Add `set print repeats' tests for C/C++ arrays
[binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986-2022 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "demangle.h"
29 #include "language.h"
30 #include "gdbcmd.h"
31 #include "regcache.h"
32 #include "cp-abi.h"
33 #include "block.h"
34 #include "infcall.h"
35 #include "dictionary.h"
36 #include "cp-support.h"
37 #include "target-float.h"
38 #include "tracepoint.h"
39 #include "observable.h"
40 #include "objfiles.h"
41 #include "extension.h"
42 #include "gdbtypes.h"
43 #include "gdbsupport/byte-vector.h"
44
45 /* Local functions. */
46
47 static int typecmp (bool staticp, bool varargs, int nargs,
48 struct field t1[], const gdb::array_view<value *> t2);
49
50 static struct value *search_struct_field (const char *, struct value *,
51 struct type *, int);
52
53 static struct value *search_struct_method (const char *, struct value **,
54 gdb::optional<gdb::array_view<value *>>,
55 LONGEST, int *, struct type *);
56
57 static int find_oload_champ_namespace (gdb::array_view<value *> args,
58 const char *, const char *,
59 std::vector<symbol *> *oload_syms,
60 badness_vector *,
61 const int no_adl);
62
63 static int find_oload_champ_namespace_loop (gdb::array_view<value *> args,
64 const char *, const char *,
65 int, std::vector<symbol *> *oload_syms,
66 badness_vector *, int *,
67 const int no_adl);
68
69 static int find_oload_champ (gdb::array_view<value *> args,
70 size_t num_fns,
71 fn_field *methods,
72 xmethod_worker_up *xmethods,
73 symbol **functions,
74 badness_vector *oload_champ_bv);
75
76 static int oload_method_static_p (struct fn_field *, int);
77
78 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
79
80 static enum oload_classification classify_oload_match
81 (const badness_vector &, int, int);
82
83 static struct value *value_struct_elt_for_reference (struct type *,
84 int, struct type *,
85 const char *,
86 struct type *,
87 int, enum noside);
88
89 static struct value *value_namespace_elt (const struct type *,
90 const char *, int , enum noside);
91
92 static struct value *value_maybe_namespace_elt (const struct type *,
93 const char *, int,
94 enum noside);
95
96 static CORE_ADDR allocate_space_in_inferior (int);
97
98 static struct value *cast_into_complex (struct type *, struct value *);
99
100 bool overload_resolution = false;
101 static void
102 show_overload_resolution (struct ui_file *file, int from_tty,
103 struct cmd_list_element *c,
104 const char *value)
105 {
106 fprintf_filtered (file, _("Overload resolution in evaluating "
107 "C++ functions is %s.\n"),
108 value);
109 }
110
111 /* Find the address of function name NAME in the inferior. If OBJF_P
112 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
113 is defined. */
114
115 struct value *
116 find_function_in_inferior (const char *name, struct objfile **objf_p)
117 {
118 struct block_symbol sym;
119
120 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
121 if (sym.symbol != NULL)
122 {
123 if (SYMBOL_CLASS (sym.symbol) != LOC_BLOCK)
124 {
125 error (_("\"%s\" exists in this program but is not a function."),
126 name);
127 }
128
129 if (objf_p)
130 *objf_p = symbol_objfile (sym.symbol);
131
132 return value_of_variable (sym.symbol, sym.block);
133 }
134 else
135 {
136 struct bound_minimal_symbol msymbol =
137 lookup_bound_minimal_symbol (name);
138
139 if (msymbol.minsym != NULL)
140 {
141 struct objfile *objfile = msymbol.objfile;
142 struct gdbarch *gdbarch = objfile->arch ();
143
144 struct type *type;
145 CORE_ADDR maddr;
146 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
147 type = lookup_function_type (type);
148 type = lookup_pointer_type (type);
149 maddr = BMSYMBOL_VALUE_ADDRESS (msymbol);
150
151 if (objf_p)
152 *objf_p = objfile;
153
154 return value_from_pointer (type, maddr);
155 }
156 else
157 {
158 if (!target_has_execution ())
159 error (_("evaluation of this expression "
160 "requires the target program to be active"));
161 else
162 error (_("evaluation of this expression requires the "
163 "program to have a function \"%s\"."),
164 name);
165 }
166 }
167 }
168
169 /* Allocate NBYTES of space in the inferior using the inferior's
170 malloc and return a value that is a pointer to the allocated
171 space. */
172
173 struct value *
174 value_allocate_space_in_inferior (int len)
175 {
176 struct objfile *objf;
177 struct value *val = find_function_in_inferior ("malloc", &objf);
178 struct gdbarch *gdbarch = objf->arch ();
179 struct value *blocklen;
180
181 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
182 val = call_function_by_hand (val, NULL, blocklen);
183 if (value_logical_not (val))
184 {
185 if (!target_has_execution ())
186 error (_("No memory available to program now: "
187 "you need to start the target first"));
188 else
189 error (_("No memory available to program: call to malloc failed"));
190 }
191 return val;
192 }
193
194 static CORE_ADDR
195 allocate_space_in_inferior (int len)
196 {
197 return value_as_long (value_allocate_space_in_inferior (len));
198 }
199
200 /* Cast struct value VAL to type TYPE and return as a value.
201 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
202 for this to work. Typedef to one of the codes is permitted.
203 Returns NULL if the cast is neither an upcast nor a downcast. */
204
205 static struct value *
206 value_cast_structs (struct type *type, struct value *v2)
207 {
208 struct type *t1;
209 struct type *t2;
210 struct value *v;
211
212 gdb_assert (type != NULL && v2 != NULL);
213
214 t1 = check_typedef (type);
215 t2 = check_typedef (value_type (v2));
216
217 /* Check preconditions. */
218 gdb_assert ((t1->code () == TYPE_CODE_STRUCT
219 || t1->code () == TYPE_CODE_UNION)
220 && !!"Precondition is that type is of STRUCT or UNION kind.");
221 gdb_assert ((t2->code () == TYPE_CODE_STRUCT
222 || t2->code () == TYPE_CODE_UNION)
223 && !!"Precondition is that value is of STRUCT or UNION kind");
224
225 if (t1->name () != NULL
226 && t2->name () != NULL
227 && !strcmp (t1->name (), t2->name ()))
228 return NULL;
229
230 /* Upcasting: look in the type of the source to see if it contains the
231 type of the target as a superclass. If so, we'll need to
232 offset the pointer rather than just change its type. */
233 if (t1->name () != NULL)
234 {
235 v = search_struct_field (t1->name (),
236 v2, t2, 1);
237 if (v)
238 return v;
239 }
240
241 /* Downcasting: look in the type of the target to see if it contains the
242 type of the source as a superclass. If so, we'll need to
243 offset the pointer rather than just change its type. */
244 if (t2->name () != NULL)
245 {
246 /* Try downcasting using the run-time type of the value. */
247 int full, using_enc;
248 LONGEST top;
249 struct type *real_type;
250
251 real_type = value_rtti_type (v2, &full, &top, &using_enc);
252 if (real_type)
253 {
254 v = value_full_object (v2, real_type, full, top, using_enc);
255 v = value_at_lazy (real_type, value_address (v));
256 real_type = value_type (v);
257
258 /* We might be trying to cast to the outermost enclosing
259 type, in which case search_struct_field won't work. */
260 if (real_type->name () != NULL
261 && !strcmp (real_type->name (), t1->name ()))
262 return v;
263
264 v = search_struct_field (t2->name (), v, real_type, 1);
265 if (v)
266 return v;
267 }
268
269 /* Try downcasting using information from the destination type
270 T2. This wouldn't work properly for classes with virtual
271 bases, but those were handled above. */
272 v = search_struct_field (t2->name (),
273 value_zero (t1, not_lval), t1, 1);
274 if (v)
275 {
276 /* Downcasting is possible (t1 is superclass of v2). */
277 CORE_ADDR addr2 = value_address (v2);
278
279 addr2 -= value_address (v) + value_embedded_offset (v);
280 return value_at (type, addr2);
281 }
282 }
283
284 return NULL;
285 }
286
287 /* Cast one pointer or reference type to another. Both TYPE and
288 the type of ARG2 should be pointer types, or else both should be
289 reference types. If SUBCLASS_CHECK is non-zero, this will force a
290 check to see whether TYPE is a superclass of ARG2's type. If
291 SUBCLASS_CHECK is zero, then the subclass check is done only when
292 ARG2 is itself non-zero. Returns the new pointer or reference. */
293
294 struct value *
295 value_cast_pointers (struct type *type, struct value *arg2,
296 int subclass_check)
297 {
298 struct type *type1 = check_typedef (type);
299 struct type *type2 = check_typedef (value_type (arg2));
300 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
301 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
302
303 if (t1->code () == TYPE_CODE_STRUCT
304 && t2->code () == TYPE_CODE_STRUCT
305 && (subclass_check || !value_logical_not (arg2)))
306 {
307 struct value *v2;
308
309 if (TYPE_IS_REFERENCE (type2))
310 v2 = coerce_ref (arg2);
311 else
312 v2 = value_ind (arg2);
313 gdb_assert (check_typedef (value_type (v2))->code ()
314 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
315 v2 = value_cast_structs (t1, v2);
316 /* At this point we have what we can have, un-dereference if needed. */
317 if (v2)
318 {
319 struct value *v = value_addr (v2);
320
321 deprecated_set_value_type (v, type);
322 return v;
323 }
324 }
325
326 /* No superclass found, just change the pointer type. */
327 arg2 = value_copy (arg2);
328 deprecated_set_value_type (arg2, type);
329 set_value_enclosing_type (arg2, type);
330 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
331 return arg2;
332 }
333
334 /* See value.h. */
335
336 gdb_mpq
337 value_to_gdb_mpq (struct value *value)
338 {
339 struct type *type = check_typedef (value_type (value));
340
341 gdb_mpq result;
342 if (is_floating_type (type))
343 {
344 double d = target_float_to_host_double (value_contents (value).data (),
345 type);
346 mpq_set_d (result.val, d);
347 }
348 else
349 {
350 gdb_assert (is_integral_type (type)
351 || is_fixed_point_type (type));
352
353 gdb_mpz vz;
354 vz.read (value_contents (value), type_byte_order (type),
355 type->is_unsigned ());
356 mpq_set_z (result.val, vz.val);
357
358 if (is_fixed_point_type (type))
359 mpq_mul (result.val, result.val,
360 type->fixed_point_scaling_factor ().val);
361 }
362
363 return result;
364 }
365
366 /* Assuming that TO_TYPE is a fixed point type, return a value
367 corresponding to the cast of FROM_VAL to that type. */
368
369 static struct value *
370 value_cast_to_fixed_point (struct type *to_type, struct value *from_val)
371 {
372 struct type *from_type = value_type (from_val);
373
374 if (from_type == to_type)
375 return from_val;
376
377 if (!is_floating_type (from_type)
378 && !is_integral_type (from_type)
379 && !is_fixed_point_type (from_type))
380 error (_("Invalid conversion from type %s to fixed point type %s"),
381 from_type->name (), to_type->name ());
382
383 gdb_mpq vq = value_to_gdb_mpq (from_val);
384
385 /* Divide that value by the scaling factor to obtain the unscaled
386 value, first in rational form, and then in integer form. */
387
388 mpq_div (vq.val, vq.val, to_type->fixed_point_scaling_factor ().val);
389 gdb_mpz unscaled = vq.get_rounded ();
390
391 /* Finally, create the result value, and pack the unscaled value
392 in it. */
393 struct value *result = allocate_value (to_type);
394 unscaled.write (value_contents_raw (result),
395 type_byte_order (to_type),
396 to_type->is_unsigned ());
397
398 return result;
399 }
400
401 /* Cast value ARG2 to type TYPE and return as a value.
402 More general than a C cast: accepts any two types of the same length,
403 and if ARG2 is an lvalue it can be cast into anything at all. */
404 /* In C++, casts may change pointer or object representations. */
405
406 struct value *
407 value_cast (struct type *type, struct value *arg2)
408 {
409 enum type_code code1;
410 enum type_code code2;
411 int scalar;
412 struct type *type2;
413
414 int convert_to_boolean = 0;
415
416 /* TYPE might be equal in meaning to the existing type of ARG2, but for
417 many reasons, might be a different type object (e.g. TYPE might be a
418 gdbarch owned type, while VALUE_TYPE (ARG2) could be an objfile owned
419 type).
420
421 In this case we want to preserve the LVAL of ARG2 as this allows the
422 resulting value to be used in more places. We do this by calling
423 VALUE_COPY if appropriate. */
424 if (types_deeply_equal (value_type (arg2), type))
425 {
426 /* If the types are exactly equal then we can avoid creating a new
427 value completely. */
428 if (value_type (arg2) != type)
429 {
430 arg2 = value_copy (arg2);
431 deprecated_set_value_type (arg2, type);
432 }
433 return arg2;
434 }
435
436 if (is_fixed_point_type (type))
437 return value_cast_to_fixed_point (type, arg2);
438
439 /* Check if we are casting struct reference to struct reference. */
440 if (TYPE_IS_REFERENCE (check_typedef (type)))
441 {
442 /* We dereference type; then we recurse and finally
443 we generate value of the given reference. Nothing wrong with
444 that. */
445 struct type *t1 = check_typedef (type);
446 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
447 struct value *val = value_cast (dereftype, arg2);
448
449 return value_ref (val, t1->code ());
450 }
451
452 if (TYPE_IS_REFERENCE (check_typedef (value_type (arg2))))
453 /* We deref the value and then do the cast. */
454 return value_cast (type, coerce_ref (arg2));
455
456 /* Strip typedefs / resolve stubs in order to get at the type's
457 code/length, but remember the original type, to use as the
458 resulting type of the cast, in case it was a typedef. */
459 struct type *to_type = type;
460
461 type = check_typedef (type);
462 code1 = type->code ();
463 arg2 = coerce_ref (arg2);
464 type2 = check_typedef (value_type (arg2));
465
466 /* You can't cast to a reference type. See value_cast_pointers
467 instead. */
468 gdb_assert (!TYPE_IS_REFERENCE (type));
469
470 /* A cast to an undetermined-length array_type, such as
471 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
472 where N is sizeof(OBJECT)/sizeof(TYPE). */
473 if (code1 == TYPE_CODE_ARRAY)
474 {
475 struct type *element_type = TYPE_TARGET_TYPE (type);
476 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
477
478 if (element_length > 0 && type->bounds ()->high.kind () == PROP_UNDEFINED)
479 {
480 struct type *range_type = type->index_type ();
481 int val_length = TYPE_LENGTH (type2);
482 LONGEST low_bound, high_bound, new_length;
483
484 if (!get_discrete_bounds (range_type, &low_bound, &high_bound))
485 low_bound = 0, high_bound = 0;
486 new_length = val_length / element_length;
487 if (val_length % element_length != 0)
488 warning (_("array element type size does not "
489 "divide object size in cast"));
490 /* FIXME-type-allocation: need a way to free this type when
491 we are done with it. */
492 range_type = create_static_range_type (NULL,
493 TYPE_TARGET_TYPE (range_type),
494 low_bound,
495 new_length + low_bound - 1);
496 deprecated_set_value_type (arg2,
497 create_array_type (NULL,
498 element_type,
499 range_type));
500 return arg2;
501 }
502 }
503
504 if (current_language->c_style_arrays_p ()
505 && type2->code () == TYPE_CODE_ARRAY
506 && !type2->is_vector ())
507 arg2 = value_coerce_array (arg2);
508
509 if (type2->code () == TYPE_CODE_FUNC)
510 arg2 = value_coerce_function (arg2);
511
512 type2 = check_typedef (value_type (arg2));
513 code2 = type2->code ();
514
515 if (code1 == TYPE_CODE_COMPLEX)
516 return cast_into_complex (to_type, arg2);
517 if (code1 == TYPE_CODE_BOOL)
518 {
519 code1 = TYPE_CODE_INT;
520 convert_to_boolean = 1;
521 }
522 if (code1 == TYPE_CODE_CHAR)
523 code1 = TYPE_CODE_INT;
524 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
525 code2 = TYPE_CODE_INT;
526
527 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
528 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
529 || code2 == TYPE_CODE_RANGE
530 || is_fixed_point_type (type2));
531
532 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
533 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
534 && type->name () != 0)
535 {
536 struct value *v = value_cast_structs (to_type, arg2);
537
538 if (v)
539 return v;
540 }
541
542 if (is_floating_type (type) && scalar)
543 {
544 if (is_floating_value (arg2))
545 {
546 struct value *v = allocate_value (to_type);
547 target_float_convert (value_contents (arg2).data (), type2,
548 value_contents_raw (v).data (), type);
549 return v;
550 }
551 else if (is_fixed_point_type (type2))
552 {
553 gdb_mpq fp_val;
554
555 fp_val.read_fixed_point (value_contents (arg2),
556 type_byte_order (type2),
557 type2->is_unsigned (),
558 type2->fixed_point_scaling_factor ());
559
560 struct value *v = allocate_value (to_type);
561 target_float_from_host_double (value_contents_raw (v).data (),
562 to_type, mpq_get_d (fp_val.val));
563 return v;
564 }
565
566 /* The only option left is an integral type. */
567 if (type2->is_unsigned ())
568 return value_from_ulongest (to_type, value_as_long (arg2));
569 else
570 return value_from_longest (to_type, value_as_long (arg2));
571 }
572 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
573 || code1 == TYPE_CODE_RANGE)
574 && (scalar || code2 == TYPE_CODE_PTR
575 || code2 == TYPE_CODE_MEMBERPTR))
576 {
577 LONGEST longest;
578
579 /* When we cast pointers to integers, we mustn't use
580 gdbarch_pointer_to_address to find the address the pointer
581 represents, as value_as_long would. GDB should evaluate
582 expressions just as the compiler would --- and the compiler
583 sees a cast as a simple reinterpretation of the pointer's
584 bits. */
585 if (code2 == TYPE_CODE_PTR)
586 longest = extract_unsigned_integer
587 (value_contents (arg2), type_byte_order (type2));
588 else
589 longest = value_as_long (arg2);
590 return value_from_longest (to_type, convert_to_boolean ?
591 (LONGEST) (longest ? 1 : 0) : longest);
592 }
593 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
594 || code2 == TYPE_CODE_ENUM
595 || code2 == TYPE_CODE_RANGE))
596 {
597 /* TYPE_LENGTH (type) is the length of a pointer, but we really
598 want the length of an address! -- we are really dealing with
599 addresses (i.e., gdb representations) not pointers (i.e.,
600 target representations) here.
601
602 This allows things like "print *(int *)0x01000234" to work
603 without printing a misleading message -- which would
604 otherwise occur when dealing with a target having two byte
605 pointers and four byte addresses. */
606
607 int addr_bit = gdbarch_addr_bit (type2->arch ());
608 LONGEST longest = value_as_long (arg2);
609
610 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
611 {
612 if (longest >= ((LONGEST) 1 << addr_bit)
613 || longest <= -((LONGEST) 1 << addr_bit))
614 warning (_("value truncated"));
615 }
616 return value_from_longest (to_type, longest);
617 }
618 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
619 && value_as_long (arg2) == 0)
620 {
621 struct value *result = allocate_value (to_type);
622
623 cplus_make_method_ptr (to_type,
624 value_contents_writeable (result).data (), 0, 0);
625 return result;
626 }
627 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
628 && value_as_long (arg2) == 0)
629 {
630 /* The Itanium C++ ABI represents NULL pointers to members as
631 minus one, instead of biasing the normal case. */
632 return value_from_longest (to_type, -1);
633 }
634 else if (code1 == TYPE_CODE_ARRAY && type->is_vector ()
635 && code2 == TYPE_CODE_ARRAY && type2->is_vector ()
636 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
637 error (_("Cannot convert between vector values of different sizes"));
638 else if (code1 == TYPE_CODE_ARRAY && type->is_vector () && scalar
639 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
640 error (_("can only cast scalar to vector of same size"));
641 else if (code1 == TYPE_CODE_VOID)
642 {
643 return value_zero (to_type, not_lval);
644 }
645 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
646 {
647 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
648 return value_cast_pointers (to_type, arg2, 0);
649
650 arg2 = value_copy (arg2);
651 deprecated_set_value_type (arg2, to_type);
652 set_value_enclosing_type (arg2, to_type);
653 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
654 return arg2;
655 }
656 else if (VALUE_LVAL (arg2) == lval_memory)
657 return value_at_lazy (to_type, value_address (arg2));
658 else
659 {
660 if (current_language->la_language == language_ada)
661 error (_("Invalid type conversion."));
662 error (_("Invalid cast."));
663 }
664 }
665
666 /* The C++ reinterpret_cast operator. */
667
668 struct value *
669 value_reinterpret_cast (struct type *type, struct value *arg)
670 {
671 struct value *result;
672 struct type *real_type = check_typedef (type);
673 struct type *arg_type, *dest_type;
674 int is_ref = 0;
675 enum type_code dest_code, arg_code;
676
677 /* Do reference, function, and array conversion. */
678 arg = coerce_array (arg);
679
680 /* Attempt to preserve the type the user asked for. */
681 dest_type = type;
682
683 /* If we are casting to a reference type, transform
684 reinterpret_cast<T&[&]>(V) to *reinterpret_cast<T*>(&V). */
685 if (TYPE_IS_REFERENCE (real_type))
686 {
687 is_ref = 1;
688 arg = value_addr (arg);
689 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
690 real_type = lookup_pointer_type (real_type);
691 }
692
693 arg_type = value_type (arg);
694
695 dest_code = real_type->code ();
696 arg_code = arg_type->code ();
697
698 /* We can convert pointer types, or any pointer type to int, or int
699 type to pointer. */
700 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
701 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
702 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
703 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
704 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
705 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
706 || (dest_code == arg_code
707 && (dest_code == TYPE_CODE_PTR
708 || dest_code == TYPE_CODE_METHODPTR
709 || dest_code == TYPE_CODE_MEMBERPTR)))
710 result = value_cast (dest_type, arg);
711 else
712 error (_("Invalid reinterpret_cast"));
713
714 if (is_ref)
715 result = value_cast (type, value_ref (value_ind (result),
716 type->code ()));
717
718 return result;
719 }
720
721 /* A helper for value_dynamic_cast. This implements the first of two
722 runtime checks: we iterate over all the base classes of the value's
723 class which are equal to the desired class; if only one of these
724 holds the value, then it is the answer. */
725
726 static int
727 dynamic_cast_check_1 (struct type *desired_type,
728 const gdb_byte *valaddr,
729 LONGEST embedded_offset,
730 CORE_ADDR address,
731 struct value *val,
732 struct type *search_type,
733 CORE_ADDR arg_addr,
734 struct type *arg_type,
735 struct value **result)
736 {
737 int i, result_count = 0;
738
739 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
740 {
741 LONGEST offset = baseclass_offset (search_type, i, valaddr,
742 embedded_offset,
743 address, val);
744
745 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
746 {
747 if (address + embedded_offset + offset >= arg_addr
748 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
749 {
750 ++result_count;
751 if (!*result)
752 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
753 address + embedded_offset + offset);
754 }
755 }
756 else
757 result_count += dynamic_cast_check_1 (desired_type,
758 valaddr,
759 embedded_offset + offset,
760 address, val,
761 TYPE_BASECLASS (search_type, i),
762 arg_addr,
763 arg_type,
764 result);
765 }
766
767 return result_count;
768 }
769
770 /* A helper for value_dynamic_cast. This implements the second of two
771 runtime checks: we look for a unique public sibling class of the
772 argument's declared class. */
773
774 static int
775 dynamic_cast_check_2 (struct type *desired_type,
776 const gdb_byte *valaddr,
777 LONGEST embedded_offset,
778 CORE_ADDR address,
779 struct value *val,
780 struct type *search_type,
781 struct value **result)
782 {
783 int i, result_count = 0;
784
785 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
786 {
787 LONGEST offset;
788
789 if (! BASETYPE_VIA_PUBLIC (search_type, i))
790 continue;
791
792 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
793 address, val);
794 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
795 {
796 ++result_count;
797 if (*result == NULL)
798 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
799 address + embedded_offset + offset);
800 }
801 else
802 result_count += dynamic_cast_check_2 (desired_type,
803 valaddr,
804 embedded_offset + offset,
805 address, val,
806 TYPE_BASECLASS (search_type, i),
807 result);
808 }
809
810 return result_count;
811 }
812
813 /* The C++ dynamic_cast operator. */
814
815 struct value *
816 value_dynamic_cast (struct type *type, struct value *arg)
817 {
818 int full, using_enc;
819 LONGEST top;
820 struct type *resolved_type = check_typedef (type);
821 struct type *arg_type = check_typedef (value_type (arg));
822 struct type *class_type, *rtti_type;
823 struct value *result, *tem, *original_arg = arg;
824 CORE_ADDR addr;
825 int is_ref = TYPE_IS_REFERENCE (resolved_type);
826
827 if (resolved_type->code () != TYPE_CODE_PTR
828 && !TYPE_IS_REFERENCE (resolved_type))
829 error (_("Argument to dynamic_cast must be a pointer or reference type"));
830 if (TYPE_TARGET_TYPE (resolved_type)->code () != TYPE_CODE_VOID
831 && TYPE_TARGET_TYPE (resolved_type)->code () != TYPE_CODE_STRUCT)
832 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
833
834 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
835 if (resolved_type->code () == TYPE_CODE_PTR)
836 {
837 if (arg_type->code () != TYPE_CODE_PTR
838 && ! (arg_type->code () == TYPE_CODE_INT
839 && value_as_long (arg) == 0))
840 error (_("Argument to dynamic_cast does not have pointer type"));
841 if (arg_type->code () == TYPE_CODE_PTR)
842 {
843 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
844 if (arg_type->code () != TYPE_CODE_STRUCT)
845 error (_("Argument to dynamic_cast does "
846 "not have pointer to class type"));
847 }
848
849 /* Handle NULL pointers. */
850 if (value_as_long (arg) == 0)
851 return value_zero (type, not_lval);
852
853 arg = value_ind (arg);
854 }
855 else
856 {
857 if (arg_type->code () != TYPE_CODE_STRUCT)
858 error (_("Argument to dynamic_cast does not have class type"));
859 }
860
861 /* If the classes are the same, just return the argument. */
862 if (class_types_same_p (class_type, arg_type))
863 return value_cast (type, arg);
864
865 /* If the target type is a unique base class of the argument's
866 declared type, just cast it. */
867 if (is_ancestor (class_type, arg_type))
868 {
869 if (is_unique_ancestor (class_type, arg))
870 return value_cast (type, original_arg);
871 error (_("Ambiguous dynamic_cast"));
872 }
873
874 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
875 if (! rtti_type)
876 error (_("Couldn't determine value's most derived type for dynamic_cast"));
877
878 /* Compute the most derived object's address. */
879 addr = value_address (arg);
880 if (full)
881 {
882 /* Done. */
883 }
884 else if (using_enc)
885 addr += top;
886 else
887 addr += top + value_embedded_offset (arg);
888
889 /* dynamic_cast<void *> means to return a pointer to the
890 most-derived object. */
891 if (resolved_type->code () == TYPE_CODE_PTR
892 && TYPE_TARGET_TYPE (resolved_type)->code () == TYPE_CODE_VOID)
893 return value_at_lazy (type, addr);
894
895 tem = value_at (type, addr);
896 type = value_type (tem);
897
898 /* The first dynamic check specified in 5.2.7. */
899 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
900 {
901 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
902 return tem;
903 result = NULL;
904 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
905 value_contents_for_printing (tem).data (),
906 value_embedded_offset (tem),
907 value_address (tem), tem,
908 rtti_type, addr,
909 arg_type,
910 &result) == 1)
911 return value_cast (type,
912 is_ref
913 ? value_ref (result, resolved_type->code ())
914 : value_addr (result));
915 }
916
917 /* The second dynamic check specified in 5.2.7. */
918 result = NULL;
919 if (is_public_ancestor (arg_type, rtti_type)
920 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
921 value_contents_for_printing (tem).data (),
922 value_embedded_offset (tem),
923 value_address (tem), tem,
924 rtti_type, &result) == 1)
925 return value_cast (type,
926 is_ref
927 ? value_ref (result, resolved_type->code ())
928 : value_addr (result));
929
930 if (resolved_type->code () == TYPE_CODE_PTR)
931 return value_zero (type, not_lval);
932
933 error (_("dynamic_cast failed"));
934 }
935
936 /* Create a not_lval value of numeric type TYPE that is one, and return it. */
937
938 struct value *
939 value_one (struct type *type)
940 {
941 struct type *type1 = check_typedef (type);
942 struct value *val;
943
944 if (is_integral_type (type1) || is_floating_type (type1))
945 {
946 val = value_from_longest (type, (LONGEST) 1);
947 }
948 else if (type1->code () == TYPE_CODE_ARRAY && type1->is_vector ())
949 {
950 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
951 int i;
952 LONGEST low_bound, high_bound;
953
954 if (!get_array_bounds (type1, &low_bound, &high_bound))
955 error (_("Could not determine the vector bounds"));
956
957 val = allocate_value (type);
958 gdb::array_view<gdb_byte> val_contents = value_contents_writeable (val);
959 int elt_len = TYPE_LENGTH (eltype);
960
961 for (i = 0; i < high_bound - low_bound + 1; i++)
962 {
963 value *tmp = value_one (eltype);
964 copy (value_contents_all (tmp),
965 val_contents.slice (i * elt_len, elt_len));
966 }
967 }
968 else
969 {
970 error (_("Not a numeric type."));
971 }
972
973 /* value_one result is never used for assignments to. */
974 gdb_assert (VALUE_LVAL (val) == not_lval);
975
976 return val;
977 }
978
979 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack.
980 The type of the created value may differ from the passed type TYPE.
981 Make sure to retrieve the returned values's new type after this call
982 e.g. in case the type is a variable length array. */
983
984 static struct value *
985 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
986 {
987 struct value *val;
988
989 if (check_typedef (type)->code () == TYPE_CODE_VOID)
990 error (_("Attempt to dereference a generic pointer."));
991
992 val = value_from_contents_and_address (type, NULL, addr);
993
994 if (!lazy)
995 value_fetch_lazy (val);
996
997 return val;
998 }
999
1000 /* Return a value with type TYPE located at ADDR.
1001
1002 Call value_at only if the data needs to be fetched immediately;
1003 if we can be 'lazy' and defer the fetch, perhaps indefinitely, call
1004 value_at_lazy instead. value_at_lazy simply records the address of
1005 the data and sets the lazy-evaluation-required flag. The lazy flag
1006 is tested in the value_contents macro, which is used if and when
1007 the contents are actually required. The type of the created value
1008 may differ from the passed type TYPE. Make sure to retrieve the
1009 returned values's new type after this call e.g. in case the type
1010 is a variable length array.
1011
1012 Note: value_at does *NOT* handle embedded offsets; perform such
1013 adjustments before or after calling it. */
1014
1015 struct value *
1016 value_at (struct type *type, CORE_ADDR addr)
1017 {
1018 return get_value_at (type, addr, 0);
1019 }
1020
1021 /* Return a lazy value with type TYPE located at ADDR (cf. value_at).
1022 The type of the created value may differ from the passed type TYPE.
1023 Make sure to retrieve the returned values's new type after this call
1024 e.g. in case the type is a variable length array. */
1025
1026 struct value *
1027 value_at_lazy (struct type *type, CORE_ADDR addr)
1028 {
1029 return get_value_at (type, addr, 1);
1030 }
1031
1032 void
1033 read_value_memory (struct value *val, LONGEST bit_offset,
1034 int stack, CORE_ADDR memaddr,
1035 gdb_byte *buffer, size_t length)
1036 {
1037 ULONGEST xfered_total = 0;
1038 struct gdbarch *arch = get_value_arch (val);
1039 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1040 enum target_object object;
1041
1042 object = stack ? TARGET_OBJECT_STACK_MEMORY : TARGET_OBJECT_MEMORY;
1043
1044 while (xfered_total < length)
1045 {
1046 enum target_xfer_status status;
1047 ULONGEST xfered_partial;
1048
1049 status = target_xfer_partial (current_inferior ()->top_target (),
1050 object, NULL,
1051 buffer + xfered_total * unit_size, NULL,
1052 memaddr + xfered_total,
1053 length - xfered_total,
1054 &xfered_partial);
1055
1056 if (status == TARGET_XFER_OK)
1057 /* nothing */;
1058 else if (status == TARGET_XFER_UNAVAILABLE)
1059 mark_value_bits_unavailable (val, (xfered_total * HOST_CHAR_BIT
1060 + bit_offset),
1061 xfered_partial * HOST_CHAR_BIT);
1062 else if (status == TARGET_XFER_EOF)
1063 memory_error (TARGET_XFER_E_IO, memaddr + xfered_total);
1064 else
1065 memory_error (status, memaddr + xfered_total);
1066
1067 xfered_total += xfered_partial;
1068 QUIT;
1069 }
1070 }
1071
1072 /* Store the contents of FROMVAL into the location of TOVAL.
1073 Return a new value with the location of TOVAL and contents of FROMVAL. */
1074
1075 struct value *
1076 value_assign (struct value *toval, struct value *fromval)
1077 {
1078 struct type *type;
1079 struct value *val;
1080 struct frame_id old_frame;
1081
1082 if (!deprecated_value_modifiable (toval))
1083 error (_("Left operand of assignment is not a modifiable lvalue."));
1084
1085 toval = coerce_ref (toval);
1086
1087 type = value_type (toval);
1088 if (VALUE_LVAL (toval) != lval_internalvar)
1089 fromval = value_cast (type, fromval);
1090 else
1091 {
1092 /* Coerce arrays and functions to pointers, except for arrays
1093 which only live in GDB's storage. */
1094 if (!value_must_coerce_to_target (fromval))
1095 fromval = coerce_array (fromval);
1096 }
1097
1098 type = check_typedef (type);
1099
1100 /* Since modifying a register can trash the frame chain, and
1101 modifying memory can trash the frame cache, we save the old frame
1102 and then restore the new frame afterwards. */
1103 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1104
1105 switch (VALUE_LVAL (toval))
1106 {
1107 case lval_internalvar:
1108 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1109 return value_of_internalvar (type->arch (),
1110 VALUE_INTERNALVAR (toval));
1111
1112 case lval_internalvar_component:
1113 {
1114 LONGEST offset = value_offset (toval);
1115
1116 /* Are we dealing with a bitfield?
1117
1118 It is important to mention that `value_parent (toval)' is
1119 non-NULL iff `value_bitsize (toval)' is non-zero. */
1120 if (value_bitsize (toval))
1121 {
1122 /* VALUE_INTERNALVAR below refers to the parent value, while
1123 the offset is relative to this parent value. */
1124 gdb_assert (value_parent (value_parent (toval)) == NULL);
1125 offset += value_offset (value_parent (toval));
1126 }
1127
1128 set_internalvar_component (VALUE_INTERNALVAR (toval),
1129 offset,
1130 value_bitpos (toval),
1131 value_bitsize (toval),
1132 fromval);
1133 }
1134 break;
1135
1136 case lval_memory:
1137 {
1138 const gdb_byte *dest_buffer;
1139 CORE_ADDR changed_addr;
1140 int changed_len;
1141 gdb_byte buffer[sizeof (LONGEST)];
1142
1143 if (value_bitsize (toval))
1144 {
1145 struct value *parent = value_parent (toval);
1146
1147 changed_addr = value_address (parent) + value_offset (toval);
1148 changed_len = (value_bitpos (toval)
1149 + value_bitsize (toval)
1150 + HOST_CHAR_BIT - 1)
1151 / HOST_CHAR_BIT;
1152
1153 /* If we can read-modify-write exactly the size of the
1154 containing type (e.g. short or int) then do so. This
1155 is safer for volatile bitfields mapped to hardware
1156 registers. */
1157 if (changed_len < TYPE_LENGTH (type)
1158 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1159 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1160 changed_len = TYPE_LENGTH (type);
1161
1162 if (changed_len > (int) sizeof (LONGEST))
1163 error (_("Can't handle bitfields which "
1164 "don't fit in a %d bit word."),
1165 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1166
1167 read_memory (changed_addr, buffer, changed_len);
1168 modify_field (type, buffer, value_as_long (fromval),
1169 value_bitpos (toval), value_bitsize (toval));
1170 dest_buffer = buffer;
1171 }
1172 else
1173 {
1174 changed_addr = value_address (toval);
1175 changed_len = type_length_units (type);
1176 dest_buffer = value_contents (fromval).data ();
1177 }
1178
1179 write_memory_with_notification (changed_addr, dest_buffer, changed_len);
1180 }
1181 break;
1182
1183 case lval_register:
1184 {
1185 struct frame_info *frame;
1186 struct gdbarch *gdbarch;
1187 int value_reg;
1188
1189 /* Figure out which frame this register value is in. The value
1190 holds the frame_id for the next frame, that is the frame this
1191 register value was unwound from.
1192
1193 Below we will call put_frame_register_bytes which requires that
1194 we pass it the actual frame in which the register value is
1195 valid, i.e. not the next frame. */
1196 frame = frame_find_by_id (VALUE_NEXT_FRAME_ID (toval));
1197 frame = get_prev_frame_always (frame);
1198
1199 value_reg = VALUE_REGNUM (toval);
1200
1201 if (!frame)
1202 error (_("Value being assigned to is no longer active."));
1203
1204 gdbarch = get_frame_arch (frame);
1205
1206 if (value_bitsize (toval))
1207 {
1208 struct value *parent = value_parent (toval);
1209 LONGEST offset = value_offset (parent) + value_offset (toval);
1210 size_t changed_len;
1211 gdb_byte buffer[sizeof (LONGEST)];
1212 int optim, unavail;
1213
1214 changed_len = (value_bitpos (toval)
1215 + value_bitsize (toval)
1216 + HOST_CHAR_BIT - 1)
1217 / HOST_CHAR_BIT;
1218
1219 if (changed_len > sizeof (LONGEST))
1220 error (_("Can't handle bitfields which "
1221 "don't fit in a %d bit word."),
1222 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1223
1224 if (!get_frame_register_bytes (frame, value_reg, offset,
1225 {buffer, changed_len},
1226 &optim, &unavail))
1227 {
1228 if (optim)
1229 throw_error (OPTIMIZED_OUT_ERROR,
1230 _("value has been optimized out"));
1231 if (unavail)
1232 throw_error (NOT_AVAILABLE_ERROR,
1233 _("value is not available"));
1234 }
1235
1236 modify_field (type, buffer, value_as_long (fromval),
1237 value_bitpos (toval), value_bitsize (toval));
1238
1239 put_frame_register_bytes (frame, value_reg, offset,
1240 {buffer, changed_len});
1241 }
1242 else
1243 {
1244 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval),
1245 type))
1246 {
1247 /* If TOVAL is a special machine register requiring
1248 conversion of program values to a special raw
1249 format. */
1250 gdbarch_value_to_register (gdbarch, frame,
1251 VALUE_REGNUM (toval), type,
1252 value_contents (fromval).data ());
1253 }
1254 else
1255 put_frame_register_bytes (frame, value_reg,
1256 value_offset (toval),
1257 value_contents (fromval));
1258 }
1259
1260 gdb::observers::register_changed.notify (frame, value_reg);
1261 break;
1262 }
1263
1264 case lval_computed:
1265 {
1266 const struct lval_funcs *funcs = value_computed_funcs (toval);
1267
1268 if (funcs->write != NULL)
1269 {
1270 funcs->write (toval, fromval);
1271 break;
1272 }
1273 }
1274 /* Fall through. */
1275
1276 default:
1277 error (_("Left operand of assignment is not an lvalue."));
1278 }
1279
1280 /* Assigning to the stack pointer, frame pointer, and other
1281 (architecture and calling convention specific) registers may
1282 cause the frame cache and regcache to be out of date. Assigning to memory
1283 also can. We just do this on all assignments to registers or
1284 memory, for simplicity's sake; I doubt the slowdown matters. */
1285 switch (VALUE_LVAL (toval))
1286 {
1287 case lval_memory:
1288 case lval_register:
1289 case lval_computed:
1290
1291 gdb::observers::target_changed.notify
1292 (current_inferior ()->top_target ());
1293
1294 /* Having destroyed the frame cache, restore the selected
1295 frame. */
1296
1297 /* FIXME: cagney/2002-11-02: There has to be a better way of
1298 doing this. Instead of constantly saving/restoring the
1299 frame. Why not create a get_selected_frame() function that,
1300 having saved the selected frame's ID can automatically
1301 re-find the previously selected frame automatically. */
1302
1303 {
1304 struct frame_info *fi = frame_find_by_id (old_frame);
1305
1306 if (fi != NULL)
1307 select_frame (fi);
1308 }
1309
1310 break;
1311 default:
1312 break;
1313 }
1314
1315 /* If the field does not entirely fill a LONGEST, then zero the sign
1316 bits. If the field is signed, and is negative, then sign
1317 extend. */
1318 if ((value_bitsize (toval) > 0)
1319 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1320 {
1321 LONGEST fieldval = value_as_long (fromval);
1322 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1323
1324 fieldval &= valmask;
1325 if (!type->is_unsigned ()
1326 && (fieldval & (valmask ^ (valmask >> 1))))
1327 fieldval |= ~valmask;
1328
1329 fromval = value_from_longest (type, fieldval);
1330 }
1331
1332 /* The return value is a copy of TOVAL so it shares its location
1333 information, but its contents are updated from FROMVAL. This
1334 implies the returned value is not lazy, even if TOVAL was. */
1335 val = value_copy (toval);
1336 set_value_lazy (val, 0);
1337 copy (value_contents (fromval), value_contents_raw (val));
1338
1339 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1340 in the case of pointer types. For object types, the enclosing type
1341 and embedded offset must *not* be copied: the target object refered
1342 to by TOVAL retains its original dynamic type after assignment. */
1343 if (type->code () == TYPE_CODE_PTR)
1344 {
1345 set_value_enclosing_type (val, value_enclosing_type (fromval));
1346 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1347 }
1348
1349 return val;
1350 }
1351
1352 /* Extend a value ARG1 to COUNT repetitions of its type. */
1353
1354 struct value *
1355 value_repeat (struct value *arg1, int count)
1356 {
1357 struct value *val;
1358
1359 if (VALUE_LVAL (arg1) != lval_memory)
1360 error (_("Only values in memory can be extended with '@'."));
1361 if (count < 1)
1362 error (_("Invalid number %d of repetitions."), count);
1363
1364 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1365
1366 VALUE_LVAL (val) = lval_memory;
1367 set_value_address (val, value_address (arg1));
1368
1369 read_value_memory (val, 0, value_stack (val), value_address (val),
1370 value_contents_all_raw (val).data (),
1371 type_length_units (value_enclosing_type (val)));
1372
1373 return val;
1374 }
1375
1376 struct value *
1377 value_of_variable (struct symbol *var, const struct block *b)
1378 {
1379 struct frame_info *frame = NULL;
1380
1381 if (symbol_read_needs_frame (var))
1382 frame = get_selected_frame (_("No frame selected."));
1383
1384 return read_var_value (var, b, frame);
1385 }
1386
1387 struct value *
1388 address_of_variable (struct symbol *var, const struct block *b)
1389 {
1390 struct type *type = SYMBOL_TYPE (var);
1391 struct value *val;
1392
1393 /* Evaluate it first; if the result is a memory address, we're fine.
1394 Lazy evaluation pays off here. */
1395
1396 val = value_of_variable (var, b);
1397 type = value_type (val);
1398
1399 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1400 || type->code () == TYPE_CODE_FUNC)
1401 {
1402 CORE_ADDR addr = value_address (val);
1403
1404 return value_from_pointer (lookup_pointer_type (type), addr);
1405 }
1406
1407 /* Not a memory address; check what the problem was. */
1408 switch (VALUE_LVAL (val))
1409 {
1410 case lval_register:
1411 {
1412 struct frame_info *frame;
1413 const char *regname;
1414
1415 frame = frame_find_by_id (VALUE_NEXT_FRAME_ID (val));
1416 gdb_assert (frame);
1417
1418 regname = gdbarch_register_name (get_frame_arch (frame),
1419 VALUE_REGNUM (val));
1420 gdb_assert (regname && *regname);
1421
1422 error (_("Address requested for identifier "
1423 "\"%s\" which is in register $%s"),
1424 var->print_name (), regname);
1425 break;
1426 }
1427
1428 default:
1429 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1430 var->print_name ());
1431 break;
1432 }
1433
1434 return val;
1435 }
1436
1437 /* See value.h. */
1438
1439 bool
1440 value_must_coerce_to_target (struct value *val)
1441 {
1442 struct type *valtype;
1443
1444 /* The only lval kinds which do not live in target memory. */
1445 if (VALUE_LVAL (val) != not_lval
1446 && VALUE_LVAL (val) != lval_internalvar
1447 && VALUE_LVAL (val) != lval_xcallable)
1448 return false;
1449
1450 valtype = check_typedef (value_type (val));
1451
1452 switch (valtype->code ())
1453 {
1454 case TYPE_CODE_ARRAY:
1455 return valtype->is_vector () ? 0 : 1;
1456 case TYPE_CODE_STRING:
1457 return true;
1458 default:
1459 return false;
1460 }
1461 }
1462
1463 /* Make sure that VAL lives in target memory if it's supposed to. For
1464 instance, strings are constructed as character arrays in GDB's
1465 storage, and this function copies them to the target. */
1466
1467 struct value *
1468 value_coerce_to_target (struct value *val)
1469 {
1470 LONGEST length;
1471 CORE_ADDR addr;
1472
1473 if (!value_must_coerce_to_target (val))
1474 return val;
1475
1476 length = TYPE_LENGTH (check_typedef (value_type (val)));
1477 addr = allocate_space_in_inferior (length);
1478 write_memory (addr, value_contents (val).data (), length);
1479 return value_at_lazy (value_type (val), addr);
1480 }
1481
1482 /* Given a value which is an array, return a value which is a pointer
1483 to its first element, regardless of whether or not the array has a
1484 nonzero lower bound.
1485
1486 FIXME: A previous comment here indicated that this routine should
1487 be substracting the array's lower bound. It's not clear to me that
1488 this is correct. Given an array subscripting operation, it would
1489 certainly work to do the adjustment here, essentially computing:
1490
1491 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1492
1493 However I believe a more appropriate and logical place to account
1494 for the lower bound is to do so in value_subscript, essentially
1495 computing:
1496
1497 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1498
1499 As further evidence consider what would happen with operations
1500 other than array subscripting, where the caller would get back a
1501 value that had an address somewhere before the actual first element
1502 of the array, and the information about the lower bound would be
1503 lost because of the coercion to pointer type. */
1504
1505 struct value *
1506 value_coerce_array (struct value *arg1)
1507 {
1508 struct type *type = check_typedef (value_type (arg1));
1509
1510 /* If the user tries to do something requiring a pointer with an
1511 array that has not yet been pushed to the target, then this would
1512 be a good time to do so. */
1513 arg1 = value_coerce_to_target (arg1);
1514
1515 if (VALUE_LVAL (arg1) != lval_memory)
1516 error (_("Attempt to take address of value not located in memory."));
1517
1518 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1519 value_address (arg1));
1520 }
1521
1522 /* Given a value which is a function, return a value which is a pointer
1523 to it. */
1524
1525 struct value *
1526 value_coerce_function (struct value *arg1)
1527 {
1528 struct value *retval;
1529
1530 if (VALUE_LVAL (arg1) != lval_memory)
1531 error (_("Attempt to take address of value not located in memory."));
1532
1533 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1534 value_address (arg1));
1535 return retval;
1536 }
1537
1538 /* Return a pointer value for the object for which ARG1 is the
1539 contents. */
1540
1541 struct value *
1542 value_addr (struct value *arg1)
1543 {
1544 struct value *arg2;
1545 struct type *type = check_typedef (value_type (arg1));
1546
1547 if (TYPE_IS_REFERENCE (type))
1548 {
1549 if (value_bits_synthetic_pointer (arg1, value_embedded_offset (arg1),
1550 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1551 arg1 = coerce_ref (arg1);
1552 else
1553 {
1554 /* Copy the value, but change the type from (T&) to (T*). We
1555 keep the same location information, which is efficient, and
1556 allows &(&X) to get the location containing the reference.
1557 Do the same to its enclosing type for consistency. */
1558 struct type *type_ptr
1559 = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1560 struct type *enclosing_type
1561 = check_typedef (value_enclosing_type (arg1));
1562 struct type *enclosing_type_ptr
1563 = lookup_pointer_type (TYPE_TARGET_TYPE (enclosing_type));
1564
1565 arg2 = value_copy (arg1);
1566 deprecated_set_value_type (arg2, type_ptr);
1567 set_value_enclosing_type (arg2, enclosing_type_ptr);
1568
1569 return arg2;
1570 }
1571 }
1572 if (type->code () == TYPE_CODE_FUNC)
1573 return value_coerce_function (arg1);
1574
1575 /* If this is an array that has not yet been pushed to the target,
1576 then this would be a good time to force it to memory. */
1577 arg1 = value_coerce_to_target (arg1);
1578
1579 if (VALUE_LVAL (arg1) != lval_memory)
1580 error (_("Attempt to take address of value not located in memory."));
1581
1582 /* Get target memory address. */
1583 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1584 (value_address (arg1)
1585 + value_embedded_offset (arg1)));
1586
1587 /* This may be a pointer to a base subobject; so remember the
1588 full derived object's type ... */
1589 set_value_enclosing_type (arg2,
1590 lookup_pointer_type (value_enclosing_type (arg1)));
1591 /* ... and also the relative position of the subobject in the full
1592 object. */
1593 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1594 return arg2;
1595 }
1596
1597 /* Return a reference value for the object for which ARG1 is the
1598 contents. */
1599
1600 struct value *
1601 value_ref (struct value *arg1, enum type_code refcode)
1602 {
1603 struct value *arg2;
1604 struct type *type = check_typedef (value_type (arg1));
1605
1606 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
1607
1608 if ((type->code () == TYPE_CODE_REF
1609 || type->code () == TYPE_CODE_RVALUE_REF)
1610 && type->code () == refcode)
1611 return arg1;
1612
1613 arg2 = value_addr (arg1);
1614 deprecated_set_value_type (arg2, lookup_reference_type (type, refcode));
1615 return arg2;
1616 }
1617
1618 /* Given a value of a pointer type, apply the C unary * operator to
1619 it. */
1620
1621 struct value *
1622 value_ind (struct value *arg1)
1623 {
1624 struct type *base_type;
1625 struct value *arg2;
1626
1627 arg1 = coerce_array (arg1);
1628
1629 base_type = check_typedef (value_type (arg1));
1630
1631 if (VALUE_LVAL (arg1) == lval_computed)
1632 {
1633 const struct lval_funcs *funcs = value_computed_funcs (arg1);
1634
1635 if (funcs->indirect)
1636 {
1637 struct value *result = funcs->indirect (arg1);
1638
1639 if (result)
1640 return result;
1641 }
1642 }
1643
1644 if (base_type->code () == TYPE_CODE_PTR)
1645 {
1646 struct type *enc_type;
1647
1648 /* We may be pointing to something embedded in a larger object.
1649 Get the real type of the enclosing object. */
1650 enc_type = check_typedef (value_enclosing_type (arg1));
1651 enc_type = TYPE_TARGET_TYPE (enc_type);
1652
1653 CORE_ADDR base_addr;
1654 if (check_typedef (enc_type)->code () == TYPE_CODE_FUNC
1655 || check_typedef (enc_type)->code () == TYPE_CODE_METHOD)
1656 {
1657 /* For functions, go through find_function_addr, which knows
1658 how to handle function descriptors. */
1659 base_addr = find_function_addr (arg1, NULL);
1660 }
1661 else
1662 {
1663 /* Retrieve the enclosing object pointed to. */
1664 base_addr = (value_as_address (arg1)
1665 - value_pointed_to_offset (arg1));
1666 }
1667 arg2 = value_at_lazy (enc_type, base_addr);
1668 enc_type = value_type (arg2);
1669 return readjust_indirect_value_type (arg2, enc_type, base_type,
1670 arg1, base_addr);
1671 }
1672
1673 error (_("Attempt to take contents of a non-pointer value."));
1674 }
1675 \f
1676 /* Create a value for an array by allocating space in GDB, copying the
1677 data into that space, and then setting up an array value.
1678
1679 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1680 is populated from the values passed in ELEMVEC.
1681
1682 The element type of the array is inherited from the type of the
1683 first element, and all elements must have the same size (though we
1684 don't currently enforce any restriction on their types). */
1685
1686 struct value *
1687 value_array (int lowbound, int highbound, struct value **elemvec)
1688 {
1689 int nelem;
1690 int idx;
1691 ULONGEST typelength;
1692 struct value *val;
1693 struct type *arraytype;
1694
1695 /* Validate that the bounds are reasonable and that each of the
1696 elements have the same size. */
1697
1698 nelem = highbound - lowbound + 1;
1699 if (nelem <= 0)
1700 {
1701 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1702 }
1703 typelength = type_length_units (value_enclosing_type (elemvec[0]));
1704 for (idx = 1; idx < nelem; idx++)
1705 {
1706 if (type_length_units (value_enclosing_type (elemvec[idx]))
1707 != typelength)
1708 {
1709 error (_("array elements must all be the same size"));
1710 }
1711 }
1712
1713 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1714 lowbound, highbound);
1715
1716 if (!current_language->c_style_arrays_p ())
1717 {
1718 val = allocate_value (arraytype);
1719 for (idx = 0; idx < nelem; idx++)
1720 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1721 typelength);
1722 return val;
1723 }
1724
1725 /* Allocate space to store the array, and then initialize it by
1726 copying in each element. */
1727
1728 val = allocate_value (arraytype);
1729 for (idx = 0; idx < nelem; idx++)
1730 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1731 return val;
1732 }
1733
1734 struct value *
1735 value_cstring (const char *ptr, ssize_t len, struct type *char_type)
1736 {
1737 struct value *val;
1738 int lowbound = current_language->string_lower_bound ();
1739 ssize_t highbound = len / TYPE_LENGTH (char_type);
1740 struct type *stringtype
1741 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1742
1743 val = allocate_value (stringtype);
1744 memcpy (value_contents_raw (val).data (), ptr, len);
1745 return val;
1746 }
1747
1748 /* Create a value for a string constant by allocating space in the
1749 inferior, copying the data into that space, and returning the
1750 address with type TYPE_CODE_STRING. PTR points to the string
1751 constant data; LEN is number of characters.
1752
1753 Note that string types are like array of char types with a lower
1754 bound of zero and an upper bound of LEN - 1. Also note that the
1755 string may contain embedded null bytes. */
1756
1757 struct value *
1758 value_string (const char *ptr, ssize_t len, struct type *char_type)
1759 {
1760 struct value *val;
1761 int lowbound = current_language->string_lower_bound ();
1762 ssize_t highbound = len / TYPE_LENGTH (char_type);
1763 struct type *stringtype
1764 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1765
1766 val = allocate_value (stringtype);
1767 memcpy (value_contents_raw (val).data (), ptr, len);
1768 return val;
1769 }
1770
1771 \f
1772 /* See if we can pass arguments in T2 to a function which takes arguments
1773 of types T1. T1 is a list of NARGS arguments, and T2 is an array_view
1774 of the values we're trying to pass. If some arguments need coercion of
1775 some sort, then the coerced values are written into T2. Return value is
1776 0 if the arguments could be matched, or the position at which they
1777 differ if not.
1778
1779 STATICP is nonzero if the T1 argument list came from a static
1780 member function. T2 must still include the ``this'' pointer, but
1781 it will be skipped.
1782
1783 For non-static member functions, we ignore the first argument,
1784 which is the type of the instance variable. This is because we
1785 want to handle calls with objects from derived classes. This is
1786 not entirely correct: we should actually check to make sure that a
1787 requested operation is type secure, shouldn't we? FIXME. */
1788
1789 static int
1790 typecmp (bool staticp, bool varargs, int nargs,
1791 struct field t1[], gdb::array_view<value *> t2)
1792 {
1793 int i;
1794
1795 /* Skip ``this'' argument if applicable. T2 will always include
1796 THIS. */
1797 if (staticp)
1798 t2 = t2.slice (1);
1799
1800 for (i = 0;
1801 (i < nargs) && t1[i].type ()->code () != TYPE_CODE_VOID;
1802 i++)
1803 {
1804 struct type *tt1, *tt2;
1805
1806 if (i == t2.size ())
1807 return i + 1;
1808
1809 tt1 = check_typedef (t1[i].type ());
1810 tt2 = check_typedef (value_type (t2[i]));
1811
1812 if (TYPE_IS_REFERENCE (tt1)
1813 /* We should be doing hairy argument matching, as below. */
1814 && (check_typedef (TYPE_TARGET_TYPE (tt1))->code ()
1815 == tt2->code ()))
1816 {
1817 if (tt2->code () == TYPE_CODE_ARRAY)
1818 t2[i] = value_coerce_array (t2[i]);
1819 else
1820 t2[i] = value_ref (t2[i], tt1->code ());
1821 continue;
1822 }
1823
1824 /* djb - 20000715 - Until the new type structure is in the
1825 place, and we can attempt things like implicit conversions,
1826 we need to do this so you can take something like a map<const
1827 char *>, and properly access map["hello"], because the
1828 argument to [] will be a reference to a pointer to a char,
1829 and the argument will be a pointer to a char. */
1830 while (TYPE_IS_REFERENCE (tt1) || tt1->code () == TYPE_CODE_PTR)
1831 {
1832 tt1 = check_typedef ( TYPE_TARGET_TYPE (tt1) );
1833 }
1834 while (tt2->code () == TYPE_CODE_ARRAY
1835 || tt2->code () == TYPE_CODE_PTR
1836 || TYPE_IS_REFERENCE (tt2))
1837 {
1838 tt2 = check_typedef (TYPE_TARGET_TYPE (tt2));
1839 }
1840 if (tt1->code () == tt2->code ())
1841 continue;
1842 /* Array to pointer is a `trivial conversion' according to the
1843 ARM. */
1844
1845 /* We should be doing much hairier argument matching (see
1846 section 13.2 of the ARM), but as a quick kludge, just check
1847 for the same type code. */
1848 if (t1[i].type ()->code () != value_type (t2[i])->code ())
1849 return i + 1;
1850 }
1851 if (varargs || i == t2.size ())
1852 return 0;
1853 return i + 1;
1854 }
1855
1856 /* Helper class for search_struct_field that keeps track of found
1857 results and possibly throws an exception if the search yields
1858 ambiguous results. See search_struct_field for description of
1859 LOOKING_FOR_BASECLASS. */
1860
1861 struct struct_field_searcher
1862 {
1863 /* A found field. */
1864 struct found_field
1865 {
1866 /* Path to the structure where the field was found. */
1867 std::vector<struct type *> path;
1868
1869 /* The field found. */
1870 struct value *field_value;
1871 };
1872
1873 /* See corresponding fields for description of parameters. */
1874 struct_field_searcher (const char *name,
1875 struct type *outermost_type,
1876 bool looking_for_baseclass)
1877 : m_name (name),
1878 m_looking_for_baseclass (looking_for_baseclass),
1879 m_outermost_type (outermost_type)
1880 {
1881 }
1882
1883 /* The search entry point. If LOOKING_FOR_BASECLASS is true and the
1884 base class search yields ambiguous results, this throws an
1885 exception. If LOOKING_FOR_BASECLASS is false, the found fields
1886 are accumulated and the caller (search_struct_field) takes care
1887 of throwing an error if the field search yields ambiguous
1888 results. The latter is done that way so that the error message
1889 can include a list of all the found candidates. */
1890 void search (struct value *arg, LONGEST offset, struct type *type);
1891
1892 const std::vector<found_field> &fields ()
1893 {
1894 return m_fields;
1895 }
1896
1897 struct value *baseclass ()
1898 {
1899 return m_baseclass;
1900 }
1901
1902 private:
1903 /* Update results to include V, a found field/baseclass. */
1904 void update_result (struct value *v, LONGEST boffset);
1905
1906 /* The name of the field/baseclass we're searching for. */
1907 const char *m_name;
1908
1909 /* Whether we're looking for a baseclass, or a field. */
1910 const bool m_looking_for_baseclass;
1911
1912 /* The offset of the baseclass containing the field/baseclass we
1913 last recorded. */
1914 LONGEST m_last_boffset = 0;
1915
1916 /* If looking for a baseclass, then the result is stored here. */
1917 struct value *m_baseclass = nullptr;
1918
1919 /* When looking for fields, the found candidates are stored
1920 here. */
1921 std::vector<found_field> m_fields;
1922
1923 /* The type of the initial type passed to search_struct_field; this
1924 is used for error reporting when the lookup is ambiguous. */
1925 struct type *m_outermost_type;
1926
1927 /* The full path to the struct being inspected. E.g. for field 'x'
1928 defined in class B inherited by class A, we have A and B pushed
1929 on the path. */
1930 std::vector <struct type *> m_struct_path;
1931 };
1932
1933 void
1934 struct_field_searcher::update_result (struct value *v, LONGEST boffset)
1935 {
1936 if (v != NULL)
1937 {
1938 if (m_looking_for_baseclass)
1939 {
1940 if (m_baseclass != nullptr
1941 /* The result is not ambiguous if all the classes that are
1942 found occupy the same space. */
1943 && m_last_boffset != boffset)
1944 error (_("base class '%s' is ambiguous in type '%s'"),
1945 m_name, TYPE_SAFE_NAME (m_outermost_type));
1946
1947 m_baseclass = v;
1948 m_last_boffset = boffset;
1949 }
1950 else
1951 {
1952 /* The field is not ambiguous if it occupies the same
1953 space. */
1954 if (m_fields.empty () || m_last_boffset != boffset)
1955 m_fields.push_back ({m_struct_path, v});
1956 else
1957 {
1958 /*Fields can occupy the same space and have the same name (be
1959 ambiguous). This can happen when fields in two different base
1960 classes are marked [[no_unique_address]] and have the same name.
1961 The C++ standard says that such fields can only occupy the same
1962 space if they are of different type, but we don't rely on that in
1963 the following code. */
1964 bool ambiguous = false, insert = true;
1965 for (const found_field &field: m_fields)
1966 {
1967 if(field.path.back () != m_struct_path.back ())
1968 {
1969 /* Same boffset points to members of different classes.
1970 We have found an ambiguity and should record it. */
1971 ambiguous = true;
1972 }
1973 else
1974 {
1975 /* We don't need to insert this value again, because a
1976 non-ambiguous path already leads to it. */
1977 insert = false;
1978 break;
1979 }
1980 }
1981 if (ambiguous && insert)
1982 m_fields.push_back ({m_struct_path, v});
1983 }
1984 }
1985 }
1986 }
1987
1988 /* A helper for search_struct_field. This does all the work; most
1989 arguments are as passed to search_struct_field. */
1990
1991 void
1992 struct_field_searcher::search (struct value *arg1, LONGEST offset,
1993 struct type *type)
1994 {
1995 int i;
1996 int nbases;
1997
1998 m_struct_path.push_back (type);
1999 SCOPE_EXIT { m_struct_path.pop_back (); };
2000
2001 type = check_typedef (type);
2002 nbases = TYPE_N_BASECLASSES (type);
2003
2004 if (!m_looking_for_baseclass)
2005 for (i = type->num_fields () - 1; i >= nbases; i--)
2006 {
2007 const char *t_field_name = type->field (i).name ();
2008
2009 if (t_field_name && (strcmp_iw (t_field_name, m_name) == 0))
2010 {
2011 struct value *v;
2012
2013 if (field_is_static (&type->field (i)))
2014 v = value_static_field (type, i);
2015 else
2016 v = value_primitive_field (arg1, offset, i, type);
2017
2018 update_result (v, offset);
2019 return;
2020 }
2021
2022 if (t_field_name
2023 && t_field_name[0] == '\0')
2024 {
2025 struct type *field_type = type->field (i).type ();
2026
2027 if (field_type->code () == TYPE_CODE_UNION
2028 || field_type->code () == TYPE_CODE_STRUCT)
2029 {
2030 /* Look for a match through the fields of an anonymous
2031 union, or anonymous struct. C++ provides anonymous
2032 unions.
2033
2034 In the GNU Chill (now deleted from GDB)
2035 implementation of variant record types, each
2036 <alternative field> has an (anonymous) union type,
2037 each member of the union represents a <variant
2038 alternative>. Each <variant alternative> is
2039 represented as a struct, with a member for each
2040 <variant field>. */
2041
2042 LONGEST new_offset = offset;
2043
2044 /* This is pretty gross. In G++, the offset in an
2045 anonymous union is relative to the beginning of the
2046 enclosing struct. In the GNU Chill (now deleted
2047 from GDB) implementation of variant records, the
2048 bitpos is zero in an anonymous union field, so we
2049 have to add the offset of the union here. */
2050 if (field_type->code () == TYPE_CODE_STRUCT
2051 || (field_type->num_fields () > 0
2052 && field_type->field (0).loc_bitpos () == 0))
2053 new_offset += type->field (i).loc_bitpos () / 8;
2054
2055 search (arg1, new_offset, field_type);
2056 }
2057 }
2058 }
2059
2060 for (i = 0; i < nbases; i++)
2061 {
2062 struct value *v = NULL;
2063 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2064 /* If we are looking for baseclasses, this is what we get when
2065 we hit them. But it could happen that the base part's member
2066 name is not yet filled in. */
2067 int found_baseclass = (m_looking_for_baseclass
2068 && TYPE_BASECLASS_NAME (type, i) != NULL
2069 && (strcmp_iw (m_name,
2070 TYPE_BASECLASS_NAME (type,
2071 i)) == 0));
2072 LONGEST boffset = value_embedded_offset (arg1) + offset;
2073
2074 if (BASETYPE_VIA_VIRTUAL (type, i))
2075 {
2076 struct value *v2;
2077
2078 boffset = baseclass_offset (type, i,
2079 value_contents_for_printing (arg1).data (),
2080 value_embedded_offset (arg1) + offset,
2081 value_address (arg1),
2082 arg1);
2083
2084 /* The virtual base class pointer might have been clobbered
2085 by the user program. Make sure that it still points to a
2086 valid memory location. */
2087
2088 boffset += value_embedded_offset (arg1) + offset;
2089 if (boffset < 0
2090 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
2091 {
2092 CORE_ADDR base_addr;
2093
2094 base_addr = value_address (arg1) + boffset;
2095 v2 = value_at_lazy (basetype, base_addr);
2096 if (target_read_memory (base_addr,
2097 value_contents_raw (v2).data (),
2098 TYPE_LENGTH (value_type (v2))) != 0)
2099 error (_("virtual baseclass botch"));
2100 }
2101 else
2102 {
2103 v2 = value_copy (arg1);
2104 deprecated_set_value_type (v2, basetype);
2105 set_value_embedded_offset (v2, boffset);
2106 }
2107
2108 if (found_baseclass)
2109 v = v2;
2110 else
2111 search (v2, 0, TYPE_BASECLASS (type, i));
2112 }
2113 else if (found_baseclass)
2114 v = value_primitive_field (arg1, offset, i, type);
2115 else
2116 {
2117 search (arg1, offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2118 basetype);
2119 }
2120
2121 update_result (v, boffset);
2122 }
2123 }
2124
2125 /* Helper function used by value_struct_elt to recurse through
2126 baseclasses. Look for a field NAME in ARG1. Search in it assuming
2127 it has (class) type TYPE. If found, return value, else return NULL.
2128
2129 If LOOKING_FOR_BASECLASS, then instead of looking for struct
2130 fields, look for a baseclass named NAME. */
2131
2132 static struct value *
2133 search_struct_field (const char *name, struct value *arg1,
2134 struct type *type, int looking_for_baseclass)
2135 {
2136 struct_field_searcher searcher (name, type, looking_for_baseclass);
2137
2138 searcher.search (arg1, 0, type);
2139
2140 if (!looking_for_baseclass)
2141 {
2142 const auto &fields = searcher.fields ();
2143
2144 if (fields.empty ())
2145 return nullptr;
2146 else if (fields.size () == 1)
2147 return fields[0].field_value;
2148 else
2149 {
2150 std::string candidates;
2151
2152 for (auto &&candidate : fields)
2153 {
2154 gdb_assert (!candidate.path.empty ());
2155
2156 struct type *field_type = value_type (candidate.field_value);
2157 struct type *struct_type = candidate.path.back ();
2158
2159 std::string path;
2160 bool first = true;
2161 for (struct type *t : candidate.path)
2162 {
2163 if (first)
2164 first = false;
2165 else
2166 path += " -> ";
2167 path += t->name ();
2168 }
2169
2170 candidates += string_printf ("\n '%s %s::%s' (%s)",
2171 TYPE_SAFE_NAME (field_type),
2172 TYPE_SAFE_NAME (struct_type),
2173 name,
2174 path.c_str ());
2175 }
2176
2177 error (_("Request for member '%s' is ambiguous in type '%s'."
2178 " Candidates are:%s"),
2179 name, TYPE_SAFE_NAME (type),
2180 candidates.c_str ());
2181 }
2182 }
2183 else
2184 return searcher.baseclass ();
2185 }
2186
2187 /* Helper function used by value_struct_elt to recurse through
2188 baseclasses. Look for a field NAME in ARG1. Adjust the address of
2189 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2190 TYPE.
2191
2192 ARGS is an optional array of argument values used to help finding NAME.
2193 The contents of ARGS can be adjusted if type coercion is required in
2194 order to find a matching NAME.
2195
2196 If found, return value, else if name matched and args not return
2197 (value) -1, else return NULL. */
2198
2199 static struct value *
2200 search_struct_method (const char *name, struct value **arg1p,
2201 gdb::optional<gdb::array_view<value *>> args,
2202 LONGEST offset, int *static_memfuncp,
2203 struct type *type)
2204 {
2205 int i;
2206 struct value *v;
2207 int name_matched = 0;
2208
2209 type = check_typedef (type);
2210 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2211 {
2212 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2213
2214 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2215 {
2216 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2217 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2218
2219 name_matched = 1;
2220 check_stub_method_group (type, i);
2221 if (j > 0 && !args.has_value ())
2222 error (_("cannot resolve overloaded method "
2223 "`%s': no arguments supplied"), name);
2224 else if (j == 0 && !args.has_value ())
2225 {
2226 v = value_fn_field (arg1p, f, j, type, offset);
2227 if (v != NULL)
2228 return v;
2229 }
2230 else
2231 while (j >= 0)
2232 {
2233 gdb_assert (args.has_value ());
2234 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2235 TYPE_FN_FIELD_TYPE (f, j)->has_varargs (),
2236 TYPE_FN_FIELD_TYPE (f, j)->num_fields (),
2237 TYPE_FN_FIELD_ARGS (f, j), *args))
2238 {
2239 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2240 return value_virtual_fn_field (arg1p, f, j,
2241 type, offset);
2242 if (TYPE_FN_FIELD_STATIC_P (f, j)
2243 && static_memfuncp)
2244 *static_memfuncp = 1;
2245 v = value_fn_field (arg1p, f, j, type, offset);
2246 if (v != NULL)
2247 return v;
2248 }
2249 j--;
2250 }
2251 }
2252 }
2253
2254 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2255 {
2256 LONGEST base_offset;
2257 LONGEST this_offset;
2258
2259 if (BASETYPE_VIA_VIRTUAL (type, i))
2260 {
2261 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2262 struct value *base_val;
2263 const gdb_byte *base_valaddr;
2264
2265 /* The virtual base class pointer might have been
2266 clobbered by the user program. Make sure that it
2267 still points to a valid memory location. */
2268
2269 if (offset < 0 || offset >= TYPE_LENGTH (type))
2270 {
2271 CORE_ADDR address;
2272
2273 gdb::byte_vector tmp (TYPE_LENGTH (baseclass));
2274 address = value_address (*arg1p);
2275
2276 if (target_read_memory (address + offset,
2277 tmp.data (), TYPE_LENGTH (baseclass)) != 0)
2278 error (_("virtual baseclass botch"));
2279
2280 base_val = value_from_contents_and_address (baseclass,
2281 tmp.data (),
2282 address + offset);
2283 base_valaddr = value_contents_for_printing (base_val).data ();
2284 this_offset = 0;
2285 }
2286 else
2287 {
2288 base_val = *arg1p;
2289 base_valaddr = value_contents_for_printing (*arg1p).data ();
2290 this_offset = offset;
2291 }
2292
2293 base_offset = baseclass_offset (type, i, base_valaddr,
2294 this_offset, value_address (base_val),
2295 base_val);
2296 }
2297 else
2298 {
2299 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2300 }
2301 v = search_struct_method (name, arg1p, args, base_offset + offset,
2302 static_memfuncp, TYPE_BASECLASS (type, i));
2303 if (v == (struct value *) - 1)
2304 {
2305 name_matched = 1;
2306 }
2307 else if (v)
2308 {
2309 /* FIXME-bothner: Why is this commented out? Why is it here? */
2310 /* *arg1p = arg1_tmp; */
2311 return v;
2312 }
2313 }
2314 if (name_matched)
2315 return (struct value *) - 1;
2316 else
2317 return NULL;
2318 }
2319
2320 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2321 extract the component named NAME from the ultimate target
2322 structure/union and return it as a value with its appropriate type.
2323 ERR is used in the error message if *ARGP's type is wrong.
2324
2325 C++: ARGS is a list of argument types to aid in the selection of
2326 an appropriate method. Also, handle derived types.
2327
2328 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2329 where the truthvalue of whether the function that was resolved was
2330 a static member function or not is stored.
2331
2332 ERR is an error message to be printed in case the field is not
2333 found. */
2334
2335 struct value *
2336 value_struct_elt (struct value **argp,
2337 gdb::optional<gdb::array_view<value *>> args,
2338 const char *name, int *static_memfuncp, const char *err)
2339 {
2340 struct type *t;
2341 struct value *v;
2342
2343 *argp = coerce_array (*argp);
2344
2345 t = check_typedef (value_type (*argp));
2346
2347 /* Follow pointers until we get to a non-pointer. */
2348
2349 while (t->is_pointer_or_reference ())
2350 {
2351 *argp = value_ind (*argp);
2352 /* Don't coerce fn pointer to fn and then back again! */
2353 if (check_typedef (value_type (*argp))->code () != TYPE_CODE_FUNC)
2354 *argp = coerce_array (*argp);
2355 t = check_typedef (value_type (*argp));
2356 }
2357
2358 if (t->code () != TYPE_CODE_STRUCT
2359 && t->code () != TYPE_CODE_UNION)
2360 error (_("Attempt to extract a component of a value that is not a %s."),
2361 err);
2362
2363 /* Assume it's not, unless we see that it is. */
2364 if (static_memfuncp)
2365 *static_memfuncp = 0;
2366
2367 if (!args.has_value ())
2368 {
2369 /* if there are no arguments ...do this... */
2370
2371 /* Try as a field first, because if we succeed, there is less
2372 work to be done. */
2373 v = search_struct_field (name, *argp, t, 0);
2374 if (v)
2375 return v;
2376
2377 /* C++: If it was not found as a data field, then try to
2378 return it as a pointer to a method. */
2379 v = search_struct_method (name, argp, args, 0,
2380 static_memfuncp, t);
2381
2382 if (v == (struct value *) - 1)
2383 error (_("Cannot take address of method %s."), name);
2384 else if (v == 0)
2385 {
2386 if (TYPE_NFN_FIELDS (t))
2387 error (_("There is no member or method named %s."), name);
2388 else
2389 error (_("There is no member named %s."), name);
2390 }
2391 return v;
2392 }
2393
2394 v = search_struct_method (name, argp, args, 0,
2395 static_memfuncp, t);
2396
2397 if (v == (struct value *) - 1)
2398 {
2399 error (_("One of the arguments you tried to pass to %s could not "
2400 "be converted to what the function wants."), name);
2401 }
2402 else if (v == 0)
2403 {
2404 /* See if user tried to invoke data as function. If so, hand it
2405 back. If it's not callable (i.e., a pointer to function),
2406 gdb should give an error. */
2407 v = search_struct_field (name, *argp, t, 0);
2408 /* If we found an ordinary field, then it is not a method call.
2409 So, treat it as if it were a static member function. */
2410 if (v && static_memfuncp)
2411 *static_memfuncp = 1;
2412 }
2413
2414 if (!v)
2415 throw_error (NOT_FOUND_ERROR,
2416 _("Structure has no component named %s."), name);
2417 return v;
2418 }
2419
2420 /* Given *ARGP, a value of type structure or union, or a pointer/reference
2421 to a structure or union, extract and return its component (field) of
2422 type FTYPE at the specified BITPOS.
2423 Throw an exception on error. */
2424
2425 struct value *
2426 value_struct_elt_bitpos (struct value **argp, int bitpos, struct type *ftype,
2427 const char *err)
2428 {
2429 struct type *t;
2430 int i;
2431
2432 *argp = coerce_array (*argp);
2433
2434 t = check_typedef (value_type (*argp));
2435
2436 while (t->is_pointer_or_reference ())
2437 {
2438 *argp = value_ind (*argp);
2439 if (check_typedef (value_type (*argp))->code () != TYPE_CODE_FUNC)
2440 *argp = coerce_array (*argp);
2441 t = check_typedef (value_type (*argp));
2442 }
2443
2444 if (t->code () != TYPE_CODE_STRUCT
2445 && t->code () != TYPE_CODE_UNION)
2446 error (_("Attempt to extract a component of a value that is not a %s."),
2447 err);
2448
2449 for (i = TYPE_N_BASECLASSES (t); i < t->num_fields (); i++)
2450 {
2451 if (!field_is_static (&t->field (i))
2452 && bitpos == t->field (i).loc_bitpos ()
2453 && types_equal (ftype, t->field (i).type ()))
2454 return value_primitive_field (*argp, 0, i, t);
2455 }
2456
2457 error (_("No field with matching bitpos and type."));
2458
2459 /* Never hit. */
2460 return NULL;
2461 }
2462
2463 /* Search through the methods of an object (and its bases) to find a
2464 specified method. Return a reference to the fn_field list METHODS of
2465 overloaded instances defined in the source language. If available
2466 and matching, a vector of matching xmethods defined in extension
2467 languages are also returned in XMETHODS.
2468
2469 Helper function for value_find_oload_list.
2470 ARGP is a pointer to a pointer to a value (the object).
2471 METHOD is a string containing the method name.
2472 OFFSET is the offset within the value.
2473 TYPE is the assumed type of the object.
2474 METHODS is a pointer to the matching overloaded instances defined
2475 in the source language. Since this is a recursive function,
2476 *METHODS should be set to NULL when calling this function.
2477 NUM_FNS is the number of overloaded instances. *NUM_FNS should be set to
2478 0 when calling this function.
2479 XMETHODS is the vector of matching xmethod workers. *XMETHODS
2480 should also be set to NULL when calling this function.
2481 BASETYPE is set to the actual type of the subobject where the
2482 method is found.
2483 BOFFSET is the offset of the base subobject where the method is found. */
2484
2485 static void
2486 find_method_list (struct value **argp, const char *method,
2487 LONGEST offset, struct type *type,
2488 gdb::array_view<fn_field> *methods,
2489 std::vector<xmethod_worker_up> *xmethods,
2490 struct type **basetype, LONGEST *boffset)
2491 {
2492 int i;
2493 struct fn_field *f = NULL;
2494
2495 gdb_assert (methods != NULL && xmethods != NULL);
2496 type = check_typedef (type);
2497
2498 /* First check in object itself.
2499 This function is called recursively to search through base classes.
2500 If there is a source method match found at some stage, then we need not
2501 look for source methods in consequent recursive calls. */
2502 if (methods->empty ())
2503 {
2504 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2505 {
2506 /* pai: FIXME What about operators and type conversions? */
2507 const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2508
2509 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2510 {
2511 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2512 f = TYPE_FN_FIELDLIST1 (type, i);
2513 *methods = gdb::make_array_view (f, len);
2514
2515 *basetype = type;
2516 *boffset = offset;
2517
2518 /* Resolve any stub methods. */
2519 check_stub_method_group (type, i);
2520
2521 break;
2522 }
2523 }
2524 }
2525
2526 /* Unlike source methods, xmethods can be accumulated over successive
2527 recursive calls. In other words, an xmethod named 'm' in a class
2528 will not hide an xmethod named 'm' in its base class(es). We want
2529 it to be this way because xmethods are after all convenience functions
2530 and hence there is no point restricting them with something like method
2531 hiding. Moreover, if hiding is done for xmethods as well, then we will
2532 have to provide a mechanism to un-hide (like the 'using' construct). */
2533 get_matching_xmethod_workers (type, method, xmethods);
2534
2535 /* If source methods are not found in current class, look for them in the
2536 base classes. We also have to go through the base classes to gather
2537 extension methods. */
2538 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2539 {
2540 LONGEST base_offset;
2541
2542 if (BASETYPE_VIA_VIRTUAL (type, i))
2543 {
2544 base_offset = baseclass_offset (type, i,
2545 value_contents_for_printing (*argp).data (),
2546 value_offset (*argp) + offset,
2547 value_address (*argp), *argp);
2548 }
2549 else /* Non-virtual base, simply use bit position from debug
2550 info. */
2551 {
2552 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2553 }
2554
2555 find_method_list (argp, method, base_offset + offset,
2556 TYPE_BASECLASS (type, i), methods,
2557 xmethods, basetype, boffset);
2558 }
2559 }
2560
2561 /* Return the list of overloaded methods of a specified name. The methods
2562 could be those GDB finds in the binary, or xmethod. Methods found in
2563 the binary are returned in METHODS, and xmethods are returned in
2564 XMETHODS.
2565
2566 ARGP is a pointer to a pointer to a value (the object).
2567 METHOD is the method name.
2568 OFFSET is the offset within the value contents.
2569 METHODS is the list of matching overloaded instances defined in
2570 the source language.
2571 XMETHODS is the vector of matching xmethod workers defined in
2572 extension languages.
2573 BASETYPE is set to the type of the base subobject that defines the
2574 method.
2575 BOFFSET is the offset of the base subobject which defines the method. */
2576
2577 static void
2578 value_find_oload_method_list (struct value **argp, const char *method,
2579 LONGEST offset,
2580 gdb::array_view<fn_field> *methods,
2581 std::vector<xmethod_worker_up> *xmethods,
2582 struct type **basetype, LONGEST *boffset)
2583 {
2584 struct type *t;
2585
2586 t = check_typedef (value_type (*argp));
2587
2588 /* Code snarfed from value_struct_elt. */
2589 while (t->is_pointer_or_reference ())
2590 {
2591 *argp = value_ind (*argp);
2592 /* Don't coerce fn pointer to fn and then back again! */
2593 if (check_typedef (value_type (*argp))->code () != TYPE_CODE_FUNC)
2594 *argp = coerce_array (*argp);
2595 t = check_typedef (value_type (*argp));
2596 }
2597
2598 if (t->code () != TYPE_CODE_STRUCT
2599 && t->code () != TYPE_CODE_UNION)
2600 error (_("Attempt to extract a component of a "
2601 "value that is not a struct or union"));
2602
2603 gdb_assert (methods != NULL && xmethods != NULL);
2604
2605 /* Clear the lists. */
2606 *methods = {};
2607 xmethods->clear ();
2608
2609 find_method_list (argp, method, 0, t, methods, xmethods,
2610 basetype, boffset);
2611 }
2612
2613 /* Given an array of arguments (ARGS) (which includes an entry for
2614 "this" in the case of C++ methods), the NAME of a function, and
2615 whether it's a method or not (METHOD), find the best function that
2616 matches on the argument types according to the overload resolution
2617 rules.
2618
2619 METHOD can be one of three values:
2620 NON_METHOD for non-member functions.
2621 METHOD: for member functions.
2622 BOTH: used for overload resolution of operators where the
2623 candidates are expected to be either member or non member
2624 functions. In this case the first argument ARGTYPES
2625 (representing 'this') is expected to be a reference to the
2626 target object, and will be dereferenced when attempting the
2627 non-member search.
2628
2629 In the case of class methods, the parameter OBJ is an object value
2630 in which to search for overloaded methods.
2631
2632 In the case of non-method functions, the parameter FSYM is a symbol
2633 corresponding to one of the overloaded functions.
2634
2635 Return value is an integer: 0 -> good match, 10 -> debugger applied
2636 non-standard coercions, 100 -> incompatible.
2637
2638 If a method is being searched for, VALP will hold the value.
2639 If a non-method is being searched for, SYMP will hold the symbol
2640 for it.
2641
2642 If a method is being searched for, and it is a static method,
2643 then STATICP will point to a non-zero value.
2644
2645 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2646 ADL overload candidates when performing overload resolution for a fully
2647 qualified name.
2648
2649 If NOSIDE is EVAL_AVOID_SIDE_EFFECTS, then OBJP's memory cannot be
2650 read while picking the best overload match (it may be all zeroes and thus
2651 not have a vtable pointer), in which case skip virtual function lookup.
2652 This is ok as typically EVAL_AVOID_SIDE_EFFECTS is only used to determine
2653 the result type.
2654
2655 Note: This function does *not* check the value of
2656 overload_resolution. Caller must check it to see whether overload
2657 resolution is permitted. */
2658
2659 int
2660 find_overload_match (gdb::array_view<value *> args,
2661 const char *name, enum oload_search_type method,
2662 struct value **objp, struct symbol *fsym,
2663 struct value **valp, struct symbol **symp,
2664 int *staticp, const int no_adl,
2665 const enum noside noside)
2666 {
2667 struct value *obj = (objp ? *objp : NULL);
2668 struct type *obj_type = obj ? value_type (obj) : NULL;
2669 /* Index of best overloaded function. */
2670 int func_oload_champ = -1;
2671 int method_oload_champ = -1;
2672 int src_method_oload_champ = -1;
2673 int ext_method_oload_champ = -1;
2674
2675 /* The measure for the current best match. */
2676 badness_vector method_badness;
2677 badness_vector func_badness;
2678 badness_vector ext_method_badness;
2679 badness_vector src_method_badness;
2680
2681 struct value *temp = obj;
2682 /* For methods, the list of overloaded methods. */
2683 gdb::array_view<fn_field> methods;
2684 /* For non-methods, the list of overloaded function symbols. */
2685 std::vector<symbol *> functions;
2686 /* For xmethods, the vector of xmethod workers. */
2687 std::vector<xmethod_worker_up> xmethods;
2688 struct type *basetype = NULL;
2689 LONGEST boffset;
2690
2691 const char *obj_type_name = NULL;
2692 const char *func_name = NULL;
2693 gdb::unique_xmalloc_ptr<char> temp_func;
2694 enum oload_classification match_quality;
2695 enum oload_classification method_match_quality = INCOMPATIBLE;
2696 enum oload_classification src_method_match_quality = INCOMPATIBLE;
2697 enum oload_classification ext_method_match_quality = INCOMPATIBLE;
2698 enum oload_classification func_match_quality = INCOMPATIBLE;
2699
2700 /* Get the list of overloaded methods or functions. */
2701 if (method == METHOD || method == BOTH)
2702 {
2703 gdb_assert (obj);
2704
2705 /* OBJ may be a pointer value rather than the object itself. */
2706 obj = coerce_ref (obj);
2707 while (check_typedef (value_type (obj))->code () == TYPE_CODE_PTR)
2708 obj = coerce_ref (value_ind (obj));
2709 obj_type_name = value_type (obj)->name ();
2710
2711 /* First check whether this is a data member, e.g. a pointer to
2712 a function. */
2713 if (check_typedef (value_type (obj))->code () == TYPE_CODE_STRUCT)
2714 {
2715 *valp = search_struct_field (name, obj,
2716 check_typedef (value_type (obj)), 0);
2717 if (*valp)
2718 {
2719 *staticp = 1;
2720 return 0;
2721 }
2722 }
2723
2724 /* Retrieve the list of methods with the name NAME. */
2725 value_find_oload_method_list (&temp, name, 0, &methods,
2726 &xmethods, &basetype, &boffset);
2727 /* If this is a method only search, and no methods were found
2728 the search has failed. */
2729 if (method == METHOD && methods.empty () && xmethods.empty ())
2730 error (_("Couldn't find method %s%s%s"),
2731 obj_type_name,
2732 (obj_type_name && *obj_type_name) ? "::" : "",
2733 name);
2734 /* If we are dealing with stub method types, they should have
2735 been resolved by find_method_list via
2736 value_find_oload_method_list above. */
2737 if (!methods.empty ())
2738 {
2739 gdb_assert (TYPE_SELF_TYPE (methods[0].type) != NULL);
2740
2741 src_method_oload_champ
2742 = find_oload_champ (args,
2743 methods.size (),
2744 methods.data (), NULL, NULL,
2745 &src_method_badness);
2746
2747 src_method_match_quality = classify_oload_match
2748 (src_method_badness, args.size (),
2749 oload_method_static_p (methods.data (), src_method_oload_champ));
2750 }
2751
2752 if (!xmethods.empty ())
2753 {
2754 ext_method_oload_champ
2755 = find_oload_champ (args,
2756 xmethods.size (),
2757 NULL, xmethods.data (), NULL,
2758 &ext_method_badness);
2759 ext_method_match_quality = classify_oload_match (ext_method_badness,
2760 args.size (), 0);
2761 }
2762
2763 if (src_method_oload_champ >= 0 && ext_method_oload_champ >= 0)
2764 {
2765 switch (compare_badness (ext_method_badness, src_method_badness))
2766 {
2767 case 0: /* Src method and xmethod are equally good. */
2768 /* If src method and xmethod are equally good, then
2769 xmethod should be the winner. Hence, fall through to the
2770 case where a xmethod is better than the source
2771 method, except when the xmethod match quality is
2772 non-standard. */
2773 /* FALLTHROUGH */
2774 case 1: /* Src method and ext method are incompatible. */
2775 /* If ext method match is not standard, then let source method
2776 win. Otherwise, fallthrough to let xmethod win. */
2777 if (ext_method_match_quality != STANDARD)
2778 {
2779 method_oload_champ = src_method_oload_champ;
2780 method_badness = src_method_badness;
2781 ext_method_oload_champ = -1;
2782 method_match_quality = src_method_match_quality;
2783 break;
2784 }
2785 /* FALLTHROUGH */
2786 case 2: /* Ext method is champion. */
2787 method_oload_champ = ext_method_oload_champ;
2788 method_badness = ext_method_badness;
2789 src_method_oload_champ = -1;
2790 method_match_quality = ext_method_match_quality;
2791 break;
2792 case 3: /* Src method is champion. */
2793 method_oload_champ = src_method_oload_champ;
2794 method_badness = src_method_badness;
2795 ext_method_oload_champ = -1;
2796 method_match_quality = src_method_match_quality;
2797 break;
2798 default:
2799 gdb_assert_not_reached ("Unexpected overload comparison "
2800 "result");
2801 break;
2802 }
2803 }
2804 else if (src_method_oload_champ >= 0)
2805 {
2806 method_oload_champ = src_method_oload_champ;
2807 method_badness = src_method_badness;
2808 method_match_quality = src_method_match_quality;
2809 }
2810 else if (ext_method_oload_champ >= 0)
2811 {
2812 method_oload_champ = ext_method_oload_champ;
2813 method_badness = ext_method_badness;
2814 method_match_quality = ext_method_match_quality;
2815 }
2816 }
2817
2818 if (method == NON_METHOD || method == BOTH)
2819 {
2820 const char *qualified_name = NULL;
2821
2822 /* If the overload match is being search for both as a method
2823 and non member function, the first argument must now be
2824 dereferenced. */
2825 if (method == BOTH)
2826 args[0] = value_ind (args[0]);
2827
2828 if (fsym)
2829 {
2830 qualified_name = fsym->natural_name ();
2831
2832 /* If we have a function with a C++ name, try to extract just
2833 the function part. Do not try this for non-functions (e.g.
2834 function pointers). */
2835 if (qualified_name
2836 && (check_typedef (SYMBOL_TYPE (fsym))->code ()
2837 == TYPE_CODE_FUNC))
2838 {
2839 temp_func = cp_func_name (qualified_name);
2840
2841 /* If cp_func_name did not remove anything, the name of the
2842 symbol did not include scope or argument types - it was
2843 probably a C-style function. */
2844 if (temp_func != nullptr)
2845 {
2846 if (strcmp (temp_func.get (), qualified_name) == 0)
2847 func_name = NULL;
2848 else
2849 func_name = temp_func.get ();
2850 }
2851 }
2852 }
2853 else
2854 {
2855 func_name = name;
2856 qualified_name = name;
2857 }
2858
2859 /* If there was no C++ name, this must be a C-style function or
2860 not a function at all. Just return the same symbol. Do the
2861 same if cp_func_name fails for some reason. */
2862 if (func_name == NULL)
2863 {
2864 *symp = fsym;
2865 return 0;
2866 }
2867
2868 func_oload_champ = find_oload_champ_namespace (args,
2869 func_name,
2870 qualified_name,
2871 &functions,
2872 &func_badness,
2873 no_adl);
2874
2875 if (func_oload_champ >= 0)
2876 func_match_quality = classify_oload_match (func_badness,
2877 args.size (), 0);
2878 }
2879
2880 /* Did we find a match ? */
2881 if (method_oload_champ == -1 && func_oload_champ == -1)
2882 throw_error (NOT_FOUND_ERROR,
2883 _("No symbol \"%s\" in current context."),
2884 name);
2885
2886 /* If we have found both a method match and a function
2887 match, find out which one is better, and calculate match
2888 quality. */
2889 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2890 {
2891 switch (compare_badness (func_badness, method_badness))
2892 {
2893 case 0: /* Top two contenders are equally good. */
2894 /* FIXME: GDB does not support the general ambiguous case.
2895 All candidates should be collected and presented the
2896 user. */
2897 error (_("Ambiguous overload resolution"));
2898 break;
2899 case 1: /* Incomparable top contenders. */
2900 /* This is an error incompatible candidates
2901 should not have been proposed. */
2902 error (_("Internal error: incompatible "
2903 "overload candidates proposed"));
2904 break;
2905 case 2: /* Function champion. */
2906 method_oload_champ = -1;
2907 match_quality = func_match_quality;
2908 break;
2909 case 3: /* Method champion. */
2910 func_oload_champ = -1;
2911 match_quality = method_match_quality;
2912 break;
2913 default:
2914 error (_("Internal error: unexpected overload comparison result"));
2915 break;
2916 }
2917 }
2918 else
2919 {
2920 /* We have either a method match or a function match. */
2921 if (method_oload_champ >= 0)
2922 match_quality = method_match_quality;
2923 else
2924 match_quality = func_match_quality;
2925 }
2926
2927 if (match_quality == INCOMPATIBLE)
2928 {
2929 if (method == METHOD)
2930 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2931 obj_type_name,
2932 (obj_type_name && *obj_type_name) ? "::" : "",
2933 name);
2934 else
2935 error (_("Cannot resolve function %s to any overloaded instance"),
2936 func_name);
2937 }
2938 else if (match_quality == NON_STANDARD)
2939 {
2940 if (method == METHOD)
2941 warning (_("Using non-standard conversion to match "
2942 "method %s%s%s to supplied arguments"),
2943 obj_type_name,
2944 (obj_type_name && *obj_type_name) ? "::" : "",
2945 name);
2946 else
2947 warning (_("Using non-standard conversion to match "
2948 "function %s to supplied arguments"),
2949 func_name);
2950 }
2951
2952 if (staticp != NULL)
2953 *staticp = oload_method_static_p (methods.data (), method_oload_champ);
2954
2955 if (method_oload_champ >= 0)
2956 {
2957 if (src_method_oload_champ >= 0)
2958 {
2959 if (TYPE_FN_FIELD_VIRTUAL_P (methods, method_oload_champ)
2960 && noside != EVAL_AVOID_SIDE_EFFECTS)
2961 {
2962 *valp = value_virtual_fn_field (&temp, methods.data (),
2963 method_oload_champ, basetype,
2964 boffset);
2965 }
2966 else
2967 *valp = value_fn_field (&temp, methods.data (),
2968 method_oload_champ, basetype, boffset);
2969 }
2970 else
2971 *valp = value_from_xmethod
2972 (std::move (xmethods[ext_method_oload_champ]));
2973 }
2974 else
2975 *symp = functions[func_oload_champ];
2976
2977 if (objp)
2978 {
2979 struct type *temp_type = check_typedef (value_type (temp));
2980 struct type *objtype = check_typedef (obj_type);
2981
2982 if (temp_type->code () != TYPE_CODE_PTR
2983 && objtype->is_pointer_or_reference ())
2984 {
2985 temp = value_addr (temp);
2986 }
2987 *objp = temp;
2988 }
2989
2990 switch (match_quality)
2991 {
2992 case INCOMPATIBLE:
2993 return 100;
2994 case NON_STANDARD:
2995 return 10;
2996 default: /* STANDARD */
2997 return 0;
2998 }
2999 }
3000
3001 /* Find the best overload match, searching for FUNC_NAME in namespaces
3002 contained in QUALIFIED_NAME until it either finds a good match or
3003 runs out of namespaces. It stores the overloaded functions in
3004 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. If NO_ADL,
3005 argument dependent lookup is not performed. */
3006
3007 static int
3008 find_oload_champ_namespace (gdb::array_view<value *> args,
3009 const char *func_name,
3010 const char *qualified_name,
3011 std::vector<symbol *> *oload_syms,
3012 badness_vector *oload_champ_bv,
3013 const int no_adl)
3014 {
3015 int oload_champ;
3016
3017 find_oload_champ_namespace_loop (args,
3018 func_name,
3019 qualified_name, 0,
3020 oload_syms, oload_champ_bv,
3021 &oload_champ,
3022 no_adl);
3023
3024 return oload_champ;
3025 }
3026
3027 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
3028 how deep we've looked for namespaces, and the champ is stored in
3029 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
3030 if it isn't. Other arguments are the same as in
3031 find_oload_champ_namespace. */
3032
3033 static int
3034 find_oload_champ_namespace_loop (gdb::array_view<value *> args,
3035 const char *func_name,
3036 const char *qualified_name,
3037 int namespace_len,
3038 std::vector<symbol *> *oload_syms,
3039 badness_vector *oload_champ_bv,
3040 int *oload_champ,
3041 const int no_adl)
3042 {
3043 int next_namespace_len = namespace_len;
3044 int searched_deeper = 0;
3045 int new_oload_champ;
3046 char *new_namespace;
3047
3048 if (next_namespace_len != 0)
3049 {
3050 gdb_assert (qualified_name[next_namespace_len] == ':');
3051 next_namespace_len += 2;
3052 }
3053 next_namespace_len +=
3054 cp_find_first_component (qualified_name + next_namespace_len);
3055
3056 /* First, see if we have a deeper namespace we can search in.
3057 If we get a good match there, use it. */
3058
3059 if (qualified_name[next_namespace_len] == ':')
3060 {
3061 searched_deeper = 1;
3062
3063 if (find_oload_champ_namespace_loop (args,
3064 func_name, qualified_name,
3065 next_namespace_len,
3066 oload_syms, oload_champ_bv,
3067 oload_champ, no_adl))
3068 {
3069 return 1;
3070 }
3071 };
3072
3073 /* If we reach here, either we're in the deepest namespace or we
3074 didn't find a good match in a deeper namespace. But, in the
3075 latter case, we still have a bad match in a deeper namespace;
3076 note that we might not find any match at all in the current
3077 namespace. (There's always a match in the deepest namespace,
3078 because this overload mechanism only gets called if there's a
3079 function symbol to start off with.) */
3080
3081 new_namespace = (char *) alloca (namespace_len + 1);
3082 strncpy (new_namespace, qualified_name, namespace_len);
3083 new_namespace[namespace_len] = '\0';
3084
3085 std::vector<symbol *> new_oload_syms
3086 = make_symbol_overload_list (func_name, new_namespace);
3087
3088 /* If we have reached the deepest level perform argument
3089 determined lookup. */
3090 if (!searched_deeper && !no_adl)
3091 {
3092 int ix;
3093 struct type **arg_types;
3094
3095 /* Prepare list of argument types for overload resolution. */
3096 arg_types = (struct type **)
3097 alloca (args.size () * (sizeof (struct type *)));
3098 for (ix = 0; ix < args.size (); ix++)
3099 arg_types[ix] = value_type (args[ix]);
3100 add_symbol_overload_list_adl ({arg_types, args.size ()}, func_name,
3101 &new_oload_syms);
3102 }
3103
3104 badness_vector new_oload_champ_bv;
3105 new_oload_champ = find_oload_champ (args,
3106 new_oload_syms.size (),
3107 NULL, NULL, new_oload_syms.data (),
3108 &new_oload_champ_bv);
3109
3110 /* Case 1: We found a good match. Free earlier matches (if any),
3111 and return it. Case 2: We didn't find a good match, but we're
3112 not the deepest function. Then go with the bad match that the
3113 deeper function found. Case 3: We found a bad match, and we're
3114 the deepest function. Then return what we found, even though
3115 it's a bad match. */
3116
3117 if (new_oload_champ != -1
3118 && classify_oload_match (new_oload_champ_bv, args.size (), 0) == STANDARD)
3119 {
3120 *oload_syms = std::move (new_oload_syms);
3121 *oload_champ = new_oload_champ;
3122 *oload_champ_bv = std::move (new_oload_champ_bv);
3123 return 1;
3124 }
3125 else if (searched_deeper)
3126 {
3127 return 0;
3128 }
3129 else
3130 {
3131 *oload_syms = std::move (new_oload_syms);
3132 *oload_champ = new_oload_champ;
3133 *oload_champ_bv = std::move (new_oload_champ_bv);
3134 return 0;
3135 }
3136 }
3137
3138 /* Look for a function to take ARGS. Find the best match from among
3139 the overloaded methods or functions given by METHODS or FUNCTIONS
3140 or XMETHODS, respectively. One, and only one of METHODS, FUNCTIONS
3141 and XMETHODS can be non-NULL.
3142
3143 NUM_FNS is the length of the array pointed at by METHODS, FUNCTIONS
3144 or XMETHODS, whichever is non-NULL.
3145
3146 Return the index of the best match; store an indication of the
3147 quality of the match in OLOAD_CHAMP_BV. */
3148
3149 static int
3150 find_oload_champ (gdb::array_view<value *> args,
3151 size_t num_fns,
3152 fn_field *methods,
3153 xmethod_worker_up *xmethods,
3154 symbol **functions,
3155 badness_vector *oload_champ_bv)
3156 {
3157 /* A measure of how good an overloaded instance is. */
3158 badness_vector bv;
3159 /* Index of best overloaded function. */
3160 int oload_champ = -1;
3161 /* Current ambiguity state for overload resolution. */
3162 int oload_ambiguous = 0;
3163 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
3164
3165 /* A champion can be found among methods alone, or among functions
3166 alone, or in xmethods alone, but not in more than one of these
3167 groups. */
3168 gdb_assert ((methods != NULL) + (functions != NULL) + (xmethods != NULL)
3169 == 1);
3170
3171 /* Consider each candidate in turn. */
3172 for (size_t ix = 0; ix < num_fns; ix++)
3173 {
3174 int jj;
3175 int static_offset = 0;
3176 std::vector<type *> parm_types;
3177
3178 if (xmethods != NULL)
3179 parm_types = xmethods[ix]->get_arg_types ();
3180 else
3181 {
3182 size_t nparms;
3183
3184 if (methods != NULL)
3185 {
3186 nparms = TYPE_FN_FIELD_TYPE (methods, ix)->num_fields ();
3187 static_offset = oload_method_static_p (methods, ix);
3188 }
3189 else
3190 nparms = SYMBOL_TYPE (functions[ix])->num_fields ();
3191
3192 parm_types.reserve (nparms);
3193 for (jj = 0; jj < nparms; jj++)
3194 {
3195 type *t = (methods != NULL
3196 ? (TYPE_FN_FIELD_ARGS (methods, ix)[jj].type ())
3197 : SYMBOL_TYPE (functions[ix])->field (jj).type ());
3198 parm_types.push_back (t);
3199 }
3200 }
3201
3202 /* Compare parameter types to supplied argument types. Skip
3203 THIS for static methods. */
3204 bv = rank_function (parm_types,
3205 args.slice (static_offset));
3206
3207 if (overload_debug)
3208 {
3209 if (methods != NULL)
3210 fprintf_filtered (gdb_stderr,
3211 "Overloaded method instance %s, # of parms %d\n",
3212 methods[ix].physname, (int) parm_types.size ());
3213 else if (xmethods != NULL)
3214 fprintf_filtered (gdb_stderr,
3215 "Xmethod worker, # of parms %d\n",
3216 (int) parm_types.size ());
3217 else
3218 fprintf_filtered (gdb_stderr,
3219 "Overloaded function instance "
3220 "%s # of parms %d\n",
3221 functions[ix]->demangled_name (),
3222 (int) parm_types.size ());
3223
3224 fprintf_filtered (gdb_stderr,
3225 "...Badness of length : {%d, %d}\n",
3226 bv[0].rank, bv[0].subrank);
3227
3228 for (jj = 1; jj < bv.size (); jj++)
3229 fprintf_filtered (gdb_stderr,
3230 "...Badness of arg %d : {%d, %d}\n",
3231 jj, bv[jj].rank, bv[jj].subrank);
3232 }
3233
3234 if (oload_champ_bv->empty ())
3235 {
3236 *oload_champ_bv = std::move (bv);
3237 oload_champ = 0;
3238 }
3239 else /* See whether current candidate is better or worse than
3240 previous best. */
3241 switch (compare_badness (bv, *oload_champ_bv))
3242 {
3243 case 0: /* Top two contenders are equally good. */
3244 oload_ambiguous = 1;
3245 break;
3246 case 1: /* Incomparable top contenders. */
3247 oload_ambiguous = 2;
3248 break;
3249 case 2: /* New champion, record details. */
3250 *oload_champ_bv = std::move (bv);
3251 oload_ambiguous = 0;
3252 oload_champ = ix;
3253 break;
3254 case 3:
3255 default:
3256 break;
3257 }
3258 if (overload_debug)
3259 fprintf_filtered (gdb_stderr, "Overload resolution "
3260 "champion is %d, ambiguous? %d\n",
3261 oload_champ, oload_ambiguous);
3262 }
3263
3264 return oload_champ;
3265 }
3266
3267 /* Return 1 if we're looking at a static method, 0 if we're looking at
3268 a non-static method or a function that isn't a method. */
3269
3270 static int
3271 oload_method_static_p (struct fn_field *fns_ptr, int index)
3272 {
3273 if (fns_ptr && index >= 0 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
3274 return 1;
3275 else
3276 return 0;
3277 }
3278
3279 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
3280
3281 static enum oload_classification
3282 classify_oload_match (const badness_vector &oload_champ_bv,
3283 int nargs,
3284 int static_offset)
3285 {
3286 int ix;
3287 enum oload_classification worst = STANDARD;
3288
3289 for (ix = 1; ix <= nargs - static_offset; ix++)
3290 {
3291 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
3292 or worse return INCOMPATIBLE. */
3293 if (compare_ranks (oload_champ_bv[ix],
3294 INCOMPATIBLE_TYPE_BADNESS) <= 0)
3295 return INCOMPATIBLE; /* Truly mismatched types. */
3296 /* Otherwise If this conversion is as bad as
3297 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
3298 else if (compare_ranks (oload_champ_bv[ix],
3299 NS_POINTER_CONVERSION_BADNESS) <= 0)
3300 worst = NON_STANDARD; /* Non-standard type conversions
3301 needed. */
3302 }
3303
3304 /* If no INCOMPATIBLE classification was found, return the worst one
3305 that was found (if any). */
3306 return worst;
3307 }
3308
3309 /* C++: return 1 is NAME is a legitimate name for the destructor of
3310 type TYPE. If TYPE does not have a destructor, or if NAME is
3311 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
3312 have CHECK_TYPEDEF applied, this function will apply it itself. */
3313
3314 int
3315 destructor_name_p (const char *name, struct type *type)
3316 {
3317 if (name[0] == '~')
3318 {
3319 const char *dname = type_name_or_error (type);
3320 const char *cp = strchr (dname, '<');
3321 unsigned int len;
3322
3323 /* Do not compare the template part for template classes. */
3324 if (cp == NULL)
3325 len = strlen (dname);
3326 else
3327 len = cp - dname;
3328 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3329 error (_("name of destructor must equal name of class"));
3330 else
3331 return 1;
3332 }
3333 return 0;
3334 }
3335
3336 /* Find an enum constant named NAME in TYPE. TYPE must be an "enum
3337 class". If the name is found, return a value representing it;
3338 otherwise throw an exception. */
3339
3340 static struct value *
3341 enum_constant_from_type (struct type *type, const char *name)
3342 {
3343 int i;
3344 int name_len = strlen (name);
3345
3346 gdb_assert (type->code () == TYPE_CODE_ENUM
3347 && type->is_declared_class ());
3348
3349 for (i = TYPE_N_BASECLASSES (type); i < type->num_fields (); ++i)
3350 {
3351 const char *fname = type->field (i).name ();
3352 int len;
3353
3354 if (type->field (i).loc_kind () != FIELD_LOC_KIND_ENUMVAL
3355 || fname == NULL)
3356 continue;
3357
3358 /* Look for the trailing "::NAME", since enum class constant
3359 names are qualified here. */
3360 len = strlen (fname);
3361 if (len + 2 >= name_len
3362 && fname[len - name_len - 2] == ':'
3363 && fname[len - name_len - 1] == ':'
3364 && strcmp (&fname[len - name_len], name) == 0)
3365 return value_from_longest (type, type->field (i).loc_enumval ());
3366 }
3367
3368 error (_("no constant named \"%s\" in enum \"%s\""),
3369 name, type->name ());
3370 }
3371
3372 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3373 return the appropriate member (or the address of the member, if
3374 WANT_ADDRESS). This function is used to resolve user expressions
3375 of the form "DOMAIN::NAME". For more details on what happens, see
3376 the comment before value_struct_elt_for_reference. */
3377
3378 struct value *
3379 value_aggregate_elt (struct type *curtype, const char *name,
3380 struct type *expect_type, int want_address,
3381 enum noside noside)
3382 {
3383 switch (curtype->code ())
3384 {
3385 case TYPE_CODE_STRUCT:
3386 case TYPE_CODE_UNION:
3387 return value_struct_elt_for_reference (curtype, 0, curtype,
3388 name, expect_type,
3389 want_address, noside);
3390 case TYPE_CODE_NAMESPACE:
3391 return value_namespace_elt (curtype, name,
3392 want_address, noside);
3393
3394 case TYPE_CODE_ENUM:
3395 return enum_constant_from_type (curtype, name);
3396
3397 default:
3398 internal_error (__FILE__, __LINE__,
3399 _("non-aggregate type in value_aggregate_elt"));
3400 }
3401 }
3402
3403 /* Compares the two method/function types T1 and T2 for "equality"
3404 with respect to the methods' parameters. If the types of the
3405 two parameter lists are the same, returns 1; 0 otherwise. This
3406 comparison may ignore any artificial parameters in T1 if
3407 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3408 the first artificial parameter in T1, assumed to be a 'this' pointer.
3409
3410 The type T2 is expected to have come from make_params (in eval.c). */
3411
3412 static int
3413 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3414 {
3415 int start = 0;
3416
3417 if (t1->num_fields () > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3418 ++start;
3419
3420 /* If skipping artificial fields, find the first real field
3421 in T1. */
3422 if (skip_artificial)
3423 {
3424 while (start < t1->num_fields ()
3425 && TYPE_FIELD_ARTIFICIAL (t1, start))
3426 ++start;
3427 }
3428
3429 /* Now compare parameters. */
3430
3431 /* Special case: a method taking void. T1 will contain no
3432 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3433 if ((t1->num_fields () - start) == 0 && t2->num_fields () == 1
3434 && t2->field (0).type ()->code () == TYPE_CODE_VOID)
3435 return 1;
3436
3437 if ((t1->num_fields () - start) == t2->num_fields ())
3438 {
3439 int i;
3440
3441 for (i = 0; i < t2->num_fields (); ++i)
3442 {
3443 if (compare_ranks (rank_one_type (t1->field (start + i).type (),
3444 t2->field (i).type (), NULL),
3445 EXACT_MATCH_BADNESS) != 0)
3446 return 0;
3447 }
3448
3449 return 1;
3450 }
3451
3452 return 0;
3453 }
3454
3455 /* C++: Given an aggregate type VT, and a class type CLS, search
3456 recursively for CLS using value V; If found, store the offset
3457 which is either fetched from the virtual base pointer if CLS
3458 is virtual or accumulated offset of its parent classes if
3459 CLS is non-virtual in *BOFFS, set ISVIRT to indicate if CLS
3460 is virtual, and return true. If not found, return false. */
3461
3462 static bool
3463 get_baseclass_offset (struct type *vt, struct type *cls,
3464 struct value *v, int *boffs, bool *isvirt)
3465 {
3466 for (int i = 0; i < TYPE_N_BASECLASSES (vt); i++)
3467 {
3468 struct type *t = vt->field (i).type ();
3469 if (types_equal (t, cls))
3470 {
3471 if (BASETYPE_VIA_VIRTUAL (vt, i))
3472 {
3473 const gdb_byte *adr = value_contents_for_printing (v).data ();
3474 *boffs = baseclass_offset (vt, i, adr, value_offset (v),
3475 value_as_long (v), v);
3476 *isvirt = true;
3477 }
3478 else
3479 *isvirt = false;
3480 return true;
3481 }
3482
3483 if (get_baseclass_offset (check_typedef (t), cls, v, boffs, isvirt))
3484 {
3485 if (*isvirt == false) /* Add non-virtual base offset. */
3486 {
3487 const gdb_byte *adr = value_contents_for_printing (v).data ();
3488 *boffs += baseclass_offset (vt, i, adr, value_offset (v),
3489 value_as_long (v), v);
3490 }
3491 return true;
3492 }
3493 }
3494
3495 return false;
3496 }
3497
3498 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3499 return the address of this member as a "pointer to member" type.
3500 If INTYPE is non-null, then it will be the type of the member we
3501 are looking for. This will help us resolve "pointers to member
3502 functions". This function is used to resolve user expressions of
3503 the form "DOMAIN::NAME". */
3504
3505 static struct value *
3506 value_struct_elt_for_reference (struct type *domain, int offset,
3507 struct type *curtype, const char *name,
3508 struct type *intype,
3509 int want_address,
3510 enum noside noside)
3511 {
3512 struct type *t = check_typedef (curtype);
3513 int i;
3514 struct value *result;
3515
3516 if (t->code () != TYPE_CODE_STRUCT
3517 && t->code () != TYPE_CODE_UNION)
3518 error (_("Internal error: non-aggregate type "
3519 "to value_struct_elt_for_reference"));
3520
3521 for (i = t->num_fields () - 1; i >= TYPE_N_BASECLASSES (t); i--)
3522 {
3523 const char *t_field_name = t->field (i).name ();
3524
3525 if (t_field_name && strcmp (t_field_name, name) == 0)
3526 {
3527 if (field_is_static (&t->field (i)))
3528 {
3529 struct value *v = value_static_field (t, i);
3530 if (want_address)
3531 v = value_addr (v);
3532 return v;
3533 }
3534 if (TYPE_FIELD_PACKED (t, i))
3535 error (_("pointers to bitfield members not allowed"));
3536
3537 if (want_address)
3538 return value_from_longest
3539 (lookup_memberptr_type (t->field (i).type (), domain),
3540 offset + (LONGEST) (t->field (i).loc_bitpos () >> 3));
3541 else if (noside != EVAL_NORMAL)
3542 return allocate_value (t->field (i).type ());
3543 else
3544 {
3545 /* Try to evaluate NAME as a qualified name with implicit
3546 this pointer. In this case, attempt to return the
3547 equivalent to `this->*(&TYPE::NAME)'. */
3548 struct value *v = value_of_this_silent (current_language);
3549 if (v != NULL)
3550 {
3551 struct value *ptr, *this_v = v;
3552 long mem_offset;
3553 struct type *type, *tmp;
3554
3555 ptr = value_aggregate_elt (domain, name, NULL, 1, noside);
3556 type = check_typedef (value_type (ptr));
3557 gdb_assert (type != NULL
3558 && type->code () == TYPE_CODE_MEMBERPTR);
3559 tmp = lookup_pointer_type (TYPE_SELF_TYPE (type));
3560 v = value_cast_pointers (tmp, v, 1);
3561 mem_offset = value_as_long (ptr);
3562 if (domain != curtype)
3563 {
3564 /* Find class offset of type CURTYPE from either its
3565 parent type DOMAIN or the type of implied this. */
3566 int boff = 0;
3567 bool isvirt = false;
3568 if (get_baseclass_offset (domain, curtype, v, &boff,
3569 &isvirt))
3570 mem_offset += boff;
3571 else
3572 {
3573 struct type *p = check_typedef (value_type (this_v));
3574 p = check_typedef (TYPE_TARGET_TYPE (p));
3575 if (get_baseclass_offset (p, curtype, this_v,
3576 &boff, &isvirt))
3577 mem_offset += boff;
3578 }
3579 }
3580 tmp = lookup_pointer_type (TYPE_TARGET_TYPE (type));
3581 result = value_from_pointer (tmp,
3582 value_as_long (v) + mem_offset);
3583 return value_ind (result);
3584 }
3585
3586 error (_("Cannot reference non-static field \"%s\""), name);
3587 }
3588 }
3589 }
3590
3591 /* C++: If it was not found as a data field, then try to return it
3592 as a pointer to a method. */
3593
3594 /* Perform all necessary dereferencing. */
3595 while (intype && intype->code () == TYPE_CODE_PTR)
3596 intype = TYPE_TARGET_TYPE (intype);
3597
3598 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3599 {
3600 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3601
3602 if (t_field_name && strcmp (t_field_name, name) == 0)
3603 {
3604 int j;
3605 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3606 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3607
3608 check_stub_method_group (t, i);
3609
3610 if (intype)
3611 {
3612 for (j = 0; j < len; ++j)
3613 {
3614 if (TYPE_CONST (intype) != TYPE_FN_FIELD_CONST (f, j))
3615 continue;
3616 if (TYPE_VOLATILE (intype) != TYPE_FN_FIELD_VOLATILE (f, j))
3617 continue;
3618
3619 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3620 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3621 intype, 1))
3622 break;
3623 }
3624
3625 if (j == len)
3626 error (_("no member function matches "
3627 "that type instantiation"));
3628 }
3629 else
3630 {
3631 int ii;
3632
3633 j = -1;
3634 for (ii = 0; ii < len; ++ii)
3635 {
3636 /* Skip artificial methods. This is necessary if,
3637 for example, the user wants to "print
3638 subclass::subclass" with only one user-defined
3639 constructor. There is no ambiguity in this case.
3640 We are careful here to allow artificial methods
3641 if they are the unique result. */
3642 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3643 {
3644 if (j == -1)
3645 j = ii;
3646 continue;
3647 }
3648
3649 /* Desired method is ambiguous if more than one
3650 method is defined. */
3651 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3652 error (_("non-unique member `%s' requires "
3653 "type instantiation"), name);
3654
3655 j = ii;
3656 }
3657
3658 if (j == -1)
3659 error (_("no matching member function"));
3660 }
3661
3662 if (TYPE_FN_FIELD_STATIC_P (f, j))
3663 {
3664 struct symbol *s =
3665 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3666 0, VAR_DOMAIN, 0).symbol;
3667
3668 if (s == NULL)
3669 return NULL;
3670
3671 if (want_address)
3672 return value_addr (read_var_value (s, 0, 0));
3673 else
3674 return read_var_value (s, 0, 0);
3675 }
3676
3677 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3678 {
3679 if (want_address)
3680 {
3681 result = allocate_value
3682 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3683 cplus_make_method_ptr (value_type (result),
3684 value_contents_writeable (result).data (),
3685 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3686 }
3687 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3688 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3689 else
3690 error (_("Cannot reference virtual member function \"%s\""),
3691 name);
3692 }
3693 else
3694 {
3695 struct symbol *s =
3696 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3697 0, VAR_DOMAIN, 0).symbol;
3698
3699 if (s == NULL)
3700 return NULL;
3701
3702 struct value *v = read_var_value (s, 0, 0);
3703 if (!want_address)
3704 result = v;
3705 else
3706 {
3707 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3708 cplus_make_method_ptr (value_type (result),
3709 value_contents_writeable (result).data (),
3710 value_address (v), 0);
3711 }
3712 }
3713 return result;
3714 }
3715 }
3716 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3717 {
3718 struct value *v;
3719 int base_offset;
3720
3721 if (BASETYPE_VIA_VIRTUAL (t, i))
3722 base_offset = 0;
3723 else
3724 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3725 v = value_struct_elt_for_reference (domain,
3726 offset + base_offset,
3727 TYPE_BASECLASS (t, i),
3728 name, intype,
3729 want_address, noside);
3730 if (v)
3731 return v;
3732 }
3733
3734 /* As a last chance, pretend that CURTYPE is a namespace, and look
3735 it up that way; this (frequently) works for types nested inside
3736 classes. */
3737
3738 return value_maybe_namespace_elt (curtype, name,
3739 want_address, noside);
3740 }
3741
3742 /* C++: Return the member NAME of the namespace given by the type
3743 CURTYPE. */
3744
3745 static struct value *
3746 value_namespace_elt (const struct type *curtype,
3747 const char *name, int want_address,
3748 enum noside noside)
3749 {
3750 struct value *retval = value_maybe_namespace_elt (curtype, name,
3751 want_address,
3752 noside);
3753
3754 if (retval == NULL)
3755 error (_("No symbol \"%s\" in namespace \"%s\"."),
3756 name, curtype->name ());
3757
3758 return retval;
3759 }
3760
3761 /* A helper function used by value_namespace_elt and
3762 value_struct_elt_for_reference. It looks up NAME inside the
3763 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3764 is a class and NAME refers to a type in CURTYPE itself (as opposed
3765 to, say, some base class of CURTYPE). */
3766
3767 static struct value *
3768 value_maybe_namespace_elt (const struct type *curtype,
3769 const char *name, int want_address,
3770 enum noside noside)
3771 {
3772 const char *namespace_name = curtype->name ();
3773 struct block_symbol sym;
3774 struct value *result;
3775
3776 sym = cp_lookup_symbol_namespace (namespace_name, name,
3777 get_selected_block (0), VAR_DOMAIN);
3778
3779 if (sym.symbol == NULL)
3780 return NULL;
3781 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3782 && (SYMBOL_CLASS (sym.symbol) == LOC_TYPEDEF))
3783 result = allocate_value (SYMBOL_TYPE (sym.symbol));
3784 else
3785 result = value_of_variable (sym.symbol, sym.block);
3786
3787 if (want_address)
3788 result = value_addr (result);
3789
3790 return result;
3791 }
3792
3793 /* Given a pointer or a reference value V, find its real (RTTI) type.
3794
3795 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3796 and refer to the values computed for the object pointed to. */
3797
3798 struct type *
3799 value_rtti_indirect_type (struct value *v, int *full,
3800 LONGEST *top, int *using_enc)
3801 {
3802 struct value *target = NULL;
3803 struct type *type, *real_type, *target_type;
3804
3805 type = value_type (v);
3806 type = check_typedef (type);
3807 if (TYPE_IS_REFERENCE (type))
3808 target = coerce_ref (v);
3809 else if (type->code () == TYPE_CODE_PTR)
3810 {
3811
3812 try
3813 {
3814 target = value_ind (v);
3815 }
3816 catch (const gdb_exception_error &except)
3817 {
3818 if (except.error == MEMORY_ERROR)
3819 {
3820 /* value_ind threw a memory error. The pointer is NULL or
3821 contains an uninitialized value: we can't determine any
3822 type. */
3823 return NULL;
3824 }
3825 throw;
3826 }
3827 }
3828 else
3829 return NULL;
3830
3831 real_type = value_rtti_type (target, full, top, using_enc);
3832
3833 if (real_type)
3834 {
3835 /* Copy qualifiers to the referenced object. */
3836 target_type = value_type (target);
3837 real_type = make_cv_type (TYPE_CONST (target_type),
3838 TYPE_VOLATILE (target_type), real_type, NULL);
3839 if (TYPE_IS_REFERENCE (type))
3840 real_type = lookup_reference_type (real_type, type->code ());
3841 else if (type->code () == TYPE_CODE_PTR)
3842 real_type = lookup_pointer_type (real_type);
3843 else
3844 internal_error (__FILE__, __LINE__, _("Unexpected value type."));
3845
3846 /* Copy qualifiers to the pointer/reference. */
3847 real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type),
3848 real_type, NULL);
3849 }
3850
3851 return real_type;
3852 }
3853
3854 /* Given a value pointed to by ARGP, check its real run-time type, and
3855 if that is different from the enclosing type, create a new value
3856 using the real run-time type as the enclosing type (and of the same
3857 type as ARGP) and return it, with the embedded offset adjusted to
3858 be the correct offset to the enclosed object. RTYPE is the type,
3859 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3860 by value_rtti_type(). If these are available, they can be supplied
3861 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3862 NULL if they're not available. */
3863
3864 struct value *
3865 value_full_object (struct value *argp,
3866 struct type *rtype,
3867 int xfull, int xtop,
3868 int xusing_enc)
3869 {
3870 struct type *real_type;
3871 int full = 0;
3872 LONGEST top = -1;
3873 int using_enc = 0;
3874 struct value *new_val;
3875
3876 if (rtype)
3877 {
3878 real_type = rtype;
3879 full = xfull;
3880 top = xtop;
3881 using_enc = xusing_enc;
3882 }
3883 else
3884 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3885
3886 /* If no RTTI data, or if object is already complete, do nothing. */
3887 if (!real_type || real_type == value_enclosing_type (argp))
3888 return argp;
3889
3890 /* In a destructor we might see a real type that is a superclass of
3891 the object's type. In this case it is better to leave the object
3892 as-is. */
3893 if (full
3894 && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp)))
3895 return argp;
3896
3897 /* If we have the full object, but for some reason the enclosing
3898 type is wrong, set it. */
3899 /* pai: FIXME -- sounds iffy */
3900 if (full)
3901 {
3902 argp = value_copy (argp);
3903 set_value_enclosing_type (argp, real_type);
3904 return argp;
3905 }
3906
3907 /* Check if object is in memory. */
3908 if (VALUE_LVAL (argp) != lval_memory)
3909 {
3910 warning (_("Couldn't retrieve complete object of RTTI "
3911 "type %s; object may be in register(s)."),
3912 real_type->name ());
3913
3914 return argp;
3915 }
3916
3917 /* All other cases -- retrieve the complete object. */
3918 /* Go back by the computed top_offset from the beginning of the
3919 object, adjusting for the embedded offset of argp if that's what
3920 value_rtti_type used for its computation. */
3921 new_val = value_at_lazy (real_type, value_address (argp) - top +
3922 (using_enc ? 0 : value_embedded_offset (argp)));
3923 deprecated_set_value_type (new_val, value_type (argp));
3924 set_value_embedded_offset (new_val, (using_enc
3925 ? top + value_embedded_offset (argp)
3926 : top));
3927 return new_val;
3928 }
3929
3930
3931 /* Return the value of the local variable, if one exists. Throw error
3932 otherwise, such as if the request is made in an inappropriate context. */
3933
3934 struct value *
3935 value_of_this (const struct language_defn *lang)
3936 {
3937 struct block_symbol sym;
3938 const struct block *b;
3939 struct frame_info *frame;
3940
3941 if (lang->name_of_this () == NULL)
3942 error (_("no `this' in current language"));
3943
3944 frame = get_selected_frame (_("no frame selected"));
3945
3946 b = get_frame_block (frame, NULL);
3947
3948 sym = lookup_language_this (lang, b);
3949 if (sym.symbol == NULL)
3950 error (_("current stack frame does not contain a variable named `%s'"),
3951 lang->name_of_this ());
3952
3953 return read_var_value (sym.symbol, sym.block, frame);
3954 }
3955
3956 /* Return the value of the local variable, if one exists. Return NULL
3957 otherwise. Never throw error. */
3958
3959 struct value *
3960 value_of_this_silent (const struct language_defn *lang)
3961 {
3962 struct value *ret = NULL;
3963
3964 try
3965 {
3966 ret = value_of_this (lang);
3967 }
3968 catch (const gdb_exception_error &except)
3969 {
3970 }
3971
3972 return ret;
3973 }
3974
3975 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3976 elements long, starting at LOWBOUND. The result has the same lower
3977 bound as the original ARRAY. */
3978
3979 struct value *
3980 value_slice (struct value *array, int lowbound, int length)
3981 {
3982 struct type *slice_range_type, *slice_type, *range_type;
3983 LONGEST lowerbound, upperbound;
3984 struct value *slice;
3985 struct type *array_type;
3986
3987 array_type = check_typedef (value_type (array));
3988 if (array_type->code () != TYPE_CODE_ARRAY
3989 && array_type->code () != TYPE_CODE_STRING)
3990 error (_("cannot take slice of non-array"));
3991
3992 if (type_not_allocated (array_type))
3993 error (_("array not allocated"));
3994 if (type_not_associated (array_type))
3995 error (_("array not associated"));
3996
3997 range_type = array_type->index_type ();
3998 if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
3999 error (_("slice from bad array or bitstring"));
4000
4001 if (lowbound < lowerbound || length < 0
4002 || lowbound + length - 1 > upperbound)
4003 error (_("slice out of range"));
4004
4005 /* FIXME-type-allocation: need a way to free this type when we are
4006 done with it. */
4007 slice_range_type = create_static_range_type (NULL,
4008 TYPE_TARGET_TYPE (range_type),
4009 lowbound,
4010 lowbound + length - 1);
4011
4012 {
4013 struct type *element_type = TYPE_TARGET_TYPE (array_type);
4014 LONGEST offset
4015 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
4016
4017 slice_type = create_array_type (NULL,
4018 element_type,
4019 slice_range_type);
4020 slice_type->set_code (array_type->code ());
4021
4022 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
4023 slice = allocate_value_lazy (slice_type);
4024 else
4025 {
4026 slice = allocate_value (slice_type);
4027 value_contents_copy (slice, 0, array, offset,
4028 type_length_units (slice_type));
4029 }
4030
4031 set_value_component_location (slice, array);
4032 set_value_offset (slice, value_offset (array) + offset);
4033 }
4034
4035 return slice;
4036 }
4037
4038 /* See value.h. */
4039
4040 struct value *
4041 value_literal_complex (struct value *arg1,
4042 struct value *arg2,
4043 struct type *type)
4044 {
4045 struct value *val;
4046 struct type *real_type = TYPE_TARGET_TYPE (type);
4047
4048 val = allocate_value (type);
4049 arg1 = value_cast (real_type, arg1);
4050 arg2 = value_cast (real_type, arg2);
4051
4052 int len = TYPE_LENGTH (real_type);
4053
4054 copy (value_contents (arg1),
4055 value_contents_raw (val).slice (0, len));
4056 copy (value_contents (arg2),
4057 value_contents_raw (val).slice (len, len));
4058
4059 return val;
4060 }
4061
4062 /* See value.h. */
4063
4064 struct value *
4065 value_real_part (struct value *value)
4066 {
4067 struct type *type = check_typedef (value_type (value));
4068 struct type *ttype = TYPE_TARGET_TYPE (type);
4069
4070 gdb_assert (type->code () == TYPE_CODE_COMPLEX);
4071 return value_from_component (value, ttype, 0);
4072 }
4073
4074 /* See value.h. */
4075
4076 struct value *
4077 value_imaginary_part (struct value *value)
4078 {
4079 struct type *type = check_typedef (value_type (value));
4080 struct type *ttype = TYPE_TARGET_TYPE (type);
4081
4082 gdb_assert (type->code () == TYPE_CODE_COMPLEX);
4083 return value_from_component (value, ttype,
4084 TYPE_LENGTH (check_typedef (ttype)));
4085 }
4086
4087 /* Cast a value into the appropriate complex data type. */
4088
4089 static struct value *
4090 cast_into_complex (struct type *type, struct value *val)
4091 {
4092 struct type *real_type = TYPE_TARGET_TYPE (type);
4093
4094 if (value_type (val)->code () == TYPE_CODE_COMPLEX)
4095 {
4096 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
4097 struct value *re_val = allocate_value (val_real_type);
4098 struct value *im_val = allocate_value (val_real_type);
4099 int len = TYPE_LENGTH (val_real_type);
4100
4101 copy (value_contents (val).slice (0, len),
4102 value_contents_raw (re_val));
4103 copy (value_contents (val).slice (len, len),
4104 value_contents_raw (im_val));
4105
4106 return value_literal_complex (re_val, im_val, type);
4107 }
4108 else if (value_type (val)->code () == TYPE_CODE_FLT
4109 || value_type (val)->code () == TYPE_CODE_INT)
4110 return value_literal_complex (val,
4111 value_zero (real_type, not_lval),
4112 type);
4113 else
4114 error (_("cannot cast non-number to complex"));
4115 }
4116
4117 void _initialize_valops ();
4118 void
4119 _initialize_valops ()
4120 {
4121 add_setshow_boolean_cmd ("overload-resolution", class_support,
4122 &overload_resolution, _("\
4123 Set overload resolution in evaluating C++ functions."), _("\
4124 Show overload resolution in evaluating C++ functions."),
4125 NULL, NULL,
4126 show_overload_resolution,
4127 &setlist, &showlist);
4128 overload_resolution = 1;
4129 }