gdb: fix value_subscript when array upper bound is not known
[binutils-gdb.git] / gdb / valarith.c
1 /* Perform arithmetic and other operations on values, for GDB.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "value.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "expression.h"
25 #include "target.h"
26 #include "language.h"
27 #include "target-float.h"
28 #include "infcall.h"
29 #include "gdbsupport/byte-vector.h"
30 #include "gdbarch.h"
31
32 /* Define whether or not the C operator '/' truncates towards zero for
33 differently signed operands (truncation direction is undefined in C). */
34
35 #ifndef TRUNCATION_TOWARDS_ZERO
36 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
37 #endif
38
39 /* Given a pointer, return the size of its target.
40 If the pointer type is void *, then return 1.
41 If the target type is incomplete, then error out.
42 This isn't a general purpose function, but just a
43 helper for value_ptradd. */
44
45 static LONGEST
46 find_size_for_pointer_math (struct type *ptr_type)
47 {
48 LONGEST sz = -1;
49 struct type *ptr_target;
50
51 gdb_assert (ptr_type->code () == TYPE_CODE_PTR);
52 ptr_target = check_typedef (TYPE_TARGET_TYPE (ptr_type));
53
54 sz = type_length_units (ptr_target);
55 if (sz == 0)
56 {
57 if (ptr_type->code () == TYPE_CODE_VOID)
58 sz = 1;
59 else
60 {
61 const char *name;
62
63 name = ptr_target->name ();
64 if (name == NULL)
65 error (_("Cannot perform pointer math on incomplete types, "
66 "try casting to a known type, or void *."));
67 else
68 error (_("Cannot perform pointer math on incomplete type \"%s\", "
69 "try casting to a known type, or void *."), name);
70 }
71 }
72 return sz;
73 }
74
75 /* Given a pointer ARG1 and an integral value ARG2, return the
76 result of C-style pointer arithmetic ARG1 + ARG2. */
77
78 struct value *
79 value_ptradd (struct value *arg1, LONGEST arg2)
80 {
81 struct type *valptrtype;
82 LONGEST sz;
83 struct value *result;
84
85 arg1 = coerce_array (arg1);
86 valptrtype = check_typedef (value_type (arg1));
87 sz = find_size_for_pointer_math (valptrtype);
88
89 result = value_from_pointer (valptrtype,
90 value_as_address (arg1) + sz * arg2);
91 if (VALUE_LVAL (result) != lval_internalvar)
92 set_value_component_location (result, arg1);
93 return result;
94 }
95
96 /* Given two compatible pointer values ARG1 and ARG2, return the
97 result of C-style pointer arithmetic ARG1 - ARG2. */
98
99 LONGEST
100 value_ptrdiff (struct value *arg1, struct value *arg2)
101 {
102 struct type *type1, *type2;
103 LONGEST sz;
104
105 arg1 = coerce_array (arg1);
106 arg2 = coerce_array (arg2);
107 type1 = check_typedef (value_type (arg1));
108 type2 = check_typedef (value_type (arg2));
109
110 gdb_assert (type1->code () == TYPE_CODE_PTR);
111 gdb_assert (type2->code () == TYPE_CODE_PTR);
112
113 if (TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)))
114 != TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type2))))
115 error (_("First argument of `-' is a pointer and "
116 "second argument is neither\n"
117 "an integer nor a pointer of the same type."));
118
119 sz = type_length_units (check_typedef (TYPE_TARGET_TYPE (type1)));
120 if (sz == 0)
121 {
122 warning (_("Type size unknown, assuming 1. "
123 "Try casting to a known type, or void *."));
124 sz = 1;
125 }
126
127 return (value_as_long (arg1) - value_as_long (arg2)) / sz;
128 }
129
130 /* Return the value of ARRAY[IDX].
131
132 ARRAY may be of type TYPE_CODE_ARRAY or TYPE_CODE_STRING. If the
133 current language supports C-style arrays, it may also be TYPE_CODE_PTR.
134
135 See comments in value_coerce_array() for rationale for reason for
136 doing lower bounds adjustment here rather than there.
137 FIXME: Perhaps we should validate that the index is valid and if
138 verbosity is set, warn about invalid indices (but still use them). */
139
140 struct value *
141 value_subscript (struct value *array, LONGEST index)
142 {
143 bool c_style = current_language->c_style_arrays_p ();
144 struct type *tarray;
145
146 array = coerce_ref (array);
147 tarray = check_typedef (value_type (array));
148
149 if (tarray->code () == TYPE_CODE_ARRAY
150 || tarray->code () == TYPE_CODE_STRING)
151 {
152 struct type *range_type = tarray->index_type ();
153 gdb::optional<LONGEST> lowerbound = get_discrete_low_bound (range_type);
154 if (!lowerbound.has_value ())
155 lowerbound = 0;
156
157 if (VALUE_LVAL (array) != lval_memory)
158 return value_subscripted_rvalue (array, index, *lowerbound);
159
160 if (!c_style)
161 {
162 gdb::optional<LONGEST> upperbound
163 = get_discrete_high_bound (range_type);
164
165 if (!upperbound.has_value ())
166 upperbound = 0;
167
168 if (index >= *lowerbound && index <= *upperbound)
169 return value_subscripted_rvalue (array, index, *lowerbound);
170
171 /* Emit warning unless we have an array of unknown size.
172 An array of unknown size has lowerbound 0 and upperbound -1. */
173 if (*upperbound > -1)
174 warning (_("array or string index out of range"));
175 /* fall doing C stuff */
176 c_style = true;
177 }
178
179 index -= *lowerbound;
180 array = value_coerce_array (array);
181 }
182
183 if (c_style)
184 return value_ind (value_ptradd (array, index));
185 else
186 error (_("not an array or string"));
187 }
188
189 /* Return the value of EXPR[IDX], expr an aggregate rvalue
190 (eg, a vector register). This routine used to promote floats
191 to doubles, but no longer does. */
192
193 struct value *
194 value_subscripted_rvalue (struct value *array, LONGEST index, LONGEST lowerbound)
195 {
196 struct type *array_type = check_typedef (value_type (array));
197 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type));
198 LONGEST elt_size = type_length_units (elt_type);
199
200 /* Fetch the bit stride and convert it to a byte stride, assuming 8 bits
201 in a byte. */
202 LONGEST stride = array_type->bit_stride ();
203 if (stride != 0)
204 {
205 struct gdbarch *arch = get_type_arch (elt_type);
206 int unit_size = gdbarch_addressable_memory_unit_size (arch);
207 elt_size = stride / (unit_size * 8);
208 }
209
210 LONGEST elt_offs = elt_size * (index - lowerbound);
211 bool array_upper_bound_undefined
212 = array_type->bounds ()->high.kind () == PROP_UNDEFINED;
213
214 if (index < lowerbound
215 || (!array_upper_bound_undefined
216 && elt_offs >= type_length_units (array_type))
217 || (VALUE_LVAL (array) != lval_memory && array_upper_bound_undefined))
218 {
219 if (type_not_associated (array_type))
220 error (_("no such vector element (vector not associated)"));
221 else if (type_not_allocated (array_type))
222 error (_("no such vector element (vector not allocated)"));
223 else
224 error (_("no such vector element"));
225 }
226
227 if (is_dynamic_type (elt_type))
228 {
229 CORE_ADDR address;
230
231 address = value_address (array) + elt_offs;
232 elt_type = resolve_dynamic_type (elt_type, {}, address);
233 }
234
235 return value_from_component (array, elt_type, elt_offs);
236 }
237
238 \f
239 /* Check to see if either argument is a structure, or a reference to
240 one. This is called so we know whether to go ahead with the normal
241 binop or look for a user defined function instead.
242
243 For now, we do not overload the `=' operator. */
244
245 int
246 binop_types_user_defined_p (enum exp_opcode op,
247 struct type *type1, struct type *type2)
248 {
249 if (op == BINOP_ASSIGN || op == BINOP_CONCAT)
250 return 0;
251
252 type1 = check_typedef (type1);
253 if (TYPE_IS_REFERENCE (type1))
254 type1 = check_typedef (TYPE_TARGET_TYPE (type1));
255
256 type2 = check_typedef (type2);
257 if (TYPE_IS_REFERENCE (type2))
258 type2 = check_typedef (TYPE_TARGET_TYPE (type2));
259
260 return (type1->code () == TYPE_CODE_STRUCT
261 || type2->code () == TYPE_CODE_STRUCT);
262 }
263
264 /* Check to see if either argument is a structure, or a reference to
265 one. This is called so we know whether to go ahead with the normal
266 binop or look for a user defined function instead.
267
268 For now, we do not overload the `=' operator. */
269
270 int
271 binop_user_defined_p (enum exp_opcode op,
272 struct value *arg1, struct value *arg2)
273 {
274 return binop_types_user_defined_p (op, value_type (arg1), value_type (arg2));
275 }
276
277 /* Check to see if argument is a structure. This is called so
278 we know whether to go ahead with the normal unop or look for a
279 user defined function instead.
280
281 For now, we do not overload the `&' operator. */
282
283 int
284 unop_user_defined_p (enum exp_opcode op, struct value *arg1)
285 {
286 struct type *type1;
287
288 if (op == UNOP_ADDR)
289 return 0;
290 type1 = check_typedef (value_type (arg1));
291 if (TYPE_IS_REFERENCE (type1))
292 type1 = check_typedef (TYPE_TARGET_TYPE (type1));
293 return type1->code () == TYPE_CODE_STRUCT;
294 }
295
296 /* Try to find an operator named OPERATOR which takes NARGS arguments
297 specified in ARGS. If the operator found is a static member operator
298 *STATIC_MEMFUNP will be set to 1, and otherwise 0.
299 The search if performed through find_overload_match which will handle
300 member operators, non member operators, operators imported implicitly or
301 explicitly, and perform correct overload resolution in all of the above
302 situations or combinations thereof. */
303
304 static struct value *
305 value_user_defined_cpp_op (gdb::array_view<value *> args, char *oper,
306 int *static_memfuncp, enum noside noside)
307 {
308
309 struct symbol *symp = NULL;
310 struct value *valp = NULL;
311
312 find_overload_match (args, oper, BOTH /* could be method */,
313 &args[0] /* objp */,
314 NULL /* pass NULL symbol since symbol is unknown */,
315 &valp, &symp, static_memfuncp, 0, noside);
316
317 if (valp)
318 return valp;
319
320 if (symp)
321 {
322 /* This is a non member function and does not
323 expect a reference as its first argument
324 rather the explicit structure. */
325 args[0] = value_ind (args[0]);
326 return value_of_variable (symp, 0);
327 }
328
329 error (_("Could not find %s."), oper);
330 }
331
332 /* Lookup user defined operator NAME. Return a value representing the
333 function, otherwise return NULL. */
334
335 static struct value *
336 value_user_defined_op (struct value **argp, gdb::array_view<value *> args,
337 char *name, int *static_memfuncp, enum noside noside)
338 {
339 struct value *result = NULL;
340
341 if (current_language->la_language == language_cplus)
342 {
343 result = value_user_defined_cpp_op (args, name, static_memfuncp,
344 noside);
345 }
346 else
347 result = value_struct_elt (argp, args.data (), name, static_memfuncp,
348 "structure");
349
350 return result;
351 }
352
353 /* We know either arg1 or arg2 is a structure, so try to find the right
354 user defined function. Create an argument vector that calls
355 arg1.operator @ (arg1,arg2) and return that value (where '@' is any
356 binary operator which is legal for GNU C++).
357
358 OP is the operator, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP
359 is the opcode saying how to modify it. Otherwise, OTHEROP is
360 unused. */
361
362 struct value *
363 value_x_binop (struct value *arg1, struct value *arg2, enum exp_opcode op,
364 enum exp_opcode otherop, enum noside noside)
365 {
366 char *ptr;
367 char tstr[13];
368 int static_memfuncp;
369
370 arg1 = coerce_ref (arg1);
371 arg2 = coerce_ref (arg2);
372
373 /* now we know that what we have to do is construct our
374 arg vector and find the right function to call it with. */
375
376 if (check_typedef (value_type (arg1))->code () != TYPE_CODE_STRUCT)
377 error (_("Can't do that binary op on that type")); /* FIXME be explicit */
378
379 value *argvec_storage[3];
380 gdb::array_view<value *> argvec = argvec_storage;
381
382 argvec[1] = value_addr (arg1);
383 argvec[2] = arg2;
384
385 /* Make the right function name up. */
386 strcpy (tstr, "operator__");
387 ptr = tstr + 8;
388 switch (op)
389 {
390 case BINOP_ADD:
391 strcpy (ptr, "+");
392 break;
393 case BINOP_SUB:
394 strcpy (ptr, "-");
395 break;
396 case BINOP_MUL:
397 strcpy (ptr, "*");
398 break;
399 case BINOP_DIV:
400 strcpy (ptr, "/");
401 break;
402 case BINOP_REM:
403 strcpy (ptr, "%");
404 break;
405 case BINOP_LSH:
406 strcpy (ptr, "<<");
407 break;
408 case BINOP_RSH:
409 strcpy (ptr, ">>");
410 break;
411 case BINOP_BITWISE_AND:
412 strcpy (ptr, "&");
413 break;
414 case BINOP_BITWISE_IOR:
415 strcpy (ptr, "|");
416 break;
417 case BINOP_BITWISE_XOR:
418 strcpy (ptr, "^");
419 break;
420 case BINOP_LOGICAL_AND:
421 strcpy (ptr, "&&");
422 break;
423 case BINOP_LOGICAL_OR:
424 strcpy (ptr, "||");
425 break;
426 case BINOP_MIN:
427 strcpy (ptr, "<?");
428 break;
429 case BINOP_MAX:
430 strcpy (ptr, ">?");
431 break;
432 case BINOP_ASSIGN:
433 strcpy (ptr, "=");
434 break;
435 case BINOP_ASSIGN_MODIFY:
436 switch (otherop)
437 {
438 case BINOP_ADD:
439 strcpy (ptr, "+=");
440 break;
441 case BINOP_SUB:
442 strcpy (ptr, "-=");
443 break;
444 case BINOP_MUL:
445 strcpy (ptr, "*=");
446 break;
447 case BINOP_DIV:
448 strcpy (ptr, "/=");
449 break;
450 case BINOP_REM:
451 strcpy (ptr, "%=");
452 break;
453 case BINOP_BITWISE_AND:
454 strcpy (ptr, "&=");
455 break;
456 case BINOP_BITWISE_IOR:
457 strcpy (ptr, "|=");
458 break;
459 case BINOP_BITWISE_XOR:
460 strcpy (ptr, "^=");
461 break;
462 case BINOP_MOD: /* invalid */
463 default:
464 error (_("Invalid binary operation specified."));
465 }
466 break;
467 case BINOP_SUBSCRIPT:
468 strcpy (ptr, "[]");
469 break;
470 case BINOP_EQUAL:
471 strcpy (ptr, "==");
472 break;
473 case BINOP_NOTEQUAL:
474 strcpy (ptr, "!=");
475 break;
476 case BINOP_LESS:
477 strcpy (ptr, "<");
478 break;
479 case BINOP_GTR:
480 strcpy (ptr, ">");
481 break;
482 case BINOP_GEQ:
483 strcpy (ptr, ">=");
484 break;
485 case BINOP_LEQ:
486 strcpy (ptr, "<=");
487 break;
488 case BINOP_MOD: /* invalid */
489 default:
490 error (_("Invalid binary operation specified."));
491 }
492
493 argvec[0] = value_user_defined_op (&arg1, argvec.slice (1), tstr,
494 &static_memfuncp, noside);
495
496 if (argvec[0])
497 {
498 if (static_memfuncp)
499 {
500 argvec[1] = argvec[0];
501 argvec = argvec.slice (1);
502 }
503 if (value_type (argvec[0])->code () == TYPE_CODE_XMETHOD)
504 {
505 /* Static xmethods are not supported yet. */
506 gdb_assert (static_memfuncp == 0);
507 if (noside == EVAL_AVOID_SIDE_EFFECTS)
508 {
509 struct type *return_type
510 = result_type_of_xmethod (argvec[0], argvec.slice (1));
511
512 if (return_type == NULL)
513 error (_("Xmethod is missing return type."));
514 return value_zero (return_type, VALUE_LVAL (arg1));
515 }
516 return call_xmethod (argvec[0], argvec.slice (1));
517 }
518 if (noside == EVAL_AVOID_SIDE_EFFECTS)
519 {
520 struct type *return_type;
521
522 return_type
523 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
524 return value_zero (return_type, VALUE_LVAL (arg1));
525 }
526 return call_function_by_hand (argvec[0], NULL,
527 argvec.slice (1, 2 - static_memfuncp));
528 }
529 throw_error (NOT_FOUND_ERROR,
530 _("member function %s not found"), tstr);
531 }
532
533 /* We know that arg1 is a structure, so try to find a unary user
534 defined operator that matches the operator in question.
535 Create an argument vector that calls arg1.operator @ (arg1)
536 and return that value (where '@' is (almost) any unary operator which
537 is legal for GNU C++). */
538
539 struct value *
540 value_x_unop (struct value *arg1, enum exp_opcode op, enum noside noside)
541 {
542 struct gdbarch *gdbarch = get_type_arch (value_type (arg1));
543 char *ptr;
544 char tstr[13], mangle_tstr[13];
545 int static_memfuncp, nargs;
546
547 arg1 = coerce_ref (arg1);
548
549 /* now we know that what we have to do is construct our
550 arg vector and find the right function to call it with. */
551
552 if (check_typedef (value_type (arg1))->code () != TYPE_CODE_STRUCT)
553 error (_("Can't do that unary op on that type")); /* FIXME be explicit */
554
555 value *argvec_storage[3];
556 gdb::array_view<value *> argvec = argvec_storage;
557
558 argvec[1] = value_addr (arg1);
559 argvec[2] = 0;
560
561 nargs = 1;
562
563 /* Make the right function name up. */
564 strcpy (tstr, "operator__");
565 ptr = tstr + 8;
566 strcpy (mangle_tstr, "__");
567 switch (op)
568 {
569 case UNOP_PREINCREMENT:
570 strcpy (ptr, "++");
571 break;
572 case UNOP_PREDECREMENT:
573 strcpy (ptr, "--");
574 break;
575 case UNOP_POSTINCREMENT:
576 strcpy (ptr, "++");
577 argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
578 nargs ++;
579 break;
580 case UNOP_POSTDECREMENT:
581 strcpy (ptr, "--");
582 argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
583 nargs ++;
584 break;
585 case UNOP_LOGICAL_NOT:
586 strcpy (ptr, "!");
587 break;
588 case UNOP_COMPLEMENT:
589 strcpy (ptr, "~");
590 break;
591 case UNOP_NEG:
592 strcpy (ptr, "-");
593 break;
594 case UNOP_PLUS:
595 strcpy (ptr, "+");
596 break;
597 case UNOP_IND:
598 strcpy (ptr, "*");
599 break;
600 case STRUCTOP_PTR:
601 strcpy (ptr, "->");
602 break;
603 default:
604 error (_("Invalid unary operation specified."));
605 }
606
607 argvec[0] = value_user_defined_op (&arg1, argvec.slice (1, nargs), tstr,
608 &static_memfuncp, noside);
609
610 if (argvec[0])
611 {
612 if (static_memfuncp)
613 {
614 argvec[1] = argvec[0];
615 argvec = argvec.slice (1);
616 }
617 if (value_type (argvec[0])->code () == TYPE_CODE_XMETHOD)
618 {
619 /* Static xmethods are not supported yet. */
620 gdb_assert (static_memfuncp == 0);
621 if (noside == EVAL_AVOID_SIDE_EFFECTS)
622 {
623 struct type *return_type
624 = result_type_of_xmethod (argvec[0], argvec[1]);
625
626 if (return_type == NULL)
627 error (_("Xmethod is missing return type."));
628 return value_zero (return_type, VALUE_LVAL (arg1));
629 }
630 return call_xmethod (argvec[0], argvec[1]);
631 }
632 if (noside == EVAL_AVOID_SIDE_EFFECTS)
633 {
634 struct type *return_type;
635
636 return_type
637 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
638 return value_zero (return_type, VALUE_LVAL (arg1));
639 }
640 return call_function_by_hand (argvec[0], NULL,
641 argvec.slice (1, nargs));
642 }
643 throw_error (NOT_FOUND_ERROR,
644 _("member function %s not found"), tstr);
645 }
646 \f
647
648 /* Concatenate two values with the following conditions:
649
650 (1) Both values must be either bitstring values or character string
651 values and the resulting value consists of the concatenation of
652 ARG1 followed by ARG2.
653
654 or
655
656 One value must be an integer value and the other value must be
657 either a bitstring value or character string value, which is
658 to be repeated by the number of times specified by the integer
659 value.
660
661
662 (2) Boolean values are also allowed and are treated as bit string
663 values of length 1.
664
665 (3) Character values are also allowed and are treated as character
666 string values of length 1. */
667
668 struct value *
669 value_concat (struct value *arg1, struct value *arg2)
670 {
671 struct value *inval1;
672 struct value *inval2;
673 struct value *outval = NULL;
674 int inval1len, inval2len;
675 int count, idx;
676 char inchar;
677 struct type *type1 = check_typedef (value_type (arg1));
678 struct type *type2 = check_typedef (value_type (arg2));
679 struct type *char_type;
680
681 /* First figure out if we are dealing with two values to be concatenated
682 or a repeat count and a value to be repeated. INVAL1 is set to the
683 first of two concatenated values, or the repeat count. INVAL2 is set
684 to the second of the two concatenated values or the value to be
685 repeated. */
686
687 if (type2->code () == TYPE_CODE_INT)
688 {
689 struct type *tmp = type1;
690
691 type1 = tmp;
692 tmp = type2;
693 inval1 = arg2;
694 inval2 = arg1;
695 }
696 else
697 {
698 inval1 = arg1;
699 inval2 = arg2;
700 }
701
702 /* Now process the input values. */
703
704 if (type1->code () == TYPE_CODE_INT)
705 {
706 /* We have a repeat count. Validate the second value and then
707 construct a value repeated that many times. */
708 if (type2->code () == TYPE_CODE_STRING
709 || type2->code () == TYPE_CODE_CHAR)
710 {
711 count = longest_to_int (value_as_long (inval1));
712 inval2len = TYPE_LENGTH (type2);
713 std::vector<char> ptr (count * inval2len);
714 if (type2->code () == TYPE_CODE_CHAR)
715 {
716 char_type = type2;
717
718 inchar = (char) unpack_long (type2,
719 value_contents (inval2));
720 for (idx = 0; idx < count; idx++)
721 {
722 ptr[idx] = inchar;
723 }
724 }
725 else
726 {
727 char_type = TYPE_TARGET_TYPE (type2);
728
729 for (idx = 0; idx < count; idx++)
730 {
731 memcpy (&ptr[idx * inval2len], value_contents (inval2),
732 inval2len);
733 }
734 }
735 outval = value_string (ptr.data (), count * inval2len, char_type);
736 }
737 else if (type2->code () == TYPE_CODE_BOOL)
738 {
739 error (_("unimplemented support for boolean repeats"));
740 }
741 else
742 {
743 error (_("can't repeat values of that type"));
744 }
745 }
746 else if (type1->code () == TYPE_CODE_STRING
747 || type1->code () == TYPE_CODE_CHAR)
748 {
749 /* We have two character strings to concatenate. */
750 if (type2->code () != TYPE_CODE_STRING
751 && type2->code () != TYPE_CODE_CHAR)
752 {
753 error (_("Strings can only be concatenated with other strings."));
754 }
755 inval1len = TYPE_LENGTH (type1);
756 inval2len = TYPE_LENGTH (type2);
757 std::vector<char> ptr (inval1len + inval2len);
758 if (type1->code () == TYPE_CODE_CHAR)
759 {
760 char_type = type1;
761
762 ptr[0] = (char) unpack_long (type1, value_contents (inval1));
763 }
764 else
765 {
766 char_type = TYPE_TARGET_TYPE (type1);
767
768 memcpy (ptr.data (), value_contents (inval1), inval1len);
769 }
770 if (type2->code () == TYPE_CODE_CHAR)
771 {
772 ptr[inval1len] =
773 (char) unpack_long (type2, value_contents (inval2));
774 }
775 else
776 {
777 memcpy (&ptr[inval1len], value_contents (inval2), inval2len);
778 }
779 outval = value_string (ptr.data (), inval1len + inval2len, char_type);
780 }
781 else if (type1->code () == TYPE_CODE_BOOL)
782 {
783 /* We have two bitstrings to concatenate. */
784 if (type2->code () != TYPE_CODE_BOOL)
785 {
786 error (_("Booleans can only be concatenated "
787 "with other bitstrings or booleans."));
788 }
789 error (_("unimplemented support for boolean concatenation."));
790 }
791 else
792 {
793 /* We don't know how to concatenate these operands. */
794 error (_("illegal operands for concatenation."));
795 }
796 return (outval);
797 }
798 \f
799 /* Integer exponentiation: V1**V2, where both arguments are
800 integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */
801
802 static LONGEST
803 integer_pow (LONGEST v1, LONGEST v2)
804 {
805 if (v2 < 0)
806 {
807 if (v1 == 0)
808 error (_("Attempt to raise 0 to negative power."));
809 else
810 return 0;
811 }
812 else
813 {
814 /* The Russian Peasant's Algorithm. */
815 LONGEST v;
816
817 v = 1;
818 for (;;)
819 {
820 if (v2 & 1L)
821 v *= v1;
822 v2 >>= 1;
823 if (v2 == 0)
824 return v;
825 v1 *= v1;
826 }
827 }
828 }
829
830 /* Obtain argument values for binary operation, converting from
831 other types if one of them is not floating point. */
832 static void
833 value_args_as_target_float (struct value *arg1, struct value *arg2,
834 gdb_byte *x, struct type **eff_type_x,
835 gdb_byte *y, struct type **eff_type_y)
836 {
837 struct type *type1, *type2;
838
839 type1 = check_typedef (value_type (arg1));
840 type2 = check_typedef (value_type (arg2));
841
842 /* At least one of the arguments must be of floating-point type. */
843 gdb_assert (is_floating_type (type1) || is_floating_type (type2));
844
845 if (is_floating_type (type1) && is_floating_type (type2)
846 && type1->code () != type2->code ())
847 /* The DFP extension to the C language does not allow mixing of
848 * decimal float types with other float types in expressions
849 * (see WDTR 24732, page 12). */
850 error (_("Mixing decimal floating types with "
851 "other floating types is not allowed."));
852
853 /* Obtain value of arg1, converting from other types if necessary. */
854
855 if (is_floating_type (type1))
856 {
857 *eff_type_x = type1;
858 memcpy (x, value_contents (arg1), TYPE_LENGTH (type1));
859 }
860 else if (is_integral_type (type1))
861 {
862 *eff_type_x = type2;
863 if (type1->is_unsigned ())
864 target_float_from_ulongest (x, *eff_type_x, value_as_long (arg1));
865 else
866 target_float_from_longest (x, *eff_type_x, value_as_long (arg1));
867 }
868 else
869 error (_("Don't know how to convert from %s to %s."), type1->name (),
870 type2->name ());
871
872 /* Obtain value of arg2, converting from other types if necessary. */
873
874 if (is_floating_type (type2))
875 {
876 *eff_type_y = type2;
877 memcpy (y, value_contents (arg2), TYPE_LENGTH (type2));
878 }
879 else if (is_integral_type (type2))
880 {
881 *eff_type_y = type1;
882 if (type2->is_unsigned ())
883 target_float_from_ulongest (y, *eff_type_y, value_as_long (arg2));
884 else
885 target_float_from_longest (y, *eff_type_y, value_as_long (arg2));
886 }
887 else
888 error (_("Don't know how to convert from %s to %s."), type1->name (),
889 type2->name ());
890 }
891
892 /* Assuming at last one of ARG1 or ARG2 is a fixed point value,
893 perform the binary operation OP on these two operands, and return
894 the resulting value (also as a fixed point). */
895
896 static struct value *
897 fixed_point_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
898 {
899 struct type *type1 = check_typedef (value_type (arg1));
900 struct type *type2 = check_typedef (value_type (arg2));
901 const struct language_defn *language = current_language;
902
903 struct gdbarch *gdbarch = get_type_arch (type1);
904 struct value *val;
905
906 gdb_assert (is_fixed_point_type (type1) || is_fixed_point_type (type2));
907 if (!is_fixed_point_type (type1))
908 {
909 arg1 = value_cast (type2, arg1);
910 type1 = type2;
911 }
912 if (!is_fixed_point_type (type2))
913 {
914 arg2 = value_cast (type1, arg2);
915 type2 = type1;
916 }
917
918 gdb_mpq v1, v2, res;
919 v1.read_fixed_point (gdb::make_array_view (value_contents (arg1),
920 TYPE_LENGTH (type1)),
921 type_byte_order (type1), type1->is_unsigned (),
922 type1->fixed_point_scaling_factor ());
923 v2.read_fixed_point (gdb::make_array_view (value_contents (arg2),
924 TYPE_LENGTH (type2)),
925 type_byte_order (type2), type2->is_unsigned (),
926 type2->fixed_point_scaling_factor ());
927
928 auto fixed_point_to_value = [type1] (const gdb_mpq &fp)
929 {
930 value *fp_val = allocate_value (type1);
931
932 fp.write_fixed_point
933 (gdb::make_array_view (value_contents_raw (fp_val),
934 TYPE_LENGTH (type1)),
935 type_byte_order (type1),
936 type1->is_unsigned (),
937 type1->fixed_point_scaling_factor ());
938
939 return fp_val;
940 };
941
942 switch (op)
943 {
944 case BINOP_ADD:
945 mpq_add (res.val, v1.val, v2.val);
946 val = fixed_point_to_value (res);
947 break;
948
949 case BINOP_SUB:
950 mpq_sub (res.val, v1.val, v2.val);
951 val = fixed_point_to_value (res);
952 break;
953
954 case BINOP_MIN:
955 val = fixed_point_to_value (mpq_cmp (v1.val, v2.val) < 0 ? v1 : v2);
956 break;
957
958 case BINOP_MAX:
959 val = fixed_point_to_value (mpq_cmp (v1.val, v2.val) > 0 ? v1 : v2);
960 break;
961
962 case BINOP_MUL:
963 mpq_mul (res.val, v1.val, v2.val);
964 val = fixed_point_to_value (res);
965 break;
966
967 case BINOP_DIV:
968 mpq_div (res.val, v1.val, v2.val);
969 val = fixed_point_to_value (res);
970 break;
971
972 case BINOP_EQUAL:
973 val = value_from_ulongest (language_bool_type (language, gdbarch),
974 mpq_cmp (v1.val, v2.val) == 0 ? 1 : 0);
975 break;
976
977 case BINOP_LESS:
978 val = value_from_ulongest (language_bool_type (language, gdbarch),
979 mpq_cmp (v1.val, v2.val) < 0 ? 1 : 0);
980 break;
981
982 default:
983 error (_("Integer-only operation on fixed point number."));
984 }
985
986 return val;
987 }
988
989 /* A helper function that finds the type to use for a binary operation
990 involving TYPE1 and TYPE2. */
991
992 static struct type *
993 promotion_type (struct type *type1, struct type *type2)
994 {
995 struct type *result_type;
996
997 if (is_floating_type (type1) || is_floating_type (type2))
998 {
999 /* If only one type is floating-point, use its type.
1000 Otherwise use the bigger type. */
1001 if (!is_floating_type (type1))
1002 result_type = type2;
1003 else if (!is_floating_type (type2))
1004 result_type = type1;
1005 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
1006 result_type = type2;
1007 else
1008 result_type = type1;
1009 }
1010 else
1011 {
1012 /* Integer types. */
1013 if (TYPE_LENGTH (type1) > TYPE_LENGTH (type2))
1014 result_type = type1;
1015 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
1016 result_type = type2;
1017 else if (type1->is_unsigned ())
1018 result_type = type1;
1019 else if (type2->is_unsigned ())
1020 result_type = type2;
1021 else
1022 result_type = type1;
1023 }
1024
1025 return result_type;
1026 }
1027
1028 static struct value *scalar_binop (struct value *arg1, struct value *arg2,
1029 enum exp_opcode op);
1030
1031 /* Perform a binary operation on complex operands. */
1032
1033 static struct value *
1034 complex_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
1035 {
1036 struct type *arg1_type = check_typedef (value_type (arg1));
1037 struct type *arg2_type = check_typedef (value_type (arg2));
1038
1039 struct value *arg1_real, *arg1_imag, *arg2_real, *arg2_imag;
1040 if (arg1_type->code () == TYPE_CODE_COMPLEX)
1041 {
1042 arg1_real = value_real_part (arg1);
1043 arg1_imag = value_imaginary_part (arg1);
1044 }
1045 else
1046 {
1047 arg1_real = arg1;
1048 arg1_imag = value_zero (arg1_type, not_lval);
1049 }
1050 if (arg2_type->code () == TYPE_CODE_COMPLEX)
1051 {
1052 arg2_real = value_real_part (arg2);
1053 arg2_imag = value_imaginary_part (arg2);
1054 }
1055 else
1056 {
1057 arg2_real = arg2;
1058 arg2_imag = value_zero (arg2_type, not_lval);
1059 }
1060
1061 struct type *comp_type = promotion_type (value_type (arg1_real),
1062 value_type (arg2_real));
1063 arg1_real = value_cast (comp_type, arg1_real);
1064 arg1_imag = value_cast (comp_type, arg1_imag);
1065 arg2_real = value_cast (comp_type, arg2_real);
1066 arg2_imag = value_cast (comp_type, arg2_imag);
1067
1068 struct type *result_type = init_complex_type (nullptr, comp_type);
1069
1070 struct value *result_real, *result_imag;
1071 switch (op)
1072 {
1073 case BINOP_ADD:
1074 case BINOP_SUB:
1075 result_real = scalar_binop (arg1_real, arg2_real, op);
1076 result_imag = scalar_binop (arg1_imag, arg2_imag, op);
1077 break;
1078
1079 case BINOP_MUL:
1080 {
1081 struct value *x1 = scalar_binop (arg1_real, arg2_real, op);
1082 struct value *x2 = scalar_binop (arg1_imag, arg2_imag, op);
1083 result_real = scalar_binop (x1, x2, BINOP_SUB);
1084
1085 x1 = scalar_binop (arg1_real, arg2_imag, op);
1086 x2 = scalar_binop (arg1_imag, arg2_real, op);
1087 result_imag = scalar_binop (x1, x2, BINOP_ADD);
1088 }
1089 break;
1090
1091 case BINOP_DIV:
1092 {
1093 if (arg2_type->code () == TYPE_CODE_COMPLEX)
1094 {
1095 struct value *conjugate = value_complement (arg2);
1096 /* We have to reconstruct ARG1, in case the type was
1097 promoted. */
1098 arg1 = value_literal_complex (arg1_real, arg1_imag, result_type);
1099
1100 struct value *numerator = scalar_binop (arg1, conjugate,
1101 BINOP_MUL);
1102 arg1_real = value_real_part (numerator);
1103 arg1_imag = value_imaginary_part (numerator);
1104
1105 struct value *x1 = scalar_binop (arg2_real, arg2_real, BINOP_MUL);
1106 struct value *x2 = scalar_binop (arg2_imag, arg2_imag, BINOP_MUL);
1107 arg2_real = scalar_binop (x1, x2, BINOP_ADD);
1108 }
1109
1110 result_real = scalar_binop (arg1_real, arg2_real, op);
1111 result_imag = scalar_binop (arg1_imag, arg2_real, op);
1112 }
1113 break;
1114
1115 case BINOP_EQUAL:
1116 case BINOP_NOTEQUAL:
1117 {
1118 struct value *x1 = scalar_binop (arg1_real, arg2_real, op);
1119 struct value *x2 = scalar_binop (arg1_imag, arg2_imag, op);
1120
1121 LONGEST v1 = value_as_long (x1);
1122 LONGEST v2 = value_as_long (x2);
1123
1124 if (op == BINOP_EQUAL)
1125 v1 = v1 && v2;
1126 else
1127 v1 = v1 || v2;
1128
1129 return value_from_longest (value_type (x1), v1);
1130 }
1131 break;
1132
1133 default:
1134 error (_("Invalid binary operation on numbers."));
1135 }
1136
1137 return value_literal_complex (result_real, result_imag, result_type);
1138 }
1139
1140 /* Perform a binary operation on two operands which have reasonable
1141 representations as integers or floats. This includes booleans,
1142 characters, integers, or floats.
1143 Does not support addition and subtraction on pointers;
1144 use value_ptradd, value_ptrsub or value_ptrdiff for those operations. */
1145
1146 static struct value *
1147 scalar_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
1148 {
1149 struct value *val;
1150 struct type *type1, *type2, *result_type;
1151
1152 arg1 = coerce_ref (arg1);
1153 arg2 = coerce_ref (arg2);
1154
1155 type1 = check_typedef (value_type (arg1));
1156 type2 = check_typedef (value_type (arg2));
1157
1158 if (type1->code () == TYPE_CODE_COMPLEX
1159 || type2->code () == TYPE_CODE_COMPLEX)
1160 return complex_binop (arg1, arg2, op);
1161
1162 if ((!is_floating_value (arg1)
1163 && !is_integral_type (type1)
1164 && !is_fixed_point_type (type1))
1165 || (!is_floating_value (arg2)
1166 && !is_integral_type (type2)
1167 && !is_fixed_point_type (type2)))
1168 error (_("Argument to arithmetic operation not a number or boolean."));
1169
1170 if (is_fixed_point_type (type1) || is_fixed_point_type (type2))
1171 return fixed_point_binop (arg1, arg2, op);
1172
1173 if (is_floating_type (type1) || is_floating_type (type2))
1174 {
1175 result_type = promotion_type (type1, type2);
1176 val = allocate_value (result_type);
1177
1178 struct type *eff_type_v1, *eff_type_v2;
1179 gdb::byte_vector v1, v2;
1180 v1.resize (TYPE_LENGTH (result_type));
1181 v2.resize (TYPE_LENGTH (result_type));
1182
1183 value_args_as_target_float (arg1, arg2,
1184 v1.data (), &eff_type_v1,
1185 v2.data (), &eff_type_v2);
1186 target_float_binop (op, v1.data (), eff_type_v1,
1187 v2.data (), eff_type_v2,
1188 value_contents_raw (val), result_type);
1189 }
1190 else if (type1->code () == TYPE_CODE_BOOL
1191 || type2->code () == TYPE_CODE_BOOL)
1192 {
1193 LONGEST v1, v2, v = 0;
1194
1195 v1 = value_as_long (arg1);
1196 v2 = value_as_long (arg2);
1197
1198 switch (op)
1199 {
1200 case BINOP_BITWISE_AND:
1201 v = v1 & v2;
1202 break;
1203
1204 case BINOP_BITWISE_IOR:
1205 v = v1 | v2;
1206 break;
1207
1208 case BINOP_BITWISE_XOR:
1209 v = v1 ^ v2;
1210 break;
1211
1212 case BINOP_EQUAL:
1213 v = v1 == v2;
1214 break;
1215
1216 case BINOP_NOTEQUAL:
1217 v = v1 != v2;
1218 break;
1219
1220 default:
1221 error (_("Invalid operation on booleans."));
1222 }
1223
1224 result_type = type1;
1225
1226 val = allocate_value (result_type);
1227 store_signed_integer (value_contents_raw (val),
1228 TYPE_LENGTH (result_type),
1229 type_byte_order (result_type),
1230 v);
1231 }
1232 else
1233 /* Integral operations here. */
1234 {
1235 /* Determine type length of the result, and if the operation should
1236 be done unsigned. For exponentiation and shift operators,
1237 use the length and type of the left operand. Otherwise,
1238 use the signedness of the operand with the greater length.
1239 If both operands are of equal length, use unsigned operation
1240 if one of the operands is unsigned. */
1241 if (op == BINOP_RSH || op == BINOP_LSH || op == BINOP_EXP)
1242 result_type = type1;
1243 else
1244 result_type = promotion_type (type1, type2);
1245
1246 if (result_type->is_unsigned ())
1247 {
1248 LONGEST v2_signed = value_as_long (arg2);
1249 ULONGEST v1, v2, v = 0;
1250
1251 v1 = (ULONGEST) value_as_long (arg1);
1252 v2 = (ULONGEST) v2_signed;
1253
1254 switch (op)
1255 {
1256 case BINOP_ADD:
1257 v = v1 + v2;
1258 break;
1259
1260 case BINOP_SUB:
1261 v = v1 - v2;
1262 break;
1263
1264 case BINOP_MUL:
1265 v = v1 * v2;
1266 break;
1267
1268 case BINOP_DIV:
1269 case BINOP_INTDIV:
1270 if (v2 != 0)
1271 v = v1 / v2;
1272 else
1273 error (_("Division by zero"));
1274 break;
1275
1276 case BINOP_EXP:
1277 v = uinteger_pow (v1, v2_signed);
1278 break;
1279
1280 case BINOP_REM:
1281 if (v2 != 0)
1282 v = v1 % v2;
1283 else
1284 error (_("Division by zero"));
1285 break;
1286
1287 case BINOP_MOD:
1288 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1289 v1 mod 0 has a defined value, v1. */
1290 if (v2 == 0)
1291 {
1292 v = v1;
1293 }
1294 else
1295 {
1296 v = v1 / v2;
1297 /* Note floor(v1/v2) == v1/v2 for unsigned. */
1298 v = v1 - (v2 * v);
1299 }
1300 break;
1301
1302 case BINOP_LSH:
1303 v = v1 << v2;
1304 break;
1305
1306 case BINOP_RSH:
1307 v = v1 >> v2;
1308 break;
1309
1310 case BINOP_BITWISE_AND:
1311 v = v1 & v2;
1312 break;
1313
1314 case BINOP_BITWISE_IOR:
1315 v = v1 | v2;
1316 break;
1317
1318 case BINOP_BITWISE_XOR:
1319 v = v1 ^ v2;
1320 break;
1321
1322 case BINOP_LOGICAL_AND:
1323 v = v1 && v2;
1324 break;
1325
1326 case BINOP_LOGICAL_OR:
1327 v = v1 || v2;
1328 break;
1329
1330 case BINOP_MIN:
1331 v = v1 < v2 ? v1 : v2;
1332 break;
1333
1334 case BINOP_MAX:
1335 v = v1 > v2 ? v1 : v2;
1336 break;
1337
1338 case BINOP_EQUAL:
1339 v = v1 == v2;
1340 break;
1341
1342 case BINOP_NOTEQUAL:
1343 v = v1 != v2;
1344 break;
1345
1346 case BINOP_LESS:
1347 v = v1 < v2;
1348 break;
1349
1350 case BINOP_GTR:
1351 v = v1 > v2;
1352 break;
1353
1354 case BINOP_LEQ:
1355 v = v1 <= v2;
1356 break;
1357
1358 case BINOP_GEQ:
1359 v = v1 >= v2;
1360 break;
1361
1362 default:
1363 error (_("Invalid binary operation on numbers."));
1364 }
1365
1366 val = allocate_value (result_type);
1367 store_unsigned_integer (value_contents_raw (val),
1368 TYPE_LENGTH (value_type (val)),
1369 type_byte_order (result_type),
1370 v);
1371 }
1372 else
1373 {
1374 LONGEST v1, v2, v = 0;
1375
1376 v1 = value_as_long (arg1);
1377 v2 = value_as_long (arg2);
1378
1379 switch (op)
1380 {
1381 case BINOP_ADD:
1382 v = v1 + v2;
1383 break;
1384
1385 case BINOP_SUB:
1386 v = v1 - v2;
1387 break;
1388
1389 case BINOP_MUL:
1390 v = v1 * v2;
1391 break;
1392
1393 case BINOP_DIV:
1394 case BINOP_INTDIV:
1395 if (v2 != 0)
1396 v = v1 / v2;
1397 else
1398 error (_("Division by zero"));
1399 break;
1400
1401 case BINOP_EXP:
1402 v = integer_pow (v1, v2);
1403 break;
1404
1405 case BINOP_REM:
1406 if (v2 != 0)
1407 v = v1 % v2;
1408 else
1409 error (_("Division by zero"));
1410 break;
1411
1412 case BINOP_MOD:
1413 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1414 X mod 0 has a defined value, X. */
1415 if (v2 == 0)
1416 {
1417 v = v1;
1418 }
1419 else
1420 {
1421 v = v1 / v2;
1422 /* Compute floor. */
1423 if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0))
1424 {
1425 v--;
1426 }
1427 v = v1 - (v2 * v);
1428 }
1429 break;
1430
1431 case BINOP_LSH:
1432 v = v1 << v2;
1433 break;
1434
1435 case BINOP_RSH:
1436 v = v1 >> v2;
1437 break;
1438
1439 case BINOP_BITWISE_AND:
1440 v = v1 & v2;
1441 break;
1442
1443 case BINOP_BITWISE_IOR:
1444 v = v1 | v2;
1445 break;
1446
1447 case BINOP_BITWISE_XOR:
1448 v = v1 ^ v2;
1449 break;
1450
1451 case BINOP_LOGICAL_AND:
1452 v = v1 && v2;
1453 break;
1454
1455 case BINOP_LOGICAL_OR:
1456 v = v1 || v2;
1457 break;
1458
1459 case BINOP_MIN:
1460 v = v1 < v2 ? v1 : v2;
1461 break;
1462
1463 case BINOP_MAX:
1464 v = v1 > v2 ? v1 : v2;
1465 break;
1466
1467 case BINOP_EQUAL:
1468 v = v1 == v2;
1469 break;
1470
1471 case BINOP_NOTEQUAL:
1472 v = v1 != v2;
1473 break;
1474
1475 case BINOP_LESS:
1476 v = v1 < v2;
1477 break;
1478
1479 case BINOP_GTR:
1480 v = v1 > v2;
1481 break;
1482
1483 case BINOP_LEQ:
1484 v = v1 <= v2;
1485 break;
1486
1487 case BINOP_GEQ:
1488 v = v1 >= v2;
1489 break;
1490
1491 default:
1492 error (_("Invalid binary operation on numbers."));
1493 }
1494
1495 val = allocate_value (result_type);
1496 store_signed_integer (value_contents_raw (val),
1497 TYPE_LENGTH (value_type (val)),
1498 type_byte_order (result_type),
1499 v);
1500 }
1501 }
1502
1503 return val;
1504 }
1505
1506 /* Widen a scalar value SCALAR_VALUE to vector type VECTOR_TYPE by
1507 replicating SCALAR_VALUE for each element of the vector. Only scalar
1508 types that can be cast to the type of one element of the vector are
1509 acceptable. The newly created vector value is returned upon success,
1510 otherwise an error is thrown. */
1511
1512 struct value *
1513 value_vector_widen (struct value *scalar_value, struct type *vector_type)
1514 {
1515 /* Widen the scalar to a vector. */
1516 struct type *eltype, *scalar_type;
1517 struct value *val, *elval;
1518 LONGEST low_bound, high_bound;
1519 int i;
1520
1521 vector_type = check_typedef (vector_type);
1522
1523 gdb_assert (vector_type->code () == TYPE_CODE_ARRAY
1524 && vector_type->is_vector ());
1525
1526 if (!get_array_bounds (vector_type, &low_bound, &high_bound))
1527 error (_("Could not determine the vector bounds"));
1528
1529 eltype = check_typedef (TYPE_TARGET_TYPE (vector_type));
1530 elval = value_cast (eltype, scalar_value);
1531
1532 scalar_type = check_typedef (value_type (scalar_value));
1533
1534 /* If we reduced the length of the scalar then check we didn't loose any
1535 important bits. */
1536 if (TYPE_LENGTH (eltype) < TYPE_LENGTH (scalar_type)
1537 && !value_equal (elval, scalar_value))
1538 error (_("conversion of scalar to vector involves truncation"));
1539
1540 val = allocate_value (vector_type);
1541 for (i = 0; i < high_bound - low_bound + 1; i++)
1542 /* Duplicate the contents of elval into the destination vector. */
1543 memcpy (value_contents_writeable (val) + (i * TYPE_LENGTH (eltype)),
1544 value_contents_all (elval), TYPE_LENGTH (eltype));
1545
1546 return val;
1547 }
1548
1549 /* Performs a binary operation on two vector operands by calling scalar_binop
1550 for each pair of vector components. */
1551
1552 static struct value *
1553 vector_binop (struct value *val1, struct value *val2, enum exp_opcode op)
1554 {
1555 struct value *val, *tmp, *mark;
1556 struct type *type1, *type2, *eltype1, *eltype2;
1557 int t1_is_vec, t2_is_vec, elsize, i;
1558 LONGEST low_bound1, high_bound1, low_bound2, high_bound2;
1559
1560 type1 = check_typedef (value_type (val1));
1561 type2 = check_typedef (value_type (val2));
1562
1563 t1_is_vec = (type1->code () == TYPE_CODE_ARRAY
1564 && type1->is_vector ()) ? 1 : 0;
1565 t2_is_vec = (type2->code () == TYPE_CODE_ARRAY
1566 && type2->is_vector ()) ? 1 : 0;
1567
1568 if (!t1_is_vec || !t2_is_vec)
1569 error (_("Vector operations are only supported among vectors"));
1570
1571 if (!get_array_bounds (type1, &low_bound1, &high_bound1)
1572 || !get_array_bounds (type2, &low_bound2, &high_bound2))
1573 error (_("Could not determine the vector bounds"));
1574
1575 eltype1 = check_typedef (TYPE_TARGET_TYPE (type1));
1576 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2));
1577 elsize = TYPE_LENGTH (eltype1);
1578
1579 if (eltype1->code () != eltype2->code ()
1580 || elsize != TYPE_LENGTH (eltype2)
1581 || eltype1->is_unsigned () != eltype2->is_unsigned ()
1582 || low_bound1 != low_bound2 || high_bound1 != high_bound2)
1583 error (_("Cannot perform operation on vectors with different types"));
1584
1585 val = allocate_value (type1);
1586 mark = value_mark ();
1587 for (i = 0; i < high_bound1 - low_bound1 + 1; i++)
1588 {
1589 tmp = value_binop (value_subscript (val1, i),
1590 value_subscript (val2, i), op);
1591 memcpy (value_contents_writeable (val) + i * elsize,
1592 value_contents_all (tmp),
1593 elsize);
1594 }
1595 value_free_to_mark (mark);
1596
1597 return val;
1598 }
1599
1600 /* Perform a binary operation on two operands. */
1601
1602 struct value *
1603 value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
1604 {
1605 struct value *val;
1606 struct type *type1 = check_typedef (value_type (arg1));
1607 struct type *type2 = check_typedef (value_type (arg2));
1608 int t1_is_vec = (type1->code () == TYPE_CODE_ARRAY
1609 && type1->is_vector ());
1610 int t2_is_vec = (type2->code () == TYPE_CODE_ARRAY
1611 && type2->is_vector ());
1612
1613 if (!t1_is_vec && !t2_is_vec)
1614 val = scalar_binop (arg1, arg2, op);
1615 else if (t1_is_vec && t2_is_vec)
1616 val = vector_binop (arg1, arg2, op);
1617 else
1618 {
1619 /* Widen the scalar operand to a vector. */
1620 struct value **v = t1_is_vec ? &arg2 : &arg1;
1621 struct type *t = t1_is_vec ? type2 : type1;
1622
1623 if (t->code () != TYPE_CODE_FLT
1624 && t->code () != TYPE_CODE_DECFLOAT
1625 && !is_integral_type (t))
1626 error (_("Argument to operation not a number or boolean."));
1627
1628 /* Replicate the scalar value to make a vector value. */
1629 *v = value_vector_widen (*v, t1_is_vec ? type1 : type2);
1630
1631 val = vector_binop (arg1, arg2, op);
1632 }
1633
1634 return val;
1635 }
1636 \f
1637 /* Simulate the C operator ! -- return 1 if ARG1 contains zero. */
1638
1639 int
1640 value_logical_not (struct value *arg1)
1641 {
1642 int len;
1643 const gdb_byte *p;
1644 struct type *type1;
1645
1646 arg1 = coerce_array (arg1);
1647 type1 = check_typedef (value_type (arg1));
1648
1649 if (is_floating_value (arg1))
1650 return target_float_is_zero (value_contents (arg1), type1);
1651
1652 len = TYPE_LENGTH (type1);
1653 p = value_contents (arg1);
1654
1655 while (--len >= 0)
1656 {
1657 if (*p++)
1658 break;
1659 }
1660
1661 return len < 0;
1662 }
1663
1664 /* Perform a comparison on two string values (whose content are not
1665 necessarily null terminated) based on their length. */
1666
1667 static int
1668 value_strcmp (struct value *arg1, struct value *arg2)
1669 {
1670 int len1 = TYPE_LENGTH (value_type (arg1));
1671 int len2 = TYPE_LENGTH (value_type (arg2));
1672 const gdb_byte *s1 = value_contents (arg1);
1673 const gdb_byte *s2 = value_contents (arg2);
1674 int i, len = len1 < len2 ? len1 : len2;
1675
1676 for (i = 0; i < len; i++)
1677 {
1678 if (s1[i] < s2[i])
1679 return -1;
1680 else if (s1[i] > s2[i])
1681 return 1;
1682 else
1683 continue;
1684 }
1685
1686 if (len1 < len2)
1687 return -1;
1688 else if (len1 > len2)
1689 return 1;
1690 else
1691 return 0;
1692 }
1693
1694 /* Simulate the C operator == by returning a 1
1695 iff ARG1 and ARG2 have equal contents. */
1696
1697 int
1698 value_equal (struct value *arg1, struct value *arg2)
1699 {
1700 int len;
1701 const gdb_byte *p1;
1702 const gdb_byte *p2;
1703 struct type *type1, *type2;
1704 enum type_code code1;
1705 enum type_code code2;
1706 int is_int1, is_int2;
1707
1708 arg1 = coerce_array (arg1);
1709 arg2 = coerce_array (arg2);
1710
1711 type1 = check_typedef (value_type (arg1));
1712 type2 = check_typedef (value_type (arg2));
1713 code1 = type1->code ();
1714 code2 = type2->code ();
1715 is_int1 = is_integral_type (type1);
1716 is_int2 = is_integral_type (type2);
1717
1718 if (is_int1 && is_int2)
1719 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1720 BINOP_EQUAL)));
1721 else if ((is_floating_value (arg1) || is_int1)
1722 && (is_floating_value (arg2) || is_int2))
1723 {
1724 struct type *eff_type_v1, *eff_type_v2;
1725 gdb::byte_vector v1, v2;
1726 v1.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2)));
1727 v2.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2)));
1728
1729 value_args_as_target_float (arg1, arg2,
1730 v1.data (), &eff_type_v1,
1731 v2.data (), &eff_type_v2);
1732
1733 return target_float_compare (v1.data (), eff_type_v1,
1734 v2.data (), eff_type_v2) == 0;
1735 }
1736
1737 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1738 is bigger. */
1739 else if (code1 == TYPE_CODE_PTR && is_int2)
1740 return value_as_address (arg1) == (CORE_ADDR) value_as_long (arg2);
1741 else if (code2 == TYPE_CODE_PTR && is_int1)
1742 return (CORE_ADDR) value_as_long (arg1) == value_as_address (arg2);
1743
1744 else if (code1 == code2
1745 && ((len = (int) TYPE_LENGTH (type1))
1746 == (int) TYPE_LENGTH (type2)))
1747 {
1748 p1 = value_contents (arg1);
1749 p2 = value_contents (arg2);
1750 while (--len >= 0)
1751 {
1752 if (*p1++ != *p2++)
1753 break;
1754 }
1755 return len < 0;
1756 }
1757 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1758 {
1759 return value_strcmp (arg1, arg2) == 0;
1760 }
1761 else
1762 error (_("Invalid type combination in equality test."));
1763 }
1764
1765 /* Compare values based on their raw contents. Useful for arrays since
1766 value_equal coerces them to pointers, thus comparing just the address
1767 of the array instead of its contents. */
1768
1769 int
1770 value_equal_contents (struct value *arg1, struct value *arg2)
1771 {
1772 struct type *type1, *type2;
1773
1774 type1 = check_typedef (value_type (arg1));
1775 type2 = check_typedef (value_type (arg2));
1776
1777 return (type1->code () == type2->code ()
1778 && TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
1779 && memcmp (value_contents (arg1), value_contents (arg2),
1780 TYPE_LENGTH (type1)) == 0);
1781 }
1782
1783 /* Simulate the C operator < by returning 1
1784 iff ARG1's contents are less than ARG2's. */
1785
1786 int
1787 value_less (struct value *arg1, struct value *arg2)
1788 {
1789 enum type_code code1;
1790 enum type_code code2;
1791 struct type *type1, *type2;
1792 int is_int1, is_int2;
1793
1794 arg1 = coerce_array (arg1);
1795 arg2 = coerce_array (arg2);
1796
1797 type1 = check_typedef (value_type (arg1));
1798 type2 = check_typedef (value_type (arg2));
1799 code1 = type1->code ();
1800 code2 = type2->code ();
1801 is_int1 = is_integral_type (type1);
1802 is_int2 = is_integral_type (type2);
1803
1804 if ((is_int1 && is_int2)
1805 || (is_fixed_point_type (type1) && is_fixed_point_type (type2)))
1806 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1807 BINOP_LESS)));
1808 else if ((is_floating_value (arg1) || is_int1)
1809 && (is_floating_value (arg2) || is_int2))
1810 {
1811 struct type *eff_type_v1, *eff_type_v2;
1812 gdb::byte_vector v1, v2;
1813 v1.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2)));
1814 v2.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2)));
1815
1816 value_args_as_target_float (arg1, arg2,
1817 v1.data (), &eff_type_v1,
1818 v2.data (), &eff_type_v2);
1819
1820 return target_float_compare (v1.data (), eff_type_v1,
1821 v2.data (), eff_type_v2) == -1;
1822 }
1823 else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
1824 return value_as_address (arg1) < value_as_address (arg2);
1825
1826 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1827 is bigger. */
1828 else if (code1 == TYPE_CODE_PTR && is_int2)
1829 return value_as_address (arg1) < (CORE_ADDR) value_as_long (arg2);
1830 else if (code2 == TYPE_CODE_PTR && is_int1)
1831 return (CORE_ADDR) value_as_long (arg1) < value_as_address (arg2);
1832 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1833 return value_strcmp (arg1, arg2) < 0;
1834 else
1835 {
1836 error (_("Invalid type combination in ordering comparison."));
1837 return 0;
1838 }
1839 }
1840 \f
1841 /* The unary operators +, - and ~. They free the argument ARG1. */
1842
1843 struct value *
1844 value_pos (struct value *arg1)
1845 {
1846 struct type *type;
1847
1848 arg1 = coerce_ref (arg1);
1849 type = check_typedef (value_type (arg1));
1850
1851 if (is_integral_type (type) || is_floating_value (arg1)
1852 || (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
1853 || type->code () == TYPE_CODE_COMPLEX)
1854 return value_from_contents (type, value_contents (arg1));
1855 else
1856 error (_("Argument to positive operation not a number."));
1857 }
1858
1859 struct value *
1860 value_neg (struct value *arg1)
1861 {
1862 struct type *type;
1863
1864 arg1 = coerce_ref (arg1);
1865 type = check_typedef (value_type (arg1));
1866
1867 if (is_integral_type (type) || is_floating_type (type))
1868 return value_binop (value_from_longest (type, 0), arg1, BINOP_SUB);
1869 else if (is_fixed_point_type (type))
1870 return value_binop (value_zero (type, not_lval), arg1, BINOP_SUB);
1871 else if (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
1872 {
1873 struct value *tmp, *val = allocate_value (type);
1874 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
1875 int i;
1876 LONGEST low_bound, high_bound;
1877
1878 if (!get_array_bounds (type, &low_bound, &high_bound))
1879 error (_("Could not determine the vector bounds"));
1880
1881 for (i = 0; i < high_bound - low_bound + 1; i++)
1882 {
1883 tmp = value_neg (value_subscript (arg1, i));
1884 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
1885 value_contents_all (tmp), TYPE_LENGTH (eltype));
1886 }
1887 return val;
1888 }
1889 else if (type->code () == TYPE_CODE_COMPLEX)
1890 {
1891 struct value *real = value_real_part (arg1);
1892 struct value *imag = value_imaginary_part (arg1);
1893
1894 real = value_neg (real);
1895 imag = value_neg (imag);
1896 return value_literal_complex (real, imag, type);
1897 }
1898 else
1899 error (_("Argument to negate operation not a number."));
1900 }
1901
1902 struct value *
1903 value_complement (struct value *arg1)
1904 {
1905 struct type *type;
1906 struct value *val;
1907
1908 arg1 = coerce_ref (arg1);
1909 type = check_typedef (value_type (arg1));
1910
1911 if (is_integral_type (type))
1912 val = value_from_longest (type, ~value_as_long (arg1));
1913 else if (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
1914 {
1915 struct value *tmp;
1916 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
1917 int i;
1918 LONGEST low_bound, high_bound;
1919
1920 if (!get_array_bounds (type, &low_bound, &high_bound))
1921 error (_("Could not determine the vector bounds"));
1922
1923 val = allocate_value (type);
1924 for (i = 0; i < high_bound - low_bound + 1; i++)
1925 {
1926 tmp = value_complement (value_subscript (arg1, i));
1927 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
1928 value_contents_all (tmp), TYPE_LENGTH (eltype));
1929 }
1930 }
1931 else if (type->code () == TYPE_CODE_COMPLEX)
1932 {
1933 /* GCC has an extension that treats ~complex as the complex
1934 conjugate. */
1935 struct value *real = value_real_part (arg1);
1936 struct value *imag = value_imaginary_part (arg1);
1937
1938 imag = value_neg (imag);
1939 return value_literal_complex (real, imag, type);
1940 }
1941 else
1942 error (_("Argument to complement operation not an integer, boolean."));
1943
1944 return val;
1945 }
1946 \f
1947 /* The INDEX'th bit of SET value whose value_type is TYPE,
1948 and whose value_contents is valaddr.
1949 Return -1 if out of range, -2 other error. */
1950
1951 int
1952 value_bit_index (struct type *type, const gdb_byte *valaddr, int index)
1953 {
1954 struct gdbarch *gdbarch = get_type_arch (type);
1955 LONGEST low_bound, high_bound;
1956 LONGEST word;
1957 unsigned rel_index;
1958 struct type *range = type->index_type ();
1959
1960 if (!get_discrete_bounds (range, &low_bound, &high_bound))
1961 return -2;
1962 if (index < low_bound || index > high_bound)
1963 return -1;
1964 rel_index = index - low_bound;
1965 word = extract_unsigned_integer (valaddr + (rel_index / TARGET_CHAR_BIT), 1,
1966 type_byte_order (type));
1967 rel_index %= TARGET_CHAR_BIT;
1968 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1969 rel_index = TARGET_CHAR_BIT - 1 - rel_index;
1970 return (word >> rel_index) & 1;
1971 }
1972
1973 int
1974 value_in (struct value *element, struct value *set)
1975 {
1976 int member;
1977 struct type *settype = check_typedef (value_type (set));
1978 struct type *eltype = check_typedef (value_type (element));
1979
1980 if (eltype->code () == TYPE_CODE_RANGE)
1981 eltype = TYPE_TARGET_TYPE (eltype);
1982 if (settype->code () != TYPE_CODE_SET)
1983 error (_("Second argument of 'IN' has wrong type"));
1984 if (eltype->code () != TYPE_CODE_INT
1985 && eltype->code () != TYPE_CODE_CHAR
1986 && eltype->code () != TYPE_CODE_ENUM
1987 && eltype->code () != TYPE_CODE_BOOL)
1988 error (_("First argument of 'IN' has wrong type"));
1989 member = value_bit_index (settype, value_contents (set),
1990 value_as_long (element));
1991 if (member < 0)
1992 error (_("First argument of 'IN' not in range"));
1993 return member;
1994 }