* config/tc-sh.c (IDENT_CHAR): Define.
[binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 87, 89, 91, 92, 93, 94, 95, 96, 97, 1998
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcore.h"
29 #include "target.h"
30 #include "demangle.h"
31 #include "language.h"
32 #include "gdbcmd.h"
33
34 #include <errno.h>
35 #include "gdb_string.h"
36
37 /* Flag indicating HP compilers were used; needed to correctly handle some
38 value operations with HP aCC code/runtime. */
39 extern int hp_som_som_object_present;
40
41
42 /* Local functions. */
43
44 static int typecmp PARAMS ((int staticp, struct type * t1[], value_ptr t2[]));
45
46 static CORE_ADDR find_function_addr PARAMS ((value_ptr, struct type **));
47 static value_ptr value_arg_coerce PARAMS ((value_ptr, struct type *, int));
48
49
50 static CORE_ADDR value_push PARAMS ((CORE_ADDR, value_ptr));
51
52 static value_ptr search_struct_field PARAMS ((char *, value_ptr, int,
53 struct type *, int));
54
55 static value_ptr search_struct_method PARAMS ((char *, value_ptr *,
56 value_ptr *,
57 int, int *, struct type *));
58
59 static int check_field_in PARAMS ((struct type *, const char *));
60
61 static CORE_ADDR allocate_space_in_inferior PARAMS ((int));
62
63 static value_ptr cast_into_complex PARAMS ((struct type *, value_ptr));
64
65 static struct fn_field *find_method_list PARAMS ((value_ptr * argp, char *method, int offset, int *static_memfuncp, struct type * type, int *num_fns, struct type ** basetype, int *boffset));
66
67 void _initialize_valops PARAMS ((void));
68
69 #define VALUE_SUBSTRING_START(VAL) VALUE_FRAME(VAL)
70
71 /* Flag for whether we want to abandon failed expression evals by default. */
72
73 #if 0
74 static int auto_abandon = 0;
75 #endif
76
77 int overload_resolution = 0;
78
79 /* This boolean tells what gdb should do if a signal is received while in
80 a function called from gdb (call dummy). If set, gdb unwinds the stack
81 and restore the context to what as it was before the call.
82 The default is to stop in the frame where the signal was received. */
83
84 int unwind_on_signal_p = 0;
85 \f
86
87
88 /* Find the address of function name NAME in the inferior. */
89
90 value_ptr
91 find_function_in_inferior (name)
92 char *name;
93 {
94 register struct symbol *sym;
95 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
96 if (sym != NULL)
97 {
98 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
99 {
100 error ("\"%s\" exists in this program but is not a function.",
101 name);
102 }
103 return value_of_variable (sym, NULL);
104 }
105 else
106 {
107 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
108 if (msymbol != NULL)
109 {
110 struct type *type;
111 LONGEST maddr;
112 type = lookup_pointer_type (builtin_type_char);
113 type = lookup_function_type (type);
114 type = lookup_pointer_type (type);
115 maddr = (LONGEST) SYMBOL_VALUE_ADDRESS (msymbol);
116 return value_from_longest (type, maddr);
117 }
118 else
119 {
120 if (!target_has_execution)
121 error ("evaluation of this expression requires the target program to be active");
122 else
123 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
124 }
125 }
126 }
127
128 /* Allocate NBYTES of space in the inferior using the inferior's malloc
129 and return a value that is a pointer to the allocated space. */
130
131 value_ptr
132 value_allocate_space_in_inferior (len)
133 int len;
134 {
135 value_ptr blocklen;
136 register value_ptr val = find_function_in_inferior ("malloc");
137
138 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
139 val = call_function_by_hand (val, 1, &blocklen);
140 if (value_logical_not (val))
141 {
142 if (!target_has_execution)
143 error ("No memory available to program now: you need to start the target first");
144 else
145 error ("No memory available to program: call to malloc failed");
146 }
147 return val;
148 }
149
150 static CORE_ADDR
151 allocate_space_in_inferior (len)
152 int len;
153 {
154 return value_as_long (value_allocate_space_in_inferior (len));
155 }
156
157 /* Cast value ARG2 to type TYPE and return as a value.
158 More general than a C cast: accepts any two types of the same length,
159 and if ARG2 is an lvalue it can be cast into anything at all. */
160 /* In C++, casts may change pointer or object representations. */
161
162 value_ptr
163 value_cast (type, arg2)
164 struct type *type;
165 register value_ptr arg2;
166 {
167 register enum type_code code1;
168 register enum type_code code2;
169 register int scalar;
170 struct type *type2;
171
172 int convert_to_boolean = 0;
173
174 if (VALUE_TYPE (arg2) == type)
175 return arg2;
176
177 CHECK_TYPEDEF (type);
178 code1 = TYPE_CODE (type);
179 COERCE_REF (arg2);
180 type2 = check_typedef (VALUE_TYPE (arg2));
181
182 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
183 is treated like a cast to (TYPE [N])OBJECT,
184 where N is sizeof(OBJECT)/sizeof(TYPE). */
185 if (code1 == TYPE_CODE_ARRAY)
186 {
187 struct type *element_type = TYPE_TARGET_TYPE (type);
188 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
189 if (element_length > 0
190 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
191 {
192 struct type *range_type = TYPE_INDEX_TYPE (type);
193 int val_length = TYPE_LENGTH (type2);
194 LONGEST low_bound, high_bound, new_length;
195 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
196 low_bound = 0, high_bound = 0;
197 new_length = val_length / element_length;
198 if (val_length % element_length != 0)
199 warning ("array element type size does not divide object size in cast");
200 /* FIXME-type-allocation: need a way to free this type when we are
201 done with it. */
202 range_type = create_range_type ((struct type *) NULL,
203 TYPE_TARGET_TYPE (range_type),
204 low_bound,
205 new_length + low_bound - 1);
206 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
207 element_type, range_type);
208 return arg2;
209 }
210 }
211
212 if (current_language->c_style_arrays
213 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
214 arg2 = value_coerce_array (arg2);
215
216 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
217 arg2 = value_coerce_function (arg2);
218
219 type2 = check_typedef (VALUE_TYPE (arg2));
220 COERCE_VARYING_ARRAY (arg2, type2);
221 code2 = TYPE_CODE (type2);
222
223 if (code1 == TYPE_CODE_COMPLEX)
224 return cast_into_complex (type, arg2);
225 if (code1 == TYPE_CODE_BOOL)
226 {
227 code1 = TYPE_CODE_INT;
228 convert_to_boolean = 1;
229 }
230 if (code1 == TYPE_CODE_CHAR)
231 code1 = TYPE_CODE_INT;
232 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
233 code2 = TYPE_CODE_INT;
234
235 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
236 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
237
238 if (code1 == TYPE_CODE_STRUCT
239 && code2 == TYPE_CODE_STRUCT
240 && TYPE_NAME (type) != 0)
241 {
242 /* Look in the type of the source to see if it contains the
243 type of the target as a superclass. If so, we'll need to
244 offset the object in addition to changing its type. */
245 value_ptr v = search_struct_field (type_name_no_tag (type),
246 arg2, 0, type2, 1);
247 if (v)
248 {
249 VALUE_TYPE (v) = type;
250 return v;
251 }
252 }
253 if (code1 == TYPE_CODE_FLT && scalar)
254 return value_from_double (type, value_as_double (arg2));
255 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
256 || code1 == TYPE_CODE_RANGE)
257 && (scalar || code2 == TYPE_CODE_PTR))
258 {
259 LONGEST longest;
260
261 if (hp_som_som_object_present && /* if target compiled by HP aCC */
262 (code2 == TYPE_CODE_PTR))
263 {
264 unsigned int *ptr;
265 value_ptr retvalp;
266
267 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
268 {
269 /* With HP aCC, pointers to data members have a bias */
270 case TYPE_CODE_MEMBER:
271 retvalp = value_from_longest (type, value_as_long (arg2));
272 ptr = (unsigned int *) VALUE_CONTENTS (retvalp); /* force evaluation */
273 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
274 return retvalp;
275
276 /* While pointers to methods don't really point to a function */
277 case TYPE_CODE_METHOD:
278 error ("Pointers to methods not supported with HP aCC");
279
280 default:
281 break; /* fall out and go to normal handling */
282 }
283 }
284 longest = value_as_long (arg2);
285 return value_from_longest (type, convert_to_boolean ? (LONGEST) (longest ? 1 : 0) : longest);
286 }
287 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
288 {
289 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
290 {
291 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
292 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
293 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
294 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
295 && !value_logical_not (arg2))
296 {
297 value_ptr v;
298
299 /* Look in the type of the source to see if it contains the
300 type of the target as a superclass. If so, we'll need to
301 offset the pointer rather than just change its type. */
302 if (TYPE_NAME (t1) != NULL)
303 {
304 v = search_struct_field (type_name_no_tag (t1),
305 value_ind (arg2), 0, t2, 1);
306 if (v)
307 {
308 v = value_addr (v);
309 VALUE_TYPE (v) = type;
310 return v;
311 }
312 }
313
314 /* Look in the type of the target to see if it contains the
315 type of the source as a superclass. If so, we'll need to
316 offset the pointer rather than just change its type.
317 FIXME: This fails silently with virtual inheritance. */
318 if (TYPE_NAME (t2) != NULL)
319 {
320 v = search_struct_field (type_name_no_tag (t2),
321 value_zero (t1, not_lval), 0, t1, 1);
322 if (v)
323 {
324 value_ptr v2 = value_ind (arg2);
325 VALUE_ADDRESS (v2) -= VALUE_ADDRESS (v)
326 + VALUE_OFFSET (v);
327 v2 = value_addr (v2);
328 VALUE_TYPE (v2) = type;
329 return v2;
330 }
331 }
332 }
333 /* No superclass found, just fall through to change ptr type. */
334 }
335 VALUE_TYPE (arg2) = type;
336 VALUE_ENCLOSING_TYPE (arg2) = type; /* pai: chk_val */
337 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
338 return arg2;
339 }
340 else if (chill_varying_type (type))
341 {
342 struct type *range1, *range2, *eltype1, *eltype2;
343 value_ptr val;
344 int count1, count2;
345 LONGEST low_bound, high_bound;
346 char *valaddr, *valaddr_data;
347 /* For lint warning about eltype2 possibly uninitialized: */
348 eltype2 = NULL;
349 if (code2 == TYPE_CODE_BITSTRING)
350 error ("not implemented: converting bitstring to varying type");
351 if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING)
352 || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))),
353 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)),
354 (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2)
355 /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ )))
356 error ("Invalid conversion to varying type");
357 range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0);
358 range2 = TYPE_FIELD_TYPE (type2, 0);
359 if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0)
360 count1 = -1;
361 else
362 count1 = high_bound - low_bound + 1;
363 if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0)
364 count1 = -1, count2 = 0; /* To force error before */
365 else
366 count2 = high_bound - low_bound + 1;
367 if (count2 > count1)
368 error ("target varying type is too small");
369 val = allocate_value (type);
370 valaddr = VALUE_CONTENTS_RAW (val);
371 valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8;
372 /* Set val's __var_length field to count2. */
373 store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)),
374 count2);
375 /* Set the __var_data field to count2 elements copied from arg2. */
376 memcpy (valaddr_data, VALUE_CONTENTS (arg2),
377 count2 * TYPE_LENGTH (eltype2));
378 /* Zero the rest of the __var_data field of val. */
379 memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0',
380 (count1 - count2) * TYPE_LENGTH (eltype2));
381 return val;
382 }
383 else if (VALUE_LVAL (arg2) == lval_memory)
384 {
385 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
386 VALUE_BFD_SECTION (arg2));
387 }
388 else if (code1 == TYPE_CODE_VOID)
389 {
390 return value_zero (builtin_type_void, not_lval);
391 }
392 else
393 {
394 error ("Invalid cast.");
395 return 0;
396 }
397 }
398
399 /* Create a value of type TYPE that is zero, and return it. */
400
401 value_ptr
402 value_zero (type, lv)
403 struct type *type;
404 enum lval_type lv;
405 {
406 register value_ptr val = allocate_value (type);
407
408 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
409 VALUE_LVAL (val) = lv;
410
411 return val;
412 }
413
414 /* Return a value with type TYPE located at ADDR.
415
416 Call value_at only if the data needs to be fetched immediately;
417 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
418 value_at_lazy instead. value_at_lazy simply records the address of
419 the data and sets the lazy-evaluation-required flag. The lazy flag
420 is tested in the VALUE_CONTENTS macro, which is used if and when
421 the contents are actually required.
422
423 Note: value_at does *NOT* handle embedded offsets; perform such
424 adjustments before or after calling it. */
425
426 value_ptr
427 value_at (type, addr, sect)
428 struct type *type;
429 CORE_ADDR addr;
430 asection *sect;
431 {
432 register value_ptr val;
433
434 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
435 error ("Attempt to dereference a generic pointer.");
436
437 val = allocate_value (type);
438
439 if (GDB_TARGET_IS_D10V
440 && TYPE_CODE (type) == TYPE_CODE_PTR
441 && TYPE_TARGET_TYPE (type)
442 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
443 {
444 /* pointer to function */
445 unsigned long num;
446 unsigned short snum;
447 snum = read_memory_unsigned_integer (addr, 2);
448 num = D10V_MAKE_IADDR (snum);
449 store_address (VALUE_CONTENTS_RAW (val), 4, num);
450 }
451 else if (GDB_TARGET_IS_D10V
452 && TYPE_CODE (type) == TYPE_CODE_PTR)
453 {
454 /* pointer to data */
455 unsigned long num;
456 unsigned short snum;
457 snum = read_memory_unsigned_integer (addr, 2);
458 num = D10V_MAKE_DADDR (snum);
459 store_address (VALUE_CONTENTS_RAW (val), 4, num);
460 }
461 else
462 read_memory_section (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type), sect);
463
464 VALUE_LVAL (val) = lval_memory;
465 VALUE_ADDRESS (val) = addr;
466 VALUE_BFD_SECTION (val) = sect;
467
468 return val;
469 }
470
471 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
472
473 value_ptr
474 value_at_lazy (type, addr, sect)
475 struct type *type;
476 CORE_ADDR addr;
477 asection *sect;
478 {
479 register value_ptr val;
480
481 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
482 error ("Attempt to dereference a generic pointer.");
483
484 val = allocate_value (type);
485
486 VALUE_LVAL (val) = lval_memory;
487 VALUE_ADDRESS (val) = addr;
488 VALUE_LAZY (val) = 1;
489 VALUE_BFD_SECTION (val) = sect;
490
491 return val;
492 }
493
494 /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
495 if the current data for a variable needs to be loaded into
496 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
497 clears the lazy flag to indicate that the data in the buffer is valid.
498
499 If the value is zero-length, we avoid calling read_memory, which would
500 abort. We mark the value as fetched anyway -- all 0 bytes of it.
501
502 This function returns a value because it is used in the VALUE_CONTENTS
503 macro as part of an expression, where a void would not work. The
504 value is ignored. */
505
506 int
507 value_fetch_lazy (val)
508 register value_ptr val;
509 {
510 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
511 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
512
513 struct type *type = VALUE_TYPE (val);
514 if (GDB_TARGET_IS_D10V
515 && TYPE_CODE (type) == TYPE_CODE_PTR
516 && TYPE_TARGET_TYPE (type)
517 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
518 {
519 /* pointer to function */
520 unsigned long num;
521 unsigned short snum;
522 snum = read_memory_unsigned_integer (addr, 2);
523 num = D10V_MAKE_IADDR (snum);
524 store_address (VALUE_CONTENTS_RAW (val), 4, num);
525 }
526 else if (GDB_TARGET_IS_D10V
527 && TYPE_CODE (type) == TYPE_CODE_PTR)
528 {
529 /* pointer to data */
530 unsigned long num;
531 unsigned short snum;
532 snum = read_memory_unsigned_integer (addr, 2);
533 num = D10V_MAKE_DADDR (snum);
534 store_address (VALUE_CONTENTS_RAW (val), 4, num);
535 }
536 else if (length)
537 read_memory_section (addr, VALUE_CONTENTS_ALL_RAW (val), length,
538 VALUE_BFD_SECTION (val));
539 VALUE_LAZY (val) = 0;
540 return 0;
541 }
542
543
544 /* Store the contents of FROMVAL into the location of TOVAL.
545 Return a new value with the location of TOVAL and contents of FROMVAL. */
546
547 value_ptr
548 value_assign (toval, fromval)
549 register value_ptr toval, fromval;
550 {
551 register struct type *type;
552 register value_ptr val;
553 char raw_buffer[MAX_REGISTER_RAW_SIZE];
554 int use_buffer = 0;
555
556 if (!toval->modifiable)
557 error ("Left operand of assignment is not a modifiable lvalue.");
558
559 COERCE_REF (toval);
560
561 type = VALUE_TYPE (toval);
562 if (VALUE_LVAL (toval) != lval_internalvar)
563 fromval = value_cast (type, fromval);
564 else
565 COERCE_ARRAY (fromval);
566 CHECK_TYPEDEF (type);
567
568 /* If TOVAL is a special machine register requiring conversion
569 of program values to a special raw format,
570 convert FROMVAL's contents now, with result in `raw_buffer',
571 and set USE_BUFFER to the number of bytes to write. */
572
573 if (VALUE_REGNO (toval) >= 0)
574 {
575 int regno = VALUE_REGNO (toval);
576 if (REGISTER_CONVERTIBLE (regno))
577 {
578 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
579 REGISTER_CONVERT_TO_RAW (fromtype, regno,
580 VALUE_CONTENTS (fromval), raw_buffer);
581 use_buffer = REGISTER_RAW_SIZE (regno);
582 }
583 }
584
585 switch (VALUE_LVAL (toval))
586 {
587 case lval_internalvar:
588 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
589 val = value_copy (VALUE_INTERNALVAR (toval)->value);
590 VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval);
591 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
592 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
593 return val;
594
595 case lval_internalvar_component:
596 set_internalvar_component (VALUE_INTERNALVAR (toval),
597 VALUE_OFFSET (toval),
598 VALUE_BITPOS (toval),
599 VALUE_BITSIZE (toval),
600 fromval);
601 break;
602
603 case lval_memory:
604 {
605 char *dest_buffer;
606 CORE_ADDR changed_addr;
607 int changed_len;
608
609 if (VALUE_BITSIZE (toval))
610 {
611 char buffer[sizeof (LONGEST)];
612 /* We assume that the argument to read_memory is in units of
613 host chars. FIXME: Is that correct? */
614 changed_len = (VALUE_BITPOS (toval)
615 + VALUE_BITSIZE (toval)
616 + HOST_CHAR_BIT - 1)
617 / HOST_CHAR_BIT;
618
619 if (changed_len > (int) sizeof (LONGEST))
620 error ("Can't handle bitfields which don't fit in a %d bit word.",
621 sizeof (LONGEST) * HOST_CHAR_BIT);
622
623 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
624 buffer, changed_len);
625 modify_field (buffer, value_as_long (fromval),
626 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
627 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
628 dest_buffer = buffer;
629 }
630 else if (use_buffer)
631 {
632 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
633 changed_len = use_buffer;
634 dest_buffer = raw_buffer;
635 }
636 else
637 {
638 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
639 changed_len = TYPE_LENGTH (type);
640 dest_buffer = VALUE_CONTENTS (fromval);
641 }
642
643 write_memory (changed_addr, dest_buffer, changed_len);
644 if (memory_changed_hook)
645 memory_changed_hook (changed_addr, changed_len);
646 }
647 break;
648
649 case lval_register:
650 if (VALUE_BITSIZE (toval))
651 {
652 char buffer[sizeof (LONGEST)];
653 int len = REGISTER_RAW_SIZE (VALUE_REGNO (toval));
654
655 if (len > (int) sizeof (LONGEST))
656 error ("Can't handle bitfields in registers larger than %d bits.",
657 sizeof (LONGEST) * HOST_CHAR_BIT);
658
659 if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
660 > len * HOST_CHAR_BIT)
661 /* Getting this right would involve being very careful about
662 byte order. */
663 error ("Can't assign to bitfields that cross register "
664 "boundaries.");
665
666 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
667 buffer, len);
668 modify_field (buffer, value_as_long (fromval),
669 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
670 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
671 buffer, len);
672 }
673 else if (use_buffer)
674 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
675 raw_buffer, use_buffer);
676 else
677 {
678 /* Do any conversion necessary when storing this type to more
679 than one register. */
680 #ifdef REGISTER_CONVERT_FROM_TYPE
681 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
682 REGISTER_CONVERT_FROM_TYPE (VALUE_REGNO (toval), type, raw_buffer);
683 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
684 raw_buffer, TYPE_LENGTH (type));
685 #else
686 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
687 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
688 #endif
689 }
690 /* Assigning to the stack pointer, frame pointer, and other
691 (architecture and calling convention specific) registers may
692 cause the frame cache to be out of date. We just do this
693 on all assignments to registers for simplicity; I doubt the slowdown
694 matters. */
695 reinit_frame_cache ();
696 break;
697
698 case lval_reg_frame_relative:
699 {
700 /* value is stored in a series of registers in the frame
701 specified by the structure. Copy that value out, modify
702 it, and copy it back in. */
703 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
704 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
705 int byte_offset = VALUE_OFFSET (toval) % reg_size;
706 int reg_offset = VALUE_OFFSET (toval) / reg_size;
707 int amount_copied;
708
709 /* Make the buffer large enough in all cases. */
710 char *buffer = (char *) alloca (amount_to_copy
711 + sizeof (LONGEST)
712 + MAX_REGISTER_RAW_SIZE);
713
714 int regno;
715 struct frame_info *frame;
716
717 /* Figure out which frame this is in currently. */
718 for (frame = get_current_frame ();
719 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
720 frame = get_prev_frame (frame))
721 ;
722
723 if (!frame)
724 error ("Value being assigned to is no longer active.");
725
726 amount_to_copy += (reg_size - amount_to_copy % reg_size);
727
728 /* Copy it out. */
729 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
730 amount_copied = 0);
731 amount_copied < amount_to_copy;
732 amount_copied += reg_size, regno++)
733 {
734 get_saved_register (buffer + amount_copied,
735 (int *) NULL, (CORE_ADDR *) NULL,
736 frame, regno, (enum lval_type *) NULL);
737 }
738
739 /* Modify what needs to be modified. */
740 if (VALUE_BITSIZE (toval))
741 modify_field (buffer + byte_offset,
742 value_as_long (fromval),
743 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
744 else if (use_buffer)
745 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
746 else
747 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
748 TYPE_LENGTH (type));
749
750 /* Copy it back. */
751 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
752 amount_copied = 0);
753 amount_copied < amount_to_copy;
754 amount_copied += reg_size, regno++)
755 {
756 enum lval_type lval;
757 CORE_ADDR addr;
758 int optim;
759
760 /* Just find out where to put it. */
761 get_saved_register ((char *) NULL,
762 &optim, &addr, frame, regno, &lval);
763
764 if (optim)
765 error ("Attempt to assign to a value that was optimized out.");
766 if (lval == lval_memory)
767 write_memory (addr, buffer + amount_copied, reg_size);
768 else if (lval == lval_register)
769 write_register_bytes (addr, buffer + amount_copied, reg_size);
770 else
771 error ("Attempt to assign to an unmodifiable value.");
772 }
773
774 if (register_changed_hook)
775 register_changed_hook (-1);
776 }
777 break;
778
779
780 default:
781 error ("Left operand of assignment is not an lvalue.");
782 }
783
784 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
785 If the field is signed, and is negative, then sign extend. */
786 if ((VALUE_BITSIZE (toval) > 0)
787 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
788 {
789 LONGEST fieldval = value_as_long (fromval);
790 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
791
792 fieldval &= valmask;
793 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
794 fieldval |= ~valmask;
795
796 fromval = value_from_longest (type, fieldval);
797 }
798
799 val = value_copy (toval);
800 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
801 TYPE_LENGTH (type));
802 VALUE_TYPE (val) = type;
803 VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval);
804 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
805 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
806
807 return val;
808 }
809
810 /* Extend a value VAL to COUNT repetitions of its type. */
811
812 value_ptr
813 value_repeat (arg1, count)
814 value_ptr arg1;
815 int count;
816 {
817 register value_ptr val;
818
819 if (VALUE_LVAL (arg1) != lval_memory)
820 error ("Only values in memory can be extended with '@'.");
821 if (count < 1)
822 error ("Invalid number %d of repetitions.", count);
823
824 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
825
826 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
827 VALUE_CONTENTS_ALL_RAW (val),
828 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
829 VALUE_LVAL (val) = lval_memory;
830 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
831
832 return val;
833 }
834
835 value_ptr
836 value_of_variable (var, b)
837 struct symbol *var;
838 struct block *b;
839 {
840 value_ptr val;
841 struct frame_info *frame = NULL;
842
843 if (!b)
844 frame = NULL; /* Use selected frame. */
845 else if (symbol_read_needs_frame (var))
846 {
847 frame = block_innermost_frame (b);
848 if (!frame)
849 {
850 if (BLOCK_FUNCTION (b)
851 && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
852 error ("No frame is currently executing in block %s.",
853 SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
854 else
855 error ("No frame is currently executing in specified block");
856 }
857 }
858
859 val = read_var_value (var, frame);
860 if (!val)
861 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
862
863 return val;
864 }
865
866 /* Given a value which is an array, return a value which is a pointer to its
867 first element, regardless of whether or not the array has a nonzero lower
868 bound.
869
870 FIXME: A previous comment here indicated that this routine should be
871 substracting the array's lower bound. It's not clear to me that this
872 is correct. Given an array subscripting operation, it would certainly
873 work to do the adjustment here, essentially computing:
874
875 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
876
877 However I believe a more appropriate and logical place to account for
878 the lower bound is to do so in value_subscript, essentially computing:
879
880 (&array[0] + ((index - lowerbound) * sizeof array[0]))
881
882 As further evidence consider what would happen with operations other
883 than array subscripting, where the caller would get back a value that
884 had an address somewhere before the actual first element of the array,
885 and the information about the lower bound would be lost because of
886 the coercion to pointer type.
887 */
888
889 value_ptr
890 value_coerce_array (arg1)
891 value_ptr arg1;
892 {
893 register struct type *type = check_typedef (VALUE_TYPE (arg1));
894
895 if (VALUE_LVAL (arg1) != lval_memory)
896 error ("Attempt to take address of value not located in memory.");
897
898 return value_from_longest (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
899 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
900 }
901
902 /* Given a value which is a function, return a value which is a pointer
903 to it. */
904
905 value_ptr
906 value_coerce_function (arg1)
907 value_ptr arg1;
908 {
909 value_ptr retval;
910
911 if (VALUE_LVAL (arg1) != lval_memory)
912 error ("Attempt to take address of value not located in memory.");
913
914 retval = value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)),
915 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
916 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
917 return retval;
918 }
919
920 /* Return a pointer value for the object for which ARG1 is the contents. */
921
922 value_ptr
923 value_addr (arg1)
924 value_ptr arg1;
925 {
926 value_ptr arg2;
927
928 struct type *type = check_typedef (VALUE_TYPE (arg1));
929 if (TYPE_CODE (type) == TYPE_CODE_REF)
930 {
931 /* Copy the value, but change the type from (T&) to (T*).
932 We keep the same location information, which is efficient,
933 and allows &(&X) to get the location containing the reference. */
934 arg2 = value_copy (arg1);
935 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
936 return arg2;
937 }
938 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
939 return value_coerce_function (arg1);
940
941 if (VALUE_LVAL (arg1) != lval_memory)
942 error ("Attempt to take address of value not located in memory.");
943
944 /* Get target memory address */
945 arg2 = value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)),
946 (LONGEST) (VALUE_ADDRESS (arg1)
947 + VALUE_OFFSET (arg1)
948 + VALUE_EMBEDDED_OFFSET (arg1)));
949
950 /* This may be a pointer to a base subobject; so remember the
951 full derived object's type ... */
952 VALUE_ENCLOSING_TYPE (arg2) = lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1));
953 /* ... and also the relative position of the subobject in the full object */
954 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
955 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
956 return arg2;
957 }
958
959 /* Given a value of a pointer type, apply the C unary * operator to it. */
960
961 value_ptr
962 value_ind (arg1)
963 value_ptr arg1;
964 {
965 struct type *base_type;
966 value_ptr arg2;
967
968 COERCE_ARRAY (arg1);
969
970 base_type = check_typedef (VALUE_TYPE (arg1));
971
972 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
973 error ("not implemented: member types in value_ind");
974
975 /* Allow * on an integer so we can cast it to whatever we want.
976 This returns an int, which seems like the most C-like thing
977 to do. "long long" variables are rare enough that
978 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
979 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
980 return value_at (builtin_type_int,
981 (CORE_ADDR) value_as_long (arg1),
982 VALUE_BFD_SECTION (arg1));
983 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
984 {
985 struct type *enc_type;
986 /* We may be pointing to something embedded in a larger object */
987 /* Get the real type of the enclosing object */
988 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
989 enc_type = TYPE_TARGET_TYPE (enc_type);
990 /* Retrieve the enclosing object pointed to */
991 arg2 = value_at_lazy (enc_type,
992 value_as_pointer (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
993 VALUE_BFD_SECTION (arg1));
994 /* Re-adjust type */
995 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
996 /* Add embedding info */
997 VALUE_ENCLOSING_TYPE (arg2) = enc_type;
998 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
999
1000 /* We may be pointing to an object of some derived type */
1001 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1002 return arg2;
1003 }
1004
1005 error ("Attempt to take contents of a non-pointer value.");
1006 return 0; /* For lint -- never reached */
1007 }
1008 \f
1009 /* Pushing small parts of stack frames. */
1010
1011 /* Push one word (the size of object that a register holds). */
1012
1013 CORE_ADDR
1014 push_word (sp, word)
1015 CORE_ADDR sp;
1016 ULONGEST word;
1017 {
1018 register int len = REGISTER_SIZE;
1019 char buffer[MAX_REGISTER_RAW_SIZE];
1020
1021 store_unsigned_integer (buffer, len, word);
1022 if (INNER_THAN (1, 2))
1023 {
1024 /* stack grows downward */
1025 sp -= len;
1026 write_memory (sp, buffer, len);
1027 }
1028 else
1029 {
1030 /* stack grows upward */
1031 write_memory (sp, buffer, len);
1032 sp += len;
1033 }
1034
1035 return sp;
1036 }
1037
1038 /* Push LEN bytes with data at BUFFER. */
1039
1040 CORE_ADDR
1041 push_bytes (sp, buffer, len)
1042 CORE_ADDR sp;
1043 char *buffer;
1044 int len;
1045 {
1046 if (INNER_THAN (1, 2))
1047 {
1048 /* stack grows downward */
1049 sp -= len;
1050 write_memory (sp, buffer, len);
1051 }
1052 else
1053 {
1054 /* stack grows upward */
1055 write_memory (sp, buffer, len);
1056 sp += len;
1057 }
1058
1059 return sp;
1060 }
1061
1062 #ifndef PARM_BOUNDARY
1063 #define PARM_BOUNDARY (0)
1064 #endif
1065
1066 /* Push onto the stack the specified value VALUE. Pad it correctly for
1067 it to be an argument to a function. */
1068
1069 static CORE_ADDR
1070 value_push (sp, arg)
1071 register CORE_ADDR sp;
1072 value_ptr arg;
1073 {
1074 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
1075 register int container_len = len;
1076 register int offset;
1077
1078 /* How big is the container we're going to put this value in? */
1079 if (PARM_BOUNDARY)
1080 container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
1081 & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
1082
1083 /* Are we going to put it at the high or low end of the container? */
1084 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1085 offset = container_len - len;
1086 else
1087 offset = 0;
1088
1089 if (INNER_THAN (1, 2))
1090 {
1091 /* stack grows downward */
1092 sp -= container_len;
1093 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1094 }
1095 else
1096 {
1097 /* stack grows upward */
1098 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1099 sp += container_len;
1100 }
1101
1102 return sp;
1103 }
1104
1105 #ifndef PUSH_ARGUMENTS
1106 #define PUSH_ARGUMENTS default_push_arguments
1107 #endif
1108
1109 CORE_ADDR
1110 default_push_arguments (nargs, args, sp, struct_return, struct_addr)
1111 int nargs;
1112 value_ptr *args;
1113 CORE_ADDR sp;
1114 int struct_return;
1115 CORE_ADDR struct_addr;
1116 {
1117 /* ASSERT ( !struct_return); */
1118 int i;
1119 for (i = nargs - 1; i >= 0; i--)
1120 sp = value_push (sp, args[i]);
1121 return sp;
1122 }
1123
1124
1125 /* If we're calling a function declared without a prototype, should we
1126 promote floats to doubles? FORMAL and ACTUAL are the types of the
1127 arguments; FORMAL may be NULL.
1128
1129 If we have no definition for this macro, either from the target or
1130 from gdbarch, provide a default. */
1131 #ifndef COERCE_FLOAT_TO_DOUBLE
1132 #define COERCE_FLOAT_TO_DOUBLE(formal, actual) \
1133 (default_coerce_float_to_double ((formal), (actual)))
1134 #endif
1135
1136
1137 /* A default function for COERCE_FLOAT_TO_DOUBLE: do the coercion only
1138 when we don't have any type for the argument at hand. This occurs
1139 when we have no debug info, or when passing varargs.
1140
1141 This is an annoying default: the rule the compiler follows is to do
1142 the standard promotions whenever there is no prototype in scope,
1143 and almost all targets want this behavior. But there are some old
1144 architectures which want this odd behavior. If you want to go
1145 through them all and fix them, please do. Modern gdbarch-style
1146 targets may find it convenient to use standard_coerce_float_to_double. */
1147 int
1148 default_coerce_float_to_double (struct type *formal, struct type *actual)
1149 {
1150 return formal == NULL;
1151 }
1152
1153
1154 /* Always coerce floats to doubles when there is no prototype in scope.
1155 If your architecture follows the standard type promotion rules for
1156 calling unprototyped functions, your gdbarch init function can pass
1157 this function to set_gdbarch_coerce_float_to_double to use its logic. */
1158 int
1159 standard_coerce_float_to_double (struct type *formal, struct type *actual)
1160 {
1161 return 1;
1162 }
1163
1164
1165 /* Perform the standard coercions that are specified
1166 for arguments to be passed to C functions.
1167
1168 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1169 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1170
1171 static value_ptr
1172 value_arg_coerce (arg, param_type, is_prototyped)
1173 value_ptr arg;
1174 struct type *param_type;
1175 int is_prototyped;
1176 {
1177 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1178 register struct type *type
1179 = param_type ? check_typedef (param_type) : arg_type;
1180
1181 switch (TYPE_CODE (type))
1182 {
1183 case TYPE_CODE_REF:
1184 if (TYPE_CODE (arg_type) != TYPE_CODE_REF)
1185 {
1186 arg = value_addr (arg);
1187 VALUE_TYPE (arg) = param_type;
1188 return arg;
1189 }
1190 break;
1191 case TYPE_CODE_INT:
1192 case TYPE_CODE_CHAR:
1193 case TYPE_CODE_BOOL:
1194 case TYPE_CODE_ENUM:
1195 /* If we don't have a prototype, coerce to integer type if necessary. */
1196 if (!is_prototyped)
1197 {
1198 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1199 type = builtin_type_int;
1200 }
1201 /* Currently all target ABIs require at least the width of an integer
1202 type for an argument. We may have to conditionalize the following
1203 type coercion for future targets. */
1204 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1205 type = builtin_type_int;
1206 break;
1207 case TYPE_CODE_FLT:
1208 /* FIXME: We should always convert floats to doubles in the
1209 non-prototyped case. As many debugging formats include
1210 no information about prototyping, we have to live with
1211 COERCE_FLOAT_TO_DOUBLE for now. */
1212 if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE (param_type, arg_type))
1213 {
1214 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1215 type = builtin_type_double;
1216 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1217 type = builtin_type_long_double;
1218 }
1219 break;
1220 case TYPE_CODE_FUNC:
1221 type = lookup_pointer_type (type);
1222 break;
1223 case TYPE_CODE_ARRAY:
1224 if (current_language->c_style_arrays)
1225 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1226 break;
1227 case TYPE_CODE_UNDEF:
1228 case TYPE_CODE_PTR:
1229 case TYPE_CODE_STRUCT:
1230 case TYPE_CODE_UNION:
1231 case TYPE_CODE_VOID:
1232 case TYPE_CODE_SET:
1233 case TYPE_CODE_RANGE:
1234 case TYPE_CODE_STRING:
1235 case TYPE_CODE_BITSTRING:
1236 case TYPE_CODE_ERROR:
1237 case TYPE_CODE_MEMBER:
1238 case TYPE_CODE_METHOD:
1239 case TYPE_CODE_COMPLEX:
1240 default:
1241 break;
1242 }
1243
1244 return value_cast (type, arg);
1245 }
1246
1247 /* Determine a function's address and its return type from its value.
1248 Calls error() if the function is not valid for calling. */
1249
1250 static CORE_ADDR
1251 find_function_addr (function, retval_type)
1252 value_ptr function;
1253 struct type **retval_type;
1254 {
1255 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1256 register enum type_code code = TYPE_CODE (ftype);
1257 struct type *value_type;
1258 CORE_ADDR funaddr;
1259
1260 /* If it's a member function, just look at the function
1261 part of it. */
1262
1263 /* Determine address to call. */
1264 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1265 {
1266 funaddr = VALUE_ADDRESS (function);
1267 value_type = TYPE_TARGET_TYPE (ftype);
1268 }
1269 else if (code == TYPE_CODE_PTR)
1270 {
1271 funaddr = value_as_pointer (function);
1272 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1273 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1274 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1275 {
1276 #ifdef CONVERT_FROM_FUNC_PTR_ADDR
1277 /* FIXME: This is a workaround for the unusual function
1278 pointer representation on the RS/6000, see comment
1279 in config/rs6000/tm-rs6000.h */
1280 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
1281 #endif
1282 value_type = TYPE_TARGET_TYPE (ftype);
1283 }
1284 else
1285 value_type = builtin_type_int;
1286 }
1287 else if (code == TYPE_CODE_INT)
1288 {
1289 /* Handle the case of functions lacking debugging info.
1290 Their values are characters since their addresses are char */
1291 if (TYPE_LENGTH (ftype) == 1)
1292 funaddr = value_as_pointer (value_addr (function));
1293 else
1294 /* Handle integer used as address of a function. */
1295 funaddr = (CORE_ADDR) value_as_long (function);
1296
1297 value_type = builtin_type_int;
1298 }
1299 else
1300 error ("Invalid data type for function to be called.");
1301
1302 *retval_type = value_type;
1303 return funaddr;
1304 }
1305
1306 /* All this stuff with a dummy frame may seem unnecessarily complicated
1307 (why not just save registers in GDB?). The purpose of pushing a dummy
1308 frame which looks just like a real frame is so that if you call a
1309 function and then hit a breakpoint (get a signal, etc), "backtrace"
1310 will look right. Whether the backtrace needs to actually show the
1311 stack at the time the inferior function was called is debatable, but
1312 it certainly needs to not display garbage. So if you are contemplating
1313 making dummy frames be different from normal frames, consider that. */
1314
1315 /* Perform a function call in the inferior.
1316 ARGS is a vector of values of arguments (NARGS of them).
1317 FUNCTION is a value, the function to be called.
1318 Returns a value representing what the function returned.
1319 May fail to return, if a breakpoint or signal is hit
1320 during the execution of the function.
1321
1322 ARGS is modified to contain coerced values. */
1323
1324 static value_ptr hand_function_call PARAMS ((value_ptr function, int nargs, value_ptr * args));
1325 static value_ptr
1326 hand_function_call (function, nargs, args)
1327 value_ptr function;
1328 int nargs;
1329 value_ptr *args;
1330 {
1331 register CORE_ADDR sp;
1332 register int i;
1333 int rc;
1334 CORE_ADDR start_sp;
1335 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1336 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1337 and remove any extra bytes which might exist because ULONGEST is
1338 bigger than REGISTER_SIZE.
1339
1340 NOTE: This is pretty wierd, as the call dummy is actually a
1341 sequence of instructions. But CISC machines will have
1342 to pack the instructions into REGISTER_SIZE units (and
1343 so will RISC machines for which INSTRUCTION_SIZE is not
1344 REGISTER_SIZE).
1345
1346 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
1347 target byte order. */
1348
1349 static ULONGEST *dummy;
1350 int sizeof_dummy1;
1351 char *dummy1;
1352 CORE_ADDR old_sp;
1353 struct type *value_type;
1354 unsigned char struct_return;
1355 CORE_ADDR struct_addr = 0;
1356 struct inferior_status *inf_status;
1357 struct cleanup *old_chain;
1358 CORE_ADDR funaddr;
1359 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
1360 CORE_ADDR real_pc;
1361 struct type *param_type = NULL;
1362 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
1363
1364 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1365 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1366 dummy1 = alloca (sizeof_dummy1);
1367 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1368
1369 if (!target_has_execution)
1370 noprocess ();
1371
1372 inf_status = save_inferior_status (1);
1373 old_chain = make_cleanup ((make_cleanup_func) restore_inferior_status,
1374 inf_status);
1375
1376 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1377 (and POP_FRAME for restoring them). (At least on most machines)
1378 they are saved on the stack in the inferior. */
1379 PUSH_DUMMY_FRAME;
1380
1381 old_sp = sp = read_sp ();
1382
1383 if (INNER_THAN (1, 2))
1384 {
1385 /* Stack grows down */
1386 sp -= sizeof_dummy1;
1387 start_sp = sp;
1388 }
1389 else
1390 {
1391 /* Stack grows up */
1392 start_sp = sp;
1393 sp += sizeof_dummy1;
1394 }
1395
1396 funaddr = find_function_addr (function, &value_type);
1397 CHECK_TYPEDEF (value_type);
1398
1399 {
1400 struct block *b = block_for_pc (funaddr);
1401 /* If compiled without -g, assume GCC 2. */
1402 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1403 }
1404
1405 /* Are we returning a value using a structure return or a normal
1406 value return? */
1407
1408 struct_return = using_struct_return (function, funaddr, value_type,
1409 using_gcc);
1410
1411 /* Create a call sequence customized for this function
1412 and the number of arguments for it. */
1413 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
1414 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1415 REGISTER_SIZE,
1416 (ULONGEST) dummy[i]);
1417
1418 #ifdef GDB_TARGET_IS_HPPA
1419 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1420 value_type, using_gcc);
1421 #else
1422 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1423 value_type, using_gcc);
1424 real_pc = start_sp;
1425 #endif
1426
1427 if (CALL_DUMMY_LOCATION == ON_STACK)
1428 {
1429 write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
1430 }
1431
1432 if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END)
1433 {
1434 /* Convex Unix prohibits executing in the stack segment. */
1435 /* Hope there is empty room at the top of the text segment. */
1436 extern CORE_ADDR text_end;
1437 static int checked = 0;
1438 if (!checked)
1439 for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp)
1440 if (read_memory_integer (start_sp, 1) != 0)
1441 error ("text segment full -- no place to put call");
1442 checked = 1;
1443 sp = old_sp;
1444 real_pc = text_end - sizeof_dummy1;
1445 write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1446 }
1447
1448 if (CALL_DUMMY_LOCATION == AFTER_TEXT_END)
1449 {
1450 extern CORE_ADDR text_end;
1451 int errcode;
1452 sp = old_sp;
1453 real_pc = text_end;
1454 errcode = target_write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1455 if (errcode != 0)
1456 error ("Cannot write text segment -- call_function failed");
1457 }
1458
1459 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
1460 {
1461 real_pc = funaddr;
1462 }
1463
1464 #ifdef lint
1465 sp = old_sp; /* It really is used, for some ifdef's... */
1466 #endif
1467
1468 if (nargs < TYPE_NFIELDS (ftype))
1469 error ("too few arguments in function call");
1470
1471 for (i = nargs - 1; i >= 0; i--)
1472 {
1473 /* If we're off the end of the known arguments, do the standard
1474 promotions. FIXME: if we had a prototype, this should only
1475 be allowed if ... were present. */
1476 if (i >= TYPE_NFIELDS (ftype))
1477 args[i] = value_arg_coerce (args[i], NULL, 0);
1478
1479 else
1480 {
1481 int is_prototyped = TYPE_FLAGS (ftype) & TYPE_FLAG_PROTOTYPED;
1482 param_type = TYPE_FIELD_TYPE (ftype, i);
1483
1484 args[i] = value_arg_coerce (args[i], param_type, is_prototyped);
1485 }
1486
1487 /*elz: this code is to handle the case in which the function to be called
1488 has a pointer to function as parameter and the corresponding actual argument
1489 is the address of a function and not a pointer to function variable.
1490 In aCC compiled code, the calls through pointers to functions (in the body
1491 of the function called by hand) are made via $$dyncall_external which
1492 requires some registers setting, this is taken care of if we call
1493 via a function pointer variable, but not via a function address.
1494 In cc this is not a problem. */
1495
1496 if (using_gcc == 0)
1497 if (param_type)
1498 /* if this parameter is a pointer to function */
1499 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
1500 if (TYPE_CODE (param_type->target_type) == TYPE_CODE_FUNC)
1501 /* elz: FIXME here should go the test about the compiler used
1502 to compile the target. We want to issue the error
1503 message only if the compiler used was HP's aCC.
1504 If we used HP's cc, then there is no problem and no need
1505 to return at this point */
1506 if (using_gcc == 0) /* && compiler == aCC */
1507 /* go see if the actual parameter is a variable of type
1508 pointer to function or just a function */
1509 if (args[i]->lval == not_lval)
1510 {
1511 char *arg_name;
1512 if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1513 error ("\
1514 You cannot use function <%s> as argument. \n\
1515 You must use a pointer to function type variable. Command ignored.", arg_name);
1516 }
1517 }
1518
1519 #if defined (REG_STRUCT_HAS_ADDR)
1520 {
1521 /* This is a machine like the sparc, where we may need to pass a pointer
1522 to the structure, not the structure itself. */
1523 for (i = nargs - 1; i >= 0; i--)
1524 {
1525 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1526 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1527 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1528 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1529 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1530 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1531 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1532 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1533 && TYPE_LENGTH (arg_type) > 8)
1534 )
1535 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1536 {
1537 CORE_ADDR addr;
1538 int len; /* = TYPE_LENGTH (arg_type); */
1539 int aligned_len;
1540 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1541 len = TYPE_LENGTH (arg_type);
1542
1543 #ifdef STACK_ALIGN
1544 /* MVS 11/22/96: I think at least some of this stack_align code is
1545 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1546 a target-defined manner. */
1547 aligned_len = STACK_ALIGN (len);
1548 #else
1549 aligned_len = len;
1550 #endif
1551 if (INNER_THAN (1, 2))
1552 {
1553 /* stack grows downward */
1554 sp -= aligned_len;
1555 }
1556 else
1557 {
1558 /* The stack grows up, so the address of the thing we push
1559 is the stack pointer before we push it. */
1560 addr = sp;
1561 }
1562 /* Push the structure. */
1563 write_memory (sp, VALUE_CONTENTS_ALL (args[i]), len);
1564 if (INNER_THAN (1, 2))
1565 {
1566 /* The stack grows down, so the address of the thing we push
1567 is the stack pointer after we push it. */
1568 addr = sp;
1569 }
1570 else
1571 {
1572 /* stack grows upward */
1573 sp += aligned_len;
1574 }
1575 /* The value we're going to pass is the address of the thing
1576 we just pushed. */
1577 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1578 (LONGEST) addr); */
1579 args[i] = value_from_longest (lookup_pointer_type (arg_type),
1580 (LONGEST) addr);
1581 }
1582 }
1583 }
1584 #endif /* REG_STRUCT_HAS_ADDR. */
1585
1586 /* Reserve space for the return structure to be written on the
1587 stack, if necessary */
1588
1589 if (struct_return)
1590 {
1591 int len = TYPE_LENGTH (value_type);
1592 #ifdef STACK_ALIGN
1593 /* MVS 11/22/96: I think at least some of this stack_align code is
1594 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1595 a target-defined manner. */
1596 len = STACK_ALIGN (len);
1597 #endif
1598 if (INNER_THAN (1, 2))
1599 {
1600 /* stack grows downward */
1601 sp -= len;
1602 struct_addr = sp;
1603 }
1604 else
1605 {
1606 /* stack grows upward */
1607 struct_addr = sp;
1608 sp += len;
1609 }
1610 }
1611
1612 /* elz: on HPPA no need for this extra alignment, maybe it is needed
1613 on other architectures. This is because all the alignment is taken care
1614 of in the above code (ifdef REG_STRUCT_HAS_ADDR) and in
1615 hppa_push_arguments */
1616 #ifndef NO_EXTRA_ALIGNMENT_NEEDED
1617
1618 #if defined(STACK_ALIGN)
1619 /* MVS 11/22/96: I think at least some of this stack_align code is
1620 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1621 a target-defined manner. */
1622 if (INNER_THAN (1, 2))
1623 {
1624 /* If stack grows down, we must leave a hole at the top. */
1625 int len = 0;
1626
1627 for (i = nargs - 1; i >= 0; i--)
1628 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1629 if (CALL_DUMMY_STACK_ADJUST_P)
1630 len += CALL_DUMMY_STACK_ADJUST;
1631 sp -= STACK_ALIGN (len) - len;
1632 }
1633 #endif /* STACK_ALIGN */
1634 #endif /* NO_EXTRA_ALIGNMENT_NEEDED */
1635
1636 sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
1637
1638 #ifdef PUSH_RETURN_ADDRESS /* for targets that use no CALL_DUMMY */
1639 /* There are a number of targets now which actually don't write any
1640 CALL_DUMMY instructions into the target, but instead just save the
1641 machine state, push the arguments, and jump directly to the callee
1642 function. Since this doesn't actually involve executing a JSR/BSR
1643 instruction, the return address must be set up by hand, either by
1644 pushing onto the stack or copying into a return-address register
1645 as appropriate. Formerly this has been done in PUSH_ARGUMENTS,
1646 but that's overloading its functionality a bit, so I'm making it
1647 explicit to do it here. */
1648 sp = PUSH_RETURN_ADDRESS (real_pc, sp);
1649 #endif /* PUSH_RETURN_ADDRESS */
1650
1651 #if defined(STACK_ALIGN)
1652 if (!INNER_THAN (1, 2))
1653 {
1654 /* If stack grows up, we must leave a hole at the bottom, note
1655 that sp already has been advanced for the arguments! */
1656 if (CALL_DUMMY_STACK_ADJUST_P)
1657 sp += CALL_DUMMY_STACK_ADJUST;
1658 sp = STACK_ALIGN (sp);
1659 }
1660 #endif /* STACK_ALIGN */
1661
1662 /* XXX This seems wrong. For stacks that grow down we shouldn't do
1663 anything here! */
1664 /* MVS 11/22/96: I think at least some of this stack_align code is
1665 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1666 a target-defined manner. */
1667 if (CALL_DUMMY_STACK_ADJUST_P)
1668 if (INNER_THAN (1, 2))
1669 {
1670 /* stack grows downward */
1671 sp -= CALL_DUMMY_STACK_ADJUST;
1672 }
1673
1674 /* Store the address at which the structure is supposed to be
1675 written. Note that this (and the code which reserved the space
1676 above) assumes that gcc was used to compile this function. Since
1677 it doesn't cost us anything but space and if the function is pcc
1678 it will ignore this value, we will make that assumption.
1679
1680 Also note that on some machines (like the sparc) pcc uses a
1681 convention like gcc's. */
1682
1683 if (struct_return)
1684 STORE_STRUCT_RETURN (struct_addr, sp);
1685
1686 /* Write the stack pointer. This is here because the statements above
1687 might fool with it. On SPARC, this write also stores the register
1688 window into the right place in the new stack frame, which otherwise
1689 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1690 write_sp (sp);
1691
1692 #ifdef SAVE_DUMMY_FRAME_TOS
1693 SAVE_DUMMY_FRAME_TOS (sp);
1694 #endif
1695
1696 {
1697 char retbuf[REGISTER_BYTES];
1698 char *name;
1699 struct symbol *symbol;
1700
1701 name = NULL;
1702 symbol = find_pc_function (funaddr);
1703 if (symbol)
1704 {
1705 name = SYMBOL_SOURCE_NAME (symbol);
1706 }
1707 else
1708 {
1709 /* Try the minimal symbols. */
1710 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1711
1712 if (msymbol)
1713 {
1714 name = SYMBOL_SOURCE_NAME (msymbol);
1715 }
1716 }
1717 if (name == NULL)
1718 {
1719 char format[80];
1720 sprintf (format, "at %s", local_hex_format ());
1721 name = alloca (80);
1722 /* FIXME-32x64: assumes funaddr fits in a long. */
1723 sprintf (name, format, (unsigned long) funaddr);
1724 }
1725
1726 /* Execute the stack dummy routine, calling FUNCTION.
1727 When it is done, discard the empty frame
1728 after storing the contents of all regs into retbuf. */
1729 rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
1730
1731 if (rc == 1)
1732 {
1733 /* We stopped inside the FUNCTION because of a random signal.
1734 Further execution of the FUNCTION is not allowed. */
1735
1736 if (unwind_on_signal_p)
1737 {
1738 /* The user wants the context restored. */
1739
1740 /* We must get back to the frame we were before the dummy call. */
1741 POP_FRAME;
1742
1743 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1744 a C++ name with arguments and stuff. */
1745 error ("\
1746 The program being debugged was signaled while in a function called from GDB.\n\
1747 GDB has restored the context to what it was before the call.\n\
1748 To change this behavior use \"set unwindonsignal off\"\n\
1749 Evaluation of the expression containing the function (%s) will be abandoned.",
1750 name);
1751 }
1752 else
1753 {
1754 /* The user wants to stay in the frame where we stopped (default).*/
1755
1756 /* If we did the cleanups, we would print a spurious error
1757 message (Unable to restore previously selected frame),
1758 would write the registers from the inf_status (which is
1759 wrong), and would do other wrong things. */
1760 discard_cleanups (old_chain);
1761 discard_inferior_status (inf_status);
1762
1763 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1764 a C++ name with arguments and stuff. */
1765 error ("\
1766 The program being debugged was signaled while in a function called from GDB.\n\
1767 GDB remains in the frame where the signal was received.\n\
1768 To change this behavior use \"set unwindonsignal on\"\n\
1769 Evaluation of the expression containing the function (%s) will be abandoned.",
1770 name);
1771 }
1772 }
1773
1774 if (rc == 2)
1775 {
1776 /* We hit a breakpoint inside the FUNCTION. */
1777
1778 /* If we did the cleanups, we would print a spurious error
1779 message (Unable to restore previously selected frame),
1780 would write the registers from the inf_status (which is
1781 wrong), and would do other wrong things. */
1782 discard_cleanups (old_chain);
1783 discard_inferior_status (inf_status);
1784
1785 /* The following error message used to say "The expression
1786 which contained the function call has been discarded." It
1787 is a hard concept to explain in a few words. Ideally, GDB
1788 would be able to resume evaluation of the expression when
1789 the function finally is done executing. Perhaps someday
1790 this will be implemented (it would not be easy). */
1791
1792 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1793 a C++ name with arguments and stuff. */
1794 error ("\
1795 The program being debugged stopped while in a function called from GDB.\n\
1796 When the function (%s) is done executing, GDB will silently\n\
1797 stop (instead of continuing to evaluate the expression containing\n\
1798 the function call).", name);
1799 }
1800
1801 /* If we get here the called FUNCTION run to completion. */
1802 do_cleanups (old_chain);
1803
1804 /* Figure out the value returned by the function. */
1805 /* elz: I defined this new macro for the hppa architecture only.
1806 this gives us a way to get the value returned by the function from the stack,
1807 at the same address we told the function to put it.
1808 We cannot assume on the pa that r28 still contains the address of the returned
1809 structure. Usually this will be overwritten by the callee.
1810 I don't know about other architectures, so I defined this macro
1811 */
1812
1813 #ifdef VALUE_RETURNED_FROM_STACK
1814 if (struct_return)
1815 return (value_ptr) VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1816 #endif
1817
1818 return value_being_returned (value_type, retbuf, struct_return);
1819 }
1820 }
1821
1822 value_ptr
1823 call_function_by_hand (function, nargs, args)
1824 value_ptr function;
1825 int nargs;
1826 value_ptr *args;
1827 {
1828 if (CALL_DUMMY_P)
1829 {
1830 return hand_function_call (function, nargs, args);
1831 }
1832 else
1833 {
1834 error ("Cannot invoke functions on this machine.");
1835 }
1836 }
1837 \f
1838
1839
1840 /* Create a value for an array by allocating space in the inferior, copying
1841 the data into that space, and then setting up an array value.
1842
1843 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1844 populated from the values passed in ELEMVEC.
1845
1846 The element type of the array is inherited from the type of the
1847 first element, and all elements must have the same size (though we
1848 don't currently enforce any restriction on their types). */
1849
1850 value_ptr
1851 value_array (lowbound, highbound, elemvec)
1852 int lowbound;
1853 int highbound;
1854 value_ptr *elemvec;
1855 {
1856 int nelem;
1857 int idx;
1858 unsigned int typelength;
1859 value_ptr val;
1860 struct type *rangetype;
1861 struct type *arraytype;
1862 CORE_ADDR addr;
1863
1864 /* Validate that the bounds are reasonable and that each of the elements
1865 have the same size. */
1866
1867 nelem = highbound - lowbound + 1;
1868 if (nelem <= 0)
1869 {
1870 error ("bad array bounds (%d, %d)", lowbound, highbound);
1871 }
1872 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1873 for (idx = 1; idx < nelem; idx++)
1874 {
1875 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1876 {
1877 error ("array elements must all be the same size");
1878 }
1879 }
1880
1881 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1882 lowbound, highbound);
1883 arraytype = create_array_type ((struct type *) NULL,
1884 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
1885
1886 if (!current_language->c_style_arrays)
1887 {
1888 val = allocate_value (arraytype);
1889 for (idx = 0; idx < nelem; idx++)
1890 {
1891 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1892 VALUE_CONTENTS_ALL (elemvec[idx]),
1893 typelength);
1894 }
1895 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1896 return val;
1897 }
1898
1899 /* Allocate space to store the array in the inferior, and then initialize
1900 it by copying in each element. FIXME: Is it worth it to create a
1901 local buffer in which to collect each value and then write all the
1902 bytes in one operation? */
1903
1904 addr = allocate_space_in_inferior (nelem * typelength);
1905 for (idx = 0; idx < nelem; idx++)
1906 {
1907 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1908 typelength);
1909 }
1910
1911 /* Create the array type and set up an array value to be evaluated lazily. */
1912
1913 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1914 return (val);
1915 }
1916
1917 /* Create a value for a string constant by allocating space in the inferior,
1918 copying the data into that space, and returning the address with type
1919 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1920 of characters.
1921 Note that string types are like array of char types with a lower bound of
1922 zero and an upper bound of LEN - 1. Also note that the string may contain
1923 embedded null bytes. */
1924
1925 value_ptr
1926 value_string (ptr, len)
1927 char *ptr;
1928 int len;
1929 {
1930 value_ptr val;
1931 int lowbound = current_language->string_lower_bound;
1932 struct type *rangetype = create_range_type ((struct type *) NULL,
1933 builtin_type_int,
1934 lowbound, len + lowbound - 1);
1935 struct type *stringtype
1936 = create_string_type ((struct type *) NULL, rangetype);
1937 CORE_ADDR addr;
1938
1939 if (current_language->c_style_arrays == 0)
1940 {
1941 val = allocate_value (stringtype);
1942 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1943 return val;
1944 }
1945
1946
1947 /* Allocate space to store the string in the inferior, and then
1948 copy LEN bytes from PTR in gdb to that address in the inferior. */
1949
1950 addr = allocate_space_in_inferior (len);
1951 write_memory (addr, ptr, len);
1952
1953 val = value_at_lazy (stringtype, addr, NULL);
1954 return (val);
1955 }
1956
1957 value_ptr
1958 value_bitstring (ptr, len)
1959 char *ptr;
1960 int len;
1961 {
1962 value_ptr val;
1963 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1964 0, len - 1);
1965 struct type *type = create_set_type ((struct type *) NULL, domain_type);
1966 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1967 val = allocate_value (type);
1968 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1969 return val;
1970 }
1971 \f
1972 /* See if we can pass arguments in T2 to a function which takes arguments
1973 of types T1. Both t1 and t2 are NULL-terminated vectors. If some
1974 arguments need coercion of some sort, then the coerced values are written
1975 into T2. Return value is 0 if the arguments could be matched, or the
1976 position at which they differ if not.
1977
1978 STATICP is nonzero if the T1 argument list came from a
1979 static member function.
1980
1981 For non-static member functions, we ignore the first argument,
1982 which is the type of the instance variable. This is because we want
1983 to handle calls with objects from derived classes. This is not
1984 entirely correct: we should actually check to make sure that a
1985 requested operation is type secure, shouldn't we? FIXME. */
1986
1987 static int
1988 typecmp (staticp, t1, t2)
1989 int staticp;
1990 struct type *t1[];
1991 value_ptr t2[];
1992 {
1993 int i;
1994
1995 if (t2 == 0)
1996 return 1;
1997 if (staticp && t1 == 0)
1998 return t2[1] != 0;
1999 if (t1 == 0)
2000 return 1;
2001 if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID)
2002 return 0;
2003 if (t1[!staticp] == 0)
2004 return 0;
2005 for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
2006 {
2007 struct type *tt1, *tt2;
2008 if (!t2[i])
2009 return i + 1;
2010 tt1 = check_typedef (t1[i]);
2011 tt2 = check_typedef (VALUE_TYPE (t2[i]));
2012 if (TYPE_CODE (tt1) == TYPE_CODE_REF
2013 /* We should be doing hairy argument matching, as below. */
2014 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
2015 {
2016 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
2017 t2[i] = value_coerce_array (t2[i]);
2018 else
2019 t2[i] = value_addr (t2[i]);
2020 continue;
2021 }
2022
2023 while (TYPE_CODE (tt1) == TYPE_CODE_PTR
2024 && (TYPE_CODE (tt2) == TYPE_CODE_ARRAY
2025 || TYPE_CODE (tt2) == TYPE_CODE_PTR))
2026 {
2027 tt1 = check_typedef (TYPE_TARGET_TYPE (tt1));
2028 tt2 = check_typedef (TYPE_TARGET_TYPE (tt2));
2029 }
2030 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
2031 continue;
2032 /* Array to pointer is a `trivial conversion' according to the ARM. */
2033
2034 /* We should be doing much hairier argument matching (see section 13.2
2035 of the ARM), but as a quick kludge, just check for the same type
2036 code. */
2037 if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
2038 return i + 1;
2039 }
2040 if (!t1[i])
2041 return 0;
2042 return t2[i] ? i + 1 : 0;
2043 }
2044
2045 /* Helper function used by value_struct_elt to recurse through baseclasses.
2046 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2047 and search in it assuming it has (class) type TYPE.
2048 If found, return value, else return NULL.
2049
2050 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
2051 look for a baseclass named NAME. */
2052
2053 static value_ptr
2054 search_struct_field (name, arg1, offset, type, looking_for_baseclass)
2055 char *name;
2056 register value_ptr arg1;
2057 int offset;
2058 register struct type *type;
2059 int looking_for_baseclass;
2060 {
2061 int i;
2062 int nbases = TYPE_N_BASECLASSES (type);
2063
2064 CHECK_TYPEDEF (type);
2065
2066 if (!looking_for_baseclass)
2067 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2068 {
2069 char *t_field_name = TYPE_FIELD_NAME (type, i);
2070
2071 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2072 {
2073 value_ptr v;
2074 if (TYPE_FIELD_STATIC (type, i))
2075 v = value_static_field (type, i);
2076 else
2077 v = value_primitive_field (arg1, offset, i, type);
2078 if (v == 0)
2079 error ("there is no field named %s", name);
2080 return v;
2081 }
2082
2083 if (t_field_name
2084 && (t_field_name[0] == '\0'
2085 || (TYPE_CODE (type) == TYPE_CODE_UNION
2086 && (strcmp_iw (t_field_name, "else") == 0))))
2087 {
2088 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2089 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2090 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2091 {
2092 /* Look for a match through the fields of an anonymous union,
2093 or anonymous struct. C++ provides anonymous unions.
2094
2095 In the GNU Chill implementation of variant record types,
2096 each <alternative field> has an (anonymous) union type,
2097 each member of the union represents a <variant alternative>.
2098 Each <variant alternative> is represented as a struct,
2099 with a member for each <variant field>. */
2100
2101 value_ptr v;
2102 int new_offset = offset;
2103
2104 /* This is pretty gross. In G++, the offset in an anonymous
2105 union is relative to the beginning of the enclosing struct.
2106 In the GNU Chill implementation of variant records,
2107 the bitpos is zero in an anonymous union field, so we
2108 have to add the offset of the union here. */
2109 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2110 || (TYPE_NFIELDS (field_type) > 0
2111 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2112 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2113
2114 v = search_struct_field (name, arg1, new_offset, field_type,
2115 looking_for_baseclass);
2116 if (v)
2117 return v;
2118 }
2119 }
2120 }
2121
2122 for (i = 0; i < nbases; i++)
2123 {
2124 value_ptr v;
2125 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2126 /* If we are looking for baseclasses, this is what we get when we
2127 hit them. But it could happen that the base part's member name
2128 is not yet filled in. */
2129 int found_baseclass = (looking_for_baseclass
2130 && TYPE_BASECLASS_NAME (type, i) != NULL
2131 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
2132
2133 if (BASETYPE_VIA_VIRTUAL (type, i))
2134 {
2135 int boffset;
2136 value_ptr v2 = allocate_value (basetype);
2137
2138 boffset = baseclass_offset (type, i,
2139 VALUE_CONTENTS (arg1) + offset,
2140 VALUE_ADDRESS (arg1)
2141 + VALUE_OFFSET (arg1) + offset);
2142 if (boffset == -1)
2143 error ("virtual baseclass botch");
2144
2145 /* The virtual base class pointer might have been clobbered by the
2146 user program. Make sure that it still points to a valid memory
2147 location. */
2148
2149 boffset += offset;
2150 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2151 {
2152 CORE_ADDR base_addr;
2153
2154 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2155 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2156 TYPE_LENGTH (basetype)) != 0)
2157 error ("virtual baseclass botch");
2158 VALUE_LVAL (v2) = lval_memory;
2159 VALUE_ADDRESS (v2) = base_addr;
2160 }
2161 else
2162 {
2163 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2164 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2165 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2166 if (VALUE_LAZY (arg1))
2167 VALUE_LAZY (v2) = 1;
2168 else
2169 memcpy (VALUE_CONTENTS_RAW (v2),
2170 VALUE_CONTENTS_RAW (arg1) + boffset,
2171 TYPE_LENGTH (basetype));
2172 }
2173
2174 if (found_baseclass)
2175 return v2;
2176 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2177 looking_for_baseclass);
2178 }
2179 else if (found_baseclass)
2180 v = value_primitive_field (arg1, offset, i, type);
2181 else
2182 v = search_struct_field (name, arg1,
2183 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2184 basetype, looking_for_baseclass);
2185 if (v)
2186 return v;
2187 }
2188 return NULL;
2189 }
2190
2191
2192 /* Return the offset (in bytes) of the virtual base of type BASETYPE
2193 * in an object pointed to by VALADDR (on the host), assumed to be of
2194 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2195 * looking (in case VALADDR is the contents of an enclosing object).
2196 *
2197 * This routine recurses on the primary base of the derived class because
2198 * the virtual base entries of the primary base appear before the other
2199 * virtual base entries.
2200 *
2201 * If the virtual base is not found, a negative integer is returned.
2202 * The magnitude of the negative integer is the number of entries in
2203 * the virtual table to skip over (entries corresponding to various
2204 * ancestral classes in the chain of primary bases).
2205 *
2206 * Important: This assumes the HP / Taligent C++ runtime
2207 * conventions. Use baseclass_offset() instead to deal with g++
2208 * conventions. */
2209
2210 void
2211 find_rt_vbase_offset (type, basetype, valaddr, offset, boffset_p, skip_p)
2212 struct type *type;
2213 struct type *basetype;
2214 char *valaddr;
2215 int offset;
2216 int *boffset_p;
2217 int *skip_p;
2218 {
2219 int boffset; /* offset of virtual base */
2220 int index; /* displacement to use in virtual table */
2221 int skip;
2222
2223 value_ptr vp;
2224 CORE_ADDR vtbl; /* the virtual table pointer */
2225 struct type *pbc; /* the primary base class */
2226
2227 /* Look for the virtual base recursively in the primary base, first.
2228 * This is because the derived class object and its primary base
2229 * subobject share the primary virtual table. */
2230
2231 boffset = 0;
2232 pbc = TYPE_PRIMARY_BASE (type);
2233 if (pbc)
2234 {
2235 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2236 if (skip < 0)
2237 {
2238 *boffset_p = boffset;
2239 *skip_p = -1;
2240 return;
2241 }
2242 }
2243 else
2244 skip = 0;
2245
2246
2247 /* Find the index of the virtual base according to HP/Taligent
2248 runtime spec. (Depth-first, left-to-right.) */
2249 index = virtual_base_index_skip_primaries (basetype, type);
2250
2251 if (index < 0)
2252 {
2253 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2254 *boffset_p = 0;
2255 return;
2256 }
2257
2258 /* pai: FIXME -- 32x64 possible problem */
2259 /* First word (4 bytes) in object layout is the vtable pointer */
2260 vtbl = *(CORE_ADDR *) (valaddr + offset);
2261
2262 /* Before the constructor is invoked, things are usually zero'd out. */
2263 if (vtbl == 0)
2264 error ("Couldn't find virtual table -- object may not be constructed yet.");
2265
2266
2267 /* Find virtual base's offset -- jump over entries for primary base
2268 * ancestors, then use the index computed above. But also adjust by
2269 * HP_ACC_VBASE_START for the vtable slots before the start of the
2270 * virtual base entries. Offset is negative -- virtual base entries
2271 * appear _before_ the address point of the virtual table. */
2272
2273 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
2274 & use long type */
2275
2276 /* epstein : FIXME -- added param for overlay section. May not be correct */
2277 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
2278 boffset = value_as_long (vp);
2279 *skip_p = -1;
2280 *boffset_p = boffset;
2281 return;
2282 }
2283
2284
2285 /* Helper function used by value_struct_elt to recurse through baseclasses.
2286 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2287 and search in it assuming it has (class) type TYPE.
2288 If found, return value, else if name matched and args not return (value)-1,
2289 else return NULL. */
2290
2291 static value_ptr
2292 search_struct_method (name, arg1p, args, offset, static_memfuncp, type)
2293 char *name;
2294 register value_ptr *arg1p, *args;
2295 int offset, *static_memfuncp;
2296 register struct type *type;
2297 {
2298 int i;
2299 value_ptr v;
2300 int name_matched = 0;
2301 char dem_opname[64];
2302
2303 CHECK_TYPEDEF (type);
2304 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2305 {
2306 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2307 /* FIXME! May need to check for ARM demangling here */
2308 if (strncmp (t_field_name, "__", 2) == 0 ||
2309 strncmp (t_field_name, "op", 2) == 0 ||
2310 strncmp (t_field_name, "type", 4) == 0)
2311 {
2312 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2313 t_field_name = dem_opname;
2314 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2315 t_field_name = dem_opname;
2316 }
2317 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2318 {
2319 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2320 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2321 name_matched = 1;
2322
2323 if (j > 0 && args == 0)
2324 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
2325 while (j >= 0)
2326 {
2327 if (TYPE_FN_FIELD_STUB (f, j))
2328 check_stub_method (type, i, j);
2329 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2330 TYPE_FN_FIELD_ARGS (f, j), args))
2331 {
2332 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2333 return value_virtual_fn_field (arg1p, f, j, type, offset);
2334 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2335 *static_memfuncp = 1;
2336 v = value_fn_field (arg1p, f, j, type, offset);
2337 if (v != NULL)
2338 return v;
2339 }
2340 j--;
2341 }
2342 }
2343 }
2344
2345 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2346 {
2347 int base_offset;
2348
2349 if (BASETYPE_VIA_VIRTUAL (type, i))
2350 {
2351 if (TYPE_HAS_VTABLE (type))
2352 {
2353 /* HP aCC compiled type, search for virtual base offset
2354 according to HP/Taligent runtime spec. */
2355 int skip;
2356 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2357 VALUE_CONTENTS_ALL (*arg1p),
2358 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2359 &base_offset, &skip);
2360 if (skip >= 0)
2361 error ("Virtual base class offset not found in vtable");
2362 }
2363 else
2364 {
2365 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2366 char *base_valaddr;
2367
2368 /* The virtual base class pointer might have been clobbered by the
2369 user program. Make sure that it still points to a valid memory
2370 location. */
2371
2372 if (offset < 0 || offset >= TYPE_LENGTH (type))
2373 {
2374 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2375 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2376 + VALUE_OFFSET (*arg1p) + offset,
2377 base_valaddr,
2378 TYPE_LENGTH (baseclass)) != 0)
2379 error ("virtual baseclass botch");
2380 }
2381 else
2382 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2383
2384 base_offset =
2385 baseclass_offset (type, i, base_valaddr,
2386 VALUE_ADDRESS (*arg1p)
2387 + VALUE_OFFSET (*arg1p) + offset);
2388 if (base_offset == -1)
2389 error ("virtual baseclass botch");
2390 }
2391 }
2392 else
2393 {
2394 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2395 }
2396 v = search_struct_method (name, arg1p, args, base_offset + offset,
2397 static_memfuncp, TYPE_BASECLASS (type, i));
2398 if (v == (value_ptr) - 1)
2399 {
2400 name_matched = 1;
2401 }
2402 else if (v)
2403 {
2404 /* FIXME-bothner: Why is this commented out? Why is it here? */
2405 /* *arg1p = arg1_tmp; */
2406 return v;
2407 }
2408 }
2409 if (name_matched)
2410 return (value_ptr) - 1;
2411 else
2412 return NULL;
2413 }
2414
2415 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2416 extract the component named NAME from the ultimate target structure/union
2417 and return it as a value with its appropriate type.
2418 ERR is used in the error message if *ARGP's type is wrong.
2419
2420 C++: ARGS is a list of argument types to aid in the selection of
2421 an appropriate method. Also, handle derived types.
2422
2423 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2424 where the truthvalue of whether the function that was resolved was
2425 a static member function or not is stored.
2426
2427 ERR is an error message to be printed in case the field is not found. */
2428
2429 value_ptr
2430 value_struct_elt (argp, args, name, static_memfuncp, err)
2431 register value_ptr *argp, *args;
2432 char *name;
2433 int *static_memfuncp;
2434 char *err;
2435 {
2436 register struct type *t;
2437 value_ptr v;
2438
2439 COERCE_ARRAY (*argp);
2440
2441 t = check_typedef (VALUE_TYPE (*argp));
2442
2443 /* Follow pointers until we get to a non-pointer. */
2444
2445 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2446 {
2447 *argp = value_ind (*argp);
2448 /* Don't coerce fn pointer to fn and then back again! */
2449 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2450 COERCE_ARRAY (*argp);
2451 t = check_typedef (VALUE_TYPE (*argp));
2452 }
2453
2454 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2455 error ("not implemented: member type in value_struct_elt");
2456
2457 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2458 && TYPE_CODE (t) != TYPE_CODE_UNION)
2459 error ("Attempt to extract a component of a value that is not a %s.", err);
2460
2461 /* Assume it's not, unless we see that it is. */
2462 if (static_memfuncp)
2463 *static_memfuncp = 0;
2464
2465 if (!args)
2466 {
2467 /* if there are no arguments ...do this... */
2468
2469 /* Try as a field first, because if we succeed, there
2470 is less work to be done. */
2471 v = search_struct_field (name, *argp, 0, t, 0);
2472 if (v)
2473 return v;
2474
2475 /* C++: If it was not found as a data field, then try to
2476 return it as a pointer to a method. */
2477
2478 if (destructor_name_p (name, t))
2479 error ("Cannot get value of destructor");
2480
2481 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2482
2483 if (v == (value_ptr) - 1)
2484 error ("Cannot take address of a method");
2485 else if (v == 0)
2486 {
2487 if (TYPE_NFN_FIELDS (t))
2488 error ("There is no member or method named %s.", name);
2489 else
2490 error ("There is no member named %s.", name);
2491 }
2492 return v;
2493 }
2494
2495 if (destructor_name_p (name, t))
2496 {
2497 if (!args[1])
2498 {
2499 /* Destructors are a special case. */
2500 int m_index, f_index;
2501
2502 v = NULL;
2503 if (get_destructor_fn_field (t, &m_index, &f_index))
2504 {
2505 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2506 f_index, NULL, 0);
2507 }
2508 if (v == NULL)
2509 error ("could not find destructor function named %s.", name);
2510 else
2511 return v;
2512 }
2513 else
2514 {
2515 error ("destructor should not have any argument");
2516 }
2517 }
2518 else
2519 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2520
2521 if (v == (value_ptr) - 1)
2522 {
2523 error ("Argument list of %s mismatch with component in the structure.", name);
2524 }
2525 else if (v == 0)
2526 {
2527 /* See if user tried to invoke data as function. If so,
2528 hand it back. If it's not callable (i.e., a pointer to function),
2529 gdb should give an error. */
2530 v = search_struct_field (name, *argp, 0, t, 0);
2531 }
2532
2533 if (!v)
2534 error ("Structure has no component named %s.", name);
2535 return v;
2536 }
2537
2538 /* Search through the methods of an object (and its bases)
2539 * to find a specified method. Return the pointer to the
2540 * fn_field list of overloaded instances.
2541 * Helper function for value_find_oload_list.
2542 * ARGP is a pointer to a pointer to a value (the object)
2543 * METHOD is a string containing the method name
2544 * OFFSET is the offset within the value
2545 * STATIC_MEMFUNCP is set if the method is static
2546 * TYPE is the assumed type of the object
2547 * NUM_FNS is the number of overloaded instances
2548 * BASETYPE is set to the actual type of the subobject where the method is found
2549 * BOFFSET is the offset of the base subobject where the method is found */
2550
2551 static struct fn_field *
2552 find_method_list (argp, method, offset, static_memfuncp, type, num_fns, basetype, boffset)
2553 value_ptr *argp;
2554 char *method;
2555 int offset;
2556 int *static_memfuncp;
2557 struct type *type;
2558 int *num_fns;
2559 struct type **basetype;
2560 int *boffset;
2561 {
2562 int i;
2563 struct fn_field *f;
2564 CHECK_TYPEDEF (type);
2565
2566 *num_fns = 0;
2567
2568 /* First check in object itself */
2569 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2570 {
2571 /* pai: FIXME What about operators and type conversions? */
2572 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2573 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2574 {
2575 *num_fns = TYPE_FN_FIELDLIST_LENGTH (type, i);
2576 *basetype = type;
2577 *boffset = offset;
2578 return TYPE_FN_FIELDLIST1 (type, i);
2579 }
2580 }
2581
2582 /* Not found in object, check in base subobjects */
2583 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2584 {
2585 int base_offset;
2586 if (BASETYPE_VIA_VIRTUAL (type, i))
2587 {
2588 if (TYPE_HAS_VTABLE (type))
2589 {
2590 /* HP aCC compiled type, search for virtual base offset
2591 * according to HP/Taligent runtime spec. */
2592 int skip;
2593 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2594 VALUE_CONTENTS_ALL (*argp),
2595 offset + VALUE_EMBEDDED_OFFSET (*argp),
2596 &base_offset, &skip);
2597 if (skip >= 0)
2598 error ("Virtual base class offset not found in vtable");
2599 }
2600 else
2601 {
2602 /* probably g++ runtime model */
2603 base_offset = VALUE_OFFSET (*argp) + offset;
2604 base_offset =
2605 baseclass_offset (type, i,
2606 VALUE_CONTENTS (*argp) + base_offset,
2607 VALUE_ADDRESS (*argp) + base_offset);
2608 if (base_offset == -1)
2609 error ("virtual baseclass botch");
2610 }
2611 }
2612 else
2613 /* non-virtual base, simply use bit position from debug info */
2614 {
2615 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2616 }
2617 f = find_method_list (argp, method, base_offset + offset,
2618 static_memfuncp, TYPE_BASECLASS (type, i), num_fns, basetype, boffset);
2619 if (f)
2620 return f;
2621 }
2622 return NULL;
2623 }
2624
2625 /* Return the list of overloaded methods of a specified name.
2626 * ARGP is a pointer to a pointer to a value (the object)
2627 * METHOD is the method name
2628 * OFFSET is the offset within the value contents
2629 * STATIC_MEMFUNCP is set if the method is static
2630 * NUM_FNS is the number of overloaded instances
2631 * BASETYPE is set to the type of the base subobject that defines the method
2632 * BOFFSET is the offset of the base subobject which defines the method */
2633
2634 struct fn_field *
2635 value_find_oload_method_list (argp, method, offset, static_memfuncp, num_fns, basetype, boffset)
2636 value_ptr *argp;
2637 char *method;
2638 int offset;
2639 int *static_memfuncp;
2640 int *num_fns;
2641 struct type **basetype;
2642 int *boffset;
2643 {
2644 struct type *t;
2645
2646 t = check_typedef (VALUE_TYPE (*argp));
2647
2648 /* code snarfed from value_struct_elt */
2649 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2650 {
2651 *argp = value_ind (*argp);
2652 /* Don't coerce fn pointer to fn and then back again! */
2653 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2654 COERCE_ARRAY (*argp);
2655 t = check_typedef (VALUE_TYPE (*argp));
2656 }
2657
2658 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2659 error ("Not implemented: member type in value_find_oload_lis");
2660
2661 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2662 && TYPE_CODE (t) != TYPE_CODE_UNION)
2663 error ("Attempt to extract a component of a value that is not a struct or union");
2664
2665 /* Assume it's not static, unless we see that it is. */
2666 if (static_memfuncp)
2667 *static_memfuncp = 0;
2668
2669 return find_method_list (argp, method, 0, static_memfuncp, t, num_fns, basetype, boffset);
2670
2671 }
2672
2673 /* Given an array of argument types (ARGTYPES) (which includes an
2674 entry for "this" in the case of C++ methods), the number of
2675 arguments NARGS, the NAME of a function whether it's a method or
2676 not (METHOD), and the degree of laxness (LAX) in conforming to
2677 overload resolution rules in ANSI C++, find the best function that
2678 matches on the argument types according to the overload resolution
2679 rules.
2680
2681 In the case of class methods, the parameter OBJ is an object value
2682 in which to search for overloaded methods.
2683
2684 In the case of non-method functions, the parameter FSYM is a symbol
2685 corresponding to one of the overloaded functions.
2686
2687 Return value is an integer: 0 -> good match, 10 -> debugger applied
2688 non-standard coercions, 100 -> incompatible.
2689
2690 If a method is being searched for, VALP will hold the value.
2691 If a non-method is being searched for, SYMP will hold the symbol for it.
2692
2693 If a method is being searched for, and it is a static method,
2694 then STATICP will point to a non-zero value.
2695
2696 Note: This function does *not* check the value of
2697 overload_resolution. Caller must check it to see whether overload
2698 resolution is permitted.
2699 */
2700
2701 int
2702 find_overload_match (arg_types, nargs, name, method, lax, obj, fsym, valp, symp, staticp)
2703 struct type **arg_types;
2704 int nargs;
2705 char *name;
2706 int method;
2707 int lax;
2708 value_ptr obj;
2709 struct symbol *fsym;
2710 value_ptr *valp;
2711 struct symbol **symp;
2712 int *staticp;
2713 {
2714 int nparms;
2715 struct type **parm_types;
2716 int champ_nparms = 0;
2717
2718 short oload_champ = -1; /* Index of best overloaded function */
2719 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2720 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2721 short oload_ambig_champ = -1; /* 2nd contender for best match */
2722 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2723 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2724
2725 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2726 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
2727
2728 value_ptr temp = obj;
2729 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
2730 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2731 int num_fns = 0; /* Number of overloaded instances being considered */
2732 struct type *basetype = NULL;
2733 int boffset;
2734 register int jj;
2735 register int ix;
2736
2737 char *obj_type_name = NULL;
2738 char *func_name = NULL;
2739
2740 /* Get the list of overloaded methods or functions */
2741 if (method)
2742 {
2743 int i;
2744 int len;
2745 struct type *domain;
2746 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2747 /* Hack: evaluate_subexp_standard often passes in a pointer
2748 value rather than the object itself, so try again */
2749 if ((!obj_type_name || !*obj_type_name) &&
2750 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2751 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
2752
2753 fns_ptr = value_find_oload_method_list (&temp, name, 0,
2754 staticp,
2755 &num_fns,
2756 &basetype, &boffset);
2757 if (!fns_ptr || !num_fns)
2758 error ("Couldn't find method %s%s%s",
2759 obj_type_name,
2760 (obj_type_name && *obj_type_name) ? "::" : "",
2761 name);
2762 domain = TYPE_DOMAIN_TYPE (fns_ptr[0].type);
2763 len = TYPE_NFN_FIELDS (domain);
2764 /* NOTE: dan/2000-03-10: This stuff is for STABS, which won't
2765 give us the info we need directly in the types. We have to
2766 use the method stub conversion to get it. Be aware that this
2767 is by no means perfect, and if you use STABS, please move to
2768 DWARF-2, or something like it, because trying to improve
2769 overloading using STABS is really a waste of time. */
2770 for (i = 0; i < len; i++)
2771 {
2772 int j;
2773 struct fn_field *f = TYPE_FN_FIELDLIST1 (domain, i);
2774 int len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
2775
2776 for (j = 0; j < len2; j++)
2777 {
2778 if (TYPE_FN_FIELD_STUB (f, j))
2779 check_stub_method (domain, i, j);
2780 }
2781 }
2782 }
2783 else
2784 {
2785 int i = -1;
2786 func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);
2787
2788 /* If the name is NULL this must be a C-style function.
2789 Just return the same symbol. */
2790 if (!func_name)
2791 {
2792 *symp = fsym;
2793 return 0;
2794 }
2795
2796 oload_syms = make_symbol_overload_list (fsym);
2797 while (oload_syms[++i])
2798 num_fns++;
2799 if (!num_fns)
2800 error ("Couldn't find function %s", func_name);
2801 }
2802
2803 oload_champ_bv = NULL;
2804
2805 /* Consider each candidate in turn */
2806 for (ix = 0; ix < num_fns; ix++)
2807 {
2808 if (method)
2809 {
2810 /* For static member functions, we won't have a this pointer, but nothing
2811 else seems to handle them right now, so we just pretend ourselves */
2812 nparms=0;
2813
2814 if (TYPE_FN_FIELD_ARGS(fns_ptr,ix))
2815 {
2816 while (TYPE_CODE(TYPE_FN_FIELD_ARGS(fns_ptr,ix)[nparms]) != TYPE_CODE_VOID)
2817 nparms++;
2818 }
2819 }
2820 else
2821 {
2822 /* If it's not a method, this is the proper place */
2823 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2824 }
2825
2826 /* Prepare array of parameter types */
2827 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2828 for (jj = 0; jj < nparms; jj++)
2829 parm_types[jj] = (method
2830 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj])
2831 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
2832
2833 /* Compare parameter types to supplied argument types */
2834 bv = rank_function (parm_types, nparms, arg_types, nargs);
2835
2836 if (!oload_champ_bv)
2837 {
2838 oload_champ_bv = bv;
2839 oload_champ = 0;
2840 champ_nparms = nparms;
2841 }
2842 else
2843 /* See whether current candidate is better or worse than previous best */
2844 switch (compare_badness (bv, oload_champ_bv))
2845 {
2846 case 0:
2847 oload_ambiguous = 1; /* top two contenders are equally good */
2848 oload_ambig_champ = ix;
2849 break;
2850 case 1:
2851 oload_ambiguous = 2; /* incomparable top contenders */
2852 oload_ambig_champ = ix;
2853 break;
2854 case 2:
2855 oload_champ_bv = bv; /* new champion, record details */
2856 oload_ambiguous = 0;
2857 oload_champ = ix;
2858 oload_ambig_champ = -1;
2859 champ_nparms = nparms;
2860 break;
2861 case 3:
2862 default:
2863 break;
2864 }
2865 free (parm_types);
2866 #ifdef DEBUG_OLOAD
2867 /* FIXME: cagney/2000-03-12: Send the output to gdb_stderr. See
2868 comments above about adding a ``set debug'' command. */
2869 if (method)
2870 printf ("Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2871 else
2872 printf ("Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
2873 for (jj = 0; jj < nargs; jj++)
2874 printf ("...Badness @ %d : %d\n", jj, bv->rank[jj]);
2875 printf ("Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2876 #endif
2877 } /* end loop over all candidates */
2878
2879 /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
2880 if they have the exact same goodness. This is because there is no
2881 way to differentiate based on return type, which we need to in
2882 cases like overloads of .begin() <It's both const and non-const> */
2883 #if 0
2884 if (oload_ambiguous)
2885 {
2886 if (method)
2887 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2888 obj_type_name,
2889 (obj_type_name && *obj_type_name) ? "::" : "",
2890 name);
2891 else
2892 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2893 func_name);
2894 }
2895 #endif
2896
2897 /* Check how bad the best match is */
2898 for (ix = 1; ix <= nargs; ix++)
2899 {
2900 switch (oload_champ_bv->rank[ix])
2901 {
2902 case 10:
2903 oload_non_standard = 1; /* non-standard type conversions needed */
2904 break;
2905 case 100:
2906 oload_incompatible = 1; /* truly mismatched types */
2907 break;
2908 }
2909 }
2910 if (oload_incompatible)
2911 {
2912 if (method)
2913 error ("Cannot resolve method %s%s%s to any overloaded instance",
2914 obj_type_name,
2915 (obj_type_name && *obj_type_name) ? "::" : "",
2916 name);
2917 else
2918 error ("Cannot resolve function %s to any overloaded instance",
2919 func_name);
2920 }
2921 else if (oload_non_standard)
2922 {
2923 if (method)
2924 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2925 obj_type_name,
2926 (obj_type_name && *obj_type_name) ? "::" : "",
2927 name);
2928 else
2929 warning ("Using non-standard conversion to match function %s to supplied arguments",
2930 func_name);
2931 }
2932
2933 if (method)
2934 {
2935 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2936 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2937 else
2938 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2939 }
2940 else
2941 {
2942 *symp = oload_syms[oload_champ];
2943 free (func_name);
2944 }
2945
2946 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2947 }
2948
2949 /* C++: return 1 is NAME is a legitimate name for the destructor
2950 of type TYPE. If TYPE does not have a destructor, or
2951 if NAME is inappropriate for TYPE, an error is signaled. */
2952 int
2953 destructor_name_p (name, type)
2954 const char *name;
2955 const struct type *type;
2956 {
2957 /* destructors are a special case. */
2958
2959 if (name[0] == '~')
2960 {
2961 char *dname = type_name_no_tag (type);
2962 char *cp = strchr (dname, '<');
2963 unsigned int len;
2964
2965 /* Do not compare the template part for template classes. */
2966 if (cp == NULL)
2967 len = strlen (dname);
2968 else
2969 len = cp - dname;
2970 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2971 error ("name of destructor must equal name of class");
2972 else
2973 return 1;
2974 }
2975 return 0;
2976 }
2977
2978 /* Helper function for check_field: Given TYPE, a structure/union,
2979 return 1 if the component named NAME from the ultimate
2980 target structure/union is defined, otherwise, return 0. */
2981
2982 static int
2983 check_field_in (type, name)
2984 register struct type *type;
2985 const char *name;
2986 {
2987 register int i;
2988
2989 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2990 {
2991 char *t_field_name = TYPE_FIELD_NAME (type, i);
2992 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2993 return 1;
2994 }
2995
2996 /* C++: If it was not found as a data field, then try to
2997 return it as a pointer to a method. */
2998
2999 /* Destructors are a special case. */
3000 if (destructor_name_p (name, type))
3001 {
3002 int m_index, f_index;
3003
3004 return get_destructor_fn_field (type, &m_index, &f_index);
3005 }
3006
3007 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
3008 {
3009 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
3010 return 1;
3011 }
3012
3013 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
3014 if (check_field_in (TYPE_BASECLASS (type, i), name))
3015 return 1;
3016
3017 return 0;
3018 }
3019
3020
3021 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
3022 return 1 if the component named NAME from the ultimate
3023 target structure/union is defined, otherwise, return 0. */
3024
3025 int
3026 check_field (arg1, name)
3027 register value_ptr arg1;
3028 const char *name;
3029 {
3030 register struct type *t;
3031
3032 COERCE_ARRAY (arg1);
3033
3034 t = VALUE_TYPE (arg1);
3035
3036 /* Follow pointers until we get to a non-pointer. */
3037
3038 for (;;)
3039 {
3040 CHECK_TYPEDEF (t);
3041 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
3042 break;
3043 t = TYPE_TARGET_TYPE (t);
3044 }
3045
3046 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
3047 error ("not implemented: member type in check_field");
3048
3049 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3050 && TYPE_CODE (t) != TYPE_CODE_UNION)
3051 error ("Internal error: `this' is not an aggregate");
3052
3053 return check_field_in (t, name);
3054 }
3055
3056 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3057 return the address of this member as a "pointer to member"
3058 type. If INTYPE is non-null, then it will be the type
3059 of the member we are looking for. This will help us resolve
3060 "pointers to member functions". This function is used
3061 to resolve user expressions of the form "DOMAIN::NAME". */
3062
3063 value_ptr
3064 value_struct_elt_for_reference (domain, offset, curtype, name, intype)
3065 struct type *domain, *curtype, *intype;
3066 int offset;
3067 char *name;
3068 {
3069 register struct type *t = curtype;
3070 register int i;
3071 value_ptr v;
3072
3073 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3074 && TYPE_CODE (t) != TYPE_CODE_UNION)
3075 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
3076
3077 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3078 {
3079 char *t_field_name = TYPE_FIELD_NAME (t, i);
3080
3081 if (t_field_name && STREQ (t_field_name, name))
3082 {
3083 if (TYPE_FIELD_STATIC (t, i))
3084 {
3085 v = value_static_field (t, i);
3086 if (v == NULL)
3087 error ("Internal error: could not find static variable %s",
3088 name);
3089 return v;
3090 }
3091 if (TYPE_FIELD_PACKED (t, i))
3092 error ("pointers to bitfield members not allowed");
3093
3094 return value_from_longest
3095 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
3096 domain)),
3097 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3098 }
3099 }
3100
3101 /* C++: If it was not found as a data field, then try to
3102 return it as a pointer to a method. */
3103
3104 /* Destructors are a special case. */
3105 if (destructor_name_p (name, t))
3106 {
3107 error ("member pointers to destructors not implemented yet");
3108 }
3109
3110 /* Perform all necessary dereferencing. */
3111 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3112 intype = TYPE_TARGET_TYPE (intype);
3113
3114 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3115 {
3116 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3117 char dem_opname[64];
3118
3119 if (strncmp (t_field_name, "__", 2) == 0 ||
3120 strncmp (t_field_name, "op", 2) == 0 ||
3121 strncmp (t_field_name, "type", 4) == 0)
3122 {
3123 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
3124 t_field_name = dem_opname;
3125 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
3126 t_field_name = dem_opname;
3127 }
3128 if (t_field_name && STREQ (t_field_name, name))
3129 {
3130 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
3131 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3132
3133 if (intype == 0 && j > 1)
3134 error ("non-unique member `%s' requires type instantiation", name);
3135 if (intype)
3136 {
3137 while (j--)
3138 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
3139 break;
3140 if (j < 0)
3141 error ("no member function matches that type instantiation");
3142 }
3143 else
3144 j = 0;
3145
3146 if (TYPE_FN_FIELD_STUB (f, j))
3147 check_stub_method (t, i, j);
3148 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3149 {
3150 return value_from_longest
3151 (lookup_reference_type
3152 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3153 domain)),
3154 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
3155 }
3156 else
3157 {
3158 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3159 0, VAR_NAMESPACE, 0, NULL);
3160 if (s == NULL)
3161 {
3162 v = 0;
3163 }
3164 else
3165 {
3166 v = read_var_value (s, 0);
3167 #if 0
3168 VALUE_TYPE (v) = lookup_reference_type
3169 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3170 domain));
3171 #endif
3172 }
3173 return v;
3174 }
3175 }
3176 }
3177 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3178 {
3179 value_ptr v;
3180 int base_offset;
3181
3182 if (BASETYPE_VIA_VIRTUAL (t, i))
3183 base_offset = 0;
3184 else
3185 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3186 v = value_struct_elt_for_reference (domain,
3187 offset + base_offset,
3188 TYPE_BASECLASS (t, i),
3189 name,
3190 intype);
3191 if (v)
3192 return v;
3193 }
3194 return 0;
3195 }
3196
3197
3198 /* Find the real run-time type of a value using RTTI.
3199 * V is a pointer to the value.
3200 * A pointer to the struct type entry of the run-time type
3201 * is returneed.
3202 * FULL is a flag that is set only if the value V includes
3203 * the entire contents of an object of the RTTI type.
3204 * TOP is the offset to the top of the enclosing object of
3205 * the real run-time type. This offset may be for the embedded
3206 * object, or for the enclosing object of V.
3207 * USING_ENC is the flag that distinguishes the two cases.
3208 * If it is 1, then the offset is for the enclosing object,
3209 * otherwise for the embedded object.
3210 *
3211 * This currently works only for RTTI information generated
3212 * by the HP ANSI C++ compiler (aCC). g++ today (1997-06-10)
3213 * does not appear to support RTTI. This function returns a
3214 * NULL value for objects in the g++ runtime model. */
3215
3216 struct type *
3217 value_rtti_type (v, full, top, using_enc)
3218 value_ptr v;
3219 int *full;
3220 int *top;
3221 int *using_enc;
3222 {
3223 struct type *known_type;
3224 struct type *rtti_type;
3225 CORE_ADDR coreptr;
3226 value_ptr vp;
3227 int using_enclosing = 0;
3228 long top_offset = 0;
3229 char rtti_type_name[256];
3230
3231 if (full)
3232 *full = 0;
3233 if (top)
3234 *top = -1;
3235 if (using_enc)
3236 *using_enc = 0;
3237
3238 /* Get declared type */
3239 known_type = VALUE_TYPE (v);
3240 CHECK_TYPEDEF (known_type);
3241 /* RTTI works only or class objects */
3242 if (TYPE_CODE (known_type) != TYPE_CODE_CLASS)
3243 return NULL;
3244
3245 /* If neither the declared type nor the enclosing type of the
3246 * value structure has a HP ANSI C++ style virtual table,
3247 * we can't do anything. */
3248 if (!TYPE_HAS_VTABLE (known_type))
3249 {
3250 known_type = VALUE_ENCLOSING_TYPE (v);
3251 CHECK_TYPEDEF (known_type);
3252 if ((TYPE_CODE (known_type) != TYPE_CODE_CLASS) ||
3253 !TYPE_HAS_VTABLE (known_type))
3254 return NULL; /* No RTTI, or not HP-compiled types */
3255 CHECK_TYPEDEF (known_type);
3256 using_enclosing = 1;
3257 }
3258
3259 if (using_enclosing && using_enc)
3260 *using_enc = 1;
3261
3262 /* First get the virtual table address */
3263 coreptr = *(CORE_ADDR *) ((VALUE_CONTENTS_ALL (v))
3264 + VALUE_OFFSET (v)
3265 + (using_enclosing ? 0 : VALUE_EMBEDDED_OFFSET (v)));
3266 if (coreptr == 0)
3267 return NULL; /* return silently -- maybe called on gdb-generated value */
3268
3269 /* Fetch the top offset of the object */
3270 /* FIXME possible 32x64 problem with pointer size & arithmetic */
3271 vp = value_at (builtin_type_int,
3272 coreptr + 4 * HP_ACC_TOP_OFFSET_OFFSET,
3273 VALUE_BFD_SECTION (v));
3274 top_offset = value_as_long (vp);
3275 if (top)
3276 *top = top_offset;
3277
3278 /* Fetch the typeinfo pointer */
3279 /* FIXME possible 32x64 problem with pointer size & arithmetic */
3280 vp = value_at (builtin_type_int, coreptr + 4 * HP_ACC_TYPEINFO_OFFSET, VALUE_BFD_SECTION (v));
3281 /* Indirect through the typeinfo pointer and retrieve the pointer
3282 * to the string name */
3283 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
3284 if (!coreptr)
3285 error ("Retrieved null typeinfo pointer in trying to determine run-time type");
3286 vp = value_at (builtin_type_int, coreptr + 4, VALUE_BFD_SECTION (v)); /* 4 -> offset of name field */
3287 /* FIXME possible 32x64 problem */
3288
3289 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
3290
3291 read_memory_string (coreptr, rtti_type_name, 256);
3292
3293 if (strlen (rtti_type_name) == 0)
3294 error ("Retrieved null type name from typeinfo");
3295
3296 /* search for type */
3297 rtti_type = lookup_typename (rtti_type_name, (struct block *) 0, 1);
3298
3299 if (!rtti_type)
3300 error ("Could not find run-time type: invalid type name %s in typeinfo??", rtti_type_name);
3301 CHECK_TYPEDEF (rtti_type);
3302
3303 #if 0 /* debugging */
3304 printf ("RTTI type name %s, tag %s, full? %d\n", TYPE_NAME (rtti_type), TYPE_TAG_NAME (rtti_type), full ? *full : -1);
3305 #endif
3306
3307 /* Check whether we have the entire object */
3308 if (full /* Non-null pointer passed */
3309
3310 &&
3311 /* Either we checked on the whole object in hand and found the
3312 top offset to be zero */
3313 (((top_offset == 0) &&
3314 using_enclosing &&
3315 TYPE_LENGTH (known_type) == TYPE_LENGTH (rtti_type))
3316 ||
3317 /* Or we checked on the embedded object and top offset was the
3318 same as the embedded offset */
3319 ((top_offset == VALUE_EMBEDDED_OFFSET (v)) &&
3320 !using_enclosing &&
3321 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (v)) == TYPE_LENGTH (rtti_type))))
3322
3323 *full = 1;
3324
3325 return rtti_type;
3326 }
3327
3328 /* Given a pointer value V, find the real (RTTI) type
3329 of the object it points to.
3330 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3331 and refer to the values computed for the object pointed to. */
3332
3333 struct type *
3334 value_rtti_target_type (v, full, top, using_enc)
3335 value_ptr v;
3336 int *full;
3337 int *top;
3338 int *using_enc;
3339 {
3340 value_ptr target;
3341
3342 target = value_ind (v);
3343
3344 return value_rtti_type (target, full, top, using_enc);
3345 }
3346
3347 /* Given a value pointed to by ARGP, check its real run-time type, and
3348 if that is different from the enclosing type, create a new value
3349 using the real run-time type as the enclosing type (and of the same
3350 type as ARGP) and return it, with the embedded offset adjusted to
3351 be the correct offset to the enclosed object
3352 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3353 parameters, computed by value_rtti_type(). If these are available,
3354 they can be supplied and a second call to value_rtti_type() is avoided.
3355 (Pass RTYPE == NULL if they're not available */
3356
3357 value_ptr
3358 value_full_object (argp, rtype, xfull, xtop, xusing_enc)
3359 value_ptr argp;
3360 struct type *rtype;
3361 int xfull;
3362 int xtop;
3363 int xusing_enc;
3364
3365 {
3366 struct type *real_type;
3367 int full = 0;
3368 int top = -1;
3369 int using_enc = 0;
3370 value_ptr new_val;
3371
3372 if (rtype)
3373 {
3374 real_type = rtype;
3375 full = xfull;
3376 top = xtop;
3377 using_enc = xusing_enc;
3378 }
3379 else
3380 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3381
3382 /* If no RTTI data, or if object is already complete, do nothing */
3383 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3384 return argp;
3385
3386 /* If we have the full object, but for some reason the enclosing
3387 type is wrong, set it *//* pai: FIXME -- sounds iffy */
3388 if (full)
3389 {
3390 VALUE_ENCLOSING_TYPE (argp) = real_type;
3391 return argp;
3392 }
3393
3394 /* Check if object is in memory */
3395 if (VALUE_LVAL (argp) != lval_memory)
3396 {
3397 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
3398
3399 return argp;
3400 }
3401
3402 /* All other cases -- retrieve the complete object */
3403 /* Go back by the computed top_offset from the beginning of the object,
3404 adjusting for the embedded offset of argp if that's what value_rtti_type
3405 used for its computation. */
3406 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
3407 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3408 VALUE_BFD_SECTION (argp));
3409 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3410 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3411 return new_val;
3412 }
3413
3414
3415
3416
3417 /* C++: return the value of the class instance variable, if one exists.
3418 Flag COMPLAIN signals an error if the request is made in an
3419 inappropriate context. */
3420
3421 value_ptr
3422 value_of_this (complain)
3423 int complain;
3424 {
3425 struct symbol *func, *sym;
3426 struct block *b;
3427 int i;
3428 static const char funny_this[] = "this";
3429 value_ptr this;
3430
3431 if (selected_frame == 0)
3432 {
3433 if (complain)
3434 error ("no frame selected");
3435 else
3436 return 0;
3437 }
3438
3439 func = get_frame_function (selected_frame);
3440 if (!func)
3441 {
3442 if (complain)
3443 error ("no `this' in nameless context");
3444 else
3445 return 0;
3446 }
3447
3448 b = SYMBOL_BLOCK_VALUE (func);
3449 i = BLOCK_NSYMS (b);
3450 if (i <= 0)
3451 {
3452 if (complain)
3453 error ("no args, no `this'");
3454 else
3455 return 0;
3456 }
3457
3458 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3459 symbol instead of the LOC_ARG one (if both exist). */
3460 sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE);
3461 if (sym == NULL)
3462 {
3463 if (complain)
3464 error ("current stack frame not in method");
3465 else
3466 return NULL;
3467 }
3468
3469 this = read_var_value (sym, selected_frame);
3470 if (this == 0 && complain)
3471 error ("`this' argument at unknown address");
3472 return this;
3473 }
3474
3475 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3476 long, starting at LOWBOUND. The result has the same lower bound as
3477 the original ARRAY. */
3478
3479 value_ptr
3480 value_slice (array, lowbound, length)
3481 value_ptr array;
3482 int lowbound, length;
3483 {
3484 struct type *slice_range_type, *slice_type, *range_type;
3485 LONGEST lowerbound, upperbound, offset;
3486 value_ptr slice;
3487 struct type *array_type;
3488 array_type = check_typedef (VALUE_TYPE (array));
3489 COERCE_VARYING_ARRAY (array, array_type);
3490 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3491 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3492 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3493 error ("cannot take slice of non-array");
3494 range_type = TYPE_INDEX_TYPE (array_type);
3495 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3496 error ("slice from bad array or bitstring");
3497 if (lowbound < lowerbound || length < 0
3498 || lowbound + length - 1 > upperbound
3499 /* Chill allows zero-length strings but not arrays. */
3500 || (current_language->la_language == language_chill
3501 && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY))
3502 error ("slice out of range");
3503 /* FIXME-type-allocation: need a way to free this type when we are
3504 done with it. */
3505 slice_range_type = create_range_type ((struct type *) NULL,
3506 TYPE_TARGET_TYPE (range_type),
3507 lowbound, lowbound + length - 1);
3508 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3509 {
3510 int i;
3511 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
3512 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3513 slice = value_zero (slice_type, not_lval);
3514 for (i = 0; i < length; i++)
3515 {
3516 int element = value_bit_index (array_type,
3517 VALUE_CONTENTS (array),
3518 lowbound + i);
3519 if (element < 0)
3520 error ("internal error accessing bitstring");
3521 else if (element > 0)
3522 {
3523 int j = i % TARGET_CHAR_BIT;
3524 if (BITS_BIG_ENDIAN)
3525 j = TARGET_CHAR_BIT - 1 - j;
3526 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3527 }
3528 }
3529 /* We should set the address, bitssize, and bitspos, so the clice
3530 can be used on the LHS, but that may require extensions to
3531 value_assign. For now, just leave as a non_lval. FIXME. */
3532 }
3533 else
3534 {
3535 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3536 offset
3537 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3538 slice_type = create_array_type ((struct type *) NULL, element_type,
3539 slice_range_type);
3540 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3541 slice = allocate_value (slice_type);
3542 if (VALUE_LAZY (array))
3543 VALUE_LAZY (slice) = 1;
3544 else
3545 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3546 TYPE_LENGTH (slice_type));
3547 if (VALUE_LVAL (array) == lval_internalvar)
3548 VALUE_LVAL (slice) = lval_internalvar_component;
3549 else
3550 VALUE_LVAL (slice) = VALUE_LVAL (array);
3551 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3552 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3553 }
3554 return slice;
3555 }
3556
3557 /* Assuming chill_varying_type (VARRAY) is true, return an equivalent
3558 value as a fixed-length array. */
3559
3560 value_ptr
3561 varying_to_slice (varray)
3562 value_ptr varray;
3563 {
3564 struct type *vtype = check_typedef (VALUE_TYPE (varray));
3565 LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
3566 VALUE_CONTENTS (varray)
3567 + TYPE_FIELD_BITPOS (vtype, 0) / 8);
3568 return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
3569 }
3570
3571 /* Create a value for a FORTRAN complex number. Currently most of
3572 the time values are coerced to COMPLEX*16 (i.e. a complex number
3573 composed of 2 doubles. This really should be a smarter routine
3574 that figures out precision inteligently as opposed to assuming
3575 doubles. FIXME: fmb */
3576
3577 value_ptr
3578 value_literal_complex (arg1, arg2, type)
3579 value_ptr arg1;
3580 value_ptr arg2;
3581 struct type *type;
3582 {
3583 register value_ptr val;
3584 struct type *real_type = TYPE_TARGET_TYPE (type);
3585
3586 val = allocate_value (type);
3587 arg1 = value_cast (real_type, arg1);
3588 arg2 = value_cast (real_type, arg2);
3589
3590 memcpy (VALUE_CONTENTS_RAW (val),
3591 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3592 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3593 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3594 return val;
3595 }
3596
3597 /* Cast a value into the appropriate complex data type. */
3598
3599 static value_ptr
3600 cast_into_complex (type, val)
3601 struct type *type;
3602 register value_ptr val;
3603 {
3604 struct type *real_type = TYPE_TARGET_TYPE (type);
3605 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3606 {
3607 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
3608 value_ptr re_val = allocate_value (val_real_type);
3609 value_ptr im_val = allocate_value (val_real_type);
3610
3611 memcpy (VALUE_CONTENTS_RAW (re_val),
3612 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3613 memcpy (VALUE_CONTENTS_RAW (im_val),
3614 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
3615 TYPE_LENGTH (val_real_type));
3616
3617 return value_literal_complex (re_val, im_val, type);
3618 }
3619 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3620 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3621 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3622 else
3623 error ("cannot cast non-number to complex");
3624 }
3625
3626 void
3627 _initialize_valops ()
3628 {
3629 #if 0
3630 add_show_from_set
3631 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
3632 "Set automatic abandonment of expressions upon failure.",
3633 &setlist),
3634 &showlist);
3635 #endif
3636
3637 add_show_from_set
3638 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
3639 "Set overload resolution in evaluating C++ functions.",
3640 &setlist),
3641 &showlist);
3642 overload_resolution = 1;
3643
3644 add_show_from_set (
3645 add_set_cmd ("unwindonsignal", no_class, var_boolean,
3646 (char *) &unwind_on_signal_p,
3647 "Set unwinding of stack if a signal is received while in a call dummy.\n\
3648 The unwindonsignal lets the user determine what gdb should do if a signal\n\
3649 is received while in a function called from gdb (call dummy). If set, gdb\n\
3650 unwinds the stack and restore the context to what as it was before the call.\n\
3651 The default is to stop in the frame where the signal was received.", &setlist),
3652 &showlist);
3653 }