From branch. Bump VERSION number.
[binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 87, 89, 91, 92, 93, 94, 95, 96, 97, 1998
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcore.h"
29 #include "target.h"
30 #include "demangle.h"
31 #include "language.h"
32 #include "gdbcmd.h"
33
34 #include <errno.h>
35 #include "gdb_string.h"
36
37 /* Flag indicating HP compilers were used; needed to correctly handle some
38 value operations with HP aCC code/runtime. */
39 extern int hp_som_som_object_present;
40
41 extern int overload_debug;
42 /* Local functions. */
43
44 static int typecmp PARAMS ((int staticp, struct type * t1[], value_ptr t2[]));
45
46 static CORE_ADDR find_function_addr PARAMS ((value_ptr, struct type **));
47 static value_ptr value_arg_coerce PARAMS ((value_ptr, struct type *, int));
48
49
50 static CORE_ADDR value_push PARAMS ((CORE_ADDR, value_ptr));
51
52 static value_ptr search_struct_field PARAMS ((char *, value_ptr, int,
53 struct type *, int));
54
55 static value_ptr search_struct_method PARAMS ((char *, value_ptr *,
56 value_ptr *,
57 int, int *, struct type *));
58
59 static int check_field_in PARAMS ((struct type *, const char *));
60
61 static CORE_ADDR allocate_space_in_inferior PARAMS ((int));
62
63 static value_ptr cast_into_complex PARAMS ((struct type *, value_ptr));
64
65 static struct fn_field *find_method_list PARAMS ((value_ptr * argp, char *method, int offset, int *static_memfuncp, struct type * type, int *num_fns, struct type ** basetype, int *boffset));
66
67 void _initialize_valops PARAMS ((void));
68
69 #define VALUE_SUBSTRING_START(VAL) VALUE_FRAME(VAL)
70
71 /* Flag for whether we want to abandon failed expression evals by default. */
72
73 #if 0
74 static int auto_abandon = 0;
75 #endif
76
77 int overload_resolution = 0;
78
79 /* This boolean tells what gdb should do if a signal is received while in
80 a function called from gdb (call dummy). If set, gdb unwinds the stack
81 and restore the context to what as it was before the call.
82 The default is to stop in the frame where the signal was received. */
83
84 int unwind_on_signal_p = 0;
85 \f
86
87
88 /* Find the address of function name NAME in the inferior. */
89
90 value_ptr
91 find_function_in_inferior (name)
92 char *name;
93 {
94 register struct symbol *sym;
95 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
96 if (sym != NULL)
97 {
98 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
99 {
100 error ("\"%s\" exists in this program but is not a function.",
101 name);
102 }
103 return value_of_variable (sym, NULL);
104 }
105 else
106 {
107 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
108 if (msymbol != NULL)
109 {
110 struct type *type;
111 CORE_ADDR maddr;
112 type = lookup_pointer_type (builtin_type_char);
113 type = lookup_function_type (type);
114 type = lookup_pointer_type (type);
115 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
116 return value_from_pointer (type, maddr);
117 }
118 else
119 {
120 if (!target_has_execution)
121 error ("evaluation of this expression requires the target program to be active");
122 else
123 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
124 }
125 }
126 }
127
128 /* Allocate NBYTES of space in the inferior using the inferior's malloc
129 and return a value that is a pointer to the allocated space. */
130
131 value_ptr
132 value_allocate_space_in_inferior (len)
133 int len;
134 {
135 value_ptr blocklen;
136 register value_ptr val = find_function_in_inferior ("malloc");
137
138 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
139 val = call_function_by_hand (val, 1, &blocklen);
140 if (value_logical_not (val))
141 {
142 if (!target_has_execution)
143 error ("No memory available to program now: you need to start the target first");
144 else
145 error ("No memory available to program: call to malloc failed");
146 }
147 return val;
148 }
149
150 static CORE_ADDR
151 allocate_space_in_inferior (len)
152 int len;
153 {
154 return value_as_long (value_allocate_space_in_inferior (len));
155 }
156
157 /* Cast value ARG2 to type TYPE and return as a value.
158 More general than a C cast: accepts any two types of the same length,
159 and if ARG2 is an lvalue it can be cast into anything at all. */
160 /* In C++, casts may change pointer or object representations. */
161
162 value_ptr
163 value_cast (type, arg2)
164 struct type *type;
165 register value_ptr arg2;
166 {
167 register enum type_code code1;
168 register enum type_code code2;
169 register int scalar;
170 struct type *type2;
171
172 int convert_to_boolean = 0;
173
174 if (VALUE_TYPE (arg2) == type)
175 return arg2;
176
177 CHECK_TYPEDEF (type);
178 code1 = TYPE_CODE (type);
179 COERCE_REF (arg2);
180 type2 = check_typedef (VALUE_TYPE (arg2));
181
182 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
183 is treated like a cast to (TYPE [N])OBJECT,
184 where N is sizeof(OBJECT)/sizeof(TYPE). */
185 if (code1 == TYPE_CODE_ARRAY)
186 {
187 struct type *element_type = TYPE_TARGET_TYPE (type);
188 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
189 if (element_length > 0
190 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
191 {
192 struct type *range_type = TYPE_INDEX_TYPE (type);
193 int val_length = TYPE_LENGTH (type2);
194 LONGEST low_bound, high_bound, new_length;
195 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
196 low_bound = 0, high_bound = 0;
197 new_length = val_length / element_length;
198 if (val_length % element_length != 0)
199 warning ("array element type size does not divide object size in cast");
200 /* FIXME-type-allocation: need a way to free this type when we are
201 done with it. */
202 range_type = create_range_type ((struct type *) NULL,
203 TYPE_TARGET_TYPE (range_type),
204 low_bound,
205 new_length + low_bound - 1);
206 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
207 element_type, range_type);
208 return arg2;
209 }
210 }
211
212 if (current_language->c_style_arrays
213 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
214 arg2 = value_coerce_array (arg2);
215
216 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
217 arg2 = value_coerce_function (arg2);
218
219 type2 = check_typedef (VALUE_TYPE (arg2));
220 COERCE_VARYING_ARRAY (arg2, type2);
221 code2 = TYPE_CODE (type2);
222
223 if (code1 == TYPE_CODE_COMPLEX)
224 return cast_into_complex (type, arg2);
225 if (code1 == TYPE_CODE_BOOL)
226 {
227 code1 = TYPE_CODE_INT;
228 convert_to_boolean = 1;
229 }
230 if (code1 == TYPE_CODE_CHAR)
231 code1 = TYPE_CODE_INT;
232 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
233 code2 = TYPE_CODE_INT;
234
235 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
236 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
237
238 if (code1 == TYPE_CODE_STRUCT
239 && code2 == TYPE_CODE_STRUCT
240 && TYPE_NAME (type) != 0)
241 {
242 /* Look in the type of the source to see if it contains the
243 type of the target as a superclass. If so, we'll need to
244 offset the object in addition to changing its type. */
245 value_ptr v = search_struct_field (type_name_no_tag (type),
246 arg2, 0, type2, 1);
247 if (v)
248 {
249 VALUE_TYPE (v) = type;
250 return v;
251 }
252 }
253 if (code1 == TYPE_CODE_FLT && scalar)
254 return value_from_double (type, value_as_double (arg2));
255 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
256 || code1 == TYPE_CODE_RANGE)
257 && (scalar || code2 == TYPE_CODE_PTR))
258 {
259 LONGEST longest;
260
261 if (hp_som_som_object_present && /* if target compiled by HP aCC */
262 (code2 == TYPE_CODE_PTR))
263 {
264 unsigned int *ptr;
265 value_ptr retvalp;
266
267 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
268 {
269 /* With HP aCC, pointers to data members have a bias */
270 case TYPE_CODE_MEMBER:
271 retvalp = value_from_longest (type, value_as_long (arg2));
272 ptr = (unsigned int *) VALUE_CONTENTS (retvalp); /* force evaluation */
273 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
274 return retvalp;
275
276 /* While pointers to methods don't really point to a function */
277 case TYPE_CODE_METHOD:
278 error ("Pointers to methods not supported with HP aCC");
279
280 default:
281 break; /* fall out and go to normal handling */
282 }
283 }
284 longest = value_as_long (arg2);
285 return value_from_longest (type, convert_to_boolean ? (LONGEST) (longest ? 1 : 0) : longest);
286 }
287 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
288 {
289 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
290 {
291 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
292 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
293 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
294 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
295 && !value_logical_not (arg2))
296 {
297 value_ptr v;
298
299 /* Look in the type of the source to see if it contains the
300 type of the target as a superclass. If so, we'll need to
301 offset the pointer rather than just change its type. */
302 if (TYPE_NAME (t1) != NULL)
303 {
304 v = search_struct_field (type_name_no_tag (t1),
305 value_ind (arg2), 0, t2, 1);
306 if (v)
307 {
308 v = value_addr (v);
309 VALUE_TYPE (v) = type;
310 return v;
311 }
312 }
313
314 /* Look in the type of the target to see if it contains the
315 type of the source as a superclass. If so, we'll need to
316 offset the pointer rather than just change its type.
317 FIXME: This fails silently with virtual inheritance. */
318 if (TYPE_NAME (t2) != NULL)
319 {
320 v = search_struct_field (type_name_no_tag (t2),
321 value_zero (t1, not_lval), 0, t1, 1);
322 if (v)
323 {
324 value_ptr v2 = value_ind (arg2);
325 VALUE_ADDRESS (v2) -= VALUE_ADDRESS (v)
326 + VALUE_OFFSET (v);
327
328 /* JYG: adjust the new pointer value and
329 embedded offset. */
330 v2->aligner.contents[0] -= VALUE_EMBEDDED_OFFSET (v);
331 VALUE_EMBEDDED_OFFSET (v2) = 0;
332
333 v2 = value_addr (v2);
334 VALUE_TYPE (v2) = type;
335 return v2;
336 }
337 }
338 }
339 /* No superclass found, just fall through to change ptr type. */
340 }
341 VALUE_TYPE (arg2) = type;
342 VALUE_ENCLOSING_TYPE (arg2) = type; /* pai: chk_val */
343 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
344 return arg2;
345 }
346 else if (chill_varying_type (type))
347 {
348 struct type *range1, *range2, *eltype1, *eltype2;
349 value_ptr val;
350 int count1, count2;
351 LONGEST low_bound, high_bound;
352 char *valaddr, *valaddr_data;
353 /* For lint warning about eltype2 possibly uninitialized: */
354 eltype2 = NULL;
355 if (code2 == TYPE_CODE_BITSTRING)
356 error ("not implemented: converting bitstring to varying type");
357 if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING)
358 || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))),
359 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)),
360 (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2)
361 /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ )))
362 error ("Invalid conversion to varying type");
363 range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0);
364 range2 = TYPE_FIELD_TYPE (type2, 0);
365 if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0)
366 count1 = -1;
367 else
368 count1 = high_bound - low_bound + 1;
369 if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0)
370 count1 = -1, count2 = 0; /* To force error before */
371 else
372 count2 = high_bound - low_bound + 1;
373 if (count2 > count1)
374 error ("target varying type is too small");
375 val = allocate_value (type);
376 valaddr = VALUE_CONTENTS_RAW (val);
377 valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8;
378 /* Set val's __var_length field to count2. */
379 store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)),
380 count2);
381 /* Set the __var_data field to count2 elements copied from arg2. */
382 memcpy (valaddr_data, VALUE_CONTENTS (arg2),
383 count2 * TYPE_LENGTH (eltype2));
384 /* Zero the rest of the __var_data field of val. */
385 memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0',
386 (count1 - count2) * TYPE_LENGTH (eltype2));
387 return val;
388 }
389 else if (VALUE_LVAL (arg2) == lval_memory)
390 {
391 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
392 VALUE_BFD_SECTION (arg2));
393 }
394 else if (code1 == TYPE_CODE_VOID)
395 {
396 return value_zero (builtin_type_void, not_lval);
397 }
398 else
399 {
400 error ("Invalid cast.");
401 return 0;
402 }
403 }
404
405 /* Create a value of type TYPE that is zero, and return it. */
406
407 value_ptr
408 value_zero (type, lv)
409 struct type *type;
410 enum lval_type lv;
411 {
412 register value_ptr val = allocate_value (type);
413
414 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
415 VALUE_LVAL (val) = lv;
416
417 return val;
418 }
419
420 /* Return a value with type TYPE located at ADDR.
421
422 Call value_at only if the data needs to be fetched immediately;
423 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
424 value_at_lazy instead. value_at_lazy simply records the address of
425 the data and sets the lazy-evaluation-required flag. The lazy flag
426 is tested in the VALUE_CONTENTS macro, which is used if and when
427 the contents are actually required.
428
429 Note: value_at does *NOT* handle embedded offsets; perform such
430 adjustments before or after calling it. */
431
432 value_ptr
433 value_at (type, addr, sect)
434 struct type *type;
435 CORE_ADDR addr;
436 asection *sect;
437 {
438 register value_ptr val;
439
440 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
441 error ("Attempt to dereference a generic pointer.");
442
443 val = allocate_value (type);
444
445 if (GDB_TARGET_IS_D10V
446 && TYPE_CODE (type) == TYPE_CODE_PTR
447 && TYPE_TARGET_TYPE (type)
448 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
449 {
450 /* pointer to function */
451 unsigned long num;
452 unsigned short snum;
453 snum = read_memory_unsigned_integer (addr, 2);
454 num = D10V_MAKE_IADDR (snum);
455 store_address (VALUE_CONTENTS_RAW (val), 4, num);
456 }
457 else if (GDB_TARGET_IS_D10V
458 && TYPE_CODE (type) == TYPE_CODE_PTR)
459 {
460 /* pointer to data */
461 unsigned long num;
462 unsigned short snum;
463 snum = read_memory_unsigned_integer (addr, 2);
464 num = D10V_MAKE_DADDR (snum);
465 store_address (VALUE_CONTENTS_RAW (val), 4, num);
466 }
467 else
468 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type));
469
470 VALUE_LVAL (val) = lval_memory;
471 VALUE_ADDRESS (val) = addr;
472 VALUE_BFD_SECTION (val) = sect;
473
474 return val;
475 }
476
477 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
478
479 value_ptr
480 value_at_lazy (type, addr, sect)
481 struct type *type;
482 CORE_ADDR addr;
483 asection *sect;
484 {
485 register value_ptr val;
486
487 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
488 error ("Attempt to dereference a generic pointer.");
489
490 val = allocate_value (type);
491
492 VALUE_LVAL (val) = lval_memory;
493 VALUE_ADDRESS (val) = addr;
494 VALUE_LAZY (val) = 1;
495 VALUE_BFD_SECTION (val) = sect;
496
497 return val;
498 }
499
500 /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
501 if the current data for a variable needs to be loaded into
502 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
503 clears the lazy flag to indicate that the data in the buffer is valid.
504
505 If the value is zero-length, we avoid calling read_memory, which would
506 abort. We mark the value as fetched anyway -- all 0 bytes of it.
507
508 This function returns a value because it is used in the VALUE_CONTENTS
509 macro as part of an expression, where a void would not work. The
510 value is ignored. */
511
512 int
513 value_fetch_lazy (val)
514 register value_ptr val;
515 {
516 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
517 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
518
519 struct type *type = VALUE_TYPE (val);
520 if (GDB_TARGET_IS_D10V
521 && TYPE_CODE (type) == TYPE_CODE_PTR
522 && TYPE_TARGET_TYPE (type)
523 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
524 {
525 /* pointer to function */
526 unsigned long num;
527 unsigned short snum;
528 snum = read_memory_unsigned_integer (addr, 2);
529 num = D10V_MAKE_IADDR (snum);
530 store_address (VALUE_CONTENTS_RAW (val), 4, num);
531 }
532 else if (GDB_TARGET_IS_D10V
533 && TYPE_CODE (type) == TYPE_CODE_PTR)
534 {
535 /* pointer to data */
536 unsigned long num;
537 unsigned short snum;
538 snum = read_memory_unsigned_integer (addr, 2);
539 num = D10V_MAKE_DADDR (snum);
540 store_address (VALUE_CONTENTS_RAW (val), 4, num);
541 }
542 else if (length)
543 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length);
544
545 VALUE_LAZY (val) = 0;
546 return 0;
547 }
548
549
550 /* Store the contents of FROMVAL into the location of TOVAL.
551 Return a new value with the location of TOVAL and contents of FROMVAL. */
552
553 value_ptr
554 value_assign (toval, fromval)
555 register value_ptr toval, fromval;
556 {
557 register struct type *type;
558 register value_ptr val;
559 char raw_buffer[MAX_REGISTER_RAW_SIZE];
560 int use_buffer = 0;
561
562 if (!toval->modifiable)
563 error ("Left operand of assignment is not a modifiable lvalue.");
564
565 COERCE_REF (toval);
566
567 type = VALUE_TYPE (toval);
568 if (VALUE_LVAL (toval) != lval_internalvar)
569 fromval = value_cast (type, fromval);
570 else
571 COERCE_ARRAY (fromval);
572 CHECK_TYPEDEF (type);
573
574 /* If TOVAL is a special machine register requiring conversion
575 of program values to a special raw format,
576 convert FROMVAL's contents now, with result in `raw_buffer',
577 and set USE_BUFFER to the number of bytes to write. */
578
579 if (VALUE_REGNO (toval) >= 0)
580 {
581 int regno = VALUE_REGNO (toval);
582 if (REGISTER_CONVERTIBLE (regno))
583 {
584 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
585 REGISTER_CONVERT_TO_RAW (fromtype, regno,
586 VALUE_CONTENTS (fromval), raw_buffer);
587 use_buffer = REGISTER_RAW_SIZE (regno);
588 }
589 }
590
591 switch (VALUE_LVAL (toval))
592 {
593 case lval_internalvar:
594 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
595 val = value_copy (VALUE_INTERNALVAR (toval)->value);
596 VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval);
597 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
598 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
599 return val;
600
601 case lval_internalvar_component:
602 set_internalvar_component (VALUE_INTERNALVAR (toval),
603 VALUE_OFFSET (toval),
604 VALUE_BITPOS (toval),
605 VALUE_BITSIZE (toval),
606 fromval);
607 break;
608
609 case lval_memory:
610 {
611 char *dest_buffer;
612 CORE_ADDR changed_addr;
613 int changed_len;
614
615 if (VALUE_BITSIZE (toval))
616 {
617 char buffer[sizeof (LONGEST)];
618 /* We assume that the argument to read_memory is in units of
619 host chars. FIXME: Is that correct? */
620 changed_len = (VALUE_BITPOS (toval)
621 + VALUE_BITSIZE (toval)
622 + HOST_CHAR_BIT - 1)
623 / HOST_CHAR_BIT;
624
625 if (changed_len > (int) sizeof (LONGEST))
626 error ("Can't handle bitfields which don't fit in a %d bit word.",
627 sizeof (LONGEST) * HOST_CHAR_BIT);
628
629 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
630 buffer, changed_len);
631 modify_field (buffer, value_as_long (fromval),
632 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
633 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
634 dest_buffer = buffer;
635 }
636 else if (use_buffer)
637 {
638 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
639 changed_len = use_buffer;
640 dest_buffer = raw_buffer;
641 }
642 else
643 {
644 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
645 changed_len = TYPE_LENGTH (type);
646 dest_buffer = VALUE_CONTENTS (fromval);
647 }
648
649 write_memory (changed_addr, dest_buffer, changed_len);
650 if (memory_changed_hook)
651 memory_changed_hook (changed_addr, changed_len);
652 }
653 break;
654
655 case lval_register:
656 if (VALUE_BITSIZE (toval))
657 {
658 char buffer[sizeof (LONGEST)];
659 int len = REGISTER_RAW_SIZE (VALUE_REGNO (toval));
660
661 if (len > (int) sizeof (LONGEST))
662 error ("Can't handle bitfields in registers larger than %d bits.",
663 sizeof (LONGEST) * HOST_CHAR_BIT);
664
665 if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
666 > len * HOST_CHAR_BIT)
667 /* Getting this right would involve being very careful about
668 byte order. */
669 error ("Can't assign to bitfields that cross register "
670 "boundaries.");
671
672 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
673 buffer, len);
674 modify_field (buffer, value_as_long (fromval),
675 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
676 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
677 buffer, len);
678 }
679 else if (use_buffer)
680 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
681 raw_buffer, use_buffer);
682 else
683 {
684 /* Do any conversion necessary when storing this type to more
685 than one register. */
686 #ifdef REGISTER_CONVERT_FROM_TYPE
687 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
688 REGISTER_CONVERT_FROM_TYPE (VALUE_REGNO (toval), type, raw_buffer);
689 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
690 raw_buffer, TYPE_LENGTH (type));
691 #else
692 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
693 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
694 #endif
695 }
696 /* Assigning to the stack pointer, frame pointer, and other
697 (architecture and calling convention specific) registers may
698 cause the frame cache to be out of date. We just do this
699 on all assignments to registers for simplicity; I doubt the slowdown
700 matters. */
701 reinit_frame_cache ();
702 break;
703
704 case lval_reg_frame_relative:
705 {
706 /* value is stored in a series of registers in the frame
707 specified by the structure. Copy that value out, modify
708 it, and copy it back in. */
709 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
710 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
711 int byte_offset = VALUE_OFFSET (toval) % reg_size;
712 int reg_offset = VALUE_OFFSET (toval) / reg_size;
713 int amount_copied;
714
715 /* Make the buffer large enough in all cases. */
716 char *buffer = (char *) alloca (amount_to_copy
717 + sizeof (LONGEST)
718 + MAX_REGISTER_RAW_SIZE);
719
720 int regno;
721 struct frame_info *frame;
722
723 /* Figure out which frame this is in currently. */
724 for (frame = get_current_frame ();
725 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
726 frame = get_prev_frame (frame))
727 ;
728
729 if (!frame)
730 error ("Value being assigned to is no longer active.");
731
732 amount_to_copy += (reg_size - amount_to_copy % reg_size);
733
734 /* Copy it out. */
735 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
736 amount_copied = 0);
737 amount_copied < amount_to_copy;
738 amount_copied += reg_size, regno++)
739 {
740 get_saved_register (buffer + amount_copied,
741 (int *) NULL, (CORE_ADDR *) NULL,
742 frame, regno, (enum lval_type *) NULL);
743 }
744
745 /* Modify what needs to be modified. */
746 if (VALUE_BITSIZE (toval))
747 modify_field (buffer + byte_offset,
748 value_as_long (fromval),
749 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
750 else if (use_buffer)
751 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
752 else
753 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
754 TYPE_LENGTH (type));
755
756 /* Copy it back. */
757 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
758 amount_copied = 0);
759 amount_copied < amount_to_copy;
760 amount_copied += reg_size, regno++)
761 {
762 enum lval_type lval;
763 CORE_ADDR addr;
764 int optim;
765
766 /* Just find out where to put it. */
767 get_saved_register ((char *) NULL,
768 &optim, &addr, frame, regno, &lval);
769
770 if (optim)
771 error ("Attempt to assign to a value that was optimized out.");
772 if (lval == lval_memory)
773 write_memory (addr, buffer + amount_copied, reg_size);
774 else if (lval == lval_register)
775 write_register_bytes (addr, buffer + amount_copied, reg_size);
776 else
777 error ("Attempt to assign to an unmodifiable value.");
778 }
779
780 if (register_changed_hook)
781 register_changed_hook (-1);
782 }
783 break;
784
785
786 default:
787 error ("Left operand of assignment is not an lvalue.");
788 }
789
790 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
791 If the field is signed, and is negative, then sign extend. */
792 if ((VALUE_BITSIZE (toval) > 0)
793 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
794 {
795 LONGEST fieldval = value_as_long (fromval);
796 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
797
798 fieldval &= valmask;
799 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
800 fieldval |= ~valmask;
801
802 fromval = value_from_longest (type, fieldval);
803 }
804
805 val = value_copy (toval);
806 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
807 TYPE_LENGTH (type));
808 VALUE_TYPE (val) = type;
809 VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval);
810 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
811 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
812
813 return val;
814 }
815
816 /* Extend a value VAL to COUNT repetitions of its type. */
817
818 value_ptr
819 value_repeat (arg1, count)
820 value_ptr arg1;
821 int count;
822 {
823 register value_ptr val;
824
825 if (VALUE_LVAL (arg1) != lval_memory)
826 error ("Only values in memory can be extended with '@'.");
827 if (count < 1)
828 error ("Invalid number %d of repetitions.", count);
829
830 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
831
832 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
833 VALUE_CONTENTS_ALL_RAW (val),
834 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
835 VALUE_LVAL (val) = lval_memory;
836 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
837
838 return val;
839 }
840
841 value_ptr
842 value_of_variable (var, b)
843 struct symbol *var;
844 struct block *b;
845 {
846 value_ptr val;
847 struct frame_info *frame = NULL;
848
849 if (!b)
850 frame = NULL; /* Use selected frame. */
851 else if (symbol_read_needs_frame (var))
852 {
853 frame = block_innermost_frame (b);
854 if (!frame)
855 {
856 if (BLOCK_FUNCTION (b)
857 && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
858 error ("No frame is currently executing in block %s.",
859 SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
860 else
861 error ("No frame is currently executing in specified block");
862 }
863 }
864
865 val = read_var_value (var, frame);
866 if (!val)
867 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
868
869 return val;
870 }
871
872 /* Given a value which is an array, return a value which is a pointer to its
873 first element, regardless of whether or not the array has a nonzero lower
874 bound.
875
876 FIXME: A previous comment here indicated that this routine should be
877 substracting the array's lower bound. It's not clear to me that this
878 is correct. Given an array subscripting operation, it would certainly
879 work to do the adjustment here, essentially computing:
880
881 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
882
883 However I believe a more appropriate and logical place to account for
884 the lower bound is to do so in value_subscript, essentially computing:
885
886 (&array[0] + ((index - lowerbound) * sizeof array[0]))
887
888 As further evidence consider what would happen with operations other
889 than array subscripting, where the caller would get back a value that
890 had an address somewhere before the actual first element of the array,
891 and the information about the lower bound would be lost because of
892 the coercion to pointer type.
893 */
894
895 value_ptr
896 value_coerce_array (arg1)
897 value_ptr arg1;
898 {
899 register struct type *type = check_typedef (VALUE_TYPE (arg1));
900
901 if (VALUE_LVAL (arg1) != lval_memory)
902 error ("Attempt to take address of value not located in memory.");
903
904 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
905 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
906 }
907
908 /* Given a value which is a function, return a value which is a pointer
909 to it. */
910
911 value_ptr
912 value_coerce_function (arg1)
913 value_ptr arg1;
914 {
915 value_ptr retval;
916
917 if (VALUE_LVAL (arg1) != lval_memory)
918 error ("Attempt to take address of value not located in memory.");
919
920 retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
921 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
922 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
923 return retval;
924 }
925
926 /* Return a pointer value for the object for which ARG1 is the contents. */
927
928 value_ptr
929 value_addr (arg1)
930 value_ptr arg1;
931 {
932 value_ptr arg2;
933
934 struct type *type = check_typedef (VALUE_TYPE (arg1));
935 if (TYPE_CODE (type) == TYPE_CODE_REF)
936 {
937 /* Copy the value, but change the type from (T&) to (T*).
938 We keep the same location information, which is efficient,
939 and allows &(&X) to get the location containing the reference. */
940 arg2 = value_copy (arg1);
941 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
942 return arg2;
943 }
944 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
945 return value_coerce_function (arg1);
946
947 if (VALUE_LVAL (arg1) != lval_memory)
948 error ("Attempt to take address of value not located in memory.");
949
950 /* Get target memory address */
951 arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
952 (VALUE_ADDRESS (arg1)
953 + VALUE_OFFSET (arg1)
954 + VALUE_EMBEDDED_OFFSET (arg1)));
955
956 /* This may be a pointer to a base subobject; so remember the
957 full derived object's type ... */
958 VALUE_ENCLOSING_TYPE (arg2) = lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1));
959 /* ... and also the relative position of the subobject in the full object */
960 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
961 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
962 return arg2;
963 }
964
965 /* Given a value of a pointer type, apply the C unary * operator to it. */
966
967 value_ptr
968 value_ind (arg1)
969 value_ptr arg1;
970 {
971 struct type *base_type;
972 value_ptr arg2;
973
974 COERCE_ARRAY (arg1);
975
976 base_type = check_typedef (VALUE_TYPE (arg1));
977
978 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
979 error ("not implemented: member types in value_ind");
980
981 /* Allow * on an integer so we can cast it to whatever we want.
982 This returns an int, which seems like the most C-like thing
983 to do. "long long" variables are rare enough that
984 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
985 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
986 return value_at (builtin_type_int,
987 (CORE_ADDR) value_as_long (arg1),
988 VALUE_BFD_SECTION (arg1));
989 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
990 {
991 struct type *enc_type;
992 /* We may be pointing to something embedded in a larger object */
993 /* Get the real type of the enclosing object */
994 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
995 enc_type = TYPE_TARGET_TYPE (enc_type);
996 /* Retrieve the enclosing object pointed to */
997 arg2 = value_at_lazy (enc_type,
998 value_as_pointer (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
999 VALUE_BFD_SECTION (arg1));
1000 /* Re-adjust type */
1001 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
1002 /* Add embedding info */
1003 VALUE_ENCLOSING_TYPE (arg2) = enc_type;
1004 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
1005
1006 /* We may be pointing to an object of some derived type */
1007 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1008 return arg2;
1009 }
1010
1011 error ("Attempt to take contents of a non-pointer value.");
1012 return 0; /* For lint -- never reached */
1013 }
1014 \f
1015 /* Pushing small parts of stack frames. */
1016
1017 /* Push one word (the size of object that a register holds). */
1018
1019 CORE_ADDR
1020 push_word (sp, word)
1021 CORE_ADDR sp;
1022 ULONGEST word;
1023 {
1024 register int len = REGISTER_SIZE;
1025 char buffer[MAX_REGISTER_RAW_SIZE];
1026
1027 store_unsigned_integer (buffer, len, word);
1028 if (INNER_THAN (1, 2))
1029 {
1030 /* stack grows downward */
1031 sp -= len;
1032 write_memory (sp, buffer, len);
1033 }
1034 else
1035 {
1036 /* stack grows upward */
1037 write_memory (sp, buffer, len);
1038 sp += len;
1039 }
1040
1041 return sp;
1042 }
1043
1044 /* Push LEN bytes with data at BUFFER. */
1045
1046 CORE_ADDR
1047 push_bytes (sp, buffer, len)
1048 CORE_ADDR sp;
1049 char *buffer;
1050 int len;
1051 {
1052 if (INNER_THAN (1, 2))
1053 {
1054 /* stack grows downward */
1055 sp -= len;
1056 write_memory (sp, buffer, len);
1057 }
1058 else
1059 {
1060 /* stack grows upward */
1061 write_memory (sp, buffer, len);
1062 sp += len;
1063 }
1064
1065 return sp;
1066 }
1067
1068 #ifndef PARM_BOUNDARY
1069 #define PARM_BOUNDARY (0)
1070 #endif
1071
1072 /* Push onto the stack the specified value VALUE. Pad it correctly for
1073 it to be an argument to a function. */
1074
1075 static CORE_ADDR
1076 value_push (sp, arg)
1077 register CORE_ADDR sp;
1078 value_ptr arg;
1079 {
1080 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
1081 register int container_len = len;
1082 register int offset;
1083
1084 /* How big is the container we're going to put this value in? */
1085 if (PARM_BOUNDARY)
1086 container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
1087 & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
1088
1089 /* Are we going to put it at the high or low end of the container? */
1090 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1091 offset = container_len - len;
1092 else
1093 offset = 0;
1094
1095 if (INNER_THAN (1, 2))
1096 {
1097 /* stack grows downward */
1098 sp -= container_len;
1099 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1100 }
1101 else
1102 {
1103 /* stack grows upward */
1104 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1105 sp += container_len;
1106 }
1107
1108 return sp;
1109 }
1110
1111 #ifndef PUSH_ARGUMENTS
1112 #define PUSH_ARGUMENTS default_push_arguments
1113 #endif
1114
1115 CORE_ADDR
1116 default_push_arguments (nargs, args, sp, struct_return, struct_addr)
1117 int nargs;
1118 value_ptr *args;
1119 CORE_ADDR sp;
1120 int struct_return;
1121 CORE_ADDR struct_addr;
1122 {
1123 /* ASSERT ( !struct_return); */
1124 int i;
1125 for (i = nargs - 1; i >= 0; i--)
1126 sp = value_push (sp, args[i]);
1127 return sp;
1128 }
1129
1130
1131 /* A default function for COERCE_FLOAT_TO_DOUBLE: do the coercion only
1132 when we don't have any type for the argument at hand. This occurs
1133 when we have no debug info, or when passing varargs.
1134
1135 This is an annoying default: the rule the compiler follows is to do
1136 the standard promotions whenever there is no prototype in scope,
1137 and almost all targets want this behavior. But there are some old
1138 architectures which want this odd behavior. If you want to go
1139 through them all and fix them, please do. Modern gdbarch-style
1140 targets may find it convenient to use standard_coerce_float_to_double. */
1141 int
1142 default_coerce_float_to_double (struct type *formal, struct type *actual)
1143 {
1144 return formal == NULL;
1145 }
1146
1147
1148 /* Always coerce floats to doubles when there is no prototype in scope.
1149 If your architecture follows the standard type promotion rules for
1150 calling unprototyped functions, your gdbarch init function can pass
1151 this function to set_gdbarch_coerce_float_to_double to use its logic. */
1152 int
1153 standard_coerce_float_to_double (struct type *formal, struct type *actual)
1154 {
1155 return 1;
1156 }
1157
1158
1159 /* Perform the standard coercions that are specified
1160 for arguments to be passed to C functions.
1161
1162 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1163 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1164
1165 static value_ptr
1166 value_arg_coerce (arg, param_type, is_prototyped)
1167 value_ptr arg;
1168 struct type *param_type;
1169 int is_prototyped;
1170 {
1171 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1172 register struct type *type
1173 = param_type ? check_typedef (param_type) : arg_type;
1174
1175 switch (TYPE_CODE (type))
1176 {
1177 case TYPE_CODE_REF:
1178 if (TYPE_CODE (arg_type) != TYPE_CODE_REF)
1179 {
1180 arg = value_addr (arg);
1181 VALUE_TYPE (arg) = param_type;
1182 return arg;
1183 }
1184 break;
1185 case TYPE_CODE_INT:
1186 case TYPE_CODE_CHAR:
1187 case TYPE_CODE_BOOL:
1188 case TYPE_CODE_ENUM:
1189 /* If we don't have a prototype, coerce to integer type if necessary. */
1190 if (!is_prototyped)
1191 {
1192 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1193 type = builtin_type_int;
1194 }
1195 /* Currently all target ABIs require at least the width of an integer
1196 type for an argument. We may have to conditionalize the following
1197 type coercion for future targets. */
1198 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1199 type = builtin_type_int;
1200 break;
1201 case TYPE_CODE_FLT:
1202 /* FIXME: We should always convert floats to doubles in the
1203 non-prototyped case. As many debugging formats include
1204 no information about prototyping, we have to live with
1205 COERCE_FLOAT_TO_DOUBLE for now. */
1206 if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE (param_type, arg_type))
1207 {
1208 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1209 type = builtin_type_double;
1210 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1211 type = builtin_type_long_double;
1212 }
1213 break;
1214 case TYPE_CODE_FUNC:
1215 type = lookup_pointer_type (type);
1216 break;
1217 case TYPE_CODE_ARRAY:
1218 if (current_language->c_style_arrays)
1219 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1220 break;
1221 case TYPE_CODE_UNDEF:
1222 case TYPE_CODE_PTR:
1223 case TYPE_CODE_STRUCT:
1224 case TYPE_CODE_UNION:
1225 case TYPE_CODE_VOID:
1226 case TYPE_CODE_SET:
1227 case TYPE_CODE_RANGE:
1228 case TYPE_CODE_STRING:
1229 case TYPE_CODE_BITSTRING:
1230 case TYPE_CODE_ERROR:
1231 case TYPE_CODE_MEMBER:
1232 case TYPE_CODE_METHOD:
1233 case TYPE_CODE_COMPLEX:
1234 default:
1235 break;
1236 }
1237
1238 return value_cast (type, arg);
1239 }
1240
1241 /* Determine a function's address and its return type from its value.
1242 Calls error() if the function is not valid for calling. */
1243
1244 static CORE_ADDR
1245 find_function_addr (function, retval_type)
1246 value_ptr function;
1247 struct type **retval_type;
1248 {
1249 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1250 register enum type_code code = TYPE_CODE (ftype);
1251 struct type *value_type;
1252 CORE_ADDR funaddr;
1253
1254 /* If it's a member function, just look at the function
1255 part of it. */
1256
1257 /* Determine address to call. */
1258 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1259 {
1260 funaddr = VALUE_ADDRESS (function);
1261 value_type = TYPE_TARGET_TYPE (ftype);
1262 }
1263 else if (code == TYPE_CODE_PTR)
1264 {
1265 funaddr = value_as_pointer (function);
1266 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1267 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1268 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1269 {
1270 #ifdef CONVERT_FROM_FUNC_PTR_ADDR
1271 /* FIXME: This is a workaround for the unusual function
1272 pointer representation on the RS/6000, see comment
1273 in config/rs6000/tm-rs6000.h */
1274 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
1275 #endif
1276 value_type = TYPE_TARGET_TYPE (ftype);
1277 }
1278 else
1279 value_type = builtin_type_int;
1280 }
1281 else if (code == TYPE_CODE_INT)
1282 {
1283 /* Handle the case of functions lacking debugging info.
1284 Their values are characters since their addresses are char */
1285 if (TYPE_LENGTH (ftype) == 1)
1286 funaddr = value_as_pointer (value_addr (function));
1287 else
1288 /* Handle integer used as address of a function. */
1289 funaddr = (CORE_ADDR) value_as_long (function);
1290
1291 value_type = builtin_type_int;
1292 }
1293 else
1294 error ("Invalid data type for function to be called.");
1295
1296 *retval_type = value_type;
1297 return funaddr;
1298 }
1299
1300 /* All this stuff with a dummy frame may seem unnecessarily complicated
1301 (why not just save registers in GDB?). The purpose of pushing a dummy
1302 frame which looks just like a real frame is so that if you call a
1303 function and then hit a breakpoint (get a signal, etc), "backtrace"
1304 will look right. Whether the backtrace needs to actually show the
1305 stack at the time the inferior function was called is debatable, but
1306 it certainly needs to not display garbage. So if you are contemplating
1307 making dummy frames be different from normal frames, consider that. */
1308
1309 /* Perform a function call in the inferior.
1310 ARGS is a vector of values of arguments (NARGS of them).
1311 FUNCTION is a value, the function to be called.
1312 Returns a value representing what the function returned.
1313 May fail to return, if a breakpoint or signal is hit
1314 during the execution of the function.
1315
1316 ARGS is modified to contain coerced values. */
1317
1318 static value_ptr hand_function_call PARAMS ((value_ptr function, int nargs, value_ptr * args));
1319 static value_ptr
1320 hand_function_call (function, nargs, args)
1321 value_ptr function;
1322 int nargs;
1323 value_ptr *args;
1324 {
1325 register CORE_ADDR sp;
1326 register int i;
1327 int rc;
1328 CORE_ADDR start_sp;
1329 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1330 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1331 and remove any extra bytes which might exist because ULONGEST is
1332 bigger than REGISTER_SIZE.
1333
1334 NOTE: This is pretty wierd, as the call dummy is actually a
1335 sequence of instructions. But CISC machines will have
1336 to pack the instructions into REGISTER_SIZE units (and
1337 so will RISC machines for which INSTRUCTION_SIZE is not
1338 REGISTER_SIZE).
1339
1340 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
1341 target byte order. */
1342
1343 static ULONGEST *dummy;
1344 int sizeof_dummy1;
1345 char *dummy1;
1346 CORE_ADDR old_sp;
1347 struct type *value_type;
1348 unsigned char struct_return;
1349 CORE_ADDR struct_addr = 0;
1350 struct inferior_status *inf_status;
1351 struct cleanup *old_chain;
1352 CORE_ADDR funaddr;
1353 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
1354 CORE_ADDR real_pc;
1355 struct type *param_type = NULL;
1356 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
1357
1358 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1359 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1360 dummy1 = alloca (sizeof_dummy1);
1361 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1362
1363 if (!target_has_execution)
1364 noprocess ();
1365
1366 inf_status = save_inferior_status (1);
1367 old_chain = make_cleanup_restore_inferior_status (inf_status);
1368
1369 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1370 (and POP_FRAME for restoring them). (At least on most machines)
1371 they are saved on the stack in the inferior. */
1372 PUSH_DUMMY_FRAME;
1373
1374 old_sp = sp = read_sp ();
1375
1376 if (INNER_THAN (1, 2))
1377 {
1378 /* Stack grows down */
1379 sp -= sizeof_dummy1;
1380 start_sp = sp;
1381 }
1382 else
1383 {
1384 /* Stack grows up */
1385 start_sp = sp;
1386 sp += sizeof_dummy1;
1387 }
1388
1389 funaddr = find_function_addr (function, &value_type);
1390 CHECK_TYPEDEF (value_type);
1391
1392 {
1393 struct block *b = block_for_pc (funaddr);
1394 /* If compiled without -g, assume GCC 2. */
1395 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1396 }
1397
1398 /* Are we returning a value using a structure return or a normal
1399 value return? */
1400
1401 struct_return = using_struct_return (function, funaddr, value_type,
1402 using_gcc);
1403
1404 /* Create a call sequence customized for this function
1405 and the number of arguments for it. */
1406 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
1407 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1408 REGISTER_SIZE,
1409 (ULONGEST) dummy[i]);
1410
1411 #ifdef GDB_TARGET_IS_HPPA
1412 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1413 value_type, using_gcc);
1414 #else
1415 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1416 value_type, using_gcc);
1417 real_pc = start_sp;
1418 #endif
1419
1420 if (CALL_DUMMY_LOCATION == ON_STACK)
1421 {
1422 write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
1423 }
1424
1425 if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END)
1426 {
1427 /* Convex Unix prohibits executing in the stack segment. */
1428 /* Hope there is empty room at the top of the text segment. */
1429 extern CORE_ADDR text_end;
1430 static int checked = 0;
1431 if (!checked)
1432 for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp)
1433 if (read_memory_integer (start_sp, 1) != 0)
1434 error ("text segment full -- no place to put call");
1435 checked = 1;
1436 sp = old_sp;
1437 real_pc = text_end - sizeof_dummy1;
1438 write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1439 }
1440
1441 if (CALL_DUMMY_LOCATION == AFTER_TEXT_END)
1442 {
1443 extern CORE_ADDR text_end;
1444 int errcode;
1445 sp = old_sp;
1446 real_pc = text_end;
1447 errcode = target_write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1448 if (errcode != 0)
1449 error ("Cannot write text segment -- call_function failed");
1450 }
1451
1452 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
1453 {
1454 real_pc = funaddr;
1455 }
1456
1457 #ifdef lint
1458 sp = old_sp; /* It really is used, for some ifdef's... */
1459 #endif
1460
1461 if (nargs < TYPE_NFIELDS (ftype))
1462 error ("too few arguments in function call");
1463
1464 for (i = nargs - 1; i >= 0; i--)
1465 {
1466 /* If we're off the end of the known arguments, do the standard
1467 promotions. FIXME: if we had a prototype, this should only
1468 be allowed if ... were present. */
1469 if (i >= TYPE_NFIELDS (ftype))
1470 args[i] = value_arg_coerce (args[i], NULL, 0);
1471
1472 else
1473 {
1474 int is_prototyped = TYPE_FLAGS (ftype) & TYPE_FLAG_PROTOTYPED;
1475 param_type = TYPE_FIELD_TYPE (ftype, i);
1476
1477 args[i] = value_arg_coerce (args[i], param_type, is_prototyped);
1478 }
1479
1480 /*elz: this code is to handle the case in which the function to be called
1481 has a pointer to function as parameter and the corresponding actual argument
1482 is the address of a function and not a pointer to function variable.
1483 In aCC compiled code, the calls through pointers to functions (in the body
1484 of the function called by hand) are made via $$dyncall_external which
1485 requires some registers setting, this is taken care of if we call
1486 via a function pointer variable, but not via a function address.
1487 In cc this is not a problem. */
1488
1489 if (using_gcc == 0)
1490 if (param_type)
1491 /* if this parameter is a pointer to function */
1492 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
1493 if (TYPE_CODE (param_type->target_type) == TYPE_CODE_FUNC)
1494 /* elz: FIXME here should go the test about the compiler used
1495 to compile the target. We want to issue the error
1496 message only if the compiler used was HP's aCC.
1497 If we used HP's cc, then there is no problem and no need
1498 to return at this point */
1499 if (using_gcc == 0) /* && compiler == aCC */
1500 /* go see if the actual parameter is a variable of type
1501 pointer to function or just a function */
1502 if (args[i]->lval == not_lval)
1503 {
1504 char *arg_name;
1505 if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1506 error ("\
1507 You cannot use function <%s> as argument. \n\
1508 You must use a pointer to function type variable. Command ignored.", arg_name);
1509 }
1510 }
1511
1512 if (REG_STRUCT_HAS_ADDR_P ())
1513 {
1514 /* This is a machine like the sparc, where we may need to pass a
1515 pointer to the structure, not the structure itself. */
1516 for (i = nargs - 1; i >= 0; i--)
1517 {
1518 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1519 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1520 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1521 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1522 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1523 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1524 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1525 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1526 && TYPE_LENGTH (arg_type) > 8)
1527 )
1528 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1529 {
1530 CORE_ADDR addr;
1531 int len; /* = TYPE_LENGTH (arg_type); */
1532 int aligned_len;
1533 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1534 len = TYPE_LENGTH (arg_type);
1535
1536 if (STACK_ALIGN_P ())
1537 /* MVS 11/22/96: I think at least some of this
1538 stack_align code is really broken. Better to let
1539 PUSH_ARGUMENTS adjust the stack in a target-defined
1540 manner. */
1541 aligned_len = STACK_ALIGN (len);
1542 else
1543 aligned_len = len;
1544 if (INNER_THAN (1, 2))
1545 {
1546 /* stack grows downward */
1547 sp -= aligned_len;
1548 }
1549 else
1550 {
1551 /* The stack grows up, so the address of the thing
1552 we push is the stack pointer before we push it. */
1553 addr = sp;
1554 }
1555 /* Push the structure. */
1556 write_memory (sp, VALUE_CONTENTS_ALL (args[i]), len);
1557 if (INNER_THAN (1, 2))
1558 {
1559 /* The stack grows down, so the address of the thing
1560 we push is the stack pointer after we push it. */
1561 addr = sp;
1562 }
1563 else
1564 {
1565 /* stack grows upward */
1566 sp += aligned_len;
1567 }
1568 /* The value we're going to pass is the address of the
1569 thing we just pushed. */
1570 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1571 (LONGEST) addr); */
1572 args[i] = value_from_pointer (lookup_pointer_type (arg_type),
1573 addr);
1574 }
1575 }
1576 }
1577
1578
1579 /* Reserve space for the return structure to be written on the
1580 stack, if necessary */
1581
1582 if (struct_return)
1583 {
1584 int len = TYPE_LENGTH (value_type);
1585 if (STACK_ALIGN_P ())
1586 /* MVS 11/22/96: I think at least some of this stack_align
1587 code is really broken. Better to let PUSH_ARGUMENTS adjust
1588 the stack in a target-defined manner. */
1589 len = STACK_ALIGN (len);
1590 if (INNER_THAN (1, 2))
1591 {
1592 /* stack grows downward */
1593 sp -= len;
1594 struct_addr = sp;
1595 }
1596 else
1597 {
1598 /* stack grows upward */
1599 struct_addr = sp;
1600 sp += len;
1601 }
1602 }
1603
1604 /* elz: on HPPA no need for this extra alignment, maybe it is needed
1605 on other architectures. This is because all the alignment is taken care
1606 of in the above code (ifdef REG_STRUCT_HAS_ADDR) and in
1607 hppa_push_arguments */
1608 #ifndef NO_EXTRA_ALIGNMENT_NEEDED
1609
1610 /* MVS 11/22/96: I think at least some of this stack_align code is
1611 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1612 a target-defined manner. */
1613 if (STACK_ALIGN_P () && INNER_THAN (1, 2))
1614 {
1615 /* If stack grows down, we must leave a hole at the top. */
1616 int len = 0;
1617
1618 for (i = nargs - 1; i >= 0; i--)
1619 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1620 if (CALL_DUMMY_STACK_ADJUST_P)
1621 len += CALL_DUMMY_STACK_ADJUST;
1622 sp -= STACK_ALIGN (len) - len;
1623 }
1624 #endif /* NO_EXTRA_ALIGNMENT_NEEDED */
1625
1626 sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
1627
1628 #ifdef PUSH_RETURN_ADDRESS /* for targets that use no CALL_DUMMY */
1629 /* There are a number of targets now which actually don't write any
1630 CALL_DUMMY instructions into the target, but instead just save the
1631 machine state, push the arguments, and jump directly to the callee
1632 function. Since this doesn't actually involve executing a JSR/BSR
1633 instruction, the return address must be set up by hand, either by
1634 pushing onto the stack or copying into a return-address register
1635 as appropriate. Formerly this has been done in PUSH_ARGUMENTS,
1636 but that's overloading its functionality a bit, so I'm making it
1637 explicit to do it here. */
1638 sp = PUSH_RETURN_ADDRESS (real_pc, sp);
1639 #endif /* PUSH_RETURN_ADDRESS */
1640
1641 if (STACK_ALIGN_P () && !INNER_THAN (1, 2))
1642 {
1643 /* If stack grows up, we must leave a hole at the bottom, note
1644 that sp already has been advanced for the arguments! */
1645 if (CALL_DUMMY_STACK_ADJUST_P)
1646 sp += CALL_DUMMY_STACK_ADJUST;
1647 sp = STACK_ALIGN (sp);
1648 }
1649
1650 /* XXX This seems wrong. For stacks that grow down we shouldn't do
1651 anything here! */
1652 /* MVS 11/22/96: I think at least some of this stack_align code is
1653 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1654 a target-defined manner. */
1655 if (CALL_DUMMY_STACK_ADJUST_P)
1656 if (INNER_THAN (1, 2))
1657 {
1658 /* stack grows downward */
1659 sp -= CALL_DUMMY_STACK_ADJUST;
1660 }
1661
1662 /* Store the address at which the structure is supposed to be
1663 written. Note that this (and the code which reserved the space
1664 above) assumes that gcc was used to compile this function. Since
1665 it doesn't cost us anything but space and if the function is pcc
1666 it will ignore this value, we will make that assumption.
1667
1668 Also note that on some machines (like the sparc) pcc uses a
1669 convention like gcc's. */
1670
1671 if (struct_return)
1672 STORE_STRUCT_RETURN (struct_addr, sp);
1673
1674 /* Write the stack pointer. This is here because the statements above
1675 might fool with it. On SPARC, this write also stores the register
1676 window into the right place in the new stack frame, which otherwise
1677 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1678 write_sp (sp);
1679
1680 if (SAVE_DUMMY_FRAME_TOS_P ())
1681 SAVE_DUMMY_FRAME_TOS (sp);
1682
1683 {
1684 char retbuf[REGISTER_BYTES];
1685 char *name;
1686 struct symbol *symbol;
1687
1688 name = NULL;
1689 symbol = find_pc_function (funaddr);
1690 if (symbol)
1691 {
1692 name = SYMBOL_SOURCE_NAME (symbol);
1693 }
1694 else
1695 {
1696 /* Try the minimal symbols. */
1697 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1698
1699 if (msymbol)
1700 {
1701 name = SYMBOL_SOURCE_NAME (msymbol);
1702 }
1703 }
1704 if (name == NULL)
1705 {
1706 char format[80];
1707 sprintf (format, "at %s", local_hex_format ());
1708 name = alloca (80);
1709 /* FIXME-32x64: assumes funaddr fits in a long. */
1710 sprintf (name, format, (unsigned long) funaddr);
1711 }
1712
1713 /* Execute the stack dummy routine, calling FUNCTION.
1714 When it is done, discard the empty frame
1715 after storing the contents of all regs into retbuf. */
1716 rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
1717
1718 if (rc == 1)
1719 {
1720 /* We stopped inside the FUNCTION because of a random signal.
1721 Further execution of the FUNCTION is not allowed. */
1722
1723 if (unwind_on_signal_p)
1724 {
1725 /* The user wants the context restored. */
1726
1727 /* We must get back to the frame we were before the dummy call. */
1728 POP_FRAME;
1729
1730 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1731 a C++ name with arguments and stuff. */
1732 error ("\
1733 The program being debugged was signaled while in a function called from GDB.\n\
1734 GDB has restored the context to what it was before the call.\n\
1735 To change this behavior use \"set unwindonsignal off\"\n\
1736 Evaluation of the expression containing the function (%s) will be abandoned.",
1737 name);
1738 }
1739 else
1740 {
1741 /* The user wants to stay in the frame where we stopped (default).*/
1742
1743 /* If we did the cleanups, we would print a spurious error
1744 message (Unable to restore previously selected frame),
1745 would write the registers from the inf_status (which is
1746 wrong), and would do other wrong things. */
1747 discard_cleanups (old_chain);
1748 discard_inferior_status (inf_status);
1749
1750 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1751 a C++ name with arguments and stuff. */
1752 error ("\
1753 The program being debugged was signaled while in a function called from GDB.\n\
1754 GDB remains in the frame where the signal was received.\n\
1755 To change this behavior use \"set unwindonsignal on\"\n\
1756 Evaluation of the expression containing the function (%s) will be abandoned.",
1757 name);
1758 }
1759 }
1760
1761 if (rc == 2)
1762 {
1763 /* We hit a breakpoint inside the FUNCTION. */
1764
1765 /* If we did the cleanups, we would print a spurious error
1766 message (Unable to restore previously selected frame),
1767 would write the registers from the inf_status (which is
1768 wrong), and would do other wrong things. */
1769 discard_cleanups (old_chain);
1770 discard_inferior_status (inf_status);
1771
1772 /* The following error message used to say "The expression
1773 which contained the function call has been discarded." It
1774 is a hard concept to explain in a few words. Ideally, GDB
1775 would be able to resume evaluation of the expression when
1776 the function finally is done executing. Perhaps someday
1777 this will be implemented (it would not be easy). */
1778
1779 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1780 a C++ name with arguments and stuff. */
1781 error ("\
1782 The program being debugged stopped while in a function called from GDB.\n\
1783 When the function (%s) is done executing, GDB will silently\n\
1784 stop (instead of continuing to evaluate the expression containing\n\
1785 the function call).", name);
1786 }
1787
1788 /* If we get here the called FUNCTION run to completion. */
1789 do_cleanups (old_chain);
1790
1791 /* Figure out the value returned by the function. */
1792 /* elz: I defined this new macro for the hppa architecture only.
1793 this gives us a way to get the value returned by the function from the stack,
1794 at the same address we told the function to put it.
1795 We cannot assume on the pa that r28 still contains the address of the returned
1796 structure. Usually this will be overwritten by the callee.
1797 I don't know about other architectures, so I defined this macro
1798 */
1799
1800 #ifdef VALUE_RETURNED_FROM_STACK
1801 if (struct_return)
1802 return (value_ptr) VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1803 #endif
1804
1805 return value_being_returned (value_type, retbuf, struct_return);
1806 }
1807 }
1808
1809 value_ptr
1810 call_function_by_hand (function, nargs, args)
1811 value_ptr function;
1812 int nargs;
1813 value_ptr *args;
1814 {
1815 if (CALL_DUMMY_P)
1816 {
1817 return hand_function_call (function, nargs, args);
1818 }
1819 else
1820 {
1821 error ("Cannot invoke functions on this machine.");
1822 }
1823 }
1824 \f
1825
1826
1827 /* Create a value for an array by allocating space in the inferior, copying
1828 the data into that space, and then setting up an array value.
1829
1830 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1831 populated from the values passed in ELEMVEC.
1832
1833 The element type of the array is inherited from the type of the
1834 first element, and all elements must have the same size (though we
1835 don't currently enforce any restriction on their types). */
1836
1837 value_ptr
1838 value_array (lowbound, highbound, elemvec)
1839 int lowbound;
1840 int highbound;
1841 value_ptr *elemvec;
1842 {
1843 int nelem;
1844 int idx;
1845 unsigned int typelength;
1846 value_ptr val;
1847 struct type *rangetype;
1848 struct type *arraytype;
1849 CORE_ADDR addr;
1850
1851 /* Validate that the bounds are reasonable and that each of the elements
1852 have the same size. */
1853
1854 nelem = highbound - lowbound + 1;
1855 if (nelem <= 0)
1856 {
1857 error ("bad array bounds (%d, %d)", lowbound, highbound);
1858 }
1859 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1860 for (idx = 1; idx < nelem; idx++)
1861 {
1862 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1863 {
1864 error ("array elements must all be the same size");
1865 }
1866 }
1867
1868 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1869 lowbound, highbound);
1870 arraytype = create_array_type ((struct type *) NULL,
1871 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
1872
1873 if (!current_language->c_style_arrays)
1874 {
1875 val = allocate_value (arraytype);
1876 for (idx = 0; idx < nelem; idx++)
1877 {
1878 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1879 VALUE_CONTENTS_ALL (elemvec[idx]),
1880 typelength);
1881 }
1882 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1883 return val;
1884 }
1885
1886 /* Allocate space to store the array in the inferior, and then initialize
1887 it by copying in each element. FIXME: Is it worth it to create a
1888 local buffer in which to collect each value and then write all the
1889 bytes in one operation? */
1890
1891 addr = allocate_space_in_inferior (nelem * typelength);
1892 for (idx = 0; idx < nelem; idx++)
1893 {
1894 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1895 typelength);
1896 }
1897
1898 /* Create the array type and set up an array value to be evaluated lazily. */
1899
1900 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1901 return (val);
1902 }
1903
1904 /* Create a value for a string constant by allocating space in the inferior,
1905 copying the data into that space, and returning the address with type
1906 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1907 of characters.
1908 Note that string types are like array of char types with a lower bound of
1909 zero and an upper bound of LEN - 1. Also note that the string may contain
1910 embedded null bytes. */
1911
1912 value_ptr
1913 value_string (ptr, len)
1914 char *ptr;
1915 int len;
1916 {
1917 value_ptr val;
1918 int lowbound = current_language->string_lower_bound;
1919 struct type *rangetype = create_range_type ((struct type *) NULL,
1920 builtin_type_int,
1921 lowbound, len + lowbound - 1);
1922 struct type *stringtype
1923 = create_string_type ((struct type *) NULL, rangetype);
1924 CORE_ADDR addr;
1925
1926 if (current_language->c_style_arrays == 0)
1927 {
1928 val = allocate_value (stringtype);
1929 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1930 return val;
1931 }
1932
1933
1934 /* Allocate space to store the string in the inferior, and then
1935 copy LEN bytes from PTR in gdb to that address in the inferior. */
1936
1937 addr = allocate_space_in_inferior (len);
1938 write_memory (addr, ptr, len);
1939
1940 val = value_at_lazy (stringtype, addr, NULL);
1941 return (val);
1942 }
1943
1944 value_ptr
1945 value_bitstring (ptr, len)
1946 char *ptr;
1947 int len;
1948 {
1949 value_ptr val;
1950 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1951 0, len - 1);
1952 struct type *type = create_set_type ((struct type *) NULL, domain_type);
1953 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1954 val = allocate_value (type);
1955 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1956 return val;
1957 }
1958 \f
1959 /* See if we can pass arguments in T2 to a function which takes arguments
1960 of types T1. Both t1 and t2 are NULL-terminated vectors. If some
1961 arguments need coercion of some sort, then the coerced values are written
1962 into T2. Return value is 0 if the arguments could be matched, or the
1963 position at which they differ if not.
1964
1965 STATICP is nonzero if the T1 argument list came from a
1966 static member function.
1967
1968 For non-static member functions, we ignore the first argument,
1969 which is the type of the instance variable. This is because we want
1970 to handle calls with objects from derived classes. This is not
1971 entirely correct: we should actually check to make sure that a
1972 requested operation is type secure, shouldn't we? FIXME. */
1973
1974 static int
1975 typecmp (staticp, t1, t2)
1976 int staticp;
1977 struct type *t1[];
1978 value_ptr t2[];
1979 {
1980 int i;
1981
1982 if (t2 == 0)
1983 return 1;
1984 if (staticp && t1 == 0)
1985 return t2[1] != 0;
1986 if (t1 == 0)
1987 return 1;
1988 if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID)
1989 return 0;
1990 if (t1[!staticp] == 0)
1991 return 0;
1992 for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
1993 {
1994 struct type *tt1, *tt2;
1995 if (!t2[i])
1996 return i + 1;
1997 tt1 = check_typedef (t1[i]);
1998 tt2 = check_typedef (VALUE_TYPE (t2[i]));
1999 if (TYPE_CODE (tt1) == TYPE_CODE_REF
2000 /* We should be doing hairy argument matching, as below. */
2001 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
2002 {
2003 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
2004 t2[i] = value_coerce_array (t2[i]);
2005 else
2006 t2[i] = value_addr (t2[i]);
2007 continue;
2008 }
2009
2010 while (TYPE_CODE (tt1) == TYPE_CODE_PTR
2011 && (TYPE_CODE (tt2) == TYPE_CODE_ARRAY
2012 || TYPE_CODE (tt2) == TYPE_CODE_PTR))
2013 {
2014 tt1 = check_typedef (TYPE_TARGET_TYPE (tt1));
2015 tt2 = check_typedef (TYPE_TARGET_TYPE (tt2));
2016 }
2017 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
2018 continue;
2019 /* Array to pointer is a `trivial conversion' according to the ARM. */
2020
2021 /* We should be doing much hairier argument matching (see section 13.2
2022 of the ARM), but as a quick kludge, just check for the same type
2023 code. */
2024 if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
2025 return i + 1;
2026 }
2027 if (!t1[i])
2028 return 0;
2029 return t2[i] ? i + 1 : 0;
2030 }
2031
2032 /* Helper function used by value_struct_elt to recurse through baseclasses.
2033 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2034 and search in it assuming it has (class) type TYPE.
2035 If found, return value, else return NULL.
2036
2037 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
2038 look for a baseclass named NAME. */
2039
2040 static value_ptr
2041 search_struct_field (name, arg1, offset, type, looking_for_baseclass)
2042 char *name;
2043 register value_ptr arg1;
2044 int offset;
2045 register struct type *type;
2046 int looking_for_baseclass;
2047 {
2048 int i;
2049 int nbases = TYPE_N_BASECLASSES (type);
2050
2051 CHECK_TYPEDEF (type);
2052
2053 if (!looking_for_baseclass)
2054 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2055 {
2056 char *t_field_name = TYPE_FIELD_NAME (type, i);
2057
2058 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2059 {
2060 value_ptr v;
2061 if (TYPE_FIELD_STATIC (type, i))
2062 v = value_static_field (type, i);
2063 else
2064 v = value_primitive_field (arg1, offset, i, type);
2065 if (v == 0)
2066 error ("there is no field named %s", name);
2067 return v;
2068 }
2069
2070 if (t_field_name
2071 && (t_field_name[0] == '\0'
2072 || (TYPE_CODE (type) == TYPE_CODE_UNION
2073 && (strcmp_iw (t_field_name, "else") == 0))))
2074 {
2075 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2076 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2077 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2078 {
2079 /* Look for a match through the fields of an anonymous union,
2080 or anonymous struct. C++ provides anonymous unions.
2081
2082 In the GNU Chill implementation of variant record types,
2083 each <alternative field> has an (anonymous) union type,
2084 each member of the union represents a <variant alternative>.
2085 Each <variant alternative> is represented as a struct,
2086 with a member for each <variant field>. */
2087
2088 value_ptr v;
2089 int new_offset = offset;
2090
2091 /* This is pretty gross. In G++, the offset in an anonymous
2092 union is relative to the beginning of the enclosing struct.
2093 In the GNU Chill implementation of variant records,
2094 the bitpos is zero in an anonymous union field, so we
2095 have to add the offset of the union here. */
2096 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2097 || (TYPE_NFIELDS (field_type) > 0
2098 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2099 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2100
2101 v = search_struct_field (name, arg1, new_offset, field_type,
2102 looking_for_baseclass);
2103 if (v)
2104 return v;
2105 }
2106 }
2107 }
2108
2109 for (i = 0; i < nbases; i++)
2110 {
2111 value_ptr v;
2112 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2113 /* If we are looking for baseclasses, this is what we get when we
2114 hit them. But it could happen that the base part's member name
2115 is not yet filled in. */
2116 int found_baseclass = (looking_for_baseclass
2117 && TYPE_BASECLASS_NAME (type, i) != NULL
2118 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
2119
2120 if (BASETYPE_VIA_VIRTUAL (type, i))
2121 {
2122 int boffset;
2123 value_ptr v2 = allocate_value (basetype);
2124
2125 boffset = baseclass_offset (type, i,
2126 VALUE_CONTENTS (arg1) + offset,
2127 VALUE_ADDRESS (arg1)
2128 + VALUE_OFFSET (arg1) + offset);
2129 if (boffset == -1)
2130 error ("virtual baseclass botch");
2131
2132 /* The virtual base class pointer might have been clobbered by the
2133 user program. Make sure that it still points to a valid memory
2134 location. */
2135
2136 boffset += offset;
2137 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2138 {
2139 CORE_ADDR base_addr;
2140
2141 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2142 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2143 TYPE_LENGTH (basetype)) != 0)
2144 error ("virtual baseclass botch");
2145 VALUE_LVAL (v2) = lval_memory;
2146 VALUE_ADDRESS (v2) = base_addr;
2147 }
2148 else
2149 {
2150 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2151 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2152 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2153 if (VALUE_LAZY (arg1))
2154 VALUE_LAZY (v2) = 1;
2155 else
2156 memcpy (VALUE_CONTENTS_RAW (v2),
2157 VALUE_CONTENTS_RAW (arg1) + boffset,
2158 TYPE_LENGTH (basetype));
2159 }
2160
2161 if (found_baseclass)
2162 return v2;
2163 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2164 looking_for_baseclass);
2165 }
2166 else if (found_baseclass)
2167 v = value_primitive_field (arg1, offset, i, type);
2168 else
2169 v = search_struct_field (name, arg1,
2170 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2171 basetype, looking_for_baseclass);
2172 if (v)
2173 return v;
2174 }
2175 return NULL;
2176 }
2177
2178
2179 /* Return the offset (in bytes) of the virtual base of type BASETYPE
2180 * in an object pointed to by VALADDR (on the host), assumed to be of
2181 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2182 * looking (in case VALADDR is the contents of an enclosing object).
2183 *
2184 * This routine recurses on the primary base of the derived class because
2185 * the virtual base entries of the primary base appear before the other
2186 * virtual base entries.
2187 *
2188 * If the virtual base is not found, a negative integer is returned.
2189 * The magnitude of the negative integer is the number of entries in
2190 * the virtual table to skip over (entries corresponding to various
2191 * ancestral classes in the chain of primary bases).
2192 *
2193 * Important: This assumes the HP / Taligent C++ runtime
2194 * conventions. Use baseclass_offset() instead to deal with g++
2195 * conventions. */
2196
2197 void
2198 find_rt_vbase_offset (type, basetype, valaddr, offset, boffset_p, skip_p)
2199 struct type *type;
2200 struct type *basetype;
2201 char *valaddr;
2202 int offset;
2203 int *boffset_p;
2204 int *skip_p;
2205 {
2206 int boffset; /* offset of virtual base */
2207 int index; /* displacement to use in virtual table */
2208 int skip;
2209
2210 value_ptr vp;
2211 CORE_ADDR vtbl; /* the virtual table pointer */
2212 struct type *pbc; /* the primary base class */
2213
2214 /* Look for the virtual base recursively in the primary base, first.
2215 * This is because the derived class object and its primary base
2216 * subobject share the primary virtual table. */
2217
2218 boffset = 0;
2219 pbc = TYPE_PRIMARY_BASE (type);
2220 if (pbc)
2221 {
2222 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2223 if (skip < 0)
2224 {
2225 *boffset_p = boffset;
2226 *skip_p = -1;
2227 return;
2228 }
2229 }
2230 else
2231 skip = 0;
2232
2233
2234 /* Find the index of the virtual base according to HP/Taligent
2235 runtime spec. (Depth-first, left-to-right.) */
2236 index = virtual_base_index_skip_primaries (basetype, type);
2237
2238 if (index < 0)
2239 {
2240 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2241 *boffset_p = 0;
2242 return;
2243 }
2244
2245 /* pai: FIXME -- 32x64 possible problem */
2246 /* First word (4 bytes) in object layout is the vtable pointer */
2247 vtbl = *(CORE_ADDR *) (valaddr + offset);
2248
2249 /* Before the constructor is invoked, things are usually zero'd out. */
2250 if (vtbl == 0)
2251 error ("Couldn't find virtual table -- object may not be constructed yet.");
2252
2253
2254 /* Find virtual base's offset -- jump over entries for primary base
2255 * ancestors, then use the index computed above. But also adjust by
2256 * HP_ACC_VBASE_START for the vtable slots before the start of the
2257 * virtual base entries. Offset is negative -- virtual base entries
2258 * appear _before_ the address point of the virtual table. */
2259
2260 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
2261 & use long type */
2262
2263 /* epstein : FIXME -- added param for overlay section. May not be correct */
2264 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
2265 boffset = value_as_long (vp);
2266 *skip_p = -1;
2267 *boffset_p = boffset;
2268 return;
2269 }
2270
2271
2272 /* Helper function used by value_struct_elt to recurse through baseclasses.
2273 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2274 and search in it assuming it has (class) type TYPE.
2275 If found, return value, else if name matched and args not return (value)-1,
2276 else return NULL. */
2277
2278 static value_ptr
2279 search_struct_method (name, arg1p, args, offset, static_memfuncp, type)
2280 char *name;
2281 register value_ptr *arg1p, *args;
2282 int offset, *static_memfuncp;
2283 register struct type *type;
2284 {
2285 int i;
2286 value_ptr v;
2287 int name_matched = 0;
2288 char dem_opname[64];
2289
2290 CHECK_TYPEDEF (type);
2291 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2292 {
2293 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2294 /* FIXME! May need to check for ARM demangling here */
2295 if (strncmp (t_field_name, "__", 2) == 0 ||
2296 strncmp (t_field_name, "op", 2) == 0 ||
2297 strncmp (t_field_name, "type", 4) == 0)
2298 {
2299 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2300 t_field_name = dem_opname;
2301 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2302 t_field_name = dem_opname;
2303 }
2304 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2305 {
2306 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2307 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2308 name_matched = 1;
2309
2310 if (j > 0 && args == 0)
2311 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
2312 while (j >= 0)
2313 {
2314 if (TYPE_FN_FIELD_STUB (f, j))
2315 check_stub_method (type, i, j);
2316 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2317 TYPE_FN_FIELD_ARGS (f, j), args))
2318 {
2319 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2320 return value_virtual_fn_field (arg1p, f, j, type, offset);
2321 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2322 *static_memfuncp = 1;
2323 v = value_fn_field (arg1p, f, j, type, offset);
2324 if (v != NULL)
2325 return v;
2326 }
2327 j--;
2328 }
2329 }
2330 }
2331
2332 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2333 {
2334 int base_offset;
2335
2336 if (BASETYPE_VIA_VIRTUAL (type, i))
2337 {
2338 if (TYPE_HAS_VTABLE (type))
2339 {
2340 /* HP aCC compiled type, search for virtual base offset
2341 according to HP/Taligent runtime spec. */
2342 int skip;
2343 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2344 VALUE_CONTENTS_ALL (*arg1p),
2345 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2346 &base_offset, &skip);
2347 if (skip >= 0)
2348 error ("Virtual base class offset not found in vtable");
2349 }
2350 else
2351 {
2352 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2353 char *base_valaddr;
2354
2355 /* The virtual base class pointer might have been clobbered by the
2356 user program. Make sure that it still points to a valid memory
2357 location. */
2358
2359 if (offset < 0 || offset >= TYPE_LENGTH (type))
2360 {
2361 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2362 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2363 + VALUE_OFFSET (*arg1p) + offset,
2364 base_valaddr,
2365 TYPE_LENGTH (baseclass)) != 0)
2366 error ("virtual baseclass botch");
2367 }
2368 else
2369 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2370
2371 base_offset =
2372 baseclass_offset (type, i, base_valaddr,
2373 VALUE_ADDRESS (*arg1p)
2374 + VALUE_OFFSET (*arg1p) + offset);
2375 if (base_offset == -1)
2376 error ("virtual baseclass botch");
2377 }
2378 }
2379 else
2380 {
2381 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2382 }
2383 v = search_struct_method (name, arg1p, args, base_offset + offset,
2384 static_memfuncp, TYPE_BASECLASS (type, i));
2385 if (v == (value_ptr) - 1)
2386 {
2387 name_matched = 1;
2388 }
2389 else if (v)
2390 {
2391 /* FIXME-bothner: Why is this commented out? Why is it here? */
2392 /* *arg1p = arg1_tmp; */
2393 return v;
2394 }
2395 }
2396 if (name_matched)
2397 return (value_ptr) - 1;
2398 else
2399 return NULL;
2400 }
2401
2402 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2403 extract the component named NAME from the ultimate target structure/union
2404 and return it as a value with its appropriate type.
2405 ERR is used in the error message if *ARGP's type is wrong.
2406
2407 C++: ARGS is a list of argument types to aid in the selection of
2408 an appropriate method. Also, handle derived types.
2409
2410 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2411 where the truthvalue of whether the function that was resolved was
2412 a static member function or not is stored.
2413
2414 ERR is an error message to be printed in case the field is not found. */
2415
2416 value_ptr
2417 value_struct_elt (argp, args, name, static_memfuncp, err)
2418 register value_ptr *argp, *args;
2419 char *name;
2420 int *static_memfuncp;
2421 char *err;
2422 {
2423 register struct type *t;
2424 value_ptr v;
2425
2426 COERCE_ARRAY (*argp);
2427
2428 t = check_typedef (VALUE_TYPE (*argp));
2429
2430 /* Follow pointers until we get to a non-pointer. */
2431
2432 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2433 {
2434 *argp = value_ind (*argp);
2435 /* Don't coerce fn pointer to fn and then back again! */
2436 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2437 COERCE_ARRAY (*argp);
2438 t = check_typedef (VALUE_TYPE (*argp));
2439 }
2440
2441 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2442 error ("not implemented: member type in value_struct_elt");
2443
2444 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2445 && TYPE_CODE (t) != TYPE_CODE_UNION)
2446 error ("Attempt to extract a component of a value that is not a %s.", err);
2447
2448 /* Assume it's not, unless we see that it is. */
2449 if (static_memfuncp)
2450 *static_memfuncp = 0;
2451
2452 if (!args)
2453 {
2454 /* if there are no arguments ...do this... */
2455
2456 /* Try as a field first, because if we succeed, there
2457 is less work to be done. */
2458 v = search_struct_field (name, *argp, 0, t, 0);
2459 if (v)
2460 return v;
2461
2462 /* C++: If it was not found as a data field, then try to
2463 return it as a pointer to a method. */
2464
2465 if (destructor_name_p (name, t))
2466 error ("Cannot get value of destructor");
2467
2468 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2469
2470 if (v == (value_ptr) - 1)
2471 error ("Cannot take address of a method");
2472 else if (v == 0)
2473 {
2474 if (TYPE_NFN_FIELDS (t))
2475 error ("There is no member or method named %s.", name);
2476 else
2477 error ("There is no member named %s.", name);
2478 }
2479 return v;
2480 }
2481
2482 if (destructor_name_p (name, t))
2483 {
2484 if (!args[1])
2485 {
2486 /* Destructors are a special case. */
2487 int m_index, f_index;
2488
2489 v = NULL;
2490 if (get_destructor_fn_field (t, &m_index, &f_index))
2491 {
2492 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2493 f_index, NULL, 0);
2494 }
2495 if (v == NULL)
2496 error ("could not find destructor function named %s.", name);
2497 else
2498 return v;
2499 }
2500 else
2501 {
2502 error ("destructor should not have any argument");
2503 }
2504 }
2505 else
2506 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2507
2508 if (v == (value_ptr) - 1)
2509 {
2510 error ("Argument list of %s mismatch with component in the structure.", name);
2511 }
2512 else if (v == 0)
2513 {
2514 /* See if user tried to invoke data as function. If so,
2515 hand it back. If it's not callable (i.e., a pointer to function),
2516 gdb should give an error. */
2517 v = search_struct_field (name, *argp, 0, t, 0);
2518 }
2519
2520 if (!v)
2521 error ("Structure has no component named %s.", name);
2522 return v;
2523 }
2524
2525 /* Search through the methods of an object (and its bases)
2526 * to find a specified method. Return the pointer to the
2527 * fn_field list of overloaded instances.
2528 * Helper function for value_find_oload_list.
2529 * ARGP is a pointer to a pointer to a value (the object)
2530 * METHOD is a string containing the method name
2531 * OFFSET is the offset within the value
2532 * STATIC_MEMFUNCP is set if the method is static
2533 * TYPE is the assumed type of the object
2534 * NUM_FNS is the number of overloaded instances
2535 * BASETYPE is set to the actual type of the subobject where the method is found
2536 * BOFFSET is the offset of the base subobject where the method is found */
2537
2538 static struct fn_field *
2539 find_method_list (argp, method, offset, static_memfuncp, type, num_fns, basetype, boffset)
2540 value_ptr *argp;
2541 char *method;
2542 int offset;
2543 int *static_memfuncp;
2544 struct type *type;
2545 int *num_fns;
2546 struct type **basetype;
2547 int *boffset;
2548 {
2549 int i;
2550 struct fn_field *f;
2551 CHECK_TYPEDEF (type);
2552
2553 *num_fns = 0;
2554
2555 /* First check in object itself */
2556 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2557 {
2558 /* pai: FIXME What about operators and type conversions? */
2559 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2560 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2561 {
2562 *num_fns = TYPE_FN_FIELDLIST_LENGTH (type, i);
2563 *basetype = type;
2564 *boffset = offset;
2565 return TYPE_FN_FIELDLIST1 (type, i);
2566 }
2567 }
2568
2569 /* Not found in object, check in base subobjects */
2570 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2571 {
2572 int base_offset;
2573 if (BASETYPE_VIA_VIRTUAL (type, i))
2574 {
2575 if (TYPE_HAS_VTABLE (type))
2576 {
2577 /* HP aCC compiled type, search for virtual base offset
2578 * according to HP/Taligent runtime spec. */
2579 int skip;
2580 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2581 VALUE_CONTENTS_ALL (*argp),
2582 offset + VALUE_EMBEDDED_OFFSET (*argp),
2583 &base_offset, &skip);
2584 if (skip >= 0)
2585 error ("Virtual base class offset not found in vtable");
2586 }
2587 else
2588 {
2589 /* probably g++ runtime model */
2590 base_offset = VALUE_OFFSET (*argp) + offset;
2591 base_offset =
2592 baseclass_offset (type, i,
2593 VALUE_CONTENTS (*argp) + base_offset,
2594 VALUE_ADDRESS (*argp) + base_offset);
2595 if (base_offset == -1)
2596 error ("virtual baseclass botch");
2597 }
2598 }
2599 else
2600 /* non-virtual base, simply use bit position from debug info */
2601 {
2602 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2603 }
2604 f = find_method_list (argp, method, base_offset + offset,
2605 static_memfuncp, TYPE_BASECLASS (type, i), num_fns, basetype, boffset);
2606 if (f)
2607 return f;
2608 }
2609 return NULL;
2610 }
2611
2612 /* Return the list of overloaded methods of a specified name.
2613 * ARGP is a pointer to a pointer to a value (the object)
2614 * METHOD is the method name
2615 * OFFSET is the offset within the value contents
2616 * STATIC_MEMFUNCP is set if the method is static
2617 * NUM_FNS is the number of overloaded instances
2618 * BASETYPE is set to the type of the base subobject that defines the method
2619 * BOFFSET is the offset of the base subobject which defines the method */
2620
2621 struct fn_field *
2622 value_find_oload_method_list (argp, method, offset, static_memfuncp, num_fns, basetype, boffset)
2623 value_ptr *argp;
2624 char *method;
2625 int offset;
2626 int *static_memfuncp;
2627 int *num_fns;
2628 struct type **basetype;
2629 int *boffset;
2630 {
2631 struct type *t;
2632
2633 t = check_typedef (VALUE_TYPE (*argp));
2634
2635 /* code snarfed from value_struct_elt */
2636 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2637 {
2638 *argp = value_ind (*argp);
2639 /* Don't coerce fn pointer to fn and then back again! */
2640 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2641 COERCE_ARRAY (*argp);
2642 t = check_typedef (VALUE_TYPE (*argp));
2643 }
2644
2645 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2646 error ("Not implemented: member type in value_find_oload_lis");
2647
2648 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2649 && TYPE_CODE (t) != TYPE_CODE_UNION)
2650 error ("Attempt to extract a component of a value that is not a struct or union");
2651
2652 /* Assume it's not static, unless we see that it is. */
2653 if (static_memfuncp)
2654 *static_memfuncp = 0;
2655
2656 return find_method_list (argp, method, 0, static_memfuncp, t, num_fns, basetype, boffset);
2657
2658 }
2659
2660 /* Given an array of argument types (ARGTYPES) (which includes an
2661 entry for "this" in the case of C++ methods), the number of
2662 arguments NARGS, the NAME of a function whether it's a method or
2663 not (METHOD), and the degree of laxness (LAX) in conforming to
2664 overload resolution rules in ANSI C++, find the best function that
2665 matches on the argument types according to the overload resolution
2666 rules.
2667
2668 In the case of class methods, the parameter OBJ is an object value
2669 in which to search for overloaded methods.
2670
2671 In the case of non-method functions, the parameter FSYM is a symbol
2672 corresponding to one of the overloaded functions.
2673
2674 Return value is an integer: 0 -> good match, 10 -> debugger applied
2675 non-standard coercions, 100 -> incompatible.
2676
2677 If a method is being searched for, VALP will hold the value.
2678 If a non-method is being searched for, SYMP will hold the symbol for it.
2679
2680 If a method is being searched for, and it is a static method,
2681 then STATICP will point to a non-zero value.
2682
2683 Note: This function does *not* check the value of
2684 overload_resolution. Caller must check it to see whether overload
2685 resolution is permitted.
2686 */
2687
2688 int
2689 find_overload_match (arg_types, nargs, name, method, lax, obj, fsym, valp, symp, staticp)
2690 struct type **arg_types;
2691 int nargs;
2692 char *name;
2693 int method;
2694 int lax;
2695 value_ptr obj;
2696 struct symbol *fsym;
2697 value_ptr *valp;
2698 struct symbol **symp;
2699 int *staticp;
2700 {
2701 int nparms;
2702 struct type **parm_types;
2703 int champ_nparms = 0;
2704
2705 short oload_champ = -1; /* Index of best overloaded function */
2706 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2707 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2708 short oload_ambig_champ = -1; /* 2nd contender for best match */
2709 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2710 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2711
2712 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2713 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
2714
2715 value_ptr temp = obj;
2716 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
2717 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2718 int num_fns = 0; /* Number of overloaded instances being considered */
2719 struct type *basetype = NULL;
2720 int boffset;
2721 register int jj;
2722 register int ix;
2723
2724 char *obj_type_name = NULL;
2725 char *func_name = NULL;
2726
2727 /* Get the list of overloaded methods or functions */
2728 if (method)
2729 {
2730 int i;
2731 int len;
2732 struct type *domain;
2733 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2734 /* Hack: evaluate_subexp_standard often passes in a pointer
2735 value rather than the object itself, so try again */
2736 if ((!obj_type_name || !*obj_type_name) &&
2737 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2738 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
2739
2740 fns_ptr = value_find_oload_method_list (&temp, name, 0,
2741 staticp,
2742 &num_fns,
2743 &basetype, &boffset);
2744 if (!fns_ptr || !num_fns)
2745 error ("Couldn't find method %s%s%s",
2746 obj_type_name,
2747 (obj_type_name && *obj_type_name) ? "::" : "",
2748 name);
2749 domain = TYPE_DOMAIN_TYPE (fns_ptr[0].type);
2750 len = TYPE_NFN_FIELDS (domain);
2751 /* NOTE: dan/2000-03-10: This stuff is for STABS, which won't
2752 give us the info we need directly in the types. We have to
2753 use the method stub conversion to get it. Be aware that this
2754 is by no means perfect, and if you use STABS, please move to
2755 DWARF-2, or something like it, because trying to improve
2756 overloading using STABS is really a waste of time. */
2757 for (i = 0; i < len; i++)
2758 {
2759 int j;
2760 struct fn_field *f = TYPE_FN_FIELDLIST1 (domain, i);
2761 int len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
2762
2763 for (j = 0; j < len2; j++)
2764 {
2765 if (TYPE_FN_FIELD_STUB (f, j) && (!strcmp_iw (TYPE_FN_FIELDLIST_NAME (domain,i),name)))
2766 check_stub_method (domain, i, j);
2767 }
2768 }
2769 }
2770 else
2771 {
2772 int i = -1;
2773 func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);
2774
2775 /* If the name is NULL this must be a C-style function.
2776 Just return the same symbol. */
2777 if (!func_name)
2778 {
2779 *symp = fsym;
2780 return 0;
2781 }
2782
2783 oload_syms = make_symbol_overload_list (fsym);
2784 while (oload_syms[++i])
2785 num_fns++;
2786 if (!num_fns)
2787 error ("Couldn't find function %s", func_name);
2788 }
2789
2790 oload_champ_bv = NULL;
2791
2792 /* Consider each candidate in turn */
2793 for (ix = 0; ix < num_fns; ix++)
2794 {
2795 if (method)
2796 {
2797 /* For static member functions, we won't have a this pointer, but nothing
2798 else seems to handle them right now, so we just pretend ourselves */
2799 nparms=0;
2800
2801 if (TYPE_FN_FIELD_ARGS(fns_ptr,ix))
2802 {
2803 while (TYPE_CODE(TYPE_FN_FIELD_ARGS(fns_ptr,ix)[nparms]) != TYPE_CODE_VOID)
2804 nparms++;
2805 }
2806 }
2807 else
2808 {
2809 /* If it's not a method, this is the proper place */
2810 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2811 }
2812
2813 /* Prepare array of parameter types */
2814 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2815 for (jj = 0; jj < nparms; jj++)
2816 parm_types[jj] = (method
2817 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj])
2818 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
2819
2820 /* Compare parameter types to supplied argument types */
2821 bv = rank_function (parm_types, nparms, arg_types, nargs);
2822
2823 if (!oload_champ_bv)
2824 {
2825 oload_champ_bv = bv;
2826 oload_champ = 0;
2827 champ_nparms = nparms;
2828 }
2829 else
2830 /* See whether current candidate is better or worse than previous best */
2831 switch (compare_badness (bv, oload_champ_bv))
2832 {
2833 case 0:
2834 oload_ambiguous = 1; /* top two contenders are equally good */
2835 oload_ambig_champ = ix;
2836 break;
2837 case 1:
2838 oload_ambiguous = 2; /* incomparable top contenders */
2839 oload_ambig_champ = ix;
2840 break;
2841 case 2:
2842 oload_champ_bv = bv; /* new champion, record details */
2843 oload_ambiguous = 0;
2844 oload_champ = ix;
2845 oload_ambig_champ = -1;
2846 champ_nparms = nparms;
2847 break;
2848 case 3:
2849 default:
2850 break;
2851 }
2852 free (parm_types);
2853 if (overload_debug)
2854 {
2855 if (method)
2856 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2857 else
2858 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
2859 for (jj = 0; jj < nargs; jj++)
2860 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2861 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2862 }
2863 } /* end loop over all candidates */
2864 /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
2865 if they have the exact same goodness. This is because there is no
2866 way to differentiate based on return type, which we need to in
2867 cases like overloads of .begin() <It's both const and non-const> */
2868 #if 0
2869 if (oload_ambiguous)
2870 {
2871 if (method)
2872 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2873 obj_type_name,
2874 (obj_type_name && *obj_type_name) ? "::" : "",
2875 name);
2876 else
2877 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2878 func_name);
2879 }
2880 #endif
2881
2882 /* Check how bad the best match is */
2883 for (ix = 1; ix <= nargs; ix++)
2884 {
2885 switch (oload_champ_bv->rank[ix])
2886 {
2887 case 10:
2888 oload_non_standard = 1; /* non-standard type conversions needed */
2889 break;
2890 case 100:
2891 oload_incompatible = 1; /* truly mismatched types */
2892 break;
2893 }
2894 }
2895 if (oload_incompatible)
2896 {
2897 if (method)
2898 error ("Cannot resolve method %s%s%s to any overloaded instance",
2899 obj_type_name,
2900 (obj_type_name && *obj_type_name) ? "::" : "",
2901 name);
2902 else
2903 error ("Cannot resolve function %s to any overloaded instance",
2904 func_name);
2905 }
2906 else if (oload_non_standard)
2907 {
2908 if (method)
2909 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2910 obj_type_name,
2911 (obj_type_name && *obj_type_name) ? "::" : "",
2912 name);
2913 else
2914 warning ("Using non-standard conversion to match function %s to supplied arguments",
2915 func_name);
2916 }
2917
2918 if (method)
2919 {
2920 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2921 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2922 else
2923 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2924 }
2925 else
2926 {
2927 *symp = oload_syms[oload_champ];
2928 free (func_name);
2929 }
2930
2931 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2932 }
2933
2934 /* C++: return 1 is NAME is a legitimate name for the destructor
2935 of type TYPE. If TYPE does not have a destructor, or
2936 if NAME is inappropriate for TYPE, an error is signaled. */
2937 int
2938 destructor_name_p (name, type)
2939 const char *name;
2940 const struct type *type;
2941 {
2942 /* destructors are a special case. */
2943
2944 if (name[0] == '~')
2945 {
2946 char *dname = type_name_no_tag (type);
2947 char *cp = strchr (dname, '<');
2948 unsigned int len;
2949
2950 /* Do not compare the template part for template classes. */
2951 if (cp == NULL)
2952 len = strlen (dname);
2953 else
2954 len = cp - dname;
2955 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2956 error ("name of destructor must equal name of class");
2957 else
2958 return 1;
2959 }
2960 return 0;
2961 }
2962
2963 /* Helper function for check_field: Given TYPE, a structure/union,
2964 return 1 if the component named NAME from the ultimate
2965 target structure/union is defined, otherwise, return 0. */
2966
2967 static int
2968 check_field_in (type, name)
2969 register struct type *type;
2970 const char *name;
2971 {
2972 register int i;
2973
2974 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2975 {
2976 char *t_field_name = TYPE_FIELD_NAME (type, i);
2977 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2978 return 1;
2979 }
2980
2981 /* C++: If it was not found as a data field, then try to
2982 return it as a pointer to a method. */
2983
2984 /* Destructors are a special case. */
2985 if (destructor_name_p (name, type))
2986 {
2987 int m_index, f_index;
2988
2989 return get_destructor_fn_field (type, &m_index, &f_index);
2990 }
2991
2992 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2993 {
2994 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2995 return 1;
2996 }
2997
2998 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2999 if (check_field_in (TYPE_BASECLASS (type, i), name))
3000 return 1;
3001
3002 return 0;
3003 }
3004
3005
3006 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
3007 return 1 if the component named NAME from the ultimate
3008 target structure/union is defined, otherwise, return 0. */
3009
3010 int
3011 check_field (arg1, name)
3012 register value_ptr arg1;
3013 const char *name;
3014 {
3015 register struct type *t;
3016
3017 COERCE_ARRAY (arg1);
3018
3019 t = VALUE_TYPE (arg1);
3020
3021 /* Follow pointers until we get to a non-pointer. */
3022
3023 for (;;)
3024 {
3025 CHECK_TYPEDEF (t);
3026 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
3027 break;
3028 t = TYPE_TARGET_TYPE (t);
3029 }
3030
3031 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
3032 error ("not implemented: member type in check_field");
3033
3034 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3035 && TYPE_CODE (t) != TYPE_CODE_UNION)
3036 error ("Internal error: `this' is not an aggregate");
3037
3038 return check_field_in (t, name);
3039 }
3040
3041 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3042 return the address of this member as a "pointer to member"
3043 type. If INTYPE is non-null, then it will be the type
3044 of the member we are looking for. This will help us resolve
3045 "pointers to member functions". This function is used
3046 to resolve user expressions of the form "DOMAIN::NAME". */
3047
3048 value_ptr
3049 value_struct_elt_for_reference (domain, offset, curtype, name, intype)
3050 struct type *domain, *curtype, *intype;
3051 int offset;
3052 char *name;
3053 {
3054 register struct type *t = curtype;
3055 register int i;
3056 value_ptr v;
3057
3058 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3059 && TYPE_CODE (t) != TYPE_CODE_UNION)
3060 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
3061
3062 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3063 {
3064 char *t_field_name = TYPE_FIELD_NAME (t, i);
3065
3066 if (t_field_name && STREQ (t_field_name, name))
3067 {
3068 if (TYPE_FIELD_STATIC (t, i))
3069 {
3070 v = value_static_field (t, i);
3071 if (v == NULL)
3072 error ("Internal error: could not find static variable %s",
3073 name);
3074 return v;
3075 }
3076 if (TYPE_FIELD_PACKED (t, i))
3077 error ("pointers to bitfield members not allowed");
3078
3079 return value_from_longest
3080 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
3081 domain)),
3082 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3083 }
3084 }
3085
3086 /* C++: If it was not found as a data field, then try to
3087 return it as a pointer to a method. */
3088
3089 /* Destructors are a special case. */
3090 if (destructor_name_p (name, t))
3091 {
3092 error ("member pointers to destructors not implemented yet");
3093 }
3094
3095 /* Perform all necessary dereferencing. */
3096 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3097 intype = TYPE_TARGET_TYPE (intype);
3098
3099 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3100 {
3101 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3102 char dem_opname[64];
3103
3104 if (strncmp (t_field_name, "__", 2) == 0 ||
3105 strncmp (t_field_name, "op", 2) == 0 ||
3106 strncmp (t_field_name, "type", 4) == 0)
3107 {
3108 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
3109 t_field_name = dem_opname;
3110 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
3111 t_field_name = dem_opname;
3112 }
3113 if (t_field_name && STREQ (t_field_name, name))
3114 {
3115 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
3116 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3117
3118 if (intype == 0 && j > 1)
3119 error ("non-unique member `%s' requires type instantiation", name);
3120 if (intype)
3121 {
3122 while (j--)
3123 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
3124 break;
3125 if (j < 0)
3126 error ("no member function matches that type instantiation");
3127 }
3128 else
3129 j = 0;
3130
3131 if (TYPE_FN_FIELD_STUB (f, j))
3132 check_stub_method (t, i, j);
3133 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3134 {
3135 return value_from_longest
3136 (lookup_reference_type
3137 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3138 domain)),
3139 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
3140 }
3141 else
3142 {
3143 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3144 0, VAR_NAMESPACE, 0, NULL);
3145 if (s == NULL)
3146 {
3147 v = 0;
3148 }
3149 else
3150 {
3151 v = read_var_value (s, 0);
3152 #if 0
3153 VALUE_TYPE (v) = lookup_reference_type
3154 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3155 domain));
3156 #endif
3157 }
3158 return v;
3159 }
3160 }
3161 }
3162 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3163 {
3164 value_ptr v;
3165 int base_offset;
3166
3167 if (BASETYPE_VIA_VIRTUAL (t, i))
3168 base_offset = 0;
3169 else
3170 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3171 v = value_struct_elt_for_reference (domain,
3172 offset + base_offset,
3173 TYPE_BASECLASS (t, i),
3174 name,
3175 intype);
3176 if (v)
3177 return v;
3178 }
3179 return 0;
3180 }
3181
3182
3183 /* Find the real run-time type of a value using RTTI.
3184 * V is a pointer to the value.
3185 * A pointer to the struct type entry of the run-time type
3186 * is returneed.
3187 * FULL is a flag that is set only if the value V includes
3188 * the entire contents of an object of the RTTI type.
3189 * TOP is the offset to the top of the enclosing object of
3190 * the real run-time type. This offset may be for the embedded
3191 * object, or for the enclosing object of V.
3192 * USING_ENC is the flag that distinguishes the two cases.
3193 * If it is 1, then the offset is for the enclosing object,
3194 * otherwise for the embedded object.
3195 *
3196 */
3197
3198 struct type *
3199 value_rtti_type (v, full, top, using_enc)
3200 value_ptr v;
3201 int *full;
3202 int *top;
3203 int *using_enc;
3204 {
3205 struct type *known_type;
3206 struct type *rtti_type;
3207 CORE_ADDR coreptr;
3208 value_ptr vp;
3209 int using_enclosing = 0;
3210 long top_offset = 0;
3211 char rtti_type_name[256];
3212
3213 if (full)
3214 *full = 0;
3215 if (top)
3216 *top = -1;
3217 if (using_enc)
3218 *using_enc = 0;
3219
3220 /* Get declared type */
3221 known_type = VALUE_TYPE (v);
3222 CHECK_TYPEDEF (known_type);
3223 /* RTTI works only or class objects */
3224 if (TYPE_CODE (known_type) != TYPE_CODE_CLASS)
3225 return NULL;
3226 if (TYPE_HAS_VTABLE(known_type))
3227 {
3228 /* If neither the declared type nor the enclosing type of the
3229 * value structure has a HP ANSI C++ style virtual table,
3230 * we can't do anything. */
3231 if (!TYPE_HAS_VTABLE (known_type))
3232 {
3233 known_type = VALUE_ENCLOSING_TYPE (v);
3234 CHECK_TYPEDEF (known_type);
3235 if ((TYPE_CODE (known_type) != TYPE_CODE_CLASS) ||
3236 !TYPE_HAS_VTABLE (known_type))
3237 return NULL; /* No RTTI, or not HP-compiled types */
3238 CHECK_TYPEDEF (known_type);
3239 using_enclosing = 1;
3240 }
3241
3242 if (using_enclosing && using_enc)
3243 *using_enc = 1;
3244
3245 /* First get the virtual table address */
3246 coreptr = *(CORE_ADDR *) ((VALUE_CONTENTS_ALL (v))
3247 + VALUE_OFFSET (v)
3248 + (using_enclosing ? 0 : VALUE_EMBEDDED_OFFSET (v)));
3249 if (coreptr == 0)
3250 return NULL; /* return silently -- maybe called on gdb-generated value */
3251
3252 /* Fetch the top offset of the object */
3253 /* FIXME possible 32x64 problem with pointer size & arithmetic */
3254 vp = value_at (builtin_type_int,
3255 coreptr + 4 * HP_ACC_TOP_OFFSET_OFFSET,
3256 VALUE_BFD_SECTION (v));
3257 top_offset = value_as_long (vp);
3258 if (top)
3259 *top = top_offset;
3260
3261 /* Fetch the typeinfo pointer */
3262 /* FIXME possible 32x64 problem with pointer size & arithmetic */
3263 vp = value_at (builtin_type_int, coreptr + 4 * HP_ACC_TYPEINFO_OFFSET, VALUE_BFD_SECTION (v));
3264 /* Indirect through the typeinfo pointer and retrieve the pointer
3265 * to the string name */
3266 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
3267 if (!coreptr)
3268 error ("Retrieved null typeinfo pointer in trying to determine run-time type");
3269 vp = value_at (builtin_type_int, coreptr + 4, VALUE_BFD_SECTION (v)); /* 4 -> offset of name field */
3270 /* FIXME possible 32x64 problem */
3271
3272 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
3273
3274 read_memory_string (coreptr, rtti_type_name, 256);
3275
3276 if (strlen (rtti_type_name) == 0)
3277 error ("Retrieved null type name from typeinfo");
3278
3279 /* search for type */
3280 rtti_type = lookup_typename (rtti_type_name, (struct block *) 0, 1);
3281
3282 if (!rtti_type)
3283 error ("Could not find run-time type: invalid type name %s in typeinfo??", rtti_type_name);
3284 CHECK_TYPEDEF (rtti_type);
3285 #if 0
3286 printf ("RTTI type name %s, tag %s, full? %d\n", TYPE_NAME (rtti_type), TYPE_TAG_NAME (rtti_type), full ? *full : -1);
3287 #endif
3288 /* Check whether we have the entire object */
3289 if (full /* Non-null pointer passed */
3290 &&
3291 /* Either we checked on the whole object in hand and found the
3292 top offset to be zero */
3293 (((top_offset == 0) &&
3294 using_enclosing &&
3295 TYPE_LENGTH (known_type) == TYPE_LENGTH (rtti_type))
3296 ||
3297 /* Or we checked on the embedded object and top offset was the
3298 same as the embedded offset */
3299 ((top_offset == VALUE_EMBEDDED_OFFSET (v)) &&
3300 !using_enclosing &&
3301 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (v)) == TYPE_LENGTH (rtti_type))))
3302
3303 *full = 1;
3304 }
3305 else
3306 /*
3307 Right now this is G++ RTTI. Plan on this changing in the
3308 future as i get around to setting the vtables properly for G++
3309 compiled stuff. Also, i'll be using the type info functions,
3310 which are always right. Deal with it until then.
3311 */
3312 {
3313 CORE_ADDR vtbl;
3314 struct minimal_symbol *minsym;
3315 struct symbol *sym;
3316 char *demangled_name;
3317 struct type *btype;
3318 /* If the type has no vptr fieldno, try to get it filled in */
3319 if (TYPE_VPTR_FIELDNO(known_type) < 0)
3320 fill_in_vptr_fieldno(known_type);
3321
3322 /* If we still can't find one, give up */
3323 if (TYPE_VPTR_FIELDNO(known_type) < 0)
3324 return NULL;
3325
3326 /* Make sure our basetype and known type match, otherwise, cast
3327 so we can get at the vtable properly.
3328 */
3329 btype = TYPE_VPTR_BASETYPE (known_type);
3330 CHECK_TYPEDEF (btype);
3331 if (btype != known_type )
3332 {
3333 v = value_cast (btype, v);
3334 if (using_enc)
3335 *using_enc=1;
3336 }
3337 /*
3338 We can't use value_ind here, because it would want to use RTTI, and
3339 we'd waste a bunch of time figuring out we already know the type.
3340 Besides, we don't care about the type, just the actual pointer
3341 */
3342 if (VALUE_ADDRESS (value_field (v, TYPE_VPTR_FIELDNO (known_type))) == 0)
3343 return NULL;
3344
3345 /*
3346 If we are enclosed by something that isn't us, adjust the
3347 address properly and set using_enclosing.
3348 */
3349 if (VALUE_ENCLOSING_TYPE(v) != VALUE_TYPE(v))
3350 {
3351 value_ptr tempval;
3352 tempval=value_field(v,TYPE_VPTR_FIELDNO(known_type));
3353 VALUE_ADDRESS(tempval)+=(TYPE_BASECLASS_BITPOS(known_type,TYPE_VPTR_FIELDNO(known_type))/8);
3354 vtbl=value_as_pointer(tempval);
3355 using_enclosing=1;
3356 }
3357 else
3358 {
3359 vtbl=value_as_pointer(value_field(v,TYPE_VPTR_FIELDNO(known_type)));
3360 using_enclosing=0;
3361 }
3362
3363 /* Try to find a symbol that is the vtable */
3364 minsym=lookup_minimal_symbol_by_pc(vtbl);
3365 if (minsym==NULL || (demangled_name=SYMBOL_NAME(minsym))==NULL || !VTBL_PREFIX_P(demangled_name))
3366 return NULL;
3367
3368 /* If we just skip the prefix, we get screwed by namespaces */
3369 demangled_name=cplus_demangle(demangled_name,DMGL_PARAMS|DMGL_ANSI);
3370 *(strchr(demangled_name,' '))=0;
3371
3372 /* Lookup the type for the name */
3373 rtti_type=lookup_typename(demangled_name, (struct block *)0,1);
3374
3375 if (rtti_type==NULL)
3376 return NULL;
3377
3378 if (TYPE_N_BASECLASSES(rtti_type) > 1 && full && (*full) != 1)
3379 {
3380 if (top)
3381 *top=TYPE_BASECLASS_BITPOS(rtti_type,TYPE_VPTR_FIELDNO(rtti_type))/8;
3382 if (top && ((*top) >0))
3383 {
3384 if (TYPE_LENGTH(rtti_type) > TYPE_LENGTH(known_type))
3385 {
3386 if (full)
3387 *full=0;
3388 }
3389 else
3390 {
3391 if (full)
3392 *full=1;
3393 }
3394 }
3395 }
3396 else
3397 {
3398 if (full)
3399 *full=1;
3400 }
3401 if (using_enc)
3402 *using_enc=using_enclosing;
3403 }
3404 return rtti_type;
3405 }
3406
3407 /* Given a pointer value V, find the real (RTTI) type
3408 of the object it points to.
3409 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3410 and refer to the values computed for the object pointed to. */
3411
3412 struct type *
3413 value_rtti_target_type (v, full, top, using_enc)
3414 value_ptr v;
3415 int *full;
3416 int *top;
3417 int *using_enc;
3418 {
3419 value_ptr target;
3420
3421 target = value_ind (v);
3422
3423 return value_rtti_type (target, full, top, using_enc);
3424 }
3425
3426 /* Given a value pointed to by ARGP, check its real run-time type, and
3427 if that is different from the enclosing type, create a new value
3428 using the real run-time type as the enclosing type (and of the same
3429 type as ARGP) and return it, with the embedded offset adjusted to
3430 be the correct offset to the enclosed object
3431 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3432 parameters, computed by value_rtti_type(). If these are available,
3433 they can be supplied and a second call to value_rtti_type() is avoided.
3434 (Pass RTYPE == NULL if they're not available */
3435
3436 value_ptr
3437 value_full_object (argp, rtype, xfull, xtop, xusing_enc)
3438 value_ptr argp;
3439 struct type *rtype;
3440 int xfull;
3441 int xtop;
3442 int xusing_enc;
3443
3444 {
3445 struct type *real_type;
3446 int full = 0;
3447 int top = -1;
3448 int using_enc = 0;
3449 value_ptr new_val;
3450
3451 if (rtype)
3452 {
3453 real_type = rtype;
3454 full = xfull;
3455 top = xtop;
3456 using_enc = xusing_enc;
3457 }
3458 else
3459 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3460
3461 /* If no RTTI data, or if object is already complete, do nothing */
3462 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3463 return argp;
3464
3465 /* If we have the full object, but for some reason the enclosing
3466 type is wrong, set it *//* pai: FIXME -- sounds iffy */
3467 if (full)
3468 {
3469 VALUE_ENCLOSING_TYPE (argp) = real_type;
3470 return argp;
3471 }
3472
3473 /* Check if object is in memory */
3474 if (VALUE_LVAL (argp) != lval_memory)
3475 {
3476 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
3477
3478 return argp;
3479 }
3480
3481 /* All other cases -- retrieve the complete object */
3482 /* Go back by the computed top_offset from the beginning of the object,
3483 adjusting for the embedded offset of argp if that's what value_rtti_type
3484 used for its computation. */
3485 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
3486 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3487 VALUE_BFD_SECTION (argp));
3488 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3489 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3490 return new_val;
3491 }
3492
3493
3494
3495
3496 /* C++: return the value of the class instance variable, if one exists.
3497 Flag COMPLAIN signals an error if the request is made in an
3498 inappropriate context. */
3499
3500 value_ptr
3501 value_of_this (complain)
3502 int complain;
3503 {
3504 struct symbol *func, *sym;
3505 struct block *b;
3506 int i;
3507 static const char funny_this[] = "this";
3508 value_ptr this;
3509
3510 if (selected_frame == 0)
3511 {
3512 if (complain)
3513 error ("no frame selected");
3514 else
3515 return 0;
3516 }
3517
3518 func = get_frame_function (selected_frame);
3519 if (!func)
3520 {
3521 if (complain)
3522 error ("no `this' in nameless context");
3523 else
3524 return 0;
3525 }
3526
3527 b = SYMBOL_BLOCK_VALUE (func);
3528 i = BLOCK_NSYMS (b);
3529 if (i <= 0)
3530 {
3531 if (complain)
3532 error ("no args, no `this'");
3533 else
3534 return 0;
3535 }
3536
3537 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3538 symbol instead of the LOC_ARG one (if both exist). */
3539 sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE);
3540 if (sym == NULL)
3541 {
3542 if (complain)
3543 error ("current stack frame not in method");
3544 else
3545 return NULL;
3546 }
3547
3548 this = read_var_value (sym, selected_frame);
3549 if (this == 0 && complain)
3550 error ("`this' argument at unknown address");
3551 return this;
3552 }
3553
3554 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3555 long, starting at LOWBOUND. The result has the same lower bound as
3556 the original ARRAY. */
3557
3558 value_ptr
3559 value_slice (array, lowbound, length)
3560 value_ptr array;
3561 int lowbound, length;
3562 {
3563 struct type *slice_range_type, *slice_type, *range_type;
3564 LONGEST lowerbound, upperbound, offset;
3565 value_ptr slice;
3566 struct type *array_type;
3567 array_type = check_typedef (VALUE_TYPE (array));
3568 COERCE_VARYING_ARRAY (array, array_type);
3569 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3570 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3571 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3572 error ("cannot take slice of non-array");
3573 range_type = TYPE_INDEX_TYPE (array_type);
3574 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3575 error ("slice from bad array or bitstring");
3576 if (lowbound < lowerbound || length < 0
3577 || lowbound + length - 1 > upperbound
3578 /* Chill allows zero-length strings but not arrays. */
3579 || (current_language->la_language == language_chill
3580 && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY))
3581 error ("slice out of range");
3582 /* FIXME-type-allocation: need a way to free this type when we are
3583 done with it. */
3584 slice_range_type = create_range_type ((struct type *) NULL,
3585 TYPE_TARGET_TYPE (range_type),
3586 lowbound, lowbound + length - 1);
3587 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3588 {
3589 int i;
3590 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
3591 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3592 slice = value_zero (slice_type, not_lval);
3593 for (i = 0; i < length; i++)
3594 {
3595 int element = value_bit_index (array_type,
3596 VALUE_CONTENTS (array),
3597 lowbound + i);
3598 if (element < 0)
3599 error ("internal error accessing bitstring");
3600 else if (element > 0)
3601 {
3602 int j = i % TARGET_CHAR_BIT;
3603 if (BITS_BIG_ENDIAN)
3604 j = TARGET_CHAR_BIT - 1 - j;
3605 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3606 }
3607 }
3608 /* We should set the address, bitssize, and bitspos, so the clice
3609 can be used on the LHS, but that may require extensions to
3610 value_assign. For now, just leave as a non_lval. FIXME. */
3611 }
3612 else
3613 {
3614 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3615 offset
3616 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3617 slice_type = create_array_type ((struct type *) NULL, element_type,
3618 slice_range_type);
3619 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3620 slice = allocate_value (slice_type);
3621 if (VALUE_LAZY (array))
3622 VALUE_LAZY (slice) = 1;
3623 else
3624 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3625 TYPE_LENGTH (slice_type));
3626 if (VALUE_LVAL (array) == lval_internalvar)
3627 VALUE_LVAL (slice) = lval_internalvar_component;
3628 else
3629 VALUE_LVAL (slice) = VALUE_LVAL (array);
3630 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3631 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3632 }
3633 return slice;
3634 }
3635
3636 /* Assuming chill_varying_type (VARRAY) is true, return an equivalent
3637 value as a fixed-length array. */
3638
3639 value_ptr
3640 varying_to_slice (varray)
3641 value_ptr varray;
3642 {
3643 struct type *vtype = check_typedef (VALUE_TYPE (varray));
3644 LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
3645 VALUE_CONTENTS (varray)
3646 + TYPE_FIELD_BITPOS (vtype, 0) / 8);
3647 return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
3648 }
3649
3650 /* Create a value for a FORTRAN complex number. Currently most of
3651 the time values are coerced to COMPLEX*16 (i.e. a complex number
3652 composed of 2 doubles. This really should be a smarter routine
3653 that figures out precision inteligently as opposed to assuming
3654 doubles. FIXME: fmb */
3655
3656 value_ptr
3657 value_literal_complex (arg1, arg2, type)
3658 value_ptr arg1;
3659 value_ptr arg2;
3660 struct type *type;
3661 {
3662 register value_ptr val;
3663 struct type *real_type = TYPE_TARGET_TYPE (type);
3664
3665 val = allocate_value (type);
3666 arg1 = value_cast (real_type, arg1);
3667 arg2 = value_cast (real_type, arg2);
3668
3669 memcpy (VALUE_CONTENTS_RAW (val),
3670 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3671 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3672 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3673 return val;
3674 }
3675
3676 /* Cast a value into the appropriate complex data type. */
3677
3678 static value_ptr
3679 cast_into_complex (type, val)
3680 struct type *type;
3681 register value_ptr val;
3682 {
3683 struct type *real_type = TYPE_TARGET_TYPE (type);
3684 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3685 {
3686 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
3687 value_ptr re_val = allocate_value (val_real_type);
3688 value_ptr im_val = allocate_value (val_real_type);
3689
3690 memcpy (VALUE_CONTENTS_RAW (re_val),
3691 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3692 memcpy (VALUE_CONTENTS_RAW (im_val),
3693 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
3694 TYPE_LENGTH (val_real_type));
3695
3696 return value_literal_complex (re_val, im_val, type);
3697 }
3698 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3699 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3700 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3701 else
3702 error ("cannot cast non-number to complex");
3703 }
3704
3705 void
3706 _initialize_valops ()
3707 {
3708 #if 0
3709 add_show_from_set
3710 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
3711 "Set automatic abandonment of expressions upon failure.",
3712 &setlist),
3713 &showlist);
3714 #endif
3715
3716 add_show_from_set
3717 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
3718 "Set overload resolution in evaluating C++ functions.",
3719 &setlist),
3720 &showlist);
3721 overload_resolution = 1;
3722
3723 add_show_from_set (
3724 add_set_cmd ("unwindonsignal", no_class, var_boolean,
3725 (char *) &unwind_on_signal_p,
3726 "Set unwinding of stack if a signal is received while in a call dummy.\n\
3727 The unwindonsignal lets the user determine what gdb should do if a signal\n\
3728 is received while in a function called from gdb (call dummy). If set, gdb\n\
3729 unwinds the stack and restore the context to what as it was before the call.\n\
3730 The default is to stop in the frame where the signal was received.", &setlist),
3731 &showlist);
3732 }