* gdbtypes.c (check_stub_method): Make sure we get back a function
[binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcore.h"
28 #include "target.h"
29 #include "demangle.h"
30 #include "language.h"
31
32 #include <errno.h>
33 #include "gdb_string.h"
34
35 /* Local functions. */
36
37 static int typecmp PARAMS ((int staticp, struct type *t1[], value_ptr t2[]));
38
39 static CORE_ADDR find_function_addr PARAMS ((value_ptr, struct type **));
40
41 static CORE_ADDR value_push PARAMS ((CORE_ADDR, value_ptr));
42
43 static value_ptr search_struct_field PARAMS ((char *, value_ptr, int,
44 struct type *, int));
45
46 static value_ptr search_struct_method PARAMS ((char *, value_ptr *,
47 value_ptr *,
48 int, int *, struct type *));
49
50 static int check_field_in PARAMS ((struct type *, const char *));
51
52 static CORE_ADDR allocate_space_in_inferior PARAMS ((int));
53
54 static value_ptr cast_into_complex PARAMS ((struct type *, value_ptr));
55
56 #define VALUE_SUBSTRING_START(VAL) VALUE_FRAME(VAL)
57
58 /* Flag for whether we want to abandon failed expression evals by default. */
59
60 static int auto_abandon = 0;
61
62 \f
63 /* Find the address of function name NAME in the inferior. */
64
65 value_ptr
66 find_function_in_inferior (name)
67 char *name;
68 {
69 register struct symbol *sym;
70 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
71 if (sym != NULL)
72 {
73 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
74 {
75 error ("\"%s\" exists in this program but is not a function.",
76 name);
77 }
78 return value_of_variable (sym, NULL);
79 }
80 else
81 {
82 struct minimal_symbol *msymbol = lookup_minimal_symbol(name, NULL, NULL);
83 if (msymbol != NULL)
84 {
85 struct type *type;
86 LONGEST maddr;
87 type = lookup_pointer_type (builtin_type_char);
88 type = lookup_function_type (type);
89 type = lookup_pointer_type (type);
90 maddr = (LONGEST) SYMBOL_VALUE_ADDRESS (msymbol);
91 return value_from_longest (type, maddr);
92 }
93 else
94 {
95 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
96 }
97 }
98 }
99
100 /* Allocate NBYTES of space in the inferior using the inferior's malloc
101 and return a value that is a pointer to the allocated space. */
102
103 value_ptr
104 value_allocate_space_in_inferior (len)
105 int len;
106 {
107 value_ptr blocklen;
108 register value_ptr val = find_function_in_inferior ("malloc");
109
110 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
111 val = call_function_by_hand (val, 1, &blocklen);
112 if (value_logical_not (val))
113 {
114 error ("No memory available to program.");
115 }
116 return val;
117 }
118
119 static CORE_ADDR
120 allocate_space_in_inferior (len)
121 int len;
122 {
123 return value_as_long (value_allocate_space_in_inferior (len));
124 }
125
126 /* Cast value ARG2 to type TYPE and return as a value.
127 More general than a C cast: accepts any two types of the same length,
128 and if ARG2 is an lvalue it can be cast into anything at all. */
129 /* In C++, casts may change pointer or object representations. */
130
131 value_ptr
132 value_cast (type, arg2)
133 struct type *type;
134 register value_ptr arg2;
135 {
136 register enum type_code code1;
137 register enum type_code code2;
138 register int scalar;
139 struct type *type2;
140
141 if (VALUE_TYPE (arg2) == type)
142 return arg2;
143
144 CHECK_TYPEDEF (type);
145 code1 = TYPE_CODE (type);
146 COERCE_REF(arg2);
147 type2 = check_typedef (VALUE_TYPE (arg2));
148
149 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
150 is treated like a cast to (TYPE [N])OBJECT,
151 where N is sizeof(OBJECT)/sizeof(TYPE). */
152 if (code1 == TYPE_CODE_ARRAY)
153 {
154 struct type *element_type = TYPE_TARGET_TYPE (type);
155 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
156 if (element_length > 0
157 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
158 {
159 struct type *range_type = TYPE_INDEX_TYPE (type);
160 int val_length = TYPE_LENGTH (type2);
161 LONGEST low_bound, high_bound, new_length;
162 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
163 low_bound = 0, high_bound = 0;
164 new_length = val_length / element_length;
165 if (val_length % element_length != 0)
166 warning("array element type size does not divide object size in cast");
167 /* FIXME-type-allocation: need a way to free this type when we are
168 done with it. */
169 range_type = create_range_type ((struct type *) NULL,
170 TYPE_TARGET_TYPE (range_type),
171 low_bound,
172 new_length + low_bound - 1);
173 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
174 element_type, range_type);
175 return arg2;
176 }
177 }
178
179 if (current_language->c_style_arrays
180 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
181 arg2 = value_coerce_array (arg2);
182
183 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
184 arg2 = value_coerce_function (arg2);
185
186 type2 = check_typedef (VALUE_TYPE (arg2));
187 COERCE_VARYING_ARRAY (arg2, type2);
188 code2 = TYPE_CODE (type2);
189
190 if (code1 == TYPE_CODE_COMPLEX)
191 return cast_into_complex (type, arg2);
192 if (code1 == TYPE_CODE_BOOL)
193 code1 = TYPE_CODE_INT;
194 if (code2 == TYPE_CODE_BOOL)
195 code2 = TYPE_CODE_INT;
196
197 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
198 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
199
200 if ( code1 == TYPE_CODE_STRUCT
201 && code2 == TYPE_CODE_STRUCT
202 && TYPE_NAME (type) != 0)
203 {
204 /* Look in the type of the source to see if it contains the
205 type of the target as a superclass. If so, we'll need to
206 offset the object in addition to changing its type. */
207 value_ptr v = search_struct_field (type_name_no_tag (type),
208 arg2, 0, type2, 1);
209 if (v)
210 {
211 VALUE_TYPE (v) = type;
212 return v;
213 }
214 }
215 if (code1 == TYPE_CODE_FLT && scalar)
216 return value_from_double (type, value_as_double (arg2));
217 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
218 || code1 == TYPE_CODE_RANGE)
219 && (scalar || code2 == TYPE_CODE_PTR))
220 return value_from_longest (type, value_as_long (arg2));
221 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
222 {
223 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
224 {
225 /* Look in the type of the source to see if it contains the
226 type of the target as a superclass. If so, we'll need to
227 offset the pointer rather than just change its type. */
228 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
229 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
230 if ( TYPE_CODE (t1) == TYPE_CODE_STRUCT
231 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
232 && TYPE_NAME (t1) != 0) /* if name unknown, can't have supercl */
233 {
234 value_ptr v = search_struct_field (type_name_no_tag (t1),
235 value_ind (arg2), 0, t2, 1);
236 if (v)
237 {
238 v = value_addr (v);
239 VALUE_TYPE (v) = type;
240 return v;
241 }
242 }
243 /* No superclass found, just fall through to change ptr type. */
244 }
245 VALUE_TYPE (arg2) = type;
246 return arg2;
247 }
248 else if (chill_varying_type (type))
249 {
250 struct type *range1, *range2, *eltype1, *eltype2;
251 value_ptr val;
252 int count1, count2;
253 LONGEST low_bound, high_bound;
254 char *valaddr, *valaddr_data;
255 if (code2 == TYPE_CODE_BITSTRING)
256 error ("not implemented: converting bitstring to varying type");
257 if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING)
258 || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))),
259 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)),
260 (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2)
261 /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ )))
262 error ("Invalid conversion to varying type");
263 range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0);
264 range2 = TYPE_FIELD_TYPE (type2, 0);
265 if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0)
266 count1 = -1;
267 else
268 count1 = high_bound - low_bound + 1;
269 if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0)
270 count1 = -1, count2 = 0; /* To force error before */
271 else
272 count2 = high_bound - low_bound + 1;
273 if (count2 > count1)
274 error ("target varying type is too small");
275 val = allocate_value (type);
276 valaddr = VALUE_CONTENTS_RAW (val);
277 valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8;
278 /* Set val's __var_length field to count2. */
279 store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)),
280 count2);
281 /* Set the __var_data field to count2 elements copied from arg2. */
282 memcpy (valaddr_data, VALUE_CONTENTS (arg2),
283 count2 * TYPE_LENGTH (eltype2));
284 /* Zero the rest of the __var_data field of val. */
285 memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0',
286 (count1 - count2) * TYPE_LENGTH (eltype2));
287 return val;
288 }
289 else if (VALUE_LVAL (arg2) == lval_memory)
290 {
291 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2));
292 }
293 else if (code1 == TYPE_CODE_VOID)
294 {
295 return value_zero (builtin_type_void, not_lval);
296 }
297 else
298 {
299 error ("Invalid cast.");
300 return 0;
301 }
302 }
303
304 /* Create a value of type TYPE that is zero, and return it. */
305
306 value_ptr
307 value_zero (type, lv)
308 struct type *type;
309 enum lval_type lv;
310 {
311 register value_ptr val = allocate_value (type);
312
313 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
314 VALUE_LVAL (val) = lv;
315
316 return val;
317 }
318
319 /* Return a value with type TYPE located at ADDR.
320
321 Call value_at only if the data needs to be fetched immediately;
322 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
323 value_at_lazy instead. value_at_lazy simply records the address of
324 the data and sets the lazy-evaluation-required flag. The lazy flag
325 is tested in the VALUE_CONTENTS macro, which is used if and when
326 the contents are actually required. */
327
328 value_ptr
329 value_at (type, addr)
330 struct type *type;
331 CORE_ADDR addr;
332 {
333 register value_ptr val;
334
335 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
336 error ("Attempt to dereference a generic pointer.");
337
338 val = allocate_value (type);
339
340 read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (type));
341
342 VALUE_LVAL (val) = lval_memory;
343 VALUE_ADDRESS (val) = addr;
344
345 return val;
346 }
347
348 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
349
350 value_ptr
351 value_at_lazy (type, addr)
352 struct type *type;
353 CORE_ADDR addr;
354 {
355 register value_ptr val;
356
357 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
358 error ("Attempt to dereference a generic pointer.");
359
360 val = allocate_value (type);
361
362 VALUE_LVAL (val) = lval_memory;
363 VALUE_ADDRESS (val) = addr;
364 VALUE_LAZY (val) = 1;
365
366 return val;
367 }
368
369 /* Called only from the VALUE_CONTENTS macro, if the current data for
370 a variable needs to be loaded into VALUE_CONTENTS(VAL). Fetches the
371 data from the user's process, and clears the lazy flag to indicate
372 that the data in the buffer is valid.
373
374 If the value is zero-length, we avoid calling read_memory, which would
375 abort. We mark the value as fetched anyway -- all 0 bytes of it.
376
377 This function returns a value because it is used in the VALUE_CONTENTS
378 macro as part of an expression, where a void would not work. The
379 value is ignored. */
380
381 int
382 value_fetch_lazy (val)
383 register value_ptr val;
384 {
385 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
386 int length = TYPE_LENGTH (VALUE_TYPE (val));
387
388 if (length)
389 read_memory (addr, VALUE_CONTENTS_RAW (val), length);
390 VALUE_LAZY (val) = 0;
391 return 0;
392 }
393
394
395 /* Store the contents of FROMVAL into the location of TOVAL.
396 Return a new value with the location of TOVAL and contents of FROMVAL. */
397
398 value_ptr
399 value_assign (toval, fromval)
400 register value_ptr toval, fromval;
401 {
402 register struct type *type;
403 register value_ptr val;
404 char raw_buffer[MAX_REGISTER_RAW_SIZE];
405 int use_buffer = 0;
406
407 if (!toval->modifiable)
408 error ("Left operand of assignment is not a modifiable lvalue.");
409
410 COERCE_ARRAY (fromval);
411 COERCE_REF (toval);
412
413 type = VALUE_TYPE (toval);
414 if (VALUE_LVAL (toval) != lval_internalvar)
415 fromval = value_cast (type, fromval);
416 CHECK_TYPEDEF (type);
417
418 /* If TOVAL is a special machine register requiring conversion
419 of program values to a special raw format,
420 convert FROMVAL's contents now, with result in `raw_buffer',
421 and set USE_BUFFER to the number of bytes to write. */
422
423 #ifdef REGISTER_CONVERTIBLE
424 if (VALUE_REGNO (toval) >= 0
425 && REGISTER_CONVERTIBLE (VALUE_REGNO (toval)))
426 {
427 int regno = VALUE_REGNO (toval);
428 if (REGISTER_CONVERTIBLE (regno))
429 {
430 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
431 REGISTER_CONVERT_TO_RAW (fromtype, regno,
432 VALUE_CONTENTS (fromval), raw_buffer);
433 use_buffer = REGISTER_RAW_SIZE (regno);
434 }
435 }
436 #endif
437
438 switch (VALUE_LVAL (toval))
439 {
440 case lval_internalvar:
441 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
442 return VALUE_INTERNALVAR (toval)->value;
443
444 case lval_internalvar_component:
445 set_internalvar_component (VALUE_INTERNALVAR (toval),
446 VALUE_OFFSET (toval),
447 VALUE_BITPOS (toval),
448 VALUE_BITSIZE (toval),
449 fromval);
450 break;
451
452 case lval_memory:
453 if (VALUE_BITSIZE (toval))
454 {
455 char buffer[sizeof (LONGEST)];
456 /* We assume that the argument to read_memory is in units of
457 host chars. FIXME: Is that correct? */
458 int len = (VALUE_BITPOS (toval)
459 + VALUE_BITSIZE (toval)
460 + HOST_CHAR_BIT - 1)
461 / HOST_CHAR_BIT;
462
463 if (len > sizeof (LONGEST))
464 error ("Can't handle bitfields which don't fit in a %d bit word.",
465 sizeof (LONGEST) * HOST_CHAR_BIT);
466
467 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
468 buffer, len);
469 modify_field (buffer, value_as_long (fromval),
470 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
471 write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
472 buffer, len);
473 }
474 else if (use_buffer)
475 write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
476 raw_buffer, use_buffer);
477 else
478 write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
479 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
480 break;
481
482 case lval_register:
483 if (VALUE_BITSIZE (toval))
484 {
485 char buffer[sizeof (LONGEST)];
486 int len = REGISTER_RAW_SIZE (VALUE_REGNO (toval));
487
488 if (len > sizeof (LONGEST))
489 error ("Can't handle bitfields in registers larger than %d bits.",
490 sizeof (LONGEST) * HOST_CHAR_BIT);
491
492 if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
493 > len * HOST_CHAR_BIT)
494 /* Getting this right would involve being very careful about
495 byte order. */
496 error ("\
497 Can't handle bitfield which doesn't fit in a single register.");
498
499 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
500 buffer, len);
501 modify_field (buffer, value_as_long (fromval),
502 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
503 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
504 buffer, len);
505 }
506 else if (use_buffer)
507 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
508 raw_buffer, use_buffer);
509 else
510 {
511 /* Do any conversion necessary when storing this type to more
512 than one register. */
513 #ifdef REGISTER_CONVERT_FROM_TYPE
514 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
515 REGISTER_CONVERT_FROM_TYPE(VALUE_REGNO (toval), type, raw_buffer);
516 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
517 raw_buffer, TYPE_LENGTH (type));
518 #else
519 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
520 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
521 #endif
522 }
523 /* Assigning to the stack pointer, frame pointer, and other
524 (architecture and calling convention specific) registers may
525 cause the frame cache to be out of date. We just do this
526 on all assignments to registers for simplicity; I doubt the slowdown
527 matters. */
528 reinit_frame_cache ();
529 break;
530
531 case lval_reg_frame_relative:
532 {
533 /* value is stored in a series of registers in the frame
534 specified by the structure. Copy that value out, modify
535 it, and copy it back in. */
536 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
537 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
538 int byte_offset = VALUE_OFFSET (toval) % reg_size;
539 int reg_offset = VALUE_OFFSET (toval) / reg_size;
540 int amount_copied;
541
542 /* Make the buffer large enough in all cases. */
543 char *buffer = (char *) alloca (amount_to_copy
544 + sizeof (LONGEST)
545 + MAX_REGISTER_RAW_SIZE);
546
547 int regno;
548 struct frame_info *frame;
549
550 /* Figure out which frame this is in currently. */
551 for (frame = get_current_frame ();
552 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
553 frame = get_prev_frame (frame))
554 ;
555
556 if (!frame)
557 error ("Value being assigned to is no longer active.");
558
559 amount_to_copy += (reg_size - amount_to_copy % reg_size);
560
561 /* Copy it out. */
562 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
563 amount_copied = 0);
564 amount_copied < amount_to_copy;
565 amount_copied += reg_size, regno++)
566 {
567 get_saved_register (buffer + amount_copied,
568 (int *)NULL, (CORE_ADDR *)NULL,
569 frame, regno, (enum lval_type *)NULL);
570 }
571
572 /* Modify what needs to be modified. */
573 if (VALUE_BITSIZE (toval))
574 modify_field (buffer + byte_offset,
575 value_as_long (fromval),
576 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
577 else if (use_buffer)
578 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
579 else
580 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
581 TYPE_LENGTH (type));
582
583 /* Copy it back. */
584 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
585 amount_copied = 0);
586 amount_copied < amount_to_copy;
587 amount_copied += reg_size, regno++)
588 {
589 enum lval_type lval;
590 CORE_ADDR addr;
591 int optim;
592
593 /* Just find out where to put it. */
594 get_saved_register ((char *)NULL,
595 &optim, &addr, frame, regno, &lval);
596
597 if (optim)
598 error ("Attempt to assign to a value that was optimized out.");
599 if (lval == lval_memory)
600 write_memory (addr, buffer + amount_copied, reg_size);
601 else if (lval == lval_register)
602 write_register_bytes (addr, buffer + amount_copied, reg_size);
603 else
604 error ("Attempt to assign to an unmodifiable value.");
605 }
606 }
607 break;
608
609
610 default:
611 error ("Left operand of assignment is not an lvalue.");
612 }
613
614 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
615 If the field is signed, and is negative, then sign extend. */
616 if ((VALUE_BITSIZE (toval) > 0)
617 && (VALUE_BITSIZE (toval) < 8 * sizeof (LONGEST)))
618 {
619 LONGEST fieldval = value_as_long (fromval);
620 LONGEST valmask = (((unsigned LONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
621
622 fieldval &= valmask;
623 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
624 fieldval |= ~valmask;
625
626 fromval = value_from_longest (type, fieldval);
627 }
628
629 val = value_copy (toval);
630 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
631 TYPE_LENGTH (type));
632 VALUE_TYPE (val) = type;
633
634 return val;
635 }
636
637 /* Extend a value VAL to COUNT repetitions of its type. */
638
639 value_ptr
640 value_repeat (arg1, count)
641 value_ptr arg1;
642 int count;
643 {
644 register value_ptr val;
645
646 if (VALUE_LVAL (arg1) != lval_memory)
647 error ("Only values in memory can be extended with '@'.");
648 if (count < 1)
649 error ("Invalid number %d of repetitions.", count);
650
651 val = allocate_repeat_value (VALUE_TYPE (arg1), count);
652
653 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
654 VALUE_CONTENTS_RAW (val),
655 TYPE_LENGTH (VALUE_TYPE (val)));
656 VALUE_LVAL (val) = lval_memory;
657 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
658
659 return val;
660 }
661
662 value_ptr
663 value_of_variable (var, b)
664 struct symbol *var;
665 struct block *b;
666 {
667 value_ptr val;
668 struct frame_info *frame;
669
670 if (b == NULL)
671 /* Use selected frame. */
672 frame = NULL;
673 else
674 {
675 frame = block_innermost_frame (b);
676 if (frame == NULL && symbol_read_needs_frame (var))
677 {
678 if (BLOCK_FUNCTION (b) != NULL
679 && SYMBOL_NAME (BLOCK_FUNCTION (b)) != NULL)
680 error ("No frame is currently executing in block %s.",
681 SYMBOL_NAME (BLOCK_FUNCTION (b)));
682 else
683 error ("No frame is currently executing in specified block");
684 }
685 }
686 val = read_var_value (var, frame);
687 if (val == 0)
688 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
689 return val;
690 }
691
692 /* Given a value which is an array, return a value which is a pointer to its
693 first element, regardless of whether or not the array has a nonzero lower
694 bound.
695
696 FIXME: A previous comment here indicated that this routine should be
697 substracting the array's lower bound. It's not clear to me that this
698 is correct. Given an array subscripting operation, it would certainly
699 work to do the adjustment here, essentially computing:
700
701 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
702
703 However I believe a more appropriate and logical place to account for
704 the lower bound is to do so in value_subscript, essentially computing:
705
706 (&array[0] + ((index - lowerbound) * sizeof array[0]))
707
708 As further evidence consider what would happen with operations other
709 than array subscripting, where the caller would get back a value that
710 had an address somewhere before the actual first element of the array,
711 and the information about the lower bound would be lost because of
712 the coercion to pointer type.
713 */
714
715 value_ptr
716 value_coerce_array (arg1)
717 value_ptr arg1;
718 {
719 register struct type *type = check_typedef (VALUE_TYPE (arg1));
720
721 if (VALUE_LVAL (arg1) != lval_memory)
722 error ("Attempt to take address of value not located in memory.");
723
724 return value_from_longest (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
725 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
726 }
727
728 /* Given a value which is a function, return a value which is a pointer
729 to it. */
730
731 value_ptr
732 value_coerce_function (arg1)
733 value_ptr arg1;
734 {
735
736 if (VALUE_LVAL (arg1) != lval_memory)
737 error ("Attempt to take address of value not located in memory.");
738
739 return value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)),
740 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
741 }
742
743 /* Return a pointer value for the object for which ARG1 is the contents. */
744
745 value_ptr
746 value_addr (arg1)
747 value_ptr arg1;
748 {
749 struct type *type = check_typedef (VALUE_TYPE (arg1));
750 if (TYPE_CODE (type) == TYPE_CODE_REF)
751 {
752 /* Copy the value, but change the type from (T&) to (T*).
753 We keep the same location information, which is efficient,
754 and allows &(&X) to get the location containing the reference. */
755 value_ptr arg2 = value_copy (arg1);
756 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
757 return arg2;
758 }
759 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
760 return value_coerce_function (arg1);
761
762 if (VALUE_LVAL (arg1) != lval_memory)
763 error ("Attempt to take address of value not located in memory.");
764
765 return value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)),
766 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
767 }
768
769 /* Given a value of a pointer type, apply the C unary * operator to it. */
770
771 value_ptr
772 value_ind (arg1)
773 value_ptr arg1;
774 {
775 struct type *type1;
776 COERCE_ARRAY (arg1);
777 type1 = check_typedef (VALUE_TYPE (arg1));
778
779 if (TYPE_CODE (type1) == TYPE_CODE_MEMBER)
780 error ("not implemented: member types in value_ind");
781
782 /* Allow * on an integer so we can cast it to whatever we want.
783 This returns an int, which seems like the most C-like thing
784 to do. "long long" variables are rare enough that
785 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
786 if (TYPE_CODE (type1) == TYPE_CODE_INT)
787 return value_at (builtin_type_int,
788 (CORE_ADDR) value_as_long (arg1));
789 else if (TYPE_CODE (type1) == TYPE_CODE_PTR)
790 return value_at_lazy (TYPE_TARGET_TYPE (type1), value_as_pointer (arg1));
791 error ("Attempt to take contents of a non-pointer value.");
792 return 0; /* For lint -- never reached */
793 }
794 \f
795 /* Pushing small parts of stack frames. */
796
797 /* Push one word (the size of object that a register holds). */
798
799 CORE_ADDR
800 push_word (sp, word)
801 CORE_ADDR sp;
802 unsigned LONGEST word;
803 {
804 register int len = REGISTER_SIZE;
805 char buffer[MAX_REGISTER_RAW_SIZE];
806
807 store_unsigned_integer (buffer, len, word);
808 #if 1 INNER_THAN 2
809 sp -= len;
810 write_memory (sp, buffer, len);
811 #else /* stack grows upward */
812 write_memory (sp, buffer, len);
813 sp += len;
814 #endif /* stack grows upward */
815
816 return sp;
817 }
818
819 /* Push LEN bytes with data at BUFFER. */
820
821 CORE_ADDR
822 push_bytes (sp, buffer, len)
823 CORE_ADDR sp;
824 char *buffer;
825 int len;
826 {
827 #if 1 INNER_THAN 2
828 sp -= len;
829 write_memory (sp, buffer, len);
830 #else /* stack grows upward */
831 write_memory (sp, buffer, len);
832 sp += len;
833 #endif /* stack grows upward */
834
835 return sp;
836 }
837
838 /* Push onto the stack the specified value VALUE. */
839
840 static CORE_ADDR
841 value_push (sp, arg)
842 register CORE_ADDR sp;
843 value_ptr arg;
844 {
845 register int len = TYPE_LENGTH (VALUE_TYPE (arg));
846
847 #if 1 INNER_THAN 2
848 sp -= len;
849 write_memory (sp, VALUE_CONTENTS (arg), len);
850 #else /* stack grows upward */
851 write_memory (sp, VALUE_CONTENTS (arg), len);
852 sp += len;
853 #endif /* stack grows upward */
854
855 return sp;
856 }
857
858 /* Perform the standard coercions that are specified
859 for arguments to be passed to C functions.
860
861 If PARAM_TYPE is non-NULL, it is the expected parameter type. */
862
863 static value_ptr
864 value_arg_coerce (arg, param_type)
865 value_ptr arg;
866 struct type *param_type;
867 {
868 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
869 register struct type *type
870 = param_type ? check_typedef (param_type) : arg_type;
871
872 switch (TYPE_CODE (type))
873 {
874 case TYPE_CODE_REF:
875 if (TYPE_CODE (arg_type) != TYPE_CODE_REF)
876 {
877 arg = value_addr (arg);
878 VALUE_TYPE (arg) = param_type;
879 return arg;
880 }
881 break;
882 case TYPE_CODE_INT:
883 case TYPE_CODE_CHAR:
884 case TYPE_CODE_BOOL:
885 case TYPE_CODE_ENUM:
886 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
887 type = builtin_type_int;
888 break;
889 case TYPE_CODE_FLT:
890 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
891 type = builtin_type_double;
892 break;
893 case TYPE_CODE_FUNC:
894 type = lookup_pointer_type (type);
895 break;
896 case TYPE_CODE_ARRAY:
897 if (current_language->c_style_arrays)
898 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
899 break;
900 case TYPE_CODE_UNDEF:
901 case TYPE_CODE_PTR:
902 case TYPE_CODE_STRUCT:
903 case TYPE_CODE_UNION:
904 case TYPE_CODE_VOID:
905 case TYPE_CODE_SET:
906 case TYPE_CODE_RANGE:
907 case TYPE_CODE_STRING:
908 case TYPE_CODE_BITSTRING:
909 case TYPE_CODE_ERROR:
910 case TYPE_CODE_MEMBER:
911 case TYPE_CODE_METHOD:
912 case TYPE_CODE_COMPLEX:
913 default:
914 break;
915 }
916
917 return value_cast (type, arg);
918 }
919
920 /* Determine a function's address and its return type from its value.
921 Calls error() if the function is not valid for calling. */
922
923 static CORE_ADDR
924 find_function_addr (function, retval_type)
925 value_ptr function;
926 struct type **retval_type;
927 {
928 register struct type *ftype = check_typedef (VALUE_TYPE (function));
929 register enum type_code code = TYPE_CODE (ftype);
930 struct type *value_type;
931 CORE_ADDR funaddr;
932
933 /* If it's a member function, just look at the function
934 part of it. */
935
936 /* Determine address to call. */
937 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
938 {
939 funaddr = VALUE_ADDRESS (function);
940 value_type = TYPE_TARGET_TYPE (ftype);
941 }
942 else if (code == TYPE_CODE_PTR)
943 {
944 funaddr = value_as_pointer (function);
945 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
946 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
947 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
948 {
949 #ifdef CONVERT_FROM_FUNC_PTR_ADDR
950 /* FIXME: This is a workaround for the unusual function
951 pointer representation on the RS/6000, see comment
952 in config/rs6000/tm-rs6000.h */
953 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
954 #endif
955 value_type = TYPE_TARGET_TYPE (ftype);
956 }
957 else
958 value_type = builtin_type_int;
959 }
960 else if (code == TYPE_CODE_INT)
961 {
962 /* Handle the case of functions lacking debugging info.
963 Their values are characters since their addresses are char */
964 if (TYPE_LENGTH (ftype) == 1)
965 funaddr = value_as_pointer (value_addr (function));
966 else
967 /* Handle integer used as address of a function. */
968 funaddr = (CORE_ADDR) value_as_long (function);
969
970 value_type = builtin_type_int;
971 }
972 else
973 error ("Invalid data type for function to be called.");
974
975 *retval_type = value_type;
976 return funaddr;
977 }
978
979 #if defined (CALL_DUMMY)
980 /* All this stuff with a dummy frame may seem unnecessarily complicated
981 (why not just save registers in GDB?). The purpose of pushing a dummy
982 frame which looks just like a real frame is so that if you call a
983 function and then hit a breakpoint (get a signal, etc), "backtrace"
984 will look right. Whether the backtrace needs to actually show the
985 stack at the time the inferior function was called is debatable, but
986 it certainly needs to not display garbage. So if you are contemplating
987 making dummy frames be different from normal frames, consider that. */
988
989 /* Perform a function call in the inferior.
990 ARGS is a vector of values of arguments (NARGS of them).
991 FUNCTION is a value, the function to be called.
992 Returns a value representing what the function returned.
993 May fail to return, if a breakpoint or signal is hit
994 during the execution of the function.
995
996 ARGS is modified to contain coerced values. */
997
998 value_ptr
999 call_function_by_hand (function, nargs, args)
1000 value_ptr function;
1001 int nargs;
1002 value_ptr *args;
1003 {
1004 register CORE_ADDR sp;
1005 register int i;
1006 CORE_ADDR start_sp;
1007 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1008 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1009 and remove any extra bytes which might exist because unsigned LONGEST is
1010 bigger than REGISTER_SIZE. */
1011 static unsigned LONGEST dummy[] = CALL_DUMMY;
1012 char dummy1[REGISTER_SIZE * sizeof dummy / sizeof (unsigned LONGEST)];
1013 CORE_ADDR old_sp;
1014 struct type *value_type;
1015 unsigned char struct_return;
1016 CORE_ADDR struct_addr;
1017 struct inferior_status inf_status;
1018 struct cleanup *old_chain;
1019 CORE_ADDR funaddr;
1020 int using_gcc;
1021 CORE_ADDR real_pc;
1022 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
1023
1024 if (!target_has_execution)
1025 noprocess();
1026
1027 save_inferior_status (&inf_status, 1);
1028 old_chain = make_cleanup (restore_inferior_status, &inf_status);
1029
1030 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1031 (and POP_FRAME for restoring them). (At least on most machines)
1032 they are saved on the stack in the inferior. */
1033 PUSH_DUMMY_FRAME;
1034
1035 old_sp = sp = read_sp ();
1036
1037 #if 1 INNER_THAN 2 /* Stack grows down */
1038 sp -= sizeof dummy1;
1039 start_sp = sp;
1040 #else /* Stack grows up */
1041 start_sp = sp;
1042 sp += sizeof dummy1;
1043 #endif
1044
1045 funaddr = find_function_addr (function, &value_type);
1046 CHECK_TYPEDEF (value_type);
1047
1048 {
1049 struct block *b = block_for_pc (funaddr);
1050 /* If compiled without -g, assume GCC. */
1051 using_gcc = b == NULL ? 0 : BLOCK_GCC_COMPILED (b);
1052 }
1053
1054 /* Are we returning a value using a structure return or a normal
1055 value return? */
1056
1057 struct_return = using_struct_return (function, funaddr, value_type,
1058 using_gcc);
1059
1060 /* Create a call sequence customized for this function
1061 and the number of arguments for it. */
1062 for (i = 0; i < sizeof dummy / sizeof (dummy[0]); i++)
1063 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1064 REGISTER_SIZE,
1065 (unsigned LONGEST)dummy[i]);
1066
1067 #ifdef GDB_TARGET_IS_HPPA
1068 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1069 value_type, using_gcc);
1070 #else
1071 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1072 value_type, using_gcc);
1073 real_pc = start_sp;
1074 #endif
1075
1076 #if CALL_DUMMY_LOCATION == ON_STACK
1077 write_memory (start_sp, (char *)dummy1, sizeof dummy1);
1078 #endif /* On stack. */
1079
1080 #if CALL_DUMMY_LOCATION == BEFORE_TEXT_END
1081 /* Convex Unix prohibits executing in the stack segment. */
1082 /* Hope there is empty room at the top of the text segment. */
1083 {
1084 extern CORE_ADDR text_end;
1085 static checked = 0;
1086 if (!checked)
1087 for (start_sp = text_end - sizeof dummy1; start_sp < text_end; ++start_sp)
1088 if (read_memory_integer (start_sp, 1) != 0)
1089 error ("text segment full -- no place to put call");
1090 checked = 1;
1091 sp = old_sp;
1092 real_pc = text_end - sizeof dummy1;
1093 write_memory (real_pc, (char *)dummy1, sizeof dummy1);
1094 }
1095 #endif /* Before text_end. */
1096
1097 #if CALL_DUMMY_LOCATION == AFTER_TEXT_END
1098 {
1099 extern CORE_ADDR text_end;
1100 int errcode;
1101 sp = old_sp;
1102 real_pc = text_end;
1103 errcode = target_write_memory (real_pc, (char *)dummy1, sizeof dummy1);
1104 if (errcode != 0)
1105 error ("Cannot write text segment -- call_function failed");
1106 }
1107 #endif /* After text_end. */
1108
1109 #if CALL_DUMMY_LOCATION == AT_ENTRY_POINT
1110 real_pc = funaddr;
1111 #endif /* At entry point. */
1112
1113 #ifdef lint
1114 sp = old_sp; /* It really is used, for some ifdef's... */
1115 #endif
1116
1117 if (nargs < TYPE_NFIELDS (ftype))
1118 error ("too few arguments in function call");
1119
1120 for (i = nargs - 1; i >= 0; i--)
1121 {
1122 struct type *param_type;
1123 if (TYPE_NFIELDS (ftype) > i)
1124 param_type = TYPE_FIELD_TYPE (ftype, i);
1125 else
1126 param_type = 0;
1127 args[i] = value_arg_coerce (args[i], param_type);
1128 }
1129
1130 #if defined (REG_STRUCT_HAS_ADDR)
1131 {
1132 /* This is a machine like the sparc, where we may need to pass a pointer
1133 to the structure, not the structure itself. */
1134 for (i = nargs - 1; i >= 0; i--)
1135 {
1136 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1137 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1138 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1139 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1140 || TYPE_CODE (arg_type) == TYPE_CODE_STRING)
1141 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1142 {
1143 CORE_ADDR addr;
1144 int len = TYPE_LENGTH (arg_type);
1145 #ifdef STACK_ALIGN
1146 int aligned_len = STACK_ALIGN (len);
1147 #else
1148 int aligned_len = len;
1149 #endif
1150 #if !(1 INNER_THAN 2)
1151 /* The stack grows up, so the address of the thing we push
1152 is the stack pointer before we push it. */
1153 addr = sp;
1154 #else
1155 sp -= aligned_len;
1156 #endif
1157 /* Push the structure. */
1158 write_memory (sp, VALUE_CONTENTS (args[i]), len);
1159 #if 1 INNER_THAN 2
1160 /* The stack grows down, so the address of the thing we push
1161 is the stack pointer after we push it. */
1162 addr = sp;
1163 #else
1164 sp += aligned_len;
1165 #endif
1166 /* The value we're going to pass is the address of the thing
1167 we just pushed. */
1168 args[i] = value_from_longest (lookup_pointer_type (value_type),
1169 (LONGEST) addr);
1170 }
1171 }
1172 }
1173 #endif /* REG_STRUCT_HAS_ADDR. */
1174
1175 /* Reserve space for the return structure to be written on the
1176 stack, if necessary */
1177
1178 if (struct_return)
1179 {
1180 int len = TYPE_LENGTH (value_type);
1181 #ifdef STACK_ALIGN
1182 len = STACK_ALIGN (len);
1183 #endif
1184 #if 1 INNER_THAN 2
1185 sp -= len;
1186 struct_addr = sp;
1187 #else
1188 struct_addr = sp;
1189 sp += len;
1190 #endif
1191 }
1192
1193 #ifdef STACK_ALIGN
1194 /* If stack grows down, we must leave a hole at the top. */
1195 {
1196 int len = 0;
1197
1198 for (i = nargs - 1; i >= 0; i--)
1199 len += TYPE_LENGTH (VALUE_TYPE (args[i]));
1200 #ifdef CALL_DUMMY_STACK_ADJUST
1201 len += CALL_DUMMY_STACK_ADJUST;
1202 #endif
1203 #if 1 INNER_THAN 2
1204 sp -= STACK_ALIGN (len) - len;
1205 #else
1206 sp += STACK_ALIGN (len) - len;
1207 #endif
1208 }
1209 #endif /* STACK_ALIGN */
1210
1211 #ifdef PUSH_ARGUMENTS
1212 PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr);
1213 #else /* !PUSH_ARGUMENTS */
1214 for (i = nargs - 1; i >= 0; i--)
1215 sp = value_push (sp, args[i]);
1216 #endif /* !PUSH_ARGUMENTS */
1217
1218 #ifdef CALL_DUMMY_STACK_ADJUST
1219 #if 1 INNER_THAN 2
1220 sp -= CALL_DUMMY_STACK_ADJUST;
1221 #else
1222 sp += CALL_DUMMY_STACK_ADJUST;
1223 #endif
1224 #endif /* CALL_DUMMY_STACK_ADJUST */
1225
1226 /* Store the address at which the structure is supposed to be
1227 written. Note that this (and the code which reserved the space
1228 above) assumes that gcc was used to compile this function. Since
1229 it doesn't cost us anything but space and if the function is pcc
1230 it will ignore this value, we will make that assumption.
1231
1232 Also note that on some machines (like the sparc) pcc uses a
1233 convention like gcc's. */
1234
1235 if (struct_return)
1236 STORE_STRUCT_RETURN (struct_addr, sp);
1237
1238 /* Write the stack pointer. This is here because the statements above
1239 might fool with it. On SPARC, this write also stores the register
1240 window into the right place in the new stack frame, which otherwise
1241 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1242 write_sp (sp);
1243
1244 {
1245 char retbuf[REGISTER_BYTES];
1246 char *name;
1247 struct symbol *symbol;
1248
1249 name = NULL;
1250 symbol = find_pc_function (funaddr);
1251 if (symbol)
1252 {
1253 name = SYMBOL_SOURCE_NAME (symbol);
1254 }
1255 else
1256 {
1257 /* Try the minimal symbols. */
1258 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1259
1260 if (msymbol)
1261 {
1262 name = SYMBOL_SOURCE_NAME (msymbol);
1263 }
1264 }
1265 if (name == NULL)
1266 {
1267 char format[80];
1268 sprintf (format, "at %s", local_hex_format ());
1269 name = alloca (80);
1270 /* FIXME-32x64: assumes funaddr fits in a long. */
1271 sprintf (name, format, (unsigned long) funaddr);
1272 }
1273
1274 /* Execute the stack dummy routine, calling FUNCTION.
1275 When it is done, discard the empty frame
1276 after storing the contents of all regs into retbuf. */
1277 if (run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf))
1278 {
1279 /* We stopped somewhere besides the call dummy. */
1280
1281 /* If we did the cleanups, we would print a spurious error message
1282 (Unable to restore previously selected frame), would write the
1283 registers from the inf_status (which is wrong), and would do other
1284 wrong things (like set stop_bpstat to the wrong thing). */
1285 discard_cleanups (old_chain);
1286 /* Prevent memory leak. */
1287 bpstat_clear (&inf_status.stop_bpstat);
1288
1289 /* The following error message used to say "The expression
1290 which contained the function call has been discarded." It
1291 is a hard concept to explain in a few words. Ideally, GDB
1292 would be able to resume evaluation of the expression when
1293 the function finally is done executing. Perhaps someday
1294 this will be implemented (it would not be easy). */
1295
1296 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1297 a C++ name with arguments and stuff. */
1298 error ("\
1299 The program being debugged stopped while in a function called from GDB.\n\
1300 When the function (%s) is done executing, GDB will silently\n\
1301 stop (instead of continuing to evaluate the expression containing\n\
1302 the function call).", name);
1303 }
1304
1305 do_cleanups (old_chain);
1306
1307 /* Figure out the value returned by the function. */
1308 return value_being_returned (value_type, retbuf, struct_return);
1309 }
1310 }
1311 #else /* no CALL_DUMMY. */
1312 value_ptr
1313 call_function_by_hand (function, nargs, args)
1314 value_ptr function;
1315 int nargs;
1316 value_ptr *args;
1317 {
1318 error ("Cannot invoke functions on this machine.");
1319 }
1320 #endif /* no CALL_DUMMY. */
1321
1322 \f
1323 /* Create a value for an array by allocating space in the inferior, copying
1324 the data into that space, and then setting up an array value.
1325
1326 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1327 populated from the values passed in ELEMVEC.
1328
1329 The element type of the array is inherited from the type of the
1330 first element, and all elements must have the same size (though we
1331 don't currently enforce any restriction on their types). */
1332
1333 value_ptr
1334 value_array (lowbound, highbound, elemvec)
1335 int lowbound;
1336 int highbound;
1337 value_ptr *elemvec;
1338 {
1339 int nelem;
1340 int idx;
1341 int typelength;
1342 value_ptr val;
1343 struct type *rangetype;
1344 struct type *arraytype;
1345 CORE_ADDR addr;
1346
1347 /* Validate that the bounds are reasonable and that each of the elements
1348 have the same size. */
1349
1350 nelem = highbound - lowbound + 1;
1351 if (nelem <= 0)
1352 {
1353 error ("bad array bounds (%d, %d)", lowbound, highbound);
1354 }
1355 typelength = TYPE_LENGTH (VALUE_TYPE (elemvec[0]));
1356 for (idx = 1; idx < nelem; idx++)
1357 {
1358 if (TYPE_LENGTH (VALUE_TYPE (elemvec[idx])) != typelength)
1359 {
1360 error ("array elements must all be the same size");
1361 }
1362 }
1363
1364 /* Allocate space to store the array in the inferior, and then initialize
1365 it by copying in each element. FIXME: Is it worth it to create a
1366 local buffer in which to collect each value and then write all the
1367 bytes in one operation? */
1368
1369 addr = allocate_space_in_inferior (nelem * typelength);
1370 for (idx = 0; idx < nelem; idx++)
1371 {
1372 write_memory (addr + (idx * typelength), VALUE_CONTENTS (elemvec[idx]),
1373 typelength);
1374 }
1375
1376 /* Create the array type and set up an array value to be evaluated lazily. */
1377
1378 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1379 lowbound, highbound);
1380 arraytype = create_array_type ((struct type *) NULL,
1381 VALUE_TYPE (elemvec[0]), rangetype);
1382 val = value_at_lazy (arraytype, addr);
1383 return (val);
1384 }
1385
1386 /* Create a value for a string constant by allocating space in the inferior,
1387 copying the data into that space, and returning the address with type
1388 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1389 of characters.
1390 Note that string types are like array of char types with a lower bound of
1391 zero and an upper bound of LEN - 1. Also note that the string may contain
1392 embedded null bytes. */
1393
1394 value_ptr
1395 value_string (ptr, len)
1396 char *ptr;
1397 int len;
1398 {
1399 value_ptr val;
1400 int lowbound = current_language->string_lower_bound;
1401 struct type *rangetype = create_range_type ((struct type *) NULL,
1402 builtin_type_int,
1403 lowbound, len + lowbound - 1);
1404 struct type *stringtype
1405 = create_string_type ((struct type *) NULL, rangetype);
1406 CORE_ADDR addr;
1407
1408 if (current_language->c_style_arrays == 0)
1409 {
1410 val = allocate_value (stringtype);
1411 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1412 return val;
1413 }
1414
1415
1416 /* Allocate space to store the string in the inferior, and then
1417 copy LEN bytes from PTR in gdb to that address in the inferior. */
1418
1419 addr = allocate_space_in_inferior (len);
1420 write_memory (addr, ptr, len);
1421
1422 val = value_at_lazy (stringtype, addr);
1423 return (val);
1424 }
1425
1426 value_ptr
1427 value_bitstring (ptr, len)
1428 char *ptr;
1429 int len;
1430 {
1431 value_ptr val;
1432 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1433 0, len - 1);
1434 struct type *type = create_set_type ((struct type*) NULL, domain_type);
1435 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1436 val = allocate_value (type);
1437 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1438 return val;
1439 }
1440 \f
1441 /* See if we can pass arguments in T2 to a function which takes arguments
1442 of types T1. Both t1 and t2 are NULL-terminated vectors. If some
1443 arguments need coercion of some sort, then the coerced values are written
1444 into T2. Return value is 0 if the arguments could be matched, or the
1445 position at which they differ if not.
1446
1447 STATICP is nonzero if the T1 argument list came from a
1448 static member function.
1449
1450 For non-static member functions, we ignore the first argument,
1451 which is the type of the instance variable. This is because we want
1452 to handle calls with objects from derived classes. This is not
1453 entirely correct: we should actually check to make sure that a
1454 requested operation is type secure, shouldn't we? FIXME. */
1455
1456 static int
1457 typecmp (staticp, t1, t2)
1458 int staticp;
1459 struct type *t1[];
1460 value_ptr t2[];
1461 {
1462 int i;
1463
1464 if (t2 == 0)
1465 return 1;
1466 if (staticp && t1 == 0)
1467 return t2[1] != 0;
1468 if (t1 == 0)
1469 return 1;
1470 if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID) return 0;
1471 if (t1[!staticp] == 0) return 0;
1472 for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
1473 {
1474 struct type *tt1, *tt2;
1475 if (! t2[i])
1476 return i+1;
1477 tt1 = check_typedef (t1[i]);
1478 tt2 = check_typedef (VALUE_TYPE(t2[i]));
1479 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1480 /* We should be doing hairy argument matching, as below. */
1481 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1482 {
1483 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1484 t2[i] = value_coerce_array (t2[i]);
1485 else
1486 t2[i] = value_addr (t2[i]);
1487 continue;
1488 }
1489
1490 while (TYPE_CODE (tt1) == TYPE_CODE_PTR
1491 && ( TYPE_CODE (tt2) == TYPE_CODE_ARRAY
1492 || TYPE_CODE (tt2) == TYPE_CODE_PTR))
1493 {
1494 tt1 = check_typedef (TYPE_TARGET_TYPE(tt1));
1495 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1496 }
1497 if (TYPE_CODE(tt1) == TYPE_CODE(tt2)) continue;
1498 /* Array to pointer is a `trivial conversion' according to the ARM. */
1499
1500 /* We should be doing much hairier argument matching (see section 13.2
1501 of the ARM), but as a quick kludge, just check for the same type
1502 code. */
1503 if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
1504 return i+1;
1505 }
1506 if (!t1[i]) return 0;
1507 return t2[i] ? i+1 : 0;
1508 }
1509
1510 /* Helper function used by value_struct_elt to recurse through baseclasses.
1511 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1512 and search in it assuming it has (class) type TYPE.
1513 If found, return value, else return NULL.
1514
1515 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
1516 look for a baseclass named NAME. */
1517
1518 static value_ptr
1519 search_struct_field (name, arg1, offset, type, looking_for_baseclass)
1520 char *name;
1521 register value_ptr arg1;
1522 int offset;
1523 register struct type *type;
1524 int looking_for_baseclass;
1525 {
1526 int i;
1527
1528 CHECK_TYPEDEF (type);
1529
1530 if (! looking_for_baseclass)
1531 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1532 {
1533 char *t_field_name = TYPE_FIELD_NAME (type, i);
1534
1535 if (t_field_name && STREQ (t_field_name, name))
1536 {
1537 value_ptr v;
1538 if (TYPE_FIELD_STATIC (type, i))
1539 {
1540 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, i);
1541 struct symbol *sym =
1542 lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
1543 if (sym == NULL)
1544 error ("Internal error: could not find physical static variable named %s",
1545 phys_name);
1546 v = value_at (TYPE_FIELD_TYPE (type, i),
1547 (CORE_ADDR)SYMBOL_BLOCK_VALUE (sym));
1548 }
1549 else
1550 v = value_primitive_field (arg1, offset, i, type);
1551 if (v == 0)
1552 error("there is no field named %s", name);
1553 return v;
1554 }
1555
1556 if (t_field_name
1557 && (t_field_name[0] == '\0'
1558 || (TYPE_CODE (type) == TYPE_CODE_UNION
1559 && STREQ (t_field_name, "else"))))
1560 {
1561 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1562 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1563 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1564 {
1565 /* Look for a match through the fields of an anonymous union,
1566 or anonymous struct. C++ provides anonymous unions.
1567
1568 In the GNU Chill implementation of variant record types,
1569 each <alternative field> has an (anonymous) union type,
1570 each member of the union represents a <variant alternative>.
1571 Each <variant alternative> is represented as a struct,
1572 with a member for each <variant field>. */
1573
1574 value_ptr v;
1575 int new_offset = offset;
1576
1577 /* This is pretty gross. In G++, the offset in an anonymous
1578 union is relative to the beginning of the enclosing struct.
1579 In the GNU Chill implementation of variant records,
1580 the bitpos is zero in an anonymous union field, so we
1581 have to add the offset of the union here. */
1582 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1583 || (TYPE_NFIELDS (field_type) > 0
1584 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1585 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1586
1587 v = search_struct_field (name, arg1, new_offset, field_type,
1588 looking_for_baseclass);
1589 if (v)
1590 return v;
1591 }
1592 }
1593 }
1594
1595 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1596 {
1597 value_ptr v;
1598 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1599 /* If we are looking for baseclasses, this is what we get when we
1600 hit them. But it could happen that the base part's member name
1601 is not yet filled in. */
1602 int found_baseclass = (looking_for_baseclass
1603 && TYPE_BASECLASS_NAME (type, i) != NULL
1604 && STREQ (name, TYPE_BASECLASS_NAME (type, i)));
1605
1606 if (BASETYPE_VIA_VIRTUAL (type, i))
1607 {
1608 int boffset = VALUE_OFFSET (arg1) + offset;
1609 boffset = baseclass_offset (type, i,
1610 VALUE_CONTENTS (arg1) + boffset,
1611 VALUE_ADDRESS (arg1) + boffset);
1612 if (boffset == -1)
1613 error ("virtual baseclass botch");
1614 if (found_baseclass)
1615 {
1616 value_ptr v2 = allocate_value (basetype);
1617 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
1618 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
1619 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + offset + boffset;
1620 if (VALUE_LAZY (arg1))
1621 VALUE_LAZY (v2) = 1;
1622 else
1623 memcpy (VALUE_CONTENTS_RAW (v2),
1624 VALUE_CONTENTS_RAW (arg1) + offset + boffset,
1625 TYPE_LENGTH (basetype));
1626 return v2;
1627 }
1628 v = search_struct_field (name, arg1, offset + boffset,
1629 TYPE_BASECLASS (type, i),
1630 looking_for_baseclass);
1631 }
1632 else if (found_baseclass)
1633 v = value_primitive_field (arg1, offset, i, type);
1634 else
1635 v = search_struct_field (name, arg1,
1636 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
1637 basetype, looking_for_baseclass);
1638 if (v) return v;
1639 }
1640 return NULL;
1641 }
1642
1643 /* Helper function used by value_struct_elt to recurse through baseclasses.
1644 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1645 and search in it assuming it has (class) type TYPE.
1646 If found, return value, else if name matched and args not return (value)-1,
1647 else return NULL. */
1648
1649 static value_ptr
1650 search_struct_method (name, arg1p, args, offset, static_memfuncp, type)
1651 char *name;
1652 register value_ptr *arg1p, *args;
1653 int offset, *static_memfuncp;
1654 register struct type *type;
1655 {
1656 int i;
1657 value_ptr v;
1658 int name_matched = 0;
1659 char dem_opname[64];
1660
1661 CHECK_TYPEDEF (type);
1662 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1663 {
1664 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1665 if (strncmp(t_field_name, "__", 2)==0 ||
1666 strncmp(t_field_name, "op", 2)==0 ||
1667 strncmp(t_field_name, "type", 4)==0 )
1668 {
1669 if (cplus_demangle_opname(t_field_name, dem_opname, DMGL_ANSI))
1670 t_field_name = dem_opname;
1671 else if (cplus_demangle_opname(t_field_name, dem_opname, 0))
1672 t_field_name = dem_opname;
1673 }
1674 if (t_field_name && STREQ (t_field_name, name))
1675 {
1676 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
1677 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1678 name_matched = 1;
1679
1680 if (j > 0 && args == 0)
1681 error ("cannot resolve overloaded method `%s'", name);
1682 while (j >= 0)
1683 {
1684 if (TYPE_FN_FIELD_STUB (f, j))
1685 check_stub_method (type, i, j);
1686 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
1687 TYPE_FN_FIELD_ARGS (f, j), args))
1688 {
1689 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
1690 return value_virtual_fn_field (arg1p, f, j, type, offset);
1691 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
1692 *static_memfuncp = 1;
1693 v = value_fn_field (arg1p, f, j, type, offset);
1694 if (v != NULL) return v;
1695 }
1696 j--;
1697 }
1698 }
1699 }
1700
1701 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1702 {
1703 int base_offset;
1704
1705 if (BASETYPE_VIA_VIRTUAL (type, i))
1706 {
1707 base_offset = VALUE_OFFSET (*arg1p) + offset;
1708 base_offset =
1709 baseclass_offset (type, i,
1710 VALUE_CONTENTS (*arg1p) + base_offset,
1711 VALUE_ADDRESS (*arg1p) + base_offset);
1712 if (base_offset == -1)
1713 error ("virtual baseclass botch");
1714 }
1715 else
1716 {
1717 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1718 }
1719 v = search_struct_method (name, arg1p, args, base_offset + offset,
1720 static_memfuncp, TYPE_BASECLASS (type, i));
1721 if (v == (value_ptr) -1)
1722 {
1723 name_matched = 1;
1724 }
1725 else if (v)
1726 {
1727 /* FIXME-bothner: Why is this commented out? Why is it here? */
1728 /* *arg1p = arg1_tmp;*/
1729 return v;
1730 }
1731 }
1732 if (name_matched) return (value_ptr) -1;
1733 else return NULL;
1734 }
1735
1736 /* Given *ARGP, a value of type (pointer to a)* structure/union,
1737 extract the component named NAME from the ultimate target structure/union
1738 and return it as a value with its appropriate type.
1739 ERR is used in the error message if *ARGP's type is wrong.
1740
1741 C++: ARGS is a list of argument types to aid in the selection of
1742 an appropriate method. Also, handle derived types.
1743
1744 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
1745 where the truthvalue of whether the function that was resolved was
1746 a static member function or not is stored.
1747
1748 ERR is an error message to be printed in case the field is not found. */
1749
1750 value_ptr
1751 value_struct_elt (argp, args, name, static_memfuncp, err)
1752 register value_ptr *argp, *args;
1753 char *name;
1754 int *static_memfuncp;
1755 char *err;
1756 {
1757 register struct type *t;
1758 value_ptr v;
1759
1760 COERCE_ARRAY (*argp);
1761
1762 t = check_typedef (VALUE_TYPE (*argp));
1763
1764 /* Follow pointers until we get to a non-pointer. */
1765
1766 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1767 {
1768 *argp = value_ind (*argp);
1769 /* Don't coerce fn pointer to fn and then back again! */
1770 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
1771 COERCE_ARRAY (*argp);
1772 t = check_typedef (VALUE_TYPE (*argp));
1773 }
1774
1775 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
1776 error ("not implemented: member type in value_struct_elt");
1777
1778 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
1779 && TYPE_CODE (t) != TYPE_CODE_UNION)
1780 error ("Attempt to extract a component of a value that is not a %s.", err);
1781
1782 /* Assume it's not, unless we see that it is. */
1783 if (static_memfuncp)
1784 *static_memfuncp =0;
1785
1786 if (!args)
1787 {
1788 /* if there are no arguments ...do this... */
1789
1790 /* Try as a field first, because if we succeed, there
1791 is less work to be done. */
1792 v = search_struct_field (name, *argp, 0, t, 0);
1793 if (v)
1794 return v;
1795
1796 /* C++: If it was not found as a data field, then try to
1797 return it as a pointer to a method. */
1798
1799 if (destructor_name_p (name, t))
1800 error ("Cannot get value of destructor");
1801
1802 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
1803
1804 if (v == (value_ptr) -1)
1805 error ("Cannot take address of a method");
1806 else if (v == 0)
1807 {
1808 if (TYPE_NFN_FIELDS (t))
1809 error ("There is no member or method named %s.", name);
1810 else
1811 error ("There is no member named %s.", name);
1812 }
1813 return v;
1814 }
1815
1816 if (destructor_name_p (name, t))
1817 {
1818 if (!args[1])
1819 {
1820 /* destructors are a special case. */
1821 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, 0),
1822 TYPE_FN_FIELDLIST_LENGTH (t, 0), 0, 0);
1823 if (!v) error("could not find destructor function named %s.", name);
1824 else return v;
1825 }
1826 else
1827 {
1828 error ("destructor should not have any argument");
1829 }
1830 }
1831 else
1832 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
1833
1834 if (v == (value_ptr) -1)
1835 {
1836 error("Argument list of %s mismatch with component in the structure.", name);
1837 }
1838 else if (v == 0)
1839 {
1840 /* See if user tried to invoke data as function. If so,
1841 hand it back. If it's not callable (i.e., a pointer to function),
1842 gdb should give an error. */
1843 v = search_struct_field (name, *argp, 0, t, 0);
1844 }
1845
1846 if (!v)
1847 error ("Structure has no component named %s.", name);
1848 return v;
1849 }
1850
1851 /* C++: return 1 is NAME is a legitimate name for the destructor
1852 of type TYPE. If TYPE does not have a destructor, or
1853 if NAME is inappropriate for TYPE, an error is signaled. */
1854 int
1855 destructor_name_p (name, type)
1856 const char *name;
1857 const struct type *type;
1858 {
1859 /* destructors are a special case. */
1860
1861 if (name[0] == '~')
1862 {
1863 char *dname = type_name_no_tag (type);
1864 char *cp = strchr (dname, '<');
1865 int len;
1866
1867 /* Do not compare the template part for template classes. */
1868 if (cp == NULL)
1869 len = strlen (dname);
1870 else
1871 len = cp - dname;
1872 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
1873 error ("name of destructor must equal name of class");
1874 else
1875 return 1;
1876 }
1877 return 0;
1878 }
1879
1880 /* Helper function for check_field: Given TYPE, a structure/union,
1881 return 1 if the component named NAME from the ultimate
1882 target structure/union is defined, otherwise, return 0. */
1883
1884 static int
1885 check_field_in (type, name)
1886 register struct type *type;
1887 const char *name;
1888 {
1889 register int i;
1890
1891 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1892 {
1893 char *t_field_name = TYPE_FIELD_NAME (type, i);
1894 if (t_field_name && STREQ (t_field_name, name))
1895 return 1;
1896 }
1897
1898 /* C++: If it was not found as a data field, then try to
1899 return it as a pointer to a method. */
1900
1901 /* Destructors are a special case. */
1902 if (destructor_name_p (name, type))
1903 return 1;
1904
1905 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1906 {
1907 if (STREQ (TYPE_FN_FIELDLIST_NAME (type, i), name))
1908 return 1;
1909 }
1910
1911 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1912 if (check_field_in (TYPE_BASECLASS (type, i), name))
1913 return 1;
1914
1915 return 0;
1916 }
1917
1918
1919 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
1920 return 1 if the component named NAME from the ultimate
1921 target structure/union is defined, otherwise, return 0. */
1922
1923 int
1924 check_field (arg1, name)
1925 register value_ptr arg1;
1926 const char *name;
1927 {
1928 register struct type *t;
1929
1930 COERCE_ARRAY (arg1);
1931
1932 t = VALUE_TYPE (arg1);
1933
1934 /* Follow pointers until we get to a non-pointer. */
1935
1936 for (;;)
1937 {
1938 CHECK_TYPEDEF (t);
1939 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
1940 break;
1941 t = TYPE_TARGET_TYPE (t);
1942 }
1943
1944 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
1945 error ("not implemented: member type in check_field");
1946
1947 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
1948 && TYPE_CODE (t) != TYPE_CODE_UNION)
1949 error ("Internal error: `this' is not an aggregate");
1950
1951 return check_field_in (t, name);
1952 }
1953
1954 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
1955 return the address of this member as a "pointer to member"
1956 type. If INTYPE is non-null, then it will be the type
1957 of the member we are looking for. This will help us resolve
1958 "pointers to member functions". This function is used
1959 to resolve user expressions of the form "DOMAIN::NAME". */
1960
1961 value_ptr
1962 value_struct_elt_for_reference (domain, offset, curtype, name, intype)
1963 struct type *domain, *curtype, *intype;
1964 int offset;
1965 char *name;
1966 {
1967 register struct type *t = curtype;
1968 register int i;
1969 value_ptr v;
1970
1971 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
1972 && TYPE_CODE (t) != TYPE_CODE_UNION)
1973 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
1974
1975 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
1976 {
1977 char *t_field_name = TYPE_FIELD_NAME (t, i);
1978
1979 if (t_field_name && STREQ (t_field_name, name))
1980 {
1981 if (TYPE_FIELD_STATIC (t, i))
1982 {
1983 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (t, i);
1984 struct symbol *sym =
1985 lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
1986 if (sym == NULL)
1987 error ("Internal error: could not find physical static variable named %s",
1988 phys_name);
1989 return value_at (SYMBOL_TYPE (sym),
1990 (CORE_ADDR)SYMBOL_BLOCK_VALUE (sym));
1991 }
1992 if (TYPE_FIELD_PACKED (t, i))
1993 error ("pointers to bitfield members not allowed");
1994
1995 return value_from_longest
1996 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
1997 domain)),
1998 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
1999 }
2000 }
2001
2002 /* C++: If it was not found as a data field, then try to
2003 return it as a pointer to a method. */
2004
2005 /* Destructors are a special case. */
2006 if (destructor_name_p (name, t))
2007 {
2008 error ("member pointers to destructors not implemented yet");
2009 }
2010
2011 /* Perform all necessary dereferencing. */
2012 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
2013 intype = TYPE_TARGET_TYPE (intype);
2014
2015 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
2016 {
2017 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
2018 char dem_opname[64];
2019
2020 if (strncmp(t_field_name, "__", 2)==0 ||
2021 strncmp(t_field_name, "op", 2)==0 ||
2022 strncmp(t_field_name, "type", 4)==0 )
2023 {
2024 if (cplus_demangle_opname(t_field_name, dem_opname, DMGL_ANSI))
2025 t_field_name = dem_opname;
2026 else if (cplus_demangle_opname(t_field_name, dem_opname, 0))
2027 t_field_name = dem_opname;
2028 }
2029 if (t_field_name && STREQ (t_field_name, name))
2030 {
2031 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
2032 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
2033
2034 if (intype == 0 && j > 1)
2035 error ("non-unique member `%s' requires type instantiation", name);
2036 if (intype)
2037 {
2038 while (j--)
2039 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
2040 break;
2041 if (j < 0)
2042 error ("no member function matches that type instantiation");
2043 }
2044 else
2045 j = 0;
2046
2047 if (TYPE_FN_FIELD_STUB (f, j))
2048 check_stub_method (t, i, j);
2049 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2050 {
2051 return value_from_longest
2052 (lookup_reference_type
2053 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
2054 domain)),
2055 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
2056 }
2057 else
2058 {
2059 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2060 0, VAR_NAMESPACE, 0, NULL);
2061 if (s == NULL)
2062 {
2063 v = 0;
2064 }
2065 else
2066 {
2067 v = read_var_value (s, 0);
2068 #if 0
2069 VALUE_TYPE (v) = lookup_reference_type
2070 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
2071 domain));
2072 #endif
2073 }
2074 return v;
2075 }
2076 }
2077 }
2078 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
2079 {
2080 value_ptr v;
2081 int base_offset;
2082
2083 if (BASETYPE_VIA_VIRTUAL (t, i))
2084 base_offset = 0;
2085 else
2086 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
2087 v = value_struct_elt_for_reference (domain,
2088 offset + base_offset,
2089 TYPE_BASECLASS (t, i),
2090 name,
2091 intype);
2092 if (v)
2093 return v;
2094 }
2095 return 0;
2096 }
2097
2098 /* C++: return the value of the class instance variable, if one exists.
2099 Flag COMPLAIN signals an error if the request is made in an
2100 inappropriate context. */
2101
2102 value_ptr
2103 value_of_this (complain)
2104 int complain;
2105 {
2106 struct symbol *func, *sym;
2107 struct block *b;
2108 int i;
2109 static const char funny_this[] = "this";
2110 value_ptr this;
2111
2112 if (selected_frame == 0)
2113 if (complain)
2114 error ("no frame selected");
2115 else return 0;
2116
2117 func = get_frame_function (selected_frame);
2118 if (!func)
2119 {
2120 if (complain)
2121 error ("no `this' in nameless context");
2122 else return 0;
2123 }
2124
2125 b = SYMBOL_BLOCK_VALUE (func);
2126 i = BLOCK_NSYMS (b);
2127 if (i <= 0)
2128 if (complain)
2129 error ("no args, no `this'");
2130 else return 0;
2131
2132 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
2133 symbol instead of the LOC_ARG one (if both exist). */
2134 sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE);
2135 if (sym == NULL)
2136 {
2137 if (complain)
2138 error ("current stack frame not in method");
2139 else
2140 return NULL;
2141 }
2142
2143 this = read_var_value (sym, selected_frame);
2144 if (this == 0 && complain)
2145 error ("`this' argument at unknown address");
2146 return this;
2147 }
2148
2149 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
2150 long, starting at LOWBOUND. The result has the same lower bound as
2151 the original ARRAY. */
2152
2153 value_ptr
2154 value_slice (array, lowbound, length)
2155 value_ptr array;
2156 int lowbound, length;
2157 {
2158 struct type *slice_range_type, *slice_type, *range_type;
2159 LONGEST lowerbound, upperbound, offset;
2160 value_ptr slice;
2161 struct type *array_type;
2162 array_type = check_typedef (VALUE_TYPE (array));
2163 COERCE_VARYING_ARRAY (array, array_type);
2164 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
2165 && TYPE_CODE (array_type) != TYPE_CODE_STRING
2166 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
2167 error ("cannot take slice of non-array");
2168 range_type = TYPE_INDEX_TYPE (array_type);
2169 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2170 error ("slice from bad array or bitstring");
2171 if (lowbound < lowerbound || length < 0
2172 || lowbound + length - 1 > upperbound
2173 /* Chill allows zero-length strings but not arrays. */
2174 || (current_language->la_language == language_chill
2175 && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY))
2176 error ("slice out of range");
2177 /* FIXME-type-allocation: need a way to free this type when we are
2178 done with it. */
2179 slice_range_type = create_range_type ((struct type*) NULL,
2180 TYPE_TARGET_TYPE (range_type),
2181 lowerbound, lowerbound + length - 1);
2182 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
2183 {
2184 int i;
2185 slice_type = create_set_type ((struct type*) NULL, slice_range_type);
2186 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
2187 slice = value_zero (slice_type, not_lval);
2188 for (i = 0; i < length; i++)
2189 {
2190 int element = value_bit_index (array_type,
2191 VALUE_CONTENTS (array),
2192 lowbound + i);
2193 if (element < 0)
2194 error ("internal error accessing bitstring");
2195 else if (element > 0)
2196 {
2197 int j = i % TARGET_CHAR_BIT;
2198 if (BITS_BIG_ENDIAN)
2199 j = TARGET_CHAR_BIT - 1 - j;
2200 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
2201 }
2202 }
2203 /* We should set the address, bitssize, and bitspos, so the clice
2204 can be used on the LHS, but that may require extensions to
2205 value_assign. For now, just leave as a non_lval. FIXME. */
2206 }
2207 else
2208 {
2209 struct type *element_type = TYPE_TARGET_TYPE (array_type);
2210 offset
2211 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
2212 slice_type = create_array_type ((struct type*) NULL, element_type,
2213 slice_range_type);
2214 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
2215 slice = allocate_value (slice_type);
2216 if (VALUE_LAZY (array))
2217 VALUE_LAZY (slice) = 1;
2218 else
2219 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
2220 TYPE_LENGTH (slice_type));
2221 if (VALUE_LVAL (array) == lval_internalvar)
2222 VALUE_LVAL (slice) = lval_internalvar_component;
2223 else
2224 VALUE_LVAL (slice) = VALUE_LVAL (array);
2225 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
2226 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
2227 }
2228 return slice;
2229 }
2230
2231 /* Assuming chill_varying_type (VARRAY) is true, return an equivalent
2232 value as a fixed-length array. */
2233
2234 value_ptr
2235 varying_to_slice (varray)
2236 value_ptr varray;
2237 {
2238 struct type *vtype = check_typedef (VALUE_TYPE (varray));
2239 LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
2240 VALUE_CONTENTS (varray)
2241 + TYPE_FIELD_BITPOS (vtype, 0) / 8);
2242 return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
2243 }
2244
2245 /* Create a value for a FORTRAN complex number. Currently most of
2246 the time values are coerced to COMPLEX*16 (i.e. a complex number
2247 composed of 2 doubles. This really should be a smarter routine
2248 that figures out precision inteligently as opposed to assuming
2249 doubles. FIXME: fmb */
2250
2251 value_ptr
2252 value_literal_complex (arg1, arg2, type)
2253 value_ptr arg1;
2254 value_ptr arg2;
2255 struct type *type;
2256 {
2257 register value_ptr val;
2258 struct type *real_type = TYPE_TARGET_TYPE (type);
2259
2260 val = allocate_value (type);
2261 arg1 = value_cast (real_type, arg1);
2262 arg2 = value_cast (real_type, arg2);
2263
2264 memcpy (VALUE_CONTENTS_RAW (val),
2265 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
2266 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
2267 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
2268 return val;
2269 }
2270
2271 /* Cast a value into the appropriate complex data type. */
2272
2273 static value_ptr
2274 cast_into_complex (type, val)
2275 struct type *type;
2276 register value_ptr val;
2277 {
2278 struct type *real_type = TYPE_TARGET_TYPE (type);
2279 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
2280 {
2281 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
2282 value_ptr re_val = allocate_value (val_real_type);
2283 value_ptr im_val = allocate_value (val_real_type);
2284
2285 memcpy (VALUE_CONTENTS_RAW (re_val),
2286 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
2287 memcpy (VALUE_CONTENTS_RAW (im_val),
2288 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
2289 TYPE_LENGTH (val_real_type));
2290
2291 return value_literal_complex (re_val, im_val, type);
2292 }
2293 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
2294 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
2295 return value_literal_complex (val, value_zero (real_type, not_lval), type);
2296 else
2297 error ("cannot cast non-number to complex");
2298 }
2299
2300 void
2301 _initialize_valops ()
2302 {
2303 #if 0
2304 add_show_from_set
2305 (add_set_cmd ("abandon", class_support, var_boolean, (char *)&auto_abandon,
2306 "Set automatic abandonment of expressions upon failure.",
2307 &setlist),
2308 &showlist);
2309 #endif
2310 }