >= v2;
1512 break;
1513
1514 default:
1515 error (_("Invalid binary operation on numbers."));
1516 }
1517
1518 val = allocate_value (result_type);
1519 store_signed_integer (value_contents_raw (val).data (),
1520 TYPE_LENGTH (value_type (val)),
1521 type_byte_order (result_type),
1522 v);
1523 }
1524 }
1525
1526 return val;
1527 }
1528
1529 /* Widen a scalar value SCALAR_VALUE to vector type VECTOR_TYPE by
1530 replicating SCALAR_VALUE for each element of the vector. Only scalar
1531 types that can be cast to the type of one element of the vector are
1532 acceptable. The newly created vector value is returned upon success,
1533 otherwise an error is thrown. */
1534
1535 struct value *
1536 value_vector_widen (struct value *scalar_value, struct type *vector_type)
1537 {
1538 /* Widen the scalar to a vector. */
1539 struct type *eltype, *scalar_type;
1540 struct value *elval;
1541 LONGEST low_bound, high_bound;
1542 int i;
1543
1544 vector_type = check_typedef (vector_type);
1545
1546 gdb_assert (vector_type->code () == TYPE_CODE_ARRAY
1547 && vector_type->is_vector ());
1548
1549 if (!get_array_bounds (vector_type, &low_bound, &high_bound))
1550 error (_("Could not determine the vector bounds"));
1551
1552 eltype = check_typedef (TYPE_TARGET_TYPE (vector_type));
1553 elval = value_cast (eltype, scalar_value);
1554
1555 scalar_type = check_typedef (value_type (scalar_value));
1556
1557 /* If we reduced the length of the scalar then check we didn't loose any
1558 important bits. */
1559 if (TYPE_LENGTH (eltype) < TYPE_LENGTH (scalar_type)
1560 && !value_equal (elval, scalar_value))
1561 error (_("conversion of scalar to vector involves truncation"));
1562
1563 value *val = allocate_value (vector_type);
1564 gdb::array_view<gdb_byte> val_contents = value_contents_writeable (val);
1565 int elt_len = TYPE_LENGTH (eltype);
1566
1567 for (i = 0; i < high_bound - low_bound + 1; i++)
1568 /* Duplicate the contents of elval into the destination vector. */
1569 copy (value_contents_all (elval),
1570 val_contents.slice (i * elt_len, elt_len));
1571
1572 return val;
1573 }
1574
1575 /* Performs a binary operation on two vector operands by calling scalar_binop
1576 for each pair of vector components. */
1577
1578 static struct value *
1579 vector_binop (struct value *val1, struct value *val2, enum exp_opcode op)
1580 {
1581 struct type *type1, *type2, *eltype1, *eltype2;
1582 int t1_is_vec, t2_is_vec, elsize, i;
1583 LONGEST low_bound1, high_bound1, low_bound2, high_bound2;
1584
1585 type1 = check_typedef (value_type (val1));
1586 type2 = check_typedef (value_type (val2));
1587
1588 t1_is_vec = (type1->code () == TYPE_CODE_ARRAY
1589 && type1->is_vector ()) ? 1 : 0;
1590 t2_is_vec = (type2->code () == TYPE_CODE_ARRAY
1591 && type2->is_vector ()) ? 1 : 0;
1592
1593 if (!t1_is_vec || !t2_is_vec)
1594 error (_("Vector operations are only supported among vectors"));
1595
1596 if (!get_array_bounds (type1, &low_bound1, &high_bound1)
1597 || !get_array_bounds (type2, &low_bound2, &high_bound2))
1598 error (_("Could not determine the vector bounds"));
1599
1600 eltype1 = check_typedef (TYPE_TARGET_TYPE (type1));
1601 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2));
1602 elsize = TYPE_LENGTH (eltype1);
1603
1604 if (eltype1->code () != eltype2->code ()
1605 || elsize != TYPE_LENGTH (eltype2)
1606 || eltype1->is_unsigned () != eltype2->is_unsigned ()
1607 || low_bound1 != low_bound2 || high_bound1 != high_bound2)
1608 error (_("Cannot perform operation on vectors with different types"));
1609
1610 value *val = allocate_value (type1);
1611 gdb::array_view<gdb_byte> val_contents = value_contents_writeable (val);
1612 value *mark = value_mark ();
1613 for (i = 0; i < high_bound1 - low_bound1 + 1; i++)
1614 {
1615 value *tmp = value_binop (value_subscript (val1, i),
1616 value_subscript (val2, i), op);
1617 copy (value_contents_all (tmp),
1618 val_contents.slice (i * elsize, elsize));
1619 }
1620 value_free_to_mark (mark);
1621
1622 return val;
1623 }
1624
1625 /* Perform a binary operation on two operands. */
1626
1627 struct value *
1628 value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
1629 {
1630 struct value *val;
1631 struct type *type1 = check_typedef (value_type (arg1));
1632 struct type *type2 = check_typedef (value_type (arg2));
1633 int t1_is_vec = (type1->code () == TYPE_CODE_ARRAY
1634 && type1->is_vector ());
1635 int t2_is_vec = (type2->code () == TYPE_CODE_ARRAY
1636 && type2->is_vector ());
1637
1638 if (!t1_is_vec && !t2_is_vec)
1639 val = scalar_binop (arg1, arg2, op);
1640 else if (t1_is_vec && t2_is_vec)
1641 val = vector_binop (arg1, arg2, op);
1642 else
1643 {
1644 /* Widen the scalar operand to a vector. */
1645 struct value **v = t1_is_vec ? &arg2 : &arg1;
1646 struct type *t = t1_is_vec ? type2 : type1;
1647
1648 if (t->code () != TYPE_CODE_FLT
1649 && t->code () != TYPE_CODE_DECFLOAT
1650 && !is_integral_type (t))
1651 error (_("Argument to operation not a number or boolean."));
1652
1653 /* Replicate the scalar value to make a vector value. */
1654 *v = value_vector_widen (*v, t1_is_vec ? type1 : type2);
1655
1656 val = vector_binop (arg1, arg2, op);
1657 }
1658
1659 return val;
1660 }
1661 \f
1662 /* See value.h. */
1663
1664 bool
1665 value_logical_not (struct value *arg1)
1666 {
1667 int len;
1668 const gdb_byte *p;
1669 struct type *type1;
1670
1671 arg1 = coerce_array (arg1);
1672 type1 = check_typedef (value_type (arg1));
1673
1674 if (is_floating_value (arg1))
1675 return target_float_is_zero (value_contents (arg1).data (), type1);
1676
1677 len = TYPE_LENGTH (type1);
1678 p = value_contents (arg1).data ();
1679
1680 while (--len >= 0)
1681 {
1682 if (*p++)
1683 break;
1684 }
1685
1686 return len < 0;
1687 }
1688
1689 /* Perform a comparison on two string values (whose content are not
1690 necessarily null terminated) based on their length. */
1691
1692 static int
1693 value_strcmp (struct value *arg1, struct value *arg2)
1694 {
1695 int len1 = TYPE_LENGTH (value_type (arg1));
1696 int len2 = TYPE_LENGTH (value_type (arg2));
1697 const gdb_byte *s1 = value_contents (arg1).data ();
1698 const gdb_byte *s2 = value_contents (arg2).data ();
1699 int i, len = len1 < len2 ? len1 : len2;
1700
1701 for (i = 0; i < len; i++)
1702 {
1703 if (s1[i] < s2[i])
1704 return -1;
1705 else if (s1[i] > s2[i])
1706 return 1;
1707 else
1708 continue;
1709 }
1710
1711 if (len1 < len2)
1712 return -1;
1713 else if (len1 > len2)
1714 return 1;
1715 else
1716 return 0;
1717 }
1718
1719 /* Simulate the C operator == by returning a 1
1720 iff ARG1 and ARG2 have equal contents. */
1721
1722 int
1723 value_equal (struct value *arg1, struct value *arg2)
1724 {
1725 int len;
1726 const gdb_byte *p1;
1727 const gdb_byte *p2;
1728 struct type *type1, *type2;
1729 enum type_code code1;
1730 enum type_code code2;
1731 int is_int1, is_int2;
1732
1733 arg1 = coerce_array (arg1);
1734 arg2 = coerce_array (arg2);
1735
1736 type1 = check_typedef (value_type (arg1));
1737 type2 = check_typedef (value_type (arg2));
1738 code1 = type1->code ();
1739 code2 = type2->code ();
1740 is_int1 = is_integral_type (type1);
1741 is_int2 = is_integral_type (type2);
1742
1743 if (is_int1 && is_int2)
1744 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1745 BINOP_EQUAL)));
1746 else if ((is_floating_value (arg1) || is_int1)
1747 && (is_floating_value (arg2) || is_int2))
1748 {
1749 struct type *eff_type_v1, *eff_type_v2;
1750 gdb::byte_vector v1, v2;
1751 v1.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2)));
1752 v2.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2)));
1753
1754 value_args_as_target_float (arg1, arg2,
1755 v1.data (), &eff_type_v1,
1756 v2.data (), &eff_type_v2);
1757
1758 return target_float_compare (v1.data (), eff_type_v1,
1759 v2.data (), eff_type_v2) == 0;
1760 }
1761
1762 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1763 is bigger. */
1764 else if (code1 == TYPE_CODE_PTR && is_int2)
1765 return value_as_address (arg1) == (CORE_ADDR) value_as_long (arg2);
1766 else if (code2 == TYPE_CODE_PTR && is_int1)
1767 return (CORE_ADDR) value_as_long (arg1) == value_as_address (arg2);
1768
1769 else if (code1 == code2
1770 && ((len = (int) TYPE_LENGTH (type1))
1771 == (int) TYPE_LENGTH (type2)))
1772 {
1773 p1 = value_contents (arg1).data ();
1774 p2 = value_contents (arg2).data ();
1775 while (--len >= 0)
1776 {
1777 if (*p1++ != *p2++)
1778 break;
1779 }
1780 return len < 0;
1781 }
1782 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1783 {
1784 return value_strcmp (arg1, arg2) == 0;
1785 }
1786 else
1787 error (_("Invalid type combination in equality test."));
1788 }
1789
1790 /* Compare values based on their raw contents. Useful for arrays since
1791 value_equal coerces them to pointers, thus comparing just the address
1792 of the array instead of its contents. */
1793
1794 int
1795 value_equal_contents (struct value *arg1, struct value *arg2)
1796 {
1797 struct type *type1, *type2;
1798
1799 type1 = check_typedef (value_type (arg1));
1800 type2 = check_typedef (value_type (arg2));
1801
1802 return (type1->code () == type2->code ()
1803 && TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
1804 && memcmp (value_contents (arg1).data (),
1805 value_contents (arg2).data (),
1806 TYPE_LENGTH (type1)) == 0);
1807 }
1808
1809 /* Simulate the C operator < by returning 1
1810 iff ARG1's contents are less than ARG2's. */
1811
1812 int
1813 value_less (struct value *arg1, struct value *arg2)
1814 {
1815 enum type_code code1;
1816 enum type_code code2;
1817 struct type *type1, *type2;
1818 int is_int1, is_int2;
1819
1820 arg1 = coerce_array (arg1);
1821 arg2 = coerce_array (arg2);
1822
1823 type1 = check_typedef (value_type (arg1));
1824 type2 = check_typedef (value_type (arg2));
1825 code1 = type1->code ();
1826 code2 = type2->code ();
1827 is_int1 = is_integral_type (type1);
1828 is_int2 = is_integral_type (type2);
1829
1830 if ((is_int1 && is_int2)
1831 || (is_fixed_point_type (type1) && is_fixed_point_type (type2)))
1832 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1833 BINOP_LESS)));
1834 else if ((is_floating_value (arg1) || is_int1)
1835 && (is_floating_value (arg2) || is_int2))
1836 {
1837 struct type *eff_type_v1, *eff_type_v2;
1838 gdb::byte_vector v1, v2;
1839 v1.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2)));
1840 v2.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2)));
1841
1842 value_args_as_target_float (arg1, arg2,
1843 v1.data (), &eff_type_v1,
1844 v2.data (), &eff_type_v2);
1845
1846 return target_float_compare (v1.data (), eff_type_v1,
1847 v2.data (), eff_type_v2) == -1;
1848 }
1849 else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
1850 return value_as_address (arg1) < value_as_address (arg2);
1851
1852 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1853 is bigger. */
1854 else if (code1 == TYPE_CODE_PTR && is_int2)
1855 return value_as_address (arg1) < (CORE_ADDR) value_as_long (arg2);
1856 else if (code2 == TYPE_CODE_PTR && is_int1)
1857 return (CORE_ADDR) value_as_long (arg1) < value_as_address (arg2);
1858 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1859 return value_strcmp (arg1, arg2) < 0;
1860 else
1861 {
1862 error (_("Invalid type combination in ordering comparison."));
1863 return 0;
1864 }
1865 }
1866 \f
1867 /* The unary operators +, - and ~. They free the argument ARG1. */
1868
1869 struct value *
1870 value_pos (struct value *arg1)
1871 {
1872 struct type *type;
1873
1874 arg1 = coerce_ref (arg1);
1875 type = check_typedef (value_type (arg1));
1876
1877 if (is_integral_type (type) || is_floating_value (arg1)
1878 || (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
1879 || type->code () == TYPE_CODE_COMPLEX)
1880 return value_from_contents (type, value_contents (arg1).data ());
1881 else
1882 error (_("Argument to positive operation not a number."));
1883 }
1884
1885 struct value *
1886 value_neg (struct value *arg1)
1887 {
1888 struct type *type;
1889
1890 arg1 = coerce_ref (arg1);
1891 type = check_typedef (value_type (arg1));
1892
1893 if (is_integral_type (type) || is_floating_type (type))
1894 return value_binop (value_from_longest (type, 0), arg1, BINOP_SUB);
1895 else if (is_fixed_point_type (type))
1896 return value_binop (value_zero (type, not_lval), arg1, BINOP_SUB);
1897 else if (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
1898 {
1899 struct value *val = allocate_value (type);
1900 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
1901 int i;
1902 LONGEST low_bound, high_bound;
1903
1904 if (!get_array_bounds (type, &low_bound, &high_bound))
1905 error (_("Could not determine the vector bounds"));
1906
1907 gdb::array_view<gdb_byte> val_contents = value_contents_writeable (val);
1908 int elt_len = TYPE_LENGTH (eltype);
1909
1910 for (i = 0; i < high_bound - low_bound + 1; i++)
1911 {
1912 value *tmp = value_neg (value_subscript (arg1, i));
1913 copy (value_contents_all (tmp),
1914 val_contents.slice (i * elt_len, elt_len));
1915 }
1916 return val;
1917 }
1918 else if (type->code () == TYPE_CODE_COMPLEX)
1919 {
1920 struct value *real = value_real_part (arg1);
1921 struct value *imag = value_imaginary_part (arg1);
1922
1923 real = value_neg (real);
1924 imag = value_neg (imag);
1925 return value_literal_complex (real, imag, type);
1926 }
1927 else
1928 error (_("Argument to negate operation not a number."));
1929 }
1930
1931 struct value *
1932 value_complement (struct value *arg1)
1933 {
1934 struct type *type;
1935 struct value *val;
1936
1937 arg1 = coerce_ref (arg1);
1938 type = check_typedef (value_type (arg1));
1939
1940 if (is_integral_type (type))
1941 val = value_from_longest (type, ~value_as_long (arg1));
1942 else if (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
1943 {
1944 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
1945 int i;
1946 LONGEST low_bound, high_bound;
1947
1948 if (!get_array_bounds (type, &low_bound, &high_bound))
1949 error (_("Could not determine the vector bounds"));
1950
1951 val = allocate_value (type);
1952 gdb::array_view<gdb_byte> val_contents = value_contents_writeable (val);
1953 int elt_len = TYPE_LENGTH (eltype);
1954
1955 for (i = 0; i < high_bound - low_bound + 1; i++)
1956 {
1957 value *tmp = value_complement (value_subscript (arg1, i));
1958 copy (value_contents_all (tmp),
1959 val_contents.slice (i * elt_len, elt_len));
1960 }
1961 }
1962 else if (type->code () == TYPE_CODE_COMPLEX)
1963 {
1964 /* GCC has an extension that treats ~complex as the complex
1965 conjugate. */
1966 struct value *real = value_real_part (arg1);
1967 struct value *imag = value_imaginary_part (arg1);
1968
1969 imag = value_neg (imag);
1970 return value_literal_complex (real, imag, type);
1971 }
1972 else
1973 error (_("Argument to complement operation not an integer, boolean."));
1974
1975 return val;
1976 }
1977 \f
1978 /* The INDEX'th bit of SET value whose value_type is TYPE,
1979 and whose value_contents is valaddr.
1980 Return -1 if out of range, -2 other error. */
1981
1982 int
1983 value_bit_index (struct type *type, const gdb_byte *valaddr, int index)
1984 {
1985 struct gdbarch *gdbarch = type->arch ();
1986 LONGEST low_bound, high_bound;
1987 LONGEST word;
1988 unsigned rel_index;
1989 struct type *range = type->index_type ();
1990
1991 if (!get_discrete_bounds (range, &low_bound, &high_bound))
1992 return -2;
1993 if (index < low_bound || index > high_bound)
1994 return -1;
1995 rel_index = index - low_bound;
1996 word = extract_unsigned_integer (valaddr + (rel_index / TARGET_CHAR_BIT), 1,
1997 type_byte_order (type));
1998 rel_index %= TARGET_CHAR_BIT;
1999 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2000 rel_index = TARGET_CHAR_BIT - 1 - rel_index;
2001 return (word >> rel_index) & 1;
2002 }
2003
2004 int
2005 value_in (struct value *element, struct value *set)
2006 {
2007 int member;
2008 struct type *settype = check_typedef (value_type (set));
2009 struct type *eltype = check_typedef (value_type (element));
2010
2011 if (eltype->code () == TYPE_CODE_RANGE)
2012 eltype = TYPE_TARGET_TYPE (eltype);
2013 if (settype->code () != TYPE_CODE_SET)
2014 error (_("Second argument of 'IN' has wrong type"));
2015 if (eltype->code () != TYPE_CODE_INT
2016 && eltype->code () != TYPE_CODE_CHAR
2017 && eltype->code () != TYPE_CODE_ENUM
2018 && eltype->code () != TYPE_CODE_BOOL)
2019 error (_("First argument of 'IN' has wrong type"));
2020 member = value_bit_index (settype, value_contents (set).data (),
2021 value_as_long (element));
2022 if (member < 0)
2023 error (_("First argument of 'IN' not in range"));
2024 return member;
2025 }