* gdb.base/selftest.exp (backtrace through signal handler): Remove
[binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
3 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "gdbcore.h"
30 #include "target.h"
31 #include "demangle.h"
32 #include "language.h"
33 #include "gdbcmd.h"
34 #include "regcache.h"
35 #include "cp-abi.h"
36
37 #include <errno.h>
38 #include "gdb_string.h"
39
40 /* Flag indicating HP compilers were used; needed to correctly handle some
41 value operations with HP aCC code/runtime. */
42 extern int hp_som_som_object_present;
43
44 extern int overload_debug;
45 /* Local functions. */
46
47 static int typecmp (int staticp, struct type *t1[], struct value *t2[]);
48
49 static CORE_ADDR find_function_addr (struct value *, struct type **);
50 static struct value *value_arg_coerce (struct value *, struct type *, int);
51
52
53 static CORE_ADDR value_push (CORE_ADDR, struct value *);
54
55 static struct value *search_struct_field (char *, struct value *, int,
56 struct type *, int);
57
58 static struct value *search_struct_method (char *, struct value **,
59 struct value **,
60 int, int *, struct type *);
61
62 static int check_field_in (struct type *, const char *);
63
64 static CORE_ADDR allocate_space_in_inferior (int);
65
66 static struct value *cast_into_complex (struct type *, struct value *);
67
68 static struct fn_field *find_method_list (struct value ** argp, char *method,
69 int offset, int *static_memfuncp,
70 struct type *type, int *num_fns,
71 struct type **basetype,
72 int *boffset);
73
74 void _initialize_valops (void);
75
76 /* Flag for whether we want to abandon failed expression evals by default. */
77
78 #if 0
79 static int auto_abandon = 0;
80 #endif
81
82 int overload_resolution = 0;
83
84 /* This boolean tells what gdb should do if a signal is received while in
85 a function called from gdb (call dummy). If set, gdb unwinds the stack
86 and restore the context to what as it was before the call.
87 The default is to stop in the frame where the signal was received. */
88
89 int unwind_on_signal_p = 0;
90 \f
91
92
93 /* Find the address of function name NAME in the inferior. */
94
95 struct value *
96 find_function_in_inferior (char *name)
97 {
98 register struct symbol *sym;
99 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
100 if (sym != NULL)
101 {
102 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
103 {
104 error ("\"%s\" exists in this program but is not a function.",
105 name);
106 }
107 return value_of_variable (sym, NULL);
108 }
109 else
110 {
111 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
112 if (msymbol != NULL)
113 {
114 struct type *type;
115 CORE_ADDR maddr;
116 type = lookup_pointer_type (builtin_type_char);
117 type = lookup_function_type (type);
118 type = lookup_pointer_type (type);
119 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
120 return value_from_pointer (type, maddr);
121 }
122 else
123 {
124 if (!target_has_execution)
125 error ("evaluation of this expression requires the target program to be active");
126 else
127 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
128 }
129 }
130 }
131
132 /* Allocate NBYTES of space in the inferior using the inferior's malloc
133 and return a value that is a pointer to the allocated space. */
134
135 struct value *
136 value_allocate_space_in_inferior (int len)
137 {
138 struct value *blocklen;
139 struct value *val = find_function_in_inferior ("malloc");
140
141 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
142 val = call_function_by_hand (val, 1, &blocklen);
143 if (value_logical_not (val))
144 {
145 if (!target_has_execution)
146 error ("No memory available to program now: you need to start the target first");
147 else
148 error ("No memory available to program: call to malloc failed");
149 }
150 return val;
151 }
152
153 static CORE_ADDR
154 allocate_space_in_inferior (int len)
155 {
156 return value_as_long (value_allocate_space_in_inferior (len));
157 }
158
159 /* Cast value ARG2 to type TYPE and return as a value.
160 More general than a C cast: accepts any two types of the same length,
161 and if ARG2 is an lvalue it can be cast into anything at all. */
162 /* In C++, casts may change pointer or object representations. */
163
164 struct value *
165 value_cast (struct type *type, struct value *arg2)
166 {
167 register enum type_code code1;
168 register enum type_code code2;
169 register int scalar;
170 struct type *type2;
171
172 int convert_to_boolean = 0;
173
174 if (VALUE_TYPE (arg2) == type)
175 return arg2;
176
177 CHECK_TYPEDEF (type);
178 code1 = TYPE_CODE (type);
179 COERCE_REF (arg2);
180 type2 = check_typedef (VALUE_TYPE (arg2));
181
182 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
183 is treated like a cast to (TYPE [N])OBJECT,
184 where N is sizeof(OBJECT)/sizeof(TYPE). */
185 if (code1 == TYPE_CODE_ARRAY)
186 {
187 struct type *element_type = TYPE_TARGET_TYPE (type);
188 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
189 if (element_length > 0
190 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
191 {
192 struct type *range_type = TYPE_INDEX_TYPE (type);
193 int val_length = TYPE_LENGTH (type2);
194 LONGEST low_bound, high_bound, new_length;
195 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
196 low_bound = 0, high_bound = 0;
197 new_length = val_length / element_length;
198 if (val_length % element_length != 0)
199 warning ("array element type size does not divide object size in cast");
200 /* FIXME-type-allocation: need a way to free this type when we are
201 done with it. */
202 range_type = create_range_type ((struct type *) NULL,
203 TYPE_TARGET_TYPE (range_type),
204 low_bound,
205 new_length + low_bound - 1);
206 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
207 element_type, range_type);
208 return arg2;
209 }
210 }
211
212 if (current_language->c_style_arrays
213 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
214 arg2 = value_coerce_array (arg2);
215
216 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
217 arg2 = value_coerce_function (arg2);
218
219 type2 = check_typedef (VALUE_TYPE (arg2));
220 COERCE_VARYING_ARRAY (arg2, type2);
221 code2 = TYPE_CODE (type2);
222
223 if (code1 == TYPE_CODE_COMPLEX)
224 return cast_into_complex (type, arg2);
225 if (code1 == TYPE_CODE_BOOL)
226 {
227 code1 = TYPE_CODE_INT;
228 convert_to_boolean = 1;
229 }
230 if (code1 == TYPE_CODE_CHAR)
231 code1 = TYPE_CODE_INT;
232 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
233 code2 = TYPE_CODE_INT;
234
235 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
236 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
237
238 if (code1 == TYPE_CODE_STRUCT
239 && code2 == TYPE_CODE_STRUCT
240 && TYPE_NAME (type) != 0)
241 {
242 /* Look in the type of the source to see if it contains the
243 type of the target as a superclass. If so, we'll need to
244 offset the object in addition to changing its type. */
245 struct value *v = search_struct_field (type_name_no_tag (type),
246 arg2, 0, type2, 1);
247 if (v)
248 {
249 VALUE_TYPE (v) = type;
250 return v;
251 }
252 }
253 if (code1 == TYPE_CODE_FLT && scalar)
254 return value_from_double (type, value_as_double (arg2));
255 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
256 || code1 == TYPE_CODE_RANGE)
257 && (scalar || code2 == TYPE_CODE_PTR))
258 {
259 LONGEST longest;
260
261 if (hp_som_som_object_present && /* if target compiled by HP aCC */
262 (code2 == TYPE_CODE_PTR))
263 {
264 unsigned int *ptr;
265 struct value *retvalp;
266
267 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
268 {
269 /* With HP aCC, pointers to data members have a bias */
270 case TYPE_CODE_MEMBER:
271 retvalp = value_from_longest (type, value_as_long (arg2));
272 /* force evaluation */
273 ptr = (unsigned int *) VALUE_CONTENTS (retvalp);
274 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
275 return retvalp;
276
277 /* While pointers to methods don't really point to a function */
278 case TYPE_CODE_METHOD:
279 error ("Pointers to methods not supported with HP aCC");
280
281 default:
282 break; /* fall out and go to normal handling */
283 }
284 }
285
286 /* When we cast pointers to integers, we mustn't use
287 POINTER_TO_ADDRESS to find the address the pointer
288 represents, as value_as_long would. GDB should evaluate
289 expressions just as the compiler would --- and the compiler
290 sees a cast as a simple reinterpretation of the pointer's
291 bits. */
292 if (code2 == TYPE_CODE_PTR)
293 longest = extract_unsigned_integer (VALUE_CONTENTS (arg2),
294 TYPE_LENGTH (type2));
295 else
296 longest = value_as_long (arg2);
297 return value_from_longest (type, convert_to_boolean ?
298 (LONGEST) (longest ? 1 : 0) : longest);
299 }
300 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT ||
301 code2 == TYPE_CODE_ENUM ||
302 code2 == TYPE_CODE_RANGE))
303 {
304 /* TYPE_LENGTH (type) is the length of a pointer, but we really
305 want the length of an address! -- we are really dealing with
306 addresses (i.e., gdb representations) not pointers (i.e.,
307 target representations) here.
308
309 This allows things like "print *(int *)0x01000234" to work
310 without printing a misleading message -- which would
311 otherwise occur when dealing with a target having two byte
312 pointers and four byte addresses. */
313
314 int addr_bit = TARGET_ADDR_BIT;
315
316 LONGEST longest = value_as_long (arg2);
317 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
318 {
319 if (longest >= ((LONGEST) 1 << addr_bit)
320 || longest <= -((LONGEST) 1 << addr_bit))
321 warning ("value truncated");
322 }
323 return value_from_longest (type, longest);
324 }
325 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
326 {
327 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
328 {
329 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
330 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
331 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
332 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
333 && !value_logical_not (arg2))
334 {
335 struct value *v;
336
337 /* Look in the type of the source to see if it contains the
338 type of the target as a superclass. If so, we'll need to
339 offset the pointer rather than just change its type. */
340 if (TYPE_NAME (t1) != NULL)
341 {
342 v = search_struct_field (type_name_no_tag (t1),
343 value_ind (arg2), 0, t2, 1);
344 if (v)
345 {
346 v = value_addr (v);
347 VALUE_TYPE (v) = type;
348 return v;
349 }
350 }
351
352 /* Look in the type of the target to see if it contains the
353 type of the source as a superclass. If so, we'll need to
354 offset the pointer rather than just change its type.
355 FIXME: This fails silently with virtual inheritance. */
356 if (TYPE_NAME (t2) != NULL)
357 {
358 v = search_struct_field (type_name_no_tag (t2),
359 value_zero (t1, not_lval), 0, t1, 1);
360 if (v)
361 {
362 struct value *v2 = value_ind (arg2);
363 VALUE_ADDRESS (v2) -= VALUE_ADDRESS (v)
364 + VALUE_OFFSET (v);
365
366 /* JYG: adjust the new pointer value and
367 embedded offset. */
368 v2->aligner.contents[0] -= VALUE_EMBEDDED_OFFSET (v);
369 VALUE_EMBEDDED_OFFSET (v2) = 0;
370
371 v2 = value_addr (v2);
372 VALUE_TYPE (v2) = type;
373 return v2;
374 }
375 }
376 }
377 /* No superclass found, just fall through to change ptr type. */
378 }
379 VALUE_TYPE (arg2) = type;
380 arg2 = value_change_enclosing_type (arg2, type);
381 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
382 return arg2;
383 }
384 else if (chill_varying_type (type))
385 {
386 struct type *range1, *range2, *eltype1, *eltype2;
387 struct value *val;
388 int count1, count2;
389 LONGEST low_bound, high_bound;
390 char *valaddr, *valaddr_data;
391 /* For lint warning about eltype2 possibly uninitialized: */
392 eltype2 = NULL;
393 if (code2 == TYPE_CODE_BITSTRING)
394 error ("not implemented: converting bitstring to varying type");
395 if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING)
396 || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))),
397 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)),
398 (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2)
399 /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ )))
400 error ("Invalid conversion to varying type");
401 range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0);
402 range2 = TYPE_FIELD_TYPE (type2, 0);
403 if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0)
404 count1 = -1;
405 else
406 count1 = high_bound - low_bound + 1;
407 if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0)
408 count1 = -1, count2 = 0; /* To force error before */
409 else
410 count2 = high_bound - low_bound + 1;
411 if (count2 > count1)
412 error ("target varying type is too small");
413 val = allocate_value (type);
414 valaddr = VALUE_CONTENTS_RAW (val);
415 valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8;
416 /* Set val's __var_length field to count2. */
417 store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)),
418 count2);
419 /* Set the __var_data field to count2 elements copied from arg2. */
420 memcpy (valaddr_data, VALUE_CONTENTS (arg2),
421 count2 * TYPE_LENGTH (eltype2));
422 /* Zero the rest of the __var_data field of val. */
423 memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0',
424 (count1 - count2) * TYPE_LENGTH (eltype2));
425 return val;
426 }
427 else if (VALUE_LVAL (arg2) == lval_memory)
428 {
429 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
430 VALUE_BFD_SECTION (arg2));
431 }
432 else if (code1 == TYPE_CODE_VOID)
433 {
434 return value_zero (builtin_type_void, not_lval);
435 }
436 else
437 {
438 error ("Invalid cast.");
439 return 0;
440 }
441 }
442
443 /* Create a value of type TYPE that is zero, and return it. */
444
445 struct value *
446 value_zero (struct type *type, enum lval_type lv)
447 {
448 struct value *val = allocate_value (type);
449
450 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
451 VALUE_LVAL (val) = lv;
452
453 return val;
454 }
455
456 /* Return a value with type TYPE located at ADDR.
457
458 Call value_at only if the data needs to be fetched immediately;
459 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
460 value_at_lazy instead. value_at_lazy simply records the address of
461 the data and sets the lazy-evaluation-required flag. The lazy flag
462 is tested in the VALUE_CONTENTS macro, which is used if and when
463 the contents are actually required.
464
465 Note: value_at does *NOT* handle embedded offsets; perform such
466 adjustments before or after calling it. */
467
468 struct value *
469 value_at (struct type *type, CORE_ADDR addr, asection *sect)
470 {
471 struct value *val;
472
473 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
474 error ("Attempt to dereference a generic pointer.");
475
476 val = allocate_value (type);
477
478 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type));
479
480 VALUE_LVAL (val) = lval_memory;
481 VALUE_ADDRESS (val) = addr;
482 VALUE_BFD_SECTION (val) = sect;
483
484 return val;
485 }
486
487 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
488
489 struct value *
490 value_at_lazy (struct type *type, CORE_ADDR addr, asection *sect)
491 {
492 struct value *val;
493
494 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
495 error ("Attempt to dereference a generic pointer.");
496
497 val = allocate_value (type);
498
499 VALUE_LVAL (val) = lval_memory;
500 VALUE_ADDRESS (val) = addr;
501 VALUE_LAZY (val) = 1;
502 VALUE_BFD_SECTION (val) = sect;
503
504 return val;
505 }
506
507 /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
508 if the current data for a variable needs to be loaded into
509 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
510 clears the lazy flag to indicate that the data in the buffer is valid.
511
512 If the value is zero-length, we avoid calling read_memory, which would
513 abort. We mark the value as fetched anyway -- all 0 bytes of it.
514
515 This function returns a value because it is used in the VALUE_CONTENTS
516 macro as part of an expression, where a void would not work. The
517 value is ignored. */
518
519 int
520 value_fetch_lazy (struct value *val)
521 {
522 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
523 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
524
525 struct type *type = VALUE_TYPE (val);
526 if (length)
527 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length);
528
529 VALUE_LAZY (val) = 0;
530 return 0;
531 }
532
533
534 /* Store the contents of FROMVAL into the location of TOVAL.
535 Return a new value with the location of TOVAL and contents of FROMVAL. */
536
537 struct value *
538 value_assign (struct value *toval, struct value *fromval)
539 {
540 register struct type *type;
541 struct value *val;
542 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
543 int use_buffer = 0;
544
545 if (!toval->modifiable)
546 error ("Left operand of assignment is not a modifiable lvalue.");
547
548 COERCE_REF (toval);
549
550 type = VALUE_TYPE (toval);
551 if (VALUE_LVAL (toval) != lval_internalvar)
552 fromval = value_cast (type, fromval);
553 else
554 COERCE_ARRAY (fromval);
555 CHECK_TYPEDEF (type);
556
557 /* If TOVAL is a special machine register requiring conversion
558 of program values to a special raw format,
559 convert FROMVAL's contents now, with result in `raw_buffer',
560 and set USE_BUFFER to the number of bytes to write. */
561
562 if (VALUE_REGNO (toval) >= 0)
563 {
564 int regno = VALUE_REGNO (toval);
565 if (REGISTER_CONVERTIBLE (regno))
566 {
567 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
568 REGISTER_CONVERT_TO_RAW (fromtype, regno,
569 VALUE_CONTENTS (fromval), raw_buffer);
570 use_buffer = REGISTER_RAW_SIZE (regno);
571 }
572 }
573
574 switch (VALUE_LVAL (toval))
575 {
576 case lval_internalvar:
577 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
578 val = value_copy (VALUE_INTERNALVAR (toval)->value);
579 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
580 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
581 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
582 return val;
583
584 case lval_internalvar_component:
585 set_internalvar_component (VALUE_INTERNALVAR (toval),
586 VALUE_OFFSET (toval),
587 VALUE_BITPOS (toval),
588 VALUE_BITSIZE (toval),
589 fromval);
590 break;
591
592 case lval_memory:
593 {
594 char *dest_buffer;
595 CORE_ADDR changed_addr;
596 int changed_len;
597
598 if (VALUE_BITSIZE (toval))
599 {
600 char buffer[sizeof (LONGEST)];
601 /* We assume that the argument to read_memory is in units of
602 host chars. FIXME: Is that correct? */
603 changed_len = (VALUE_BITPOS (toval)
604 + VALUE_BITSIZE (toval)
605 + HOST_CHAR_BIT - 1)
606 / HOST_CHAR_BIT;
607
608 if (changed_len > (int) sizeof (LONGEST))
609 error ("Can't handle bitfields which don't fit in a %d bit word.",
610 sizeof (LONGEST) * HOST_CHAR_BIT);
611
612 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
613 buffer, changed_len);
614 modify_field (buffer, value_as_long (fromval),
615 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
616 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
617 dest_buffer = buffer;
618 }
619 else if (use_buffer)
620 {
621 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
622 changed_len = use_buffer;
623 dest_buffer = raw_buffer;
624 }
625 else
626 {
627 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
628 changed_len = TYPE_LENGTH (type);
629 dest_buffer = VALUE_CONTENTS (fromval);
630 }
631
632 write_memory (changed_addr, dest_buffer, changed_len);
633 if (memory_changed_hook)
634 memory_changed_hook (changed_addr, changed_len);
635 }
636 break;
637
638 case lval_register:
639 if (VALUE_BITSIZE (toval))
640 {
641 char buffer[sizeof (LONGEST)];
642 int len =
643 REGISTER_RAW_SIZE (VALUE_REGNO (toval)) - VALUE_OFFSET (toval);
644
645 if (len > (int) sizeof (LONGEST))
646 error ("Can't handle bitfields in registers larger than %d bits.",
647 sizeof (LONGEST) * HOST_CHAR_BIT);
648
649 if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
650 > len * HOST_CHAR_BIT)
651 /* Getting this right would involve being very careful about
652 byte order. */
653 error ("Can't assign to bitfields that cross register "
654 "boundaries.");
655
656 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
657 buffer, len);
658 modify_field (buffer, value_as_long (fromval),
659 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
660 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
661 buffer, len);
662 }
663 else if (use_buffer)
664 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
665 raw_buffer, use_buffer);
666 else
667 {
668 /* Do any conversion necessary when storing this type to more
669 than one register. */
670 #ifdef REGISTER_CONVERT_FROM_TYPE
671 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
672 REGISTER_CONVERT_FROM_TYPE (VALUE_REGNO (toval), type, raw_buffer);
673 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
674 raw_buffer, TYPE_LENGTH (type));
675 #else
676 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
677 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
678 #endif
679 }
680 /* Assigning to the stack pointer, frame pointer, and other
681 (architecture and calling convention specific) registers may
682 cause the frame cache to be out of date. We just do this
683 on all assignments to registers for simplicity; I doubt the slowdown
684 matters. */
685 reinit_frame_cache ();
686 break;
687
688 case lval_reg_frame_relative:
689 {
690 /* value is stored in a series of registers in the frame
691 specified by the structure. Copy that value out, modify
692 it, and copy it back in. */
693 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
694 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
695 int byte_offset = VALUE_OFFSET (toval) % reg_size;
696 int reg_offset = VALUE_OFFSET (toval) / reg_size;
697 int amount_copied;
698
699 /* Make the buffer large enough in all cases. */
700 char *buffer = (char *) alloca (amount_to_copy
701 + sizeof (LONGEST)
702 + MAX_REGISTER_RAW_SIZE);
703
704 int regno;
705 struct frame_info *frame;
706
707 /* Figure out which frame this is in currently. */
708 for (frame = get_current_frame ();
709 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
710 frame = get_prev_frame (frame))
711 ;
712
713 if (!frame)
714 error ("Value being assigned to is no longer active.");
715
716 amount_to_copy += (reg_size - amount_to_copy % reg_size);
717
718 /* Copy it out. */
719 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
720 amount_copied = 0);
721 amount_copied < amount_to_copy;
722 amount_copied += reg_size, regno++)
723 {
724 get_saved_register (buffer + amount_copied,
725 (int *) NULL, (CORE_ADDR *) NULL,
726 frame, regno, (enum lval_type *) NULL);
727 }
728
729 /* Modify what needs to be modified. */
730 if (VALUE_BITSIZE (toval))
731 modify_field (buffer + byte_offset,
732 value_as_long (fromval),
733 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
734 else if (use_buffer)
735 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
736 else
737 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
738 TYPE_LENGTH (type));
739
740 /* Copy it back. */
741 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
742 amount_copied = 0);
743 amount_copied < amount_to_copy;
744 amount_copied += reg_size, regno++)
745 {
746 enum lval_type lval;
747 CORE_ADDR addr;
748 int optim;
749
750 /* Just find out where to put it. */
751 get_saved_register ((char *) NULL,
752 &optim, &addr, frame, regno, &lval);
753
754 if (optim)
755 error ("Attempt to assign to a value that was optimized out.");
756 if (lval == lval_memory)
757 write_memory (addr, buffer + amount_copied, reg_size);
758 else if (lval == lval_register)
759 write_register_bytes (addr, buffer + amount_copied, reg_size);
760 else
761 error ("Attempt to assign to an unmodifiable value.");
762 }
763
764 if (register_changed_hook)
765 register_changed_hook (-1);
766 }
767 break;
768
769
770 default:
771 error ("Left operand of assignment is not an lvalue.");
772 }
773
774 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
775 If the field is signed, and is negative, then sign extend. */
776 if ((VALUE_BITSIZE (toval) > 0)
777 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
778 {
779 LONGEST fieldval = value_as_long (fromval);
780 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
781
782 fieldval &= valmask;
783 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
784 fieldval |= ~valmask;
785
786 fromval = value_from_longest (type, fieldval);
787 }
788
789 val = value_copy (toval);
790 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
791 TYPE_LENGTH (type));
792 VALUE_TYPE (val) = type;
793 val = value_change_enclosing_type (val, VALUE_ENCLOSING_TYPE (fromval));
794 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
795 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
796
797 return val;
798 }
799
800 /* Extend a value VAL to COUNT repetitions of its type. */
801
802 struct value *
803 value_repeat (struct value *arg1, int count)
804 {
805 struct value *val;
806
807 if (VALUE_LVAL (arg1) != lval_memory)
808 error ("Only values in memory can be extended with '@'.");
809 if (count < 1)
810 error ("Invalid number %d of repetitions.", count);
811
812 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
813
814 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
815 VALUE_CONTENTS_ALL_RAW (val),
816 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
817 VALUE_LVAL (val) = lval_memory;
818 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
819
820 return val;
821 }
822
823 struct value *
824 value_of_variable (struct symbol *var, struct block *b)
825 {
826 struct value *val;
827 struct frame_info *frame = NULL;
828
829 if (!b)
830 frame = NULL; /* Use selected frame. */
831 else if (symbol_read_needs_frame (var))
832 {
833 frame = block_innermost_frame (b);
834 if (!frame)
835 {
836 if (BLOCK_FUNCTION (b)
837 && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
838 error ("No frame is currently executing in block %s.",
839 SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
840 else
841 error ("No frame is currently executing in specified block");
842 }
843 }
844
845 val = read_var_value (var, frame);
846 if (!val)
847 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
848
849 return val;
850 }
851
852 /* Given a value which is an array, return a value which is a pointer to its
853 first element, regardless of whether or not the array has a nonzero lower
854 bound.
855
856 FIXME: A previous comment here indicated that this routine should be
857 substracting the array's lower bound. It's not clear to me that this
858 is correct. Given an array subscripting operation, it would certainly
859 work to do the adjustment here, essentially computing:
860
861 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
862
863 However I believe a more appropriate and logical place to account for
864 the lower bound is to do so in value_subscript, essentially computing:
865
866 (&array[0] + ((index - lowerbound) * sizeof array[0]))
867
868 As further evidence consider what would happen with operations other
869 than array subscripting, where the caller would get back a value that
870 had an address somewhere before the actual first element of the array,
871 and the information about the lower bound would be lost because of
872 the coercion to pointer type.
873 */
874
875 struct value *
876 value_coerce_array (struct value *arg1)
877 {
878 register struct type *type = check_typedef (VALUE_TYPE (arg1));
879
880 if (VALUE_LVAL (arg1) != lval_memory)
881 error ("Attempt to take address of value not located in memory.");
882
883 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
884 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
885 }
886
887 /* Given a value which is a function, return a value which is a pointer
888 to it. */
889
890 struct value *
891 value_coerce_function (struct value *arg1)
892 {
893 struct value *retval;
894
895 if (VALUE_LVAL (arg1) != lval_memory)
896 error ("Attempt to take address of value not located in memory.");
897
898 retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
899 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
900 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
901 return retval;
902 }
903
904 /* Return a pointer value for the object for which ARG1 is the contents. */
905
906 struct value *
907 value_addr (struct value *arg1)
908 {
909 struct value *arg2;
910
911 struct type *type = check_typedef (VALUE_TYPE (arg1));
912 if (TYPE_CODE (type) == TYPE_CODE_REF)
913 {
914 /* Copy the value, but change the type from (T&) to (T*).
915 We keep the same location information, which is efficient,
916 and allows &(&X) to get the location containing the reference. */
917 arg2 = value_copy (arg1);
918 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
919 return arg2;
920 }
921 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
922 return value_coerce_function (arg1);
923
924 if (VALUE_LVAL (arg1) != lval_memory)
925 error ("Attempt to take address of value not located in memory.");
926
927 /* Get target memory address */
928 arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
929 (VALUE_ADDRESS (arg1)
930 + VALUE_OFFSET (arg1)
931 + VALUE_EMBEDDED_OFFSET (arg1)));
932
933 /* This may be a pointer to a base subobject; so remember the
934 full derived object's type ... */
935 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1)));
936 /* ... and also the relative position of the subobject in the full object */
937 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
938 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
939 return arg2;
940 }
941
942 /* Given a value of a pointer type, apply the C unary * operator to it. */
943
944 struct value *
945 value_ind (struct value *arg1)
946 {
947 struct type *base_type;
948 struct value *arg2;
949
950 COERCE_ARRAY (arg1);
951
952 base_type = check_typedef (VALUE_TYPE (arg1));
953
954 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
955 error ("not implemented: member types in value_ind");
956
957 /* Allow * on an integer so we can cast it to whatever we want.
958 This returns an int, which seems like the most C-like thing
959 to do. "long long" variables are rare enough that
960 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
961 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
962 return value_at (builtin_type_int,
963 (CORE_ADDR) value_as_long (arg1),
964 VALUE_BFD_SECTION (arg1));
965 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
966 {
967 struct type *enc_type;
968 /* We may be pointing to something embedded in a larger object */
969 /* Get the real type of the enclosing object */
970 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
971 enc_type = TYPE_TARGET_TYPE (enc_type);
972 /* Retrieve the enclosing object pointed to */
973 arg2 = value_at_lazy (enc_type,
974 value_as_address (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
975 VALUE_BFD_SECTION (arg1));
976 /* Re-adjust type */
977 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
978 /* Add embedding info */
979 arg2 = value_change_enclosing_type (arg2, enc_type);
980 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
981
982 /* We may be pointing to an object of some derived type */
983 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
984 return arg2;
985 }
986
987 error ("Attempt to take contents of a non-pointer value.");
988 return 0; /* For lint -- never reached */
989 }
990 \f
991 /* Pushing small parts of stack frames. */
992
993 /* Push one word (the size of object that a register holds). */
994
995 CORE_ADDR
996 push_word (CORE_ADDR sp, ULONGEST word)
997 {
998 register int len = REGISTER_SIZE;
999 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
1000
1001 store_unsigned_integer (buffer, len, word);
1002 if (INNER_THAN (1, 2))
1003 {
1004 /* stack grows downward */
1005 sp -= len;
1006 write_memory (sp, buffer, len);
1007 }
1008 else
1009 {
1010 /* stack grows upward */
1011 write_memory (sp, buffer, len);
1012 sp += len;
1013 }
1014
1015 return sp;
1016 }
1017
1018 /* Push LEN bytes with data at BUFFER. */
1019
1020 CORE_ADDR
1021 push_bytes (CORE_ADDR sp, char *buffer, int len)
1022 {
1023 if (INNER_THAN (1, 2))
1024 {
1025 /* stack grows downward */
1026 sp -= len;
1027 write_memory (sp, buffer, len);
1028 }
1029 else
1030 {
1031 /* stack grows upward */
1032 write_memory (sp, buffer, len);
1033 sp += len;
1034 }
1035
1036 return sp;
1037 }
1038
1039 #ifndef PARM_BOUNDARY
1040 #define PARM_BOUNDARY (0)
1041 #endif
1042
1043 /* Push onto the stack the specified value VALUE. Pad it correctly for
1044 it to be an argument to a function. */
1045
1046 static CORE_ADDR
1047 value_push (register CORE_ADDR sp, struct value *arg)
1048 {
1049 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
1050 register int container_len = len;
1051 register int offset;
1052
1053 /* How big is the container we're going to put this value in? */
1054 if (PARM_BOUNDARY)
1055 container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
1056 & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
1057
1058 /* Are we going to put it at the high or low end of the container? */
1059 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1060 offset = container_len - len;
1061 else
1062 offset = 0;
1063
1064 if (INNER_THAN (1, 2))
1065 {
1066 /* stack grows downward */
1067 sp -= container_len;
1068 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1069 }
1070 else
1071 {
1072 /* stack grows upward */
1073 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1074 sp += container_len;
1075 }
1076
1077 return sp;
1078 }
1079
1080 #ifndef PUSH_ARGUMENTS
1081 #define PUSH_ARGUMENTS default_push_arguments
1082 #endif
1083
1084 CORE_ADDR
1085 default_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1086 int struct_return, CORE_ADDR struct_addr)
1087 {
1088 /* ASSERT ( !struct_return); */
1089 int i;
1090 for (i = nargs - 1; i >= 0; i--)
1091 sp = value_push (sp, args[i]);
1092 return sp;
1093 }
1094
1095
1096 /* Functions to use for the COERCE_FLOAT_TO_DOUBLE gdbarch method.
1097
1098 How you should pass arguments to a function depends on whether it
1099 was defined in K&R style or prototype style. If you define a
1100 function using the K&R syntax that takes a `float' argument, then
1101 callers must pass that argument as a `double'. If you define the
1102 function using the prototype syntax, then you must pass the
1103 argument as a `float', with no promotion.
1104
1105 Unfortunately, on certain older platforms, the debug info doesn't
1106 indicate reliably how each function was defined. A function type's
1107 TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was
1108 defined in prototype style. When calling a function whose
1109 TYPE_FLAG_PROTOTYPED flag is clear, GDB consults the
1110 COERCE_FLOAT_TO_DOUBLE gdbarch method to decide what to do.
1111
1112 For modern targets, it is proper to assume that, if the prototype
1113 flag is clear, that can be trusted: `float' arguments should be
1114 promoted to `double'. You should register the function
1115 `standard_coerce_float_to_double' to get this behavior.
1116
1117 For some older targets, if the prototype flag is clear, that
1118 doesn't tell us anything. So we guess that, if we don't have a
1119 type for the formal parameter (i.e., the first argument to
1120 COERCE_FLOAT_TO_DOUBLE is null), then we should promote it;
1121 otherwise, we should leave it alone. The function
1122 `default_coerce_float_to_double' provides this behavior; it is the
1123 default value, for compatibility with older configurations. */
1124 int
1125 default_coerce_float_to_double (struct type *formal, struct type *actual)
1126 {
1127 return formal == NULL;
1128 }
1129
1130
1131 int
1132 standard_coerce_float_to_double (struct type *formal, struct type *actual)
1133 {
1134 return 1;
1135 }
1136
1137
1138 /* Perform the standard coercions that are specified
1139 for arguments to be passed to C functions.
1140
1141 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1142 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1143
1144 static struct value *
1145 value_arg_coerce (struct value *arg, struct type *param_type,
1146 int is_prototyped)
1147 {
1148 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1149 register struct type *type
1150 = param_type ? check_typedef (param_type) : arg_type;
1151
1152 switch (TYPE_CODE (type))
1153 {
1154 case TYPE_CODE_REF:
1155 if (TYPE_CODE (arg_type) != TYPE_CODE_REF)
1156 {
1157 arg = value_addr (arg);
1158 VALUE_TYPE (arg) = param_type;
1159 return arg;
1160 }
1161 break;
1162 case TYPE_CODE_INT:
1163 case TYPE_CODE_CHAR:
1164 case TYPE_CODE_BOOL:
1165 case TYPE_CODE_ENUM:
1166 /* If we don't have a prototype, coerce to integer type if necessary. */
1167 if (!is_prototyped)
1168 {
1169 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1170 type = builtin_type_int;
1171 }
1172 /* Currently all target ABIs require at least the width of an integer
1173 type for an argument. We may have to conditionalize the following
1174 type coercion for future targets. */
1175 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1176 type = builtin_type_int;
1177 break;
1178 case TYPE_CODE_FLT:
1179 /* FIXME: We should always convert floats to doubles in the
1180 non-prototyped case. As many debugging formats include
1181 no information about prototyping, we have to live with
1182 COERCE_FLOAT_TO_DOUBLE for now. */
1183 if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE (param_type, arg_type))
1184 {
1185 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1186 type = builtin_type_double;
1187 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1188 type = builtin_type_long_double;
1189 }
1190 break;
1191 case TYPE_CODE_FUNC:
1192 type = lookup_pointer_type (type);
1193 break;
1194 case TYPE_CODE_ARRAY:
1195 if (current_language->c_style_arrays)
1196 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1197 break;
1198 case TYPE_CODE_UNDEF:
1199 case TYPE_CODE_PTR:
1200 case TYPE_CODE_STRUCT:
1201 case TYPE_CODE_UNION:
1202 case TYPE_CODE_VOID:
1203 case TYPE_CODE_SET:
1204 case TYPE_CODE_RANGE:
1205 case TYPE_CODE_STRING:
1206 case TYPE_CODE_BITSTRING:
1207 case TYPE_CODE_ERROR:
1208 case TYPE_CODE_MEMBER:
1209 case TYPE_CODE_METHOD:
1210 case TYPE_CODE_COMPLEX:
1211 default:
1212 break;
1213 }
1214
1215 return value_cast (type, arg);
1216 }
1217
1218 /* Determine a function's address and its return type from its value.
1219 Calls error() if the function is not valid for calling. */
1220
1221 static CORE_ADDR
1222 find_function_addr (struct value *function, struct type **retval_type)
1223 {
1224 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1225 register enum type_code code = TYPE_CODE (ftype);
1226 struct type *value_type;
1227 CORE_ADDR funaddr;
1228
1229 /* If it's a member function, just look at the function
1230 part of it. */
1231
1232 /* Determine address to call. */
1233 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1234 {
1235 funaddr = VALUE_ADDRESS (function);
1236 value_type = TYPE_TARGET_TYPE (ftype);
1237 }
1238 else if (code == TYPE_CODE_PTR)
1239 {
1240 funaddr = value_as_address (function);
1241 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1242 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1243 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1244 {
1245 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
1246 value_type = TYPE_TARGET_TYPE (ftype);
1247 }
1248 else
1249 value_type = builtin_type_int;
1250 }
1251 else if (code == TYPE_CODE_INT)
1252 {
1253 /* Handle the case of functions lacking debugging info.
1254 Their values are characters since their addresses are char */
1255 if (TYPE_LENGTH (ftype) == 1)
1256 funaddr = value_as_address (value_addr (function));
1257 else
1258 /* Handle integer used as address of a function. */
1259 funaddr = (CORE_ADDR) value_as_long (function);
1260
1261 value_type = builtin_type_int;
1262 }
1263 else
1264 error ("Invalid data type for function to be called.");
1265
1266 *retval_type = value_type;
1267 return funaddr;
1268 }
1269
1270 /* All this stuff with a dummy frame may seem unnecessarily complicated
1271 (why not just save registers in GDB?). The purpose of pushing a dummy
1272 frame which looks just like a real frame is so that if you call a
1273 function and then hit a breakpoint (get a signal, etc), "backtrace"
1274 will look right. Whether the backtrace needs to actually show the
1275 stack at the time the inferior function was called is debatable, but
1276 it certainly needs to not display garbage. So if you are contemplating
1277 making dummy frames be different from normal frames, consider that. */
1278
1279 /* Perform a function call in the inferior.
1280 ARGS is a vector of values of arguments (NARGS of them).
1281 FUNCTION is a value, the function to be called.
1282 Returns a value representing what the function returned.
1283 May fail to return, if a breakpoint or signal is hit
1284 during the execution of the function.
1285
1286 ARGS is modified to contain coerced values. */
1287
1288 static struct value *
1289 hand_function_call (struct value *function, int nargs, struct value **args)
1290 {
1291 register CORE_ADDR sp;
1292 register int i;
1293 int rc;
1294 CORE_ADDR start_sp;
1295 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1296 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1297 and remove any extra bytes which might exist because ULONGEST is
1298 bigger than REGISTER_SIZE.
1299
1300 NOTE: This is pretty wierd, as the call dummy is actually a
1301 sequence of instructions. But CISC machines will have
1302 to pack the instructions into REGISTER_SIZE units (and
1303 so will RISC machines for which INSTRUCTION_SIZE is not
1304 REGISTER_SIZE).
1305
1306 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
1307 target byte order. */
1308
1309 static ULONGEST *dummy;
1310 int sizeof_dummy1;
1311 char *dummy1;
1312 CORE_ADDR old_sp;
1313 struct type *value_type;
1314 unsigned char struct_return;
1315 CORE_ADDR struct_addr = 0;
1316 struct inferior_status *inf_status;
1317 struct cleanup *old_chain;
1318 CORE_ADDR funaddr;
1319 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
1320 CORE_ADDR real_pc;
1321 struct type *param_type = NULL;
1322 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
1323 int n_method_args = 0;
1324
1325 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1326 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1327 dummy1 = alloca (sizeof_dummy1);
1328 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1329
1330 if (!target_has_execution)
1331 noprocess ();
1332
1333 inf_status = save_inferior_status (1);
1334 old_chain = make_cleanup_restore_inferior_status (inf_status);
1335
1336 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1337 (and POP_FRAME for restoring them). (At least on most machines)
1338 they are saved on the stack in the inferior. */
1339 PUSH_DUMMY_FRAME;
1340
1341 old_sp = sp = read_sp ();
1342
1343 if (INNER_THAN (1, 2))
1344 {
1345 /* Stack grows down */
1346 sp -= sizeof_dummy1;
1347 start_sp = sp;
1348 }
1349 else
1350 {
1351 /* Stack grows up */
1352 start_sp = sp;
1353 sp += sizeof_dummy1;
1354 }
1355
1356 funaddr = find_function_addr (function, &value_type);
1357 CHECK_TYPEDEF (value_type);
1358
1359 {
1360 struct block *b = block_for_pc (funaddr);
1361 /* If compiled without -g, assume GCC 2. */
1362 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1363 }
1364
1365 /* Are we returning a value using a structure return or a normal
1366 value return? */
1367
1368 struct_return = using_struct_return (function, funaddr, value_type,
1369 using_gcc);
1370
1371 /* Create a call sequence customized for this function
1372 and the number of arguments for it. */
1373 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
1374 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1375 REGISTER_SIZE,
1376 (ULONGEST) dummy[i]);
1377
1378 #ifdef GDB_TARGET_IS_HPPA
1379 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1380 value_type, using_gcc);
1381 #else
1382 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1383 value_type, using_gcc);
1384 real_pc = start_sp;
1385 #endif
1386
1387 if (CALL_DUMMY_LOCATION == ON_STACK)
1388 {
1389 write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
1390 }
1391
1392 if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END)
1393 {
1394 /* Convex Unix prohibits executing in the stack segment. */
1395 /* Hope there is empty room at the top of the text segment. */
1396 extern CORE_ADDR text_end;
1397 static int checked = 0;
1398 if (!checked)
1399 for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp)
1400 if (read_memory_integer (start_sp, 1) != 0)
1401 error ("text segment full -- no place to put call");
1402 checked = 1;
1403 sp = old_sp;
1404 real_pc = text_end - sizeof_dummy1;
1405 write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1406 }
1407
1408 if (CALL_DUMMY_LOCATION == AFTER_TEXT_END)
1409 {
1410 extern CORE_ADDR text_end;
1411 int errcode;
1412 sp = old_sp;
1413 real_pc = text_end;
1414 errcode = target_write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1415 if (errcode != 0)
1416 error ("Cannot write text segment -- call_function failed");
1417 }
1418
1419 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
1420 {
1421 real_pc = funaddr;
1422 }
1423
1424 #ifdef lint
1425 sp = old_sp; /* It really is used, for some ifdef's... */
1426 #endif
1427
1428 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1429 {
1430 i = 0;
1431 while (TYPE_CODE (TYPE_ARG_TYPES (ftype)[i]) != TYPE_CODE_VOID)
1432 i++;
1433 n_method_args = i;
1434 if (nargs < i)
1435 error ("too few arguments in method call");
1436 }
1437 else if (nargs < TYPE_NFIELDS (ftype))
1438 error ("too few arguments in function call");
1439
1440 for (i = nargs - 1; i >= 0; i--)
1441 {
1442 /* Assume that methods are always prototyped, unless they are off the
1443 end (which we should only be allowing if there is a ``...'').
1444 FIXME. */
1445 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1446 {
1447 if (i < n_method_args)
1448 args[i] = value_arg_coerce (args[i], TYPE_ARG_TYPES (ftype)[i], 1);
1449 else
1450 args[i] = value_arg_coerce (args[i], NULL, 0);
1451 }
1452
1453 /* If we're off the end of the known arguments, do the standard
1454 promotions. FIXME: if we had a prototype, this should only
1455 be allowed if ... were present. */
1456 if (i >= TYPE_NFIELDS (ftype))
1457 args[i] = value_arg_coerce (args[i], NULL, 0);
1458
1459 else
1460 {
1461 param_type = TYPE_FIELD_TYPE (ftype, i);
1462 args[i] = value_arg_coerce (args[i], param_type, TYPE_PROTOTYPED (ftype));
1463 }
1464
1465 /*elz: this code is to handle the case in which the function to be called
1466 has a pointer to function as parameter and the corresponding actual argument
1467 is the address of a function and not a pointer to function variable.
1468 In aCC compiled code, the calls through pointers to functions (in the body
1469 of the function called by hand) are made via $$dyncall_external which
1470 requires some registers setting, this is taken care of if we call
1471 via a function pointer variable, but not via a function address.
1472 In cc this is not a problem. */
1473
1474 if (using_gcc == 0)
1475 if (param_type)
1476 /* if this parameter is a pointer to function */
1477 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
1478 if (TYPE_CODE (param_type->target_type) == TYPE_CODE_FUNC)
1479 /* elz: FIXME here should go the test about the compiler used
1480 to compile the target. We want to issue the error
1481 message only if the compiler used was HP's aCC.
1482 If we used HP's cc, then there is no problem and no need
1483 to return at this point */
1484 if (using_gcc == 0) /* && compiler == aCC */
1485 /* go see if the actual parameter is a variable of type
1486 pointer to function or just a function */
1487 if (args[i]->lval == not_lval)
1488 {
1489 char *arg_name;
1490 if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1491 error ("\
1492 You cannot use function <%s> as argument. \n\
1493 You must use a pointer to function type variable. Command ignored.", arg_name);
1494 }
1495 }
1496
1497 if (REG_STRUCT_HAS_ADDR_P ())
1498 {
1499 /* This is a machine like the sparc, where we may need to pass a
1500 pointer to the structure, not the structure itself. */
1501 for (i = nargs - 1; i >= 0; i--)
1502 {
1503 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1504 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1505 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1506 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1507 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1508 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1509 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1510 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1511 && TYPE_LENGTH (arg_type) > 8)
1512 )
1513 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1514 {
1515 CORE_ADDR addr;
1516 int len; /* = TYPE_LENGTH (arg_type); */
1517 int aligned_len;
1518 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1519 len = TYPE_LENGTH (arg_type);
1520
1521 if (STACK_ALIGN_P ())
1522 /* MVS 11/22/96: I think at least some of this
1523 stack_align code is really broken. Better to let
1524 PUSH_ARGUMENTS adjust the stack in a target-defined
1525 manner. */
1526 aligned_len = STACK_ALIGN (len);
1527 else
1528 aligned_len = len;
1529 if (INNER_THAN (1, 2))
1530 {
1531 /* stack grows downward */
1532 sp -= aligned_len;
1533 /* ... so the address of the thing we push is the
1534 stack pointer after we push it. */
1535 addr = sp;
1536 }
1537 else
1538 {
1539 /* The stack grows up, so the address of the thing
1540 we push is the stack pointer before we push it. */
1541 addr = sp;
1542 sp += aligned_len;
1543 }
1544 /* Push the structure. */
1545 write_memory (addr, VALUE_CONTENTS_ALL (args[i]), len);
1546 /* The value we're going to pass is the address of the
1547 thing we just pushed. */
1548 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1549 (LONGEST) addr); */
1550 args[i] = value_from_pointer (lookup_pointer_type (arg_type),
1551 addr);
1552 }
1553 }
1554 }
1555
1556
1557 /* Reserve space for the return structure to be written on the
1558 stack, if necessary */
1559
1560 if (struct_return)
1561 {
1562 int len = TYPE_LENGTH (value_type);
1563 if (STACK_ALIGN_P ())
1564 /* MVS 11/22/96: I think at least some of this stack_align
1565 code is really broken. Better to let PUSH_ARGUMENTS adjust
1566 the stack in a target-defined manner. */
1567 len = STACK_ALIGN (len);
1568 if (INNER_THAN (1, 2))
1569 {
1570 /* stack grows downward */
1571 sp -= len;
1572 struct_addr = sp;
1573 }
1574 else
1575 {
1576 /* stack grows upward */
1577 struct_addr = sp;
1578 sp += len;
1579 }
1580 }
1581
1582 /* elz: on HPPA no need for this extra alignment, maybe it is needed
1583 on other architectures. This is because all the alignment is
1584 taken care of in the above code (ifdef REG_STRUCT_HAS_ADDR) and
1585 in hppa_push_arguments */
1586 if (EXTRA_STACK_ALIGNMENT_NEEDED)
1587 {
1588 /* MVS 11/22/96: I think at least some of this stack_align code
1589 is really broken. Better to let PUSH_ARGUMENTS adjust the
1590 stack in a target-defined manner. */
1591 if (STACK_ALIGN_P () && INNER_THAN (1, 2))
1592 {
1593 /* If stack grows down, we must leave a hole at the top. */
1594 int len = 0;
1595
1596 for (i = nargs - 1; i >= 0; i--)
1597 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1598 if (CALL_DUMMY_STACK_ADJUST_P)
1599 len += CALL_DUMMY_STACK_ADJUST;
1600 sp -= STACK_ALIGN (len) - len;
1601 }
1602 }
1603
1604 sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
1605
1606 if (PUSH_RETURN_ADDRESS_P ())
1607 /* for targets that use no CALL_DUMMY */
1608 /* There are a number of targets now which actually don't write
1609 any CALL_DUMMY instructions into the target, but instead just
1610 save the machine state, push the arguments, and jump directly
1611 to the callee function. Since this doesn't actually involve
1612 executing a JSR/BSR instruction, the return address must be set
1613 up by hand, either by pushing onto the stack or copying into a
1614 return-address register as appropriate. Formerly this has been
1615 done in PUSH_ARGUMENTS, but that's overloading its
1616 functionality a bit, so I'm making it explicit to do it here. */
1617 sp = PUSH_RETURN_ADDRESS (real_pc, sp);
1618
1619 if (STACK_ALIGN_P () && !INNER_THAN (1, 2))
1620 {
1621 /* If stack grows up, we must leave a hole at the bottom, note
1622 that sp already has been advanced for the arguments! */
1623 if (CALL_DUMMY_STACK_ADJUST_P)
1624 sp += CALL_DUMMY_STACK_ADJUST;
1625 sp = STACK_ALIGN (sp);
1626 }
1627
1628 /* XXX This seems wrong. For stacks that grow down we shouldn't do
1629 anything here! */
1630 /* MVS 11/22/96: I think at least some of this stack_align code is
1631 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1632 a target-defined manner. */
1633 if (CALL_DUMMY_STACK_ADJUST_P)
1634 if (INNER_THAN (1, 2))
1635 {
1636 /* stack grows downward */
1637 sp -= CALL_DUMMY_STACK_ADJUST;
1638 }
1639
1640 /* Store the address at which the structure is supposed to be
1641 written. Note that this (and the code which reserved the space
1642 above) assumes that gcc was used to compile this function. Since
1643 it doesn't cost us anything but space and if the function is pcc
1644 it will ignore this value, we will make that assumption.
1645
1646 Also note that on some machines (like the sparc) pcc uses a
1647 convention like gcc's. */
1648
1649 if (struct_return)
1650 STORE_STRUCT_RETURN (struct_addr, sp);
1651
1652 /* Write the stack pointer. This is here because the statements above
1653 might fool with it. On SPARC, this write also stores the register
1654 window into the right place in the new stack frame, which otherwise
1655 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1656 write_sp (sp);
1657
1658 if (SAVE_DUMMY_FRAME_TOS_P ())
1659 SAVE_DUMMY_FRAME_TOS (sp);
1660
1661 {
1662 char *retbuf = (char*) alloca (REGISTER_BYTES);
1663 char *name;
1664 struct symbol *symbol;
1665
1666 name = NULL;
1667 symbol = find_pc_function (funaddr);
1668 if (symbol)
1669 {
1670 name = SYMBOL_SOURCE_NAME (symbol);
1671 }
1672 else
1673 {
1674 /* Try the minimal symbols. */
1675 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1676
1677 if (msymbol)
1678 {
1679 name = SYMBOL_SOURCE_NAME (msymbol);
1680 }
1681 }
1682 if (name == NULL)
1683 {
1684 char format[80];
1685 sprintf (format, "at %s", local_hex_format ());
1686 name = alloca (80);
1687 /* FIXME-32x64: assumes funaddr fits in a long. */
1688 sprintf (name, format, (unsigned long) funaddr);
1689 }
1690
1691 /* Execute the stack dummy routine, calling FUNCTION.
1692 When it is done, discard the empty frame
1693 after storing the contents of all regs into retbuf. */
1694 rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
1695
1696 if (rc == 1)
1697 {
1698 /* We stopped inside the FUNCTION because of a random signal.
1699 Further execution of the FUNCTION is not allowed. */
1700
1701 if (unwind_on_signal_p)
1702 {
1703 /* The user wants the context restored. */
1704
1705 /* We must get back to the frame we were before the dummy call. */
1706 POP_FRAME;
1707
1708 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1709 a C++ name with arguments and stuff. */
1710 error ("\
1711 The program being debugged was signaled while in a function called from GDB.\n\
1712 GDB has restored the context to what it was before the call.\n\
1713 To change this behavior use \"set unwindonsignal off\"\n\
1714 Evaluation of the expression containing the function (%s) will be abandoned.",
1715 name);
1716 }
1717 else
1718 {
1719 /* The user wants to stay in the frame where we stopped (default).*/
1720
1721 /* If we did the cleanups, we would print a spurious error
1722 message (Unable to restore previously selected frame),
1723 would write the registers from the inf_status (which is
1724 wrong), and would do other wrong things. */
1725 discard_cleanups (old_chain);
1726 discard_inferior_status (inf_status);
1727
1728 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1729 a C++ name with arguments and stuff. */
1730 error ("\
1731 The program being debugged was signaled while in a function called from GDB.\n\
1732 GDB remains in the frame where the signal was received.\n\
1733 To change this behavior use \"set unwindonsignal on\"\n\
1734 Evaluation of the expression containing the function (%s) will be abandoned.",
1735 name);
1736 }
1737 }
1738
1739 if (rc == 2)
1740 {
1741 /* We hit a breakpoint inside the FUNCTION. */
1742
1743 /* If we did the cleanups, we would print a spurious error
1744 message (Unable to restore previously selected frame),
1745 would write the registers from the inf_status (which is
1746 wrong), and would do other wrong things. */
1747 discard_cleanups (old_chain);
1748 discard_inferior_status (inf_status);
1749
1750 /* The following error message used to say "The expression
1751 which contained the function call has been discarded." It
1752 is a hard concept to explain in a few words. Ideally, GDB
1753 would be able to resume evaluation of the expression when
1754 the function finally is done executing. Perhaps someday
1755 this will be implemented (it would not be easy). */
1756
1757 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1758 a C++ name with arguments and stuff. */
1759 error ("\
1760 The program being debugged stopped while in a function called from GDB.\n\
1761 When the function (%s) is done executing, GDB will silently\n\
1762 stop (instead of continuing to evaluate the expression containing\n\
1763 the function call).", name);
1764 }
1765
1766 /* If we get here the called FUNCTION run to completion. */
1767 do_cleanups (old_chain);
1768
1769 /* Figure out the value returned by the function. */
1770 /* elz: I defined this new macro for the hppa architecture only.
1771 this gives us a way to get the value returned by the function from the stack,
1772 at the same address we told the function to put it.
1773 We cannot assume on the pa that r28 still contains the address of the returned
1774 structure. Usually this will be overwritten by the callee.
1775 I don't know about other architectures, so I defined this macro
1776 */
1777
1778 #ifdef VALUE_RETURNED_FROM_STACK
1779 if (struct_return)
1780 return (struct value *) VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1781 #endif
1782
1783 return value_being_returned (value_type, retbuf, struct_return);
1784 }
1785 }
1786
1787 struct value *
1788 call_function_by_hand (struct value *function, int nargs, struct value **args)
1789 {
1790 if (CALL_DUMMY_P)
1791 {
1792 return hand_function_call (function, nargs, args);
1793 }
1794 else
1795 {
1796 error ("Cannot invoke functions on this machine.");
1797 }
1798 }
1799 \f
1800
1801
1802 /* Create a value for an array by allocating space in the inferior, copying
1803 the data into that space, and then setting up an array value.
1804
1805 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1806 populated from the values passed in ELEMVEC.
1807
1808 The element type of the array is inherited from the type of the
1809 first element, and all elements must have the same size (though we
1810 don't currently enforce any restriction on their types). */
1811
1812 struct value *
1813 value_array (int lowbound, int highbound, struct value **elemvec)
1814 {
1815 int nelem;
1816 int idx;
1817 unsigned int typelength;
1818 struct value *val;
1819 struct type *rangetype;
1820 struct type *arraytype;
1821 CORE_ADDR addr;
1822
1823 /* Validate that the bounds are reasonable and that each of the elements
1824 have the same size. */
1825
1826 nelem = highbound - lowbound + 1;
1827 if (nelem <= 0)
1828 {
1829 error ("bad array bounds (%d, %d)", lowbound, highbound);
1830 }
1831 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1832 for (idx = 1; idx < nelem; idx++)
1833 {
1834 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1835 {
1836 error ("array elements must all be the same size");
1837 }
1838 }
1839
1840 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1841 lowbound, highbound);
1842 arraytype = create_array_type ((struct type *) NULL,
1843 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
1844
1845 if (!current_language->c_style_arrays)
1846 {
1847 val = allocate_value (arraytype);
1848 for (idx = 0; idx < nelem; idx++)
1849 {
1850 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1851 VALUE_CONTENTS_ALL (elemvec[idx]),
1852 typelength);
1853 }
1854 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1855 return val;
1856 }
1857
1858 /* Allocate space to store the array in the inferior, and then initialize
1859 it by copying in each element. FIXME: Is it worth it to create a
1860 local buffer in which to collect each value and then write all the
1861 bytes in one operation? */
1862
1863 addr = allocate_space_in_inferior (nelem * typelength);
1864 for (idx = 0; idx < nelem; idx++)
1865 {
1866 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1867 typelength);
1868 }
1869
1870 /* Create the array type and set up an array value to be evaluated lazily. */
1871
1872 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1873 return (val);
1874 }
1875
1876 /* Create a value for a string constant by allocating space in the inferior,
1877 copying the data into that space, and returning the address with type
1878 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1879 of characters.
1880 Note that string types are like array of char types with a lower bound of
1881 zero and an upper bound of LEN - 1. Also note that the string may contain
1882 embedded null bytes. */
1883
1884 struct value *
1885 value_string (char *ptr, int len)
1886 {
1887 struct value *val;
1888 int lowbound = current_language->string_lower_bound;
1889 struct type *rangetype = create_range_type ((struct type *) NULL,
1890 builtin_type_int,
1891 lowbound, len + lowbound - 1);
1892 struct type *stringtype
1893 = create_string_type ((struct type *) NULL, rangetype);
1894 CORE_ADDR addr;
1895
1896 if (current_language->c_style_arrays == 0)
1897 {
1898 val = allocate_value (stringtype);
1899 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1900 return val;
1901 }
1902
1903
1904 /* Allocate space to store the string in the inferior, and then
1905 copy LEN bytes from PTR in gdb to that address in the inferior. */
1906
1907 addr = allocate_space_in_inferior (len);
1908 write_memory (addr, ptr, len);
1909
1910 val = value_at_lazy (stringtype, addr, NULL);
1911 return (val);
1912 }
1913
1914 struct value *
1915 value_bitstring (char *ptr, int len)
1916 {
1917 struct value *val;
1918 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1919 0, len - 1);
1920 struct type *type = create_set_type ((struct type *) NULL, domain_type);
1921 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1922 val = allocate_value (type);
1923 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1924 return val;
1925 }
1926 \f
1927 /* See if we can pass arguments in T2 to a function which takes arguments
1928 of types T1. Both t1 and t2 are NULL-terminated vectors. If some
1929 arguments need coercion of some sort, then the coerced values are written
1930 into T2. Return value is 0 if the arguments could be matched, or the
1931 position at which they differ if not.
1932
1933 STATICP is nonzero if the T1 argument list came from a
1934 static member function.
1935
1936 For non-static member functions, we ignore the first argument,
1937 which is the type of the instance variable. This is because we want
1938 to handle calls with objects from derived classes. This is not
1939 entirely correct: we should actually check to make sure that a
1940 requested operation is type secure, shouldn't we? FIXME. */
1941
1942 static int
1943 typecmp (int staticp, struct type *t1[], struct value *t2[])
1944 {
1945 int i;
1946
1947 if (t2 == 0)
1948 return 1;
1949 if (staticp && t1 == 0)
1950 return t2[1] != 0;
1951 if (t1 == 0)
1952 return 1;
1953 if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID)
1954 return 0;
1955 if (t1[!staticp] == 0)
1956 return 0;
1957 for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
1958 {
1959 struct type *tt1, *tt2;
1960 if (!t2[i])
1961 return i + 1;
1962 tt1 = check_typedef (t1[i]);
1963 tt2 = check_typedef (VALUE_TYPE (t2[i]));
1964 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1965 /* We should be doing hairy argument matching, as below. */
1966 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1967 {
1968 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1969 t2[i] = value_coerce_array (t2[i]);
1970 else
1971 t2[i] = value_addr (t2[i]);
1972 continue;
1973 }
1974
1975 /* djb - 20000715 - Until the new type structure is in the
1976 place, and we can attempt things like implicit conversions,
1977 we need to do this so you can take something like a map<const
1978 char *>, and properly access map["hello"], because the
1979 argument to [] will be a reference to a pointer to a char,
1980 and the argument will be a pointer to a char. */
1981 while ( TYPE_CODE(tt1) == TYPE_CODE_REF ||
1982 TYPE_CODE (tt1) == TYPE_CODE_PTR)
1983 {
1984 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1985 }
1986 while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY ||
1987 TYPE_CODE(tt2) == TYPE_CODE_PTR ||
1988 TYPE_CODE(tt2) == TYPE_CODE_REF)
1989 {
1990 tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) );
1991 }
1992 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1993 continue;
1994 /* Array to pointer is a `trivial conversion' according to the ARM. */
1995
1996 /* We should be doing much hairier argument matching (see section 13.2
1997 of the ARM), but as a quick kludge, just check for the same type
1998 code. */
1999 if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
2000 return i + 1;
2001 }
2002 if (!t1[i])
2003 return 0;
2004 return t2[i] ? i + 1 : 0;
2005 }
2006
2007 /* Helper function used by value_struct_elt to recurse through baseclasses.
2008 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2009 and search in it assuming it has (class) type TYPE.
2010 If found, return value, else return NULL.
2011
2012 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
2013 look for a baseclass named NAME. */
2014
2015 static struct value *
2016 search_struct_field (char *name, struct value *arg1, int offset,
2017 register struct type *type, int looking_for_baseclass)
2018 {
2019 int i;
2020 int nbases = TYPE_N_BASECLASSES (type);
2021
2022 CHECK_TYPEDEF (type);
2023
2024 if (!looking_for_baseclass)
2025 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2026 {
2027 char *t_field_name = TYPE_FIELD_NAME (type, i);
2028
2029 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2030 {
2031 struct value *v;
2032 if (TYPE_FIELD_STATIC (type, i))
2033 v = value_static_field (type, i);
2034 else
2035 v = value_primitive_field (arg1, offset, i, type);
2036 if (v == 0)
2037 error ("there is no field named %s", name);
2038 return v;
2039 }
2040
2041 if (t_field_name
2042 && (t_field_name[0] == '\0'
2043 || (TYPE_CODE (type) == TYPE_CODE_UNION
2044 && (strcmp_iw (t_field_name, "else") == 0))))
2045 {
2046 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2047 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2048 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2049 {
2050 /* Look for a match through the fields of an anonymous union,
2051 or anonymous struct. C++ provides anonymous unions.
2052
2053 In the GNU Chill implementation of variant record types,
2054 each <alternative field> has an (anonymous) union type,
2055 each member of the union represents a <variant alternative>.
2056 Each <variant alternative> is represented as a struct,
2057 with a member for each <variant field>. */
2058
2059 struct value *v;
2060 int new_offset = offset;
2061
2062 /* This is pretty gross. In G++, the offset in an anonymous
2063 union is relative to the beginning of the enclosing struct.
2064 In the GNU Chill implementation of variant records,
2065 the bitpos is zero in an anonymous union field, so we
2066 have to add the offset of the union here. */
2067 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2068 || (TYPE_NFIELDS (field_type) > 0
2069 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2070 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2071
2072 v = search_struct_field (name, arg1, new_offset, field_type,
2073 looking_for_baseclass);
2074 if (v)
2075 return v;
2076 }
2077 }
2078 }
2079
2080 for (i = 0; i < nbases; i++)
2081 {
2082 struct value *v;
2083 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2084 /* If we are looking for baseclasses, this is what we get when we
2085 hit them. But it could happen that the base part's member name
2086 is not yet filled in. */
2087 int found_baseclass = (looking_for_baseclass
2088 && TYPE_BASECLASS_NAME (type, i) != NULL
2089 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
2090
2091 if (BASETYPE_VIA_VIRTUAL (type, i))
2092 {
2093 int boffset;
2094 struct value *v2 = allocate_value (basetype);
2095
2096 boffset = baseclass_offset (type, i,
2097 VALUE_CONTENTS (arg1) + offset,
2098 VALUE_ADDRESS (arg1)
2099 + VALUE_OFFSET (arg1) + offset);
2100 if (boffset == -1)
2101 error ("virtual baseclass botch");
2102
2103 /* The virtual base class pointer might have been clobbered by the
2104 user program. Make sure that it still points to a valid memory
2105 location. */
2106
2107 boffset += offset;
2108 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2109 {
2110 CORE_ADDR base_addr;
2111
2112 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2113 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2114 TYPE_LENGTH (basetype)) != 0)
2115 error ("virtual baseclass botch");
2116 VALUE_LVAL (v2) = lval_memory;
2117 VALUE_ADDRESS (v2) = base_addr;
2118 }
2119 else
2120 {
2121 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2122 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2123 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2124 if (VALUE_LAZY (arg1))
2125 VALUE_LAZY (v2) = 1;
2126 else
2127 memcpy (VALUE_CONTENTS_RAW (v2),
2128 VALUE_CONTENTS_RAW (arg1) + boffset,
2129 TYPE_LENGTH (basetype));
2130 }
2131
2132 if (found_baseclass)
2133 return v2;
2134 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2135 looking_for_baseclass);
2136 }
2137 else if (found_baseclass)
2138 v = value_primitive_field (arg1, offset, i, type);
2139 else
2140 v = search_struct_field (name, arg1,
2141 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2142 basetype, looking_for_baseclass);
2143 if (v)
2144 return v;
2145 }
2146 return NULL;
2147 }
2148
2149
2150 /* Return the offset (in bytes) of the virtual base of type BASETYPE
2151 * in an object pointed to by VALADDR (on the host), assumed to be of
2152 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2153 * looking (in case VALADDR is the contents of an enclosing object).
2154 *
2155 * This routine recurses on the primary base of the derived class because
2156 * the virtual base entries of the primary base appear before the other
2157 * virtual base entries.
2158 *
2159 * If the virtual base is not found, a negative integer is returned.
2160 * The magnitude of the negative integer is the number of entries in
2161 * the virtual table to skip over (entries corresponding to various
2162 * ancestral classes in the chain of primary bases).
2163 *
2164 * Important: This assumes the HP / Taligent C++ runtime
2165 * conventions. Use baseclass_offset() instead to deal with g++
2166 * conventions. */
2167
2168 void
2169 find_rt_vbase_offset (struct type *type, struct type *basetype, char *valaddr,
2170 int offset, int *boffset_p, int *skip_p)
2171 {
2172 int boffset; /* offset of virtual base */
2173 int index; /* displacement to use in virtual table */
2174 int skip;
2175
2176 struct value *vp;
2177 CORE_ADDR vtbl; /* the virtual table pointer */
2178 struct type *pbc; /* the primary base class */
2179
2180 /* Look for the virtual base recursively in the primary base, first.
2181 * This is because the derived class object and its primary base
2182 * subobject share the primary virtual table. */
2183
2184 boffset = 0;
2185 pbc = TYPE_PRIMARY_BASE (type);
2186 if (pbc)
2187 {
2188 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2189 if (skip < 0)
2190 {
2191 *boffset_p = boffset;
2192 *skip_p = -1;
2193 return;
2194 }
2195 }
2196 else
2197 skip = 0;
2198
2199
2200 /* Find the index of the virtual base according to HP/Taligent
2201 runtime spec. (Depth-first, left-to-right.) */
2202 index = virtual_base_index_skip_primaries (basetype, type);
2203
2204 if (index < 0)
2205 {
2206 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2207 *boffset_p = 0;
2208 return;
2209 }
2210
2211 /* pai: FIXME -- 32x64 possible problem */
2212 /* First word (4 bytes) in object layout is the vtable pointer */
2213 vtbl = *(CORE_ADDR *) (valaddr + offset);
2214
2215 /* Before the constructor is invoked, things are usually zero'd out. */
2216 if (vtbl == 0)
2217 error ("Couldn't find virtual table -- object may not be constructed yet.");
2218
2219
2220 /* Find virtual base's offset -- jump over entries for primary base
2221 * ancestors, then use the index computed above. But also adjust by
2222 * HP_ACC_VBASE_START for the vtable slots before the start of the
2223 * virtual base entries. Offset is negative -- virtual base entries
2224 * appear _before_ the address point of the virtual table. */
2225
2226 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
2227 & use long type */
2228
2229 /* epstein : FIXME -- added param for overlay section. May not be correct */
2230 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
2231 boffset = value_as_long (vp);
2232 *skip_p = -1;
2233 *boffset_p = boffset;
2234 return;
2235 }
2236
2237
2238 /* Helper function used by value_struct_elt to recurse through baseclasses.
2239 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2240 and search in it assuming it has (class) type TYPE.
2241 If found, return value, else if name matched and args not return (value)-1,
2242 else return NULL. */
2243
2244 static struct value *
2245 search_struct_method (char *name, struct value **arg1p,
2246 struct value **args, int offset,
2247 int *static_memfuncp, register struct type *type)
2248 {
2249 int i;
2250 struct value *v;
2251 int name_matched = 0;
2252 char dem_opname[64];
2253
2254 CHECK_TYPEDEF (type);
2255 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2256 {
2257 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2258 /* FIXME! May need to check for ARM demangling here */
2259 if (strncmp (t_field_name, "__", 2) == 0 ||
2260 strncmp (t_field_name, "op", 2) == 0 ||
2261 strncmp (t_field_name, "type", 4) == 0)
2262 {
2263 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2264 t_field_name = dem_opname;
2265 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2266 t_field_name = dem_opname;
2267 }
2268 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2269 {
2270 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2271 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2272 name_matched = 1;
2273
2274 if (j > 0 && args == 0)
2275 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
2276 while (j >= 0)
2277 {
2278 if (TYPE_FN_FIELD_STUB (f, j))
2279 check_stub_method (type, i, j);
2280 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2281 TYPE_FN_FIELD_ARGS (f, j), args))
2282 {
2283 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2284 return value_virtual_fn_field (arg1p, f, j, type, offset);
2285 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2286 *static_memfuncp = 1;
2287 v = value_fn_field (arg1p, f, j, type, offset);
2288 if (v != NULL)
2289 return v;
2290 }
2291 j--;
2292 }
2293 }
2294 }
2295
2296 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2297 {
2298 int base_offset;
2299
2300 if (BASETYPE_VIA_VIRTUAL (type, i))
2301 {
2302 if (TYPE_HAS_VTABLE (type))
2303 {
2304 /* HP aCC compiled type, search for virtual base offset
2305 according to HP/Taligent runtime spec. */
2306 int skip;
2307 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2308 VALUE_CONTENTS_ALL (*arg1p),
2309 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2310 &base_offset, &skip);
2311 if (skip >= 0)
2312 error ("Virtual base class offset not found in vtable");
2313 }
2314 else
2315 {
2316 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2317 char *base_valaddr;
2318
2319 /* The virtual base class pointer might have been clobbered by the
2320 user program. Make sure that it still points to a valid memory
2321 location. */
2322
2323 if (offset < 0 || offset >= TYPE_LENGTH (type))
2324 {
2325 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2326 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2327 + VALUE_OFFSET (*arg1p) + offset,
2328 base_valaddr,
2329 TYPE_LENGTH (baseclass)) != 0)
2330 error ("virtual baseclass botch");
2331 }
2332 else
2333 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2334
2335 base_offset =
2336 baseclass_offset (type, i, base_valaddr,
2337 VALUE_ADDRESS (*arg1p)
2338 + VALUE_OFFSET (*arg1p) + offset);
2339 if (base_offset == -1)
2340 error ("virtual baseclass botch");
2341 }
2342 }
2343 else
2344 {
2345 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2346 }
2347 v = search_struct_method (name, arg1p, args, base_offset + offset,
2348 static_memfuncp, TYPE_BASECLASS (type, i));
2349 if (v == (struct value *) - 1)
2350 {
2351 name_matched = 1;
2352 }
2353 else if (v)
2354 {
2355 /* FIXME-bothner: Why is this commented out? Why is it here? */
2356 /* *arg1p = arg1_tmp; */
2357 return v;
2358 }
2359 }
2360 if (name_matched)
2361 return (struct value *) - 1;
2362 else
2363 return NULL;
2364 }
2365
2366 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2367 extract the component named NAME from the ultimate target structure/union
2368 and return it as a value with its appropriate type.
2369 ERR is used in the error message if *ARGP's type is wrong.
2370
2371 C++: ARGS is a list of argument types to aid in the selection of
2372 an appropriate method. Also, handle derived types.
2373
2374 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2375 where the truthvalue of whether the function that was resolved was
2376 a static member function or not is stored.
2377
2378 ERR is an error message to be printed in case the field is not found. */
2379
2380 struct value *
2381 value_struct_elt (struct value **argp, struct value **args,
2382 char *name, int *static_memfuncp, char *err)
2383 {
2384 register struct type *t;
2385 struct value *v;
2386
2387 COERCE_ARRAY (*argp);
2388
2389 t = check_typedef (VALUE_TYPE (*argp));
2390
2391 /* Follow pointers until we get to a non-pointer. */
2392
2393 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2394 {
2395 *argp = value_ind (*argp);
2396 /* Don't coerce fn pointer to fn and then back again! */
2397 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2398 COERCE_ARRAY (*argp);
2399 t = check_typedef (VALUE_TYPE (*argp));
2400 }
2401
2402 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2403 error ("not implemented: member type in value_struct_elt");
2404
2405 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2406 && TYPE_CODE (t) != TYPE_CODE_UNION)
2407 error ("Attempt to extract a component of a value that is not a %s.", err);
2408
2409 /* Assume it's not, unless we see that it is. */
2410 if (static_memfuncp)
2411 *static_memfuncp = 0;
2412
2413 if (!args)
2414 {
2415 /* if there are no arguments ...do this... */
2416
2417 /* Try as a field first, because if we succeed, there
2418 is less work to be done. */
2419 v = search_struct_field (name, *argp, 0, t, 0);
2420 if (v)
2421 return v;
2422
2423 /* C++: If it was not found as a data field, then try to
2424 return it as a pointer to a method. */
2425
2426 if (destructor_name_p (name, t))
2427 error ("Cannot get value of destructor");
2428
2429 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2430
2431 if (v == (struct value *) - 1)
2432 error ("Cannot take address of a method");
2433 else if (v == 0)
2434 {
2435 if (TYPE_NFN_FIELDS (t))
2436 error ("There is no member or method named %s.", name);
2437 else
2438 error ("There is no member named %s.", name);
2439 }
2440 return v;
2441 }
2442
2443 if (destructor_name_p (name, t))
2444 {
2445 if (!args[1])
2446 {
2447 /* Destructors are a special case. */
2448 int m_index, f_index;
2449
2450 v = NULL;
2451 if (get_destructor_fn_field (t, &m_index, &f_index))
2452 {
2453 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2454 f_index, NULL, 0);
2455 }
2456 if (v == NULL)
2457 error ("could not find destructor function named %s.", name);
2458 else
2459 return v;
2460 }
2461 else
2462 {
2463 error ("destructor should not have any argument");
2464 }
2465 }
2466 else
2467 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2468
2469 if (v == (struct value *) - 1)
2470 {
2471 error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name);
2472 }
2473 else if (v == 0)
2474 {
2475 /* See if user tried to invoke data as function. If so,
2476 hand it back. If it's not callable (i.e., a pointer to function),
2477 gdb should give an error. */
2478 v = search_struct_field (name, *argp, 0, t, 0);
2479 }
2480
2481 if (!v)
2482 error ("Structure has no component named %s.", name);
2483 return v;
2484 }
2485
2486 /* Search through the methods of an object (and its bases)
2487 * to find a specified method. Return the pointer to the
2488 * fn_field list of overloaded instances.
2489 * Helper function for value_find_oload_list.
2490 * ARGP is a pointer to a pointer to a value (the object)
2491 * METHOD is a string containing the method name
2492 * OFFSET is the offset within the value
2493 * STATIC_MEMFUNCP is set if the method is static
2494 * TYPE is the assumed type of the object
2495 * NUM_FNS is the number of overloaded instances
2496 * BASETYPE is set to the actual type of the subobject where the method is found
2497 * BOFFSET is the offset of the base subobject where the method is found */
2498
2499 static struct fn_field *
2500 find_method_list (struct value **argp, char *method, int offset,
2501 int *static_memfuncp, struct type *type, int *num_fns,
2502 struct type **basetype, int *boffset)
2503 {
2504 int i;
2505 struct fn_field *f;
2506 CHECK_TYPEDEF (type);
2507
2508 *num_fns = 0;
2509
2510 /* First check in object itself */
2511 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2512 {
2513 /* pai: FIXME What about operators and type conversions? */
2514 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2515 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2516 {
2517 *num_fns = TYPE_FN_FIELDLIST_LENGTH (type, i);
2518 *basetype = type;
2519 *boffset = offset;
2520 return TYPE_FN_FIELDLIST1 (type, i);
2521 }
2522 }
2523
2524 /* Not found in object, check in base subobjects */
2525 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2526 {
2527 int base_offset;
2528 if (BASETYPE_VIA_VIRTUAL (type, i))
2529 {
2530 if (TYPE_HAS_VTABLE (type))
2531 {
2532 /* HP aCC compiled type, search for virtual base offset
2533 * according to HP/Taligent runtime spec. */
2534 int skip;
2535 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2536 VALUE_CONTENTS_ALL (*argp),
2537 offset + VALUE_EMBEDDED_OFFSET (*argp),
2538 &base_offset, &skip);
2539 if (skip >= 0)
2540 error ("Virtual base class offset not found in vtable");
2541 }
2542 else
2543 {
2544 /* probably g++ runtime model */
2545 base_offset = VALUE_OFFSET (*argp) + offset;
2546 base_offset =
2547 baseclass_offset (type, i,
2548 VALUE_CONTENTS (*argp) + base_offset,
2549 VALUE_ADDRESS (*argp) + base_offset);
2550 if (base_offset == -1)
2551 error ("virtual baseclass botch");
2552 }
2553 }
2554 else
2555 /* non-virtual base, simply use bit position from debug info */
2556 {
2557 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2558 }
2559 f = find_method_list (argp, method, base_offset + offset,
2560 static_memfuncp, TYPE_BASECLASS (type, i), num_fns, basetype, boffset);
2561 if (f)
2562 return f;
2563 }
2564 return NULL;
2565 }
2566
2567 /* Return the list of overloaded methods of a specified name.
2568 * ARGP is a pointer to a pointer to a value (the object)
2569 * METHOD is the method name
2570 * OFFSET is the offset within the value contents
2571 * STATIC_MEMFUNCP is set if the method is static
2572 * NUM_FNS is the number of overloaded instances
2573 * BASETYPE is set to the type of the base subobject that defines the method
2574 * BOFFSET is the offset of the base subobject which defines the method */
2575
2576 struct fn_field *
2577 value_find_oload_method_list (struct value **argp, char *method, int offset,
2578 int *static_memfuncp, int *num_fns,
2579 struct type **basetype, int *boffset)
2580 {
2581 struct type *t;
2582
2583 t = check_typedef (VALUE_TYPE (*argp));
2584
2585 /* code snarfed from value_struct_elt */
2586 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2587 {
2588 *argp = value_ind (*argp);
2589 /* Don't coerce fn pointer to fn and then back again! */
2590 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2591 COERCE_ARRAY (*argp);
2592 t = check_typedef (VALUE_TYPE (*argp));
2593 }
2594
2595 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2596 error ("Not implemented: member type in value_find_oload_lis");
2597
2598 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2599 && TYPE_CODE (t) != TYPE_CODE_UNION)
2600 error ("Attempt to extract a component of a value that is not a struct or union");
2601
2602 /* Assume it's not static, unless we see that it is. */
2603 if (static_memfuncp)
2604 *static_memfuncp = 0;
2605
2606 return find_method_list (argp, method, 0, static_memfuncp, t, num_fns, basetype, boffset);
2607
2608 }
2609
2610 /* Given an array of argument types (ARGTYPES) (which includes an
2611 entry for "this" in the case of C++ methods), the number of
2612 arguments NARGS, the NAME of a function whether it's a method or
2613 not (METHOD), and the degree of laxness (LAX) in conforming to
2614 overload resolution rules in ANSI C++, find the best function that
2615 matches on the argument types according to the overload resolution
2616 rules.
2617
2618 In the case of class methods, the parameter OBJ is an object value
2619 in which to search for overloaded methods.
2620
2621 In the case of non-method functions, the parameter FSYM is a symbol
2622 corresponding to one of the overloaded functions.
2623
2624 Return value is an integer: 0 -> good match, 10 -> debugger applied
2625 non-standard coercions, 100 -> incompatible.
2626
2627 If a method is being searched for, VALP will hold the value.
2628 If a non-method is being searched for, SYMP will hold the symbol for it.
2629
2630 If a method is being searched for, and it is a static method,
2631 then STATICP will point to a non-zero value.
2632
2633 Note: This function does *not* check the value of
2634 overload_resolution. Caller must check it to see whether overload
2635 resolution is permitted.
2636 */
2637
2638 int
2639 find_overload_match (struct type **arg_types, int nargs, char *name, int method,
2640 int lax, struct value **objp, struct symbol *fsym,
2641 struct value **valp, struct symbol **symp, int *staticp)
2642 {
2643 int nparms;
2644 struct type **parm_types;
2645 int champ_nparms = 0;
2646 struct value *obj = (objp ? *objp : NULL);
2647
2648 short oload_champ = -1; /* Index of best overloaded function */
2649 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2650 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2651 short oload_ambig_champ = -1; /* 2nd contender for best match */
2652 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2653 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2654
2655 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2656 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
2657
2658 struct value *temp = obj;
2659 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
2660 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2661 int num_fns = 0; /* Number of overloaded instances being considered */
2662 struct type *basetype = NULL;
2663 int boffset;
2664 register int jj;
2665 register int ix;
2666
2667 char *obj_type_name = NULL;
2668 char *func_name = NULL;
2669
2670 /* Get the list of overloaded methods or functions */
2671 if (method)
2672 {
2673 int i;
2674 int len;
2675 struct type *domain;
2676 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2677 /* Hack: evaluate_subexp_standard often passes in a pointer
2678 value rather than the object itself, so try again */
2679 if ((!obj_type_name || !*obj_type_name) &&
2680 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2681 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
2682
2683 fns_ptr = value_find_oload_method_list (&temp, name, 0,
2684 staticp,
2685 &num_fns,
2686 &basetype, &boffset);
2687 if (!fns_ptr || !num_fns)
2688 error ("Couldn't find method %s%s%s",
2689 obj_type_name,
2690 (obj_type_name && *obj_type_name) ? "::" : "",
2691 name);
2692 domain = TYPE_DOMAIN_TYPE (fns_ptr[0].type);
2693 len = TYPE_NFN_FIELDS (domain);
2694 /* NOTE: dan/2000-03-10: This stuff is for STABS, which won't
2695 give us the info we need directly in the types. We have to
2696 use the method stub conversion to get it. Be aware that this
2697 is by no means perfect, and if you use STABS, please move to
2698 DWARF-2, or something like it, because trying to improve
2699 overloading using STABS is really a waste of time. */
2700 for (i = 0; i < len; i++)
2701 {
2702 int j;
2703 struct fn_field *f = TYPE_FN_FIELDLIST1 (domain, i);
2704 int len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
2705
2706 for (j = 0; j < len2; j++)
2707 {
2708 if (TYPE_FN_FIELD_STUB (f, j) && (!strcmp_iw (TYPE_FN_FIELDLIST_NAME (domain,i),name)))
2709 check_stub_method (domain, i, j);
2710 }
2711 }
2712 }
2713 else
2714 {
2715 int i = -1;
2716 func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);
2717
2718 /* If the name is NULL this must be a C-style function.
2719 Just return the same symbol. */
2720 if (!func_name)
2721 {
2722 *symp = fsym;
2723 return 0;
2724 }
2725
2726 oload_syms = make_symbol_overload_list (fsym);
2727 while (oload_syms[++i])
2728 num_fns++;
2729 if (!num_fns)
2730 error ("Couldn't find function %s", func_name);
2731 }
2732
2733 oload_champ_bv = NULL;
2734
2735 /* Consider each candidate in turn */
2736 for (ix = 0; ix < num_fns; ix++)
2737 {
2738 if (method)
2739 {
2740 /* For static member functions, we won't have a this pointer, but nothing
2741 else seems to handle them right now, so we just pretend ourselves */
2742 nparms=0;
2743
2744 if (TYPE_FN_FIELD_ARGS(fns_ptr,ix))
2745 {
2746 while (TYPE_CODE(TYPE_FN_FIELD_ARGS(fns_ptr,ix)[nparms]) != TYPE_CODE_VOID)
2747 nparms++;
2748 }
2749 }
2750 else
2751 {
2752 /* If it's not a method, this is the proper place */
2753 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2754 }
2755
2756 /* Prepare array of parameter types */
2757 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2758 for (jj = 0; jj < nparms; jj++)
2759 parm_types[jj] = (method
2760 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj])
2761 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
2762
2763 /* Compare parameter types to supplied argument types */
2764 bv = rank_function (parm_types, nparms, arg_types, nargs);
2765
2766 if (!oload_champ_bv)
2767 {
2768 oload_champ_bv = bv;
2769 oload_champ = 0;
2770 champ_nparms = nparms;
2771 }
2772 else
2773 /* See whether current candidate is better or worse than previous best */
2774 switch (compare_badness (bv, oload_champ_bv))
2775 {
2776 case 0:
2777 oload_ambiguous = 1; /* top two contenders are equally good */
2778 oload_ambig_champ = ix;
2779 break;
2780 case 1:
2781 oload_ambiguous = 2; /* incomparable top contenders */
2782 oload_ambig_champ = ix;
2783 break;
2784 case 2:
2785 oload_champ_bv = bv; /* new champion, record details */
2786 oload_ambiguous = 0;
2787 oload_champ = ix;
2788 oload_ambig_champ = -1;
2789 champ_nparms = nparms;
2790 break;
2791 case 3:
2792 default:
2793 break;
2794 }
2795 xfree (parm_types);
2796 if (overload_debug)
2797 {
2798 if (method)
2799 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2800 else
2801 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
2802 for (jj = 0; jj < nargs; jj++)
2803 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2804 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2805 }
2806 } /* end loop over all candidates */
2807 /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
2808 if they have the exact same goodness. This is because there is no
2809 way to differentiate based on return type, which we need to in
2810 cases like overloads of .begin() <It's both const and non-const> */
2811 #if 0
2812 if (oload_ambiguous)
2813 {
2814 if (method)
2815 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2816 obj_type_name,
2817 (obj_type_name && *obj_type_name) ? "::" : "",
2818 name);
2819 else
2820 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2821 func_name);
2822 }
2823 #endif
2824
2825 /* Check how bad the best match is */
2826 for (ix = 1; ix <= nargs; ix++)
2827 {
2828 if (oload_champ_bv->rank[ix] >= 100)
2829 oload_incompatible = 1; /* truly mismatched types */
2830
2831 else if (oload_champ_bv->rank[ix] >= 10)
2832 oload_non_standard = 1; /* non-standard type conversions needed */
2833 }
2834 if (oload_incompatible)
2835 {
2836 if (method)
2837 error ("Cannot resolve method %s%s%s to any overloaded instance",
2838 obj_type_name,
2839 (obj_type_name && *obj_type_name) ? "::" : "",
2840 name);
2841 else
2842 error ("Cannot resolve function %s to any overloaded instance",
2843 func_name);
2844 }
2845 else if (oload_non_standard)
2846 {
2847 if (method)
2848 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2849 obj_type_name,
2850 (obj_type_name && *obj_type_name) ? "::" : "",
2851 name);
2852 else
2853 warning ("Using non-standard conversion to match function %s to supplied arguments",
2854 func_name);
2855 }
2856
2857 if (method)
2858 {
2859 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2860 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2861 else
2862 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2863 }
2864 else
2865 {
2866 *symp = oload_syms[oload_champ];
2867 xfree (func_name);
2868 }
2869
2870 if (objp)
2871 {
2872 if (TYPE_CODE (VALUE_TYPE (temp)) != TYPE_CODE_PTR
2873 && TYPE_CODE (VALUE_TYPE (*objp)) == TYPE_CODE_PTR)
2874 {
2875 temp = value_addr (temp);
2876 }
2877 *objp = temp;
2878 }
2879 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2880 }
2881
2882 /* C++: return 1 is NAME is a legitimate name for the destructor
2883 of type TYPE. If TYPE does not have a destructor, or
2884 if NAME is inappropriate for TYPE, an error is signaled. */
2885 int
2886 destructor_name_p (const char *name, const struct type *type)
2887 {
2888 /* destructors are a special case. */
2889
2890 if (name[0] == '~')
2891 {
2892 char *dname = type_name_no_tag (type);
2893 char *cp = strchr (dname, '<');
2894 unsigned int len;
2895
2896 /* Do not compare the template part for template classes. */
2897 if (cp == NULL)
2898 len = strlen (dname);
2899 else
2900 len = cp - dname;
2901 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2902 error ("name of destructor must equal name of class");
2903 else
2904 return 1;
2905 }
2906 return 0;
2907 }
2908
2909 /* Helper function for check_field: Given TYPE, a structure/union,
2910 return 1 if the component named NAME from the ultimate
2911 target structure/union is defined, otherwise, return 0. */
2912
2913 static int
2914 check_field_in (register struct type *type, const char *name)
2915 {
2916 register int i;
2917
2918 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2919 {
2920 char *t_field_name = TYPE_FIELD_NAME (type, i);
2921 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2922 return 1;
2923 }
2924
2925 /* C++: If it was not found as a data field, then try to
2926 return it as a pointer to a method. */
2927
2928 /* Destructors are a special case. */
2929 if (destructor_name_p (name, type))
2930 {
2931 int m_index, f_index;
2932
2933 return get_destructor_fn_field (type, &m_index, &f_index);
2934 }
2935
2936 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2937 {
2938 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2939 return 1;
2940 }
2941
2942 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2943 if (check_field_in (TYPE_BASECLASS (type, i), name))
2944 return 1;
2945
2946 return 0;
2947 }
2948
2949
2950 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
2951 return 1 if the component named NAME from the ultimate
2952 target structure/union is defined, otherwise, return 0. */
2953
2954 int
2955 check_field (struct value *arg1, const char *name)
2956 {
2957 register struct type *t;
2958
2959 COERCE_ARRAY (arg1);
2960
2961 t = VALUE_TYPE (arg1);
2962
2963 /* Follow pointers until we get to a non-pointer. */
2964
2965 for (;;)
2966 {
2967 CHECK_TYPEDEF (t);
2968 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
2969 break;
2970 t = TYPE_TARGET_TYPE (t);
2971 }
2972
2973 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2974 error ("not implemented: member type in check_field");
2975
2976 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2977 && TYPE_CODE (t) != TYPE_CODE_UNION)
2978 error ("Internal error: `this' is not an aggregate");
2979
2980 return check_field_in (t, name);
2981 }
2982
2983 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2984 return the address of this member as a "pointer to member"
2985 type. If INTYPE is non-null, then it will be the type
2986 of the member we are looking for. This will help us resolve
2987 "pointers to member functions". This function is used
2988 to resolve user expressions of the form "DOMAIN::NAME". */
2989
2990 struct value *
2991 value_struct_elt_for_reference (struct type *domain, int offset,
2992 struct type *curtype, char *name,
2993 struct type *intype)
2994 {
2995 register struct type *t = curtype;
2996 register int i;
2997 struct value *v;
2998
2999 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3000 && TYPE_CODE (t) != TYPE_CODE_UNION)
3001 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
3002
3003 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3004 {
3005 char *t_field_name = TYPE_FIELD_NAME (t, i);
3006
3007 if (t_field_name && STREQ (t_field_name, name))
3008 {
3009 if (TYPE_FIELD_STATIC (t, i))
3010 {
3011 v = value_static_field (t, i);
3012 if (v == NULL)
3013 error ("Internal error: could not find static variable %s",
3014 name);
3015 return v;
3016 }
3017 if (TYPE_FIELD_PACKED (t, i))
3018 error ("pointers to bitfield members not allowed");
3019
3020 return value_from_longest
3021 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
3022 domain)),
3023 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3024 }
3025 }
3026
3027 /* C++: If it was not found as a data field, then try to
3028 return it as a pointer to a method. */
3029
3030 /* Destructors are a special case. */
3031 if (destructor_name_p (name, t))
3032 {
3033 error ("member pointers to destructors not implemented yet");
3034 }
3035
3036 /* Perform all necessary dereferencing. */
3037 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3038 intype = TYPE_TARGET_TYPE (intype);
3039
3040 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3041 {
3042 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3043 char dem_opname[64];
3044
3045 if (strncmp (t_field_name, "__", 2) == 0 ||
3046 strncmp (t_field_name, "op", 2) == 0 ||
3047 strncmp (t_field_name, "type", 4) == 0)
3048 {
3049 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
3050 t_field_name = dem_opname;
3051 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
3052 t_field_name = dem_opname;
3053 }
3054 if (t_field_name && STREQ (t_field_name, name))
3055 {
3056 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
3057 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3058
3059 if (intype == 0 && j > 1)
3060 error ("non-unique member `%s' requires type instantiation", name);
3061 if (intype)
3062 {
3063 while (j--)
3064 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
3065 break;
3066 if (j < 0)
3067 error ("no member function matches that type instantiation");
3068 }
3069 else
3070 j = 0;
3071
3072 if (TYPE_FN_FIELD_STUB (f, j))
3073 check_stub_method (t, i, j);
3074 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3075 {
3076 return value_from_longest
3077 (lookup_reference_type
3078 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3079 domain)),
3080 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
3081 }
3082 else
3083 {
3084 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3085 0, VAR_NAMESPACE, 0, NULL);
3086 if (s == NULL)
3087 {
3088 v = 0;
3089 }
3090 else
3091 {
3092 v = read_var_value (s, 0);
3093 #if 0
3094 VALUE_TYPE (v) = lookup_reference_type
3095 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3096 domain));
3097 #endif
3098 }
3099 return v;
3100 }
3101 }
3102 }
3103 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3104 {
3105 struct value *v;
3106 int base_offset;
3107
3108 if (BASETYPE_VIA_VIRTUAL (t, i))
3109 base_offset = 0;
3110 else
3111 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3112 v = value_struct_elt_for_reference (domain,
3113 offset + base_offset,
3114 TYPE_BASECLASS (t, i),
3115 name,
3116 intype);
3117 if (v)
3118 return v;
3119 }
3120 return 0;
3121 }
3122
3123
3124 /* Given a pointer value V, find the real (RTTI) type
3125 of the object it points to.
3126 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3127 and refer to the values computed for the object pointed to. */
3128
3129 struct type *
3130 value_rtti_target_type (struct value *v, int *full, int *top, int *using_enc)
3131 {
3132 struct value *target;
3133
3134 target = value_ind (v);
3135
3136 return value_rtti_type (target, full, top, using_enc);
3137 }
3138
3139 /* Given a value pointed to by ARGP, check its real run-time type, and
3140 if that is different from the enclosing type, create a new value
3141 using the real run-time type as the enclosing type (and of the same
3142 type as ARGP) and return it, with the embedded offset adjusted to
3143 be the correct offset to the enclosed object
3144 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3145 parameters, computed by value_rtti_type(). If these are available,
3146 they can be supplied and a second call to value_rtti_type() is avoided.
3147 (Pass RTYPE == NULL if they're not available */
3148
3149 struct value *
3150 value_full_object (struct value *argp, struct type *rtype, int xfull, int xtop,
3151 int xusing_enc)
3152 {
3153 struct type *real_type;
3154 int full = 0;
3155 int top = -1;
3156 int using_enc = 0;
3157 struct value *new_val;
3158
3159 if (rtype)
3160 {
3161 real_type = rtype;
3162 full = xfull;
3163 top = xtop;
3164 using_enc = xusing_enc;
3165 }
3166 else
3167 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3168
3169 /* If no RTTI data, or if object is already complete, do nothing */
3170 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3171 return argp;
3172
3173 /* If we have the full object, but for some reason the enclosing
3174 type is wrong, set it *//* pai: FIXME -- sounds iffy */
3175 if (full)
3176 {
3177 argp = value_change_enclosing_type (argp, real_type);
3178 return argp;
3179 }
3180
3181 /* Check if object is in memory */
3182 if (VALUE_LVAL (argp) != lval_memory)
3183 {
3184 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
3185
3186 return argp;
3187 }
3188
3189 /* All other cases -- retrieve the complete object */
3190 /* Go back by the computed top_offset from the beginning of the object,
3191 adjusting for the embedded offset of argp if that's what value_rtti_type
3192 used for its computation. */
3193 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
3194 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3195 VALUE_BFD_SECTION (argp));
3196 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3197 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3198 return new_val;
3199 }
3200
3201
3202
3203
3204 /* C++: return the value of the class instance variable, if one exists.
3205 Flag COMPLAIN signals an error if the request is made in an
3206 inappropriate context. */
3207
3208 struct value *
3209 value_of_this (int complain)
3210 {
3211 struct symbol *func, *sym;
3212 struct block *b;
3213 int i;
3214 static const char funny_this[] = "this";
3215 struct value *this;
3216
3217 if (selected_frame == 0)
3218 {
3219 if (complain)
3220 error ("no frame selected");
3221 else
3222 return 0;
3223 }
3224
3225 func = get_frame_function (selected_frame);
3226 if (!func)
3227 {
3228 if (complain)
3229 error ("no `this' in nameless context");
3230 else
3231 return 0;
3232 }
3233
3234 b = SYMBOL_BLOCK_VALUE (func);
3235 i = BLOCK_NSYMS (b);
3236 if (i <= 0)
3237 {
3238 if (complain)
3239 error ("no args, no `this'");
3240 else
3241 return 0;
3242 }
3243
3244 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3245 symbol instead of the LOC_ARG one (if both exist). */
3246 sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE);
3247 if (sym == NULL)
3248 {
3249 if (complain)
3250 error ("current stack frame not in method");
3251 else
3252 return NULL;
3253 }
3254
3255 this = read_var_value (sym, selected_frame);
3256 if (this == 0 && complain)
3257 error ("`this' argument at unknown address");
3258 return this;
3259 }
3260
3261 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3262 long, starting at LOWBOUND. The result has the same lower bound as
3263 the original ARRAY. */
3264
3265 struct value *
3266 value_slice (struct value *array, int lowbound, int length)
3267 {
3268 struct type *slice_range_type, *slice_type, *range_type;
3269 LONGEST lowerbound, upperbound, offset;
3270 struct value *slice;
3271 struct type *array_type;
3272 array_type = check_typedef (VALUE_TYPE (array));
3273 COERCE_VARYING_ARRAY (array, array_type);
3274 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3275 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3276 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3277 error ("cannot take slice of non-array");
3278 range_type = TYPE_INDEX_TYPE (array_type);
3279 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3280 error ("slice from bad array or bitstring");
3281 if (lowbound < lowerbound || length < 0
3282 || lowbound + length - 1 > upperbound
3283 /* Chill allows zero-length strings but not arrays. */
3284 || (current_language->la_language == language_chill
3285 && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY))
3286 error ("slice out of range");
3287 /* FIXME-type-allocation: need a way to free this type when we are
3288 done with it. */
3289 slice_range_type = create_range_type ((struct type *) NULL,
3290 TYPE_TARGET_TYPE (range_type),
3291 lowbound, lowbound + length - 1);
3292 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3293 {
3294 int i;
3295 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
3296 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3297 slice = value_zero (slice_type, not_lval);
3298 for (i = 0; i < length; i++)
3299 {
3300 int element = value_bit_index (array_type,
3301 VALUE_CONTENTS (array),
3302 lowbound + i);
3303 if (element < 0)
3304 error ("internal error accessing bitstring");
3305 else if (element > 0)
3306 {
3307 int j = i % TARGET_CHAR_BIT;
3308 if (BITS_BIG_ENDIAN)
3309 j = TARGET_CHAR_BIT - 1 - j;
3310 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3311 }
3312 }
3313 /* We should set the address, bitssize, and bitspos, so the clice
3314 can be used on the LHS, but that may require extensions to
3315 value_assign. For now, just leave as a non_lval. FIXME. */
3316 }
3317 else
3318 {
3319 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3320 offset
3321 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3322 slice_type = create_array_type ((struct type *) NULL, element_type,
3323 slice_range_type);
3324 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3325 slice = allocate_value (slice_type);
3326 if (VALUE_LAZY (array))
3327 VALUE_LAZY (slice) = 1;
3328 else
3329 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3330 TYPE_LENGTH (slice_type));
3331 if (VALUE_LVAL (array) == lval_internalvar)
3332 VALUE_LVAL (slice) = lval_internalvar_component;
3333 else
3334 VALUE_LVAL (slice) = VALUE_LVAL (array);
3335 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3336 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3337 }
3338 return slice;
3339 }
3340
3341 /* Assuming chill_varying_type (VARRAY) is true, return an equivalent
3342 value as a fixed-length array. */
3343
3344 struct value *
3345 varying_to_slice (struct value *varray)
3346 {
3347 struct type *vtype = check_typedef (VALUE_TYPE (varray));
3348 LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
3349 VALUE_CONTENTS (varray)
3350 + TYPE_FIELD_BITPOS (vtype, 0) / 8);
3351 return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
3352 }
3353
3354 /* Create a value for a FORTRAN complex number. Currently most of
3355 the time values are coerced to COMPLEX*16 (i.e. a complex number
3356 composed of 2 doubles. This really should be a smarter routine
3357 that figures out precision inteligently as opposed to assuming
3358 doubles. FIXME: fmb */
3359
3360 struct value *
3361 value_literal_complex (struct value *arg1, struct value *arg2, struct type *type)
3362 {
3363 struct value *val;
3364 struct type *real_type = TYPE_TARGET_TYPE (type);
3365
3366 val = allocate_value (type);
3367 arg1 = value_cast (real_type, arg1);
3368 arg2 = value_cast (real_type, arg2);
3369
3370 memcpy (VALUE_CONTENTS_RAW (val),
3371 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3372 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3373 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3374 return val;
3375 }
3376
3377 /* Cast a value into the appropriate complex data type. */
3378
3379 static struct value *
3380 cast_into_complex (struct type *type, struct value *val)
3381 {
3382 struct type *real_type = TYPE_TARGET_TYPE (type);
3383 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3384 {
3385 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
3386 struct value *re_val = allocate_value (val_real_type);
3387 struct value *im_val = allocate_value (val_real_type);
3388
3389 memcpy (VALUE_CONTENTS_RAW (re_val),
3390 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3391 memcpy (VALUE_CONTENTS_RAW (im_val),
3392 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
3393 TYPE_LENGTH (val_real_type));
3394
3395 return value_literal_complex (re_val, im_val, type);
3396 }
3397 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3398 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3399 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3400 else
3401 error ("cannot cast non-number to complex");
3402 }
3403
3404 void
3405 _initialize_valops (void)
3406 {
3407 #if 0
3408 add_show_from_set
3409 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
3410 "Set automatic abandonment of expressions upon failure.",
3411 &setlist),
3412 &showlist);
3413 #endif
3414
3415 add_show_from_set
3416 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
3417 "Set overload resolution in evaluating C++ functions.",
3418 &setlist),
3419 &showlist);
3420 overload_resolution = 1;
3421
3422 add_show_from_set (
3423 add_set_cmd ("unwindonsignal", no_class, var_boolean,
3424 (char *) &unwind_on_signal_p,
3425 "Set unwinding of stack if a signal is received while in a call dummy.\n\
3426 The unwindonsignal lets the user determine what gdb should do if a signal\n\
3427 is received while in a function called from gdb (call dummy). If set, gdb\n\
3428 unwinds the stack and restore the context to what as it was before the call.\n\
3429 The default is to stop in the frame where the signal was received.", &setlist),
3430 &showlist);
3431 }