* valops.c (hand_function_call): Simplify computation of the
[binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
3 1996, 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcore.h"
29 #include "target.h"
30 #include "demangle.h"
31 #include "language.h"
32 #include "gdbcmd.h"
33 #include "regcache.h"
34
35 #include <errno.h>
36 #include "gdb_string.h"
37
38 /* Flag indicating HP compilers were used; needed to correctly handle some
39 value operations with HP aCC code/runtime. */
40 extern int hp_som_som_object_present;
41
42 extern int overload_debug;
43 /* Local functions. */
44
45 static int typecmp (int staticp, struct type *t1[], value_ptr t2[]);
46
47 static CORE_ADDR find_function_addr (value_ptr, struct type **);
48 static value_ptr value_arg_coerce (value_ptr, struct type *, int);
49
50
51 static CORE_ADDR value_push (CORE_ADDR, value_ptr);
52
53 static value_ptr search_struct_field (char *, value_ptr, int,
54 struct type *, int);
55
56 static value_ptr search_struct_method (char *, value_ptr *,
57 value_ptr *,
58 int, int *, struct type *);
59
60 static int check_field_in (struct type *, const char *);
61
62 static CORE_ADDR allocate_space_in_inferior (int);
63
64 static value_ptr cast_into_complex (struct type *, value_ptr);
65
66 static struct fn_field *find_method_list (value_ptr * argp, char *method,
67 int offset, int *static_memfuncp,
68 struct type *type, int *num_fns,
69 struct type **basetype,
70 int *boffset);
71
72 void _initialize_valops (void);
73
74 /* Flag for whether we want to abandon failed expression evals by default. */
75
76 #if 0
77 static int auto_abandon = 0;
78 #endif
79
80 int overload_resolution = 0;
81
82 /* This boolean tells what gdb should do if a signal is received while in
83 a function called from gdb (call dummy). If set, gdb unwinds the stack
84 and restore the context to what as it was before the call.
85 The default is to stop in the frame where the signal was received. */
86
87 int unwind_on_signal_p = 0;
88 \f
89
90
91 /* Find the address of function name NAME in the inferior. */
92
93 value_ptr
94 find_function_in_inferior (char *name)
95 {
96 register struct symbol *sym;
97 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
98 if (sym != NULL)
99 {
100 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
101 {
102 error ("\"%s\" exists in this program but is not a function.",
103 name);
104 }
105 return value_of_variable (sym, NULL);
106 }
107 else
108 {
109 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
110 if (msymbol != NULL)
111 {
112 struct type *type;
113 CORE_ADDR maddr;
114 type = lookup_pointer_type (builtin_type_char);
115 type = lookup_function_type (type);
116 type = lookup_pointer_type (type);
117 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
118 return value_from_pointer (type, maddr);
119 }
120 else
121 {
122 if (!target_has_execution)
123 error ("evaluation of this expression requires the target program to be active");
124 else
125 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
126 }
127 }
128 }
129
130 /* Allocate NBYTES of space in the inferior using the inferior's malloc
131 and return a value that is a pointer to the allocated space. */
132
133 value_ptr
134 value_allocate_space_in_inferior (int len)
135 {
136 value_ptr blocklen;
137 register value_ptr val = find_function_in_inferior ("malloc");
138
139 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
140 val = call_function_by_hand (val, 1, &blocklen);
141 if (value_logical_not (val))
142 {
143 if (!target_has_execution)
144 error ("No memory available to program now: you need to start the target first");
145 else
146 error ("No memory available to program: call to malloc failed");
147 }
148 return val;
149 }
150
151 static CORE_ADDR
152 allocate_space_in_inferior (int len)
153 {
154 return value_as_long (value_allocate_space_in_inferior (len));
155 }
156
157 /* Cast value ARG2 to type TYPE and return as a value.
158 More general than a C cast: accepts any two types of the same length,
159 and if ARG2 is an lvalue it can be cast into anything at all. */
160 /* In C++, casts may change pointer or object representations. */
161
162 value_ptr
163 value_cast (struct type *type, register value_ptr arg2)
164 {
165 register enum type_code code1;
166 register enum type_code code2;
167 register int scalar;
168 struct type *type2;
169
170 int convert_to_boolean = 0;
171
172 if (VALUE_TYPE (arg2) == type)
173 return arg2;
174
175 CHECK_TYPEDEF (type);
176 code1 = TYPE_CODE (type);
177 COERCE_REF (arg2);
178 type2 = check_typedef (VALUE_TYPE (arg2));
179
180 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
181 is treated like a cast to (TYPE [N])OBJECT,
182 where N is sizeof(OBJECT)/sizeof(TYPE). */
183 if (code1 == TYPE_CODE_ARRAY)
184 {
185 struct type *element_type = TYPE_TARGET_TYPE (type);
186 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
187 if (element_length > 0
188 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
189 {
190 struct type *range_type = TYPE_INDEX_TYPE (type);
191 int val_length = TYPE_LENGTH (type2);
192 LONGEST low_bound, high_bound, new_length;
193 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
194 low_bound = 0, high_bound = 0;
195 new_length = val_length / element_length;
196 if (val_length % element_length != 0)
197 warning ("array element type size does not divide object size in cast");
198 /* FIXME-type-allocation: need a way to free this type when we are
199 done with it. */
200 range_type = create_range_type ((struct type *) NULL,
201 TYPE_TARGET_TYPE (range_type),
202 low_bound,
203 new_length + low_bound - 1);
204 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
205 element_type, range_type);
206 return arg2;
207 }
208 }
209
210 if (current_language->c_style_arrays
211 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
212 arg2 = value_coerce_array (arg2);
213
214 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
215 arg2 = value_coerce_function (arg2);
216
217 type2 = check_typedef (VALUE_TYPE (arg2));
218 COERCE_VARYING_ARRAY (arg2, type2);
219 code2 = TYPE_CODE (type2);
220
221 if (code1 == TYPE_CODE_COMPLEX)
222 return cast_into_complex (type, arg2);
223 if (code1 == TYPE_CODE_BOOL)
224 {
225 code1 = TYPE_CODE_INT;
226 convert_to_boolean = 1;
227 }
228 if (code1 == TYPE_CODE_CHAR)
229 code1 = TYPE_CODE_INT;
230 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
231 code2 = TYPE_CODE_INT;
232
233 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
234 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
235
236 if (code1 == TYPE_CODE_STRUCT
237 && code2 == TYPE_CODE_STRUCT
238 && TYPE_NAME (type) != 0)
239 {
240 /* Look in the type of the source to see if it contains the
241 type of the target as a superclass. If so, we'll need to
242 offset the object in addition to changing its type. */
243 value_ptr v = search_struct_field (type_name_no_tag (type),
244 arg2, 0, type2, 1);
245 if (v)
246 {
247 VALUE_TYPE (v) = type;
248 return v;
249 }
250 }
251 if (code1 == TYPE_CODE_FLT && scalar)
252 return value_from_double (type, value_as_double (arg2));
253 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
254 || code1 == TYPE_CODE_RANGE)
255 && (scalar || code2 == TYPE_CODE_PTR))
256 {
257 LONGEST longest;
258
259 if (hp_som_som_object_present && /* if target compiled by HP aCC */
260 (code2 == TYPE_CODE_PTR))
261 {
262 unsigned int *ptr;
263 value_ptr retvalp;
264
265 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
266 {
267 /* With HP aCC, pointers to data members have a bias */
268 case TYPE_CODE_MEMBER:
269 retvalp = value_from_longest (type, value_as_long (arg2));
270 /* force evaluation */
271 ptr = (unsigned int *) VALUE_CONTENTS (retvalp);
272 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
273 return retvalp;
274
275 /* While pointers to methods don't really point to a function */
276 case TYPE_CODE_METHOD:
277 error ("Pointers to methods not supported with HP aCC");
278
279 default:
280 break; /* fall out and go to normal handling */
281 }
282 }
283 longest = value_as_long (arg2);
284 return value_from_longest (type, convert_to_boolean ?
285 (LONGEST) (longest ? 1 : 0) : longest);
286 }
287 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT ||
288 code2 == TYPE_CODE_ENUM ||
289 code2 == TYPE_CODE_RANGE))
290 {
291 /* TYPE_LENGTH (type) is the length of a pointer, but we really
292 want the length of an address! -- we are really dealing with
293 addresses (i.e., gdb representations) not pointers (i.e.,
294 target representations) here.
295
296 This allows things like "print *(int *)0x01000234" to work
297 without printing a misleading message -- which would
298 otherwise occur when dealing with a target having two byte
299 pointers and four byte addresses. */
300
301 int addr_bit = TARGET_ADDR_BIT;
302
303 LONGEST longest = value_as_long (arg2);
304 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
305 {
306 if (longest >= ((LONGEST) 1 << addr_bit)
307 || longest <= -((LONGEST) 1 << addr_bit))
308 warning ("value truncated");
309 }
310 return value_from_longest (type, longest);
311 }
312 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
313 {
314 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
315 {
316 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
317 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
318 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
319 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
320 && !value_logical_not (arg2))
321 {
322 value_ptr v;
323
324 /* Look in the type of the source to see if it contains the
325 type of the target as a superclass. If so, we'll need to
326 offset the pointer rather than just change its type. */
327 if (TYPE_NAME (t1) != NULL)
328 {
329 v = search_struct_field (type_name_no_tag (t1),
330 value_ind (arg2), 0, t2, 1);
331 if (v)
332 {
333 v = value_addr (v);
334 VALUE_TYPE (v) = type;
335 return v;
336 }
337 }
338
339 /* Look in the type of the target to see if it contains the
340 type of the source as a superclass. If so, we'll need to
341 offset the pointer rather than just change its type.
342 FIXME: This fails silently with virtual inheritance. */
343 if (TYPE_NAME (t2) != NULL)
344 {
345 v = search_struct_field (type_name_no_tag (t2),
346 value_zero (t1, not_lval), 0, t1, 1);
347 if (v)
348 {
349 value_ptr v2 = value_ind (arg2);
350 VALUE_ADDRESS (v2) -= VALUE_ADDRESS (v)
351 + VALUE_OFFSET (v);
352
353 /* JYG: adjust the new pointer value and
354 embedded offset. */
355 v2->aligner.contents[0] -= VALUE_EMBEDDED_OFFSET (v);
356 VALUE_EMBEDDED_OFFSET (v2) = 0;
357
358 v2 = value_addr (v2);
359 VALUE_TYPE (v2) = type;
360 return v2;
361 }
362 }
363 }
364 /* No superclass found, just fall through to change ptr type. */
365 }
366 VALUE_TYPE (arg2) = type;
367 VALUE_ENCLOSING_TYPE (arg2) = type; /* pai: chk_val */
368 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
369 return arg2;
370 }
371 else if (chill_varying_type (type))
372 {
373 struct type *range1, *range2, *eltype1, *eltype2;
374 value_ptr val;
375 int count1, count2;
376 LONGEST low_bound, high_bound;
377 char *valaddr, *valaddr_data;
378 /* For lint warning about eltype2 possibly uninitialized: */
379 eltype2 = NULL;
380 if (code2 == TYPE_CODE_BITSTRING)
381 error ("not implemented: converting bitstring to varying type");
382 if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING)
383 || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))),
384 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)),
385 (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2)
386 /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ )))
387 error ("Invalid conversion to varying type");
388 range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0);
389 range2 = TYPE_FIELD_TYPE (type2, 0);
390 if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0)
391 count1 = -1;
392 else
393 count1 = high_bound - low_bound + 1;
394 if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0)
395 count1 = -1, count2 = 0; /* To force error before */
396 else
397 count2 = high_bound - low_bound + 1;
398 if (count2 > count1)
399 error ("target varying type is too small");
400 val = allocate_value (type);
401 valaddr = VALUE_CONTENTS_RAW (val);
402 valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8;
403 /* Set val's __var_length field to count2. */
404 store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)),
405 count2);
406 /* Set the __var_data field to count2 elements copied from arg2. */
407 memcpy (valaddr_data, VALUE_CONTENTS (arg2),
408 count2 * TYPE_LENGTH (eltype2));
409 /* Zero the rest of the __var_data field of val. */
410 memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0',
411 (count1 - count2) * TYPE_LENGTH (eltype2));
412 return val;
413 }
414 else if (VALUE_LVAL (arg2) == lval_memory)
415 {
416 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
417 VALUE_BFD_SECTION (arg2));
418 }
419 else if (code1 == TYPE_CODE_VOID)
420 {
421 return value_zero (builtin_type_void, not_lval);
422 }
423 else
424 {
425 error ("Invalid cast.");
426 return 0;
427 }
428 }
429
430 /* Create a value of type TYPE that is zero, and return it. */
431
432 value_ptr
433 value_zero (struct type *type, enum lval_type lv)
434 {
435 register value_ptr val = allocate_value (type);
436
437 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
438 VALUE_LVAL (val) = lv;
439
440 return val;
441 }
442
443 /* Return a value with type TYPE located at ADDR.
444
445 Call value_at only if the data needs to be fetched immediately;
446 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
447 value_at_lazy instead. value_at_lazy simply records the address of
448 the data and sets the lazy-evaluation-required flag. The lazy flag
449 is tested in the VALUE_CONTENTS macro, which is used if and when
450 the contents are actually required.
451
452 Note: value_at does *NOT* handle embedded offsets; perform such
453 adjustments before or after calling it. */
454
455 value_ptr
456 value_at (struct type *type, CORE_ADDR addr, asection *sect)
457 {
458 register value_ptr val;
459
460 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
461 error ("Attempt to dereference a generic pointer.");
462
463 val = allocate_value (type);
464
465 if (GDB_TARGET_IS_D10V
466 && TYPE_CODE (type) == TYPE_CODE_PTR
467 && TYPE_TARGET_TYPE (type)
468 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
469 {
470 /* pointer to function */
471 unsigned long num;
472 unsigned short snum;
473 snum = read_memory_unsigned_integer (addr, 2);
474 num = D10V_MAKE_IADDR (snum);
475 store_address (VALUE_CONTENTS_RAW (val), 4, num);
476 }
477 else if (GDB_TARGET_IS_D10V
478 && TYPE_CODE (type) == TYPE_CODE_PTR)
479 {
480 /* pointer to data */
481 unsigned long num;
482 unsigned short snum;
483 snum = read_memory_unsigned_integer (addr, 2);
484 num = D10V_MAKE_DADDR (snum);
485 store_address (VALUE_CONTENTS_RAW (val), 4, num);
486 }
487 else
488 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type));
489
490 VALUE_LVAL (val) = lval_memory;
491 VALUE_ADDRESS (val) = addr;
492 VALUE_BFD_SECTION (val) = sect;
493
494 return val;
495 }
496
497 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
498
499 value_ptr
500 value_at_lazy (struct type *type, CORE_ADDR addr, asection *sect)
501 {
502 register value_ptr val;
503
504 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
505 error ("Attempt to dereference a generic pointer.");
506
507 val = allocate_value (type);
508
509 VALUE_LVAL (val) = lval_memory;
510 VALUE_ADDRESS (val) = addr;
511 VALUE_LAZY (val) = 1;
512 VALUE_BFD_SECTION (val) = sect;
513
514 return val;
515 }
516
517 /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
518 if the current data for a variable needs to be loaded into
519 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
520 clears the lazy flag to indicate that the data in the buffer is valid.
521
522 If the value is zero-length, we avoid calling read_memory, which would
523 abort. We mark the value as fetched anyway -- all 0 bytes of it.
524
525 This function returns a value because it is used in the VALUE_CONTENTS
526 macro as part of an expression, where a void would not work. The
527 value is ignored. */
528
529 int
530 value_fetch_lazy (register value_ptr val)
531 {
532 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
533 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
534
535 struct type *type = VALUE_TYPE (val);
536 if (GDB_TARGET_IS_D10V
537 && TYPE_CODE (type) == TYPE_CODE_PTR
538 && TYPE_TARGET_TYPE (type)
539 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
540 {
541 /* pointer to function */
542 unsigned long num;
543 unsigned short snum;
544 snum = read_memory_unsigned_integer (addr, 2);
545 num = D10V_MAKE_IADDR (snum);
546 store_address (VALUE_CONTENTS_RAW (val), 4, num);
547 }
548 else if (GDB_TARGET_IS_D10V
549 && TYPE_CODE (type) == TYPE_CODE_PTR)
550 {
551 /* pointer to data */
552 unsigned long num;
553 unsigned short snum;
554 snum = read_memory_unsigned_integer (addr, 2);
555 num = D10V_MAKE_DADDR (snum);
556 store_address (VALUE_CONTENTS_RAW (val), 4, num);
557 }
558 else if (length)
559 read_memory (addr, VALUE_CONTENTS_ALL_RAW (val), length);
560
561 VALUE_LAZY (val) = 0;
562 return 0;
563 }
564
565
566 /* Store the contents of FROMVAL into the location of TOVAL.
567 Return a new value with the location of TOVAL and contents of FROMVAL. */
568
569 value_ptr
570 value_assign (register value_ptr toval, register value_ptr fromval)
571 {
572 register struct type *type;
573 register value_ptr val;
574 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
575 int use_buffer = 0;
576
577 if (!toval->modifiable)
578 error ("Left operand of assignment is not a modifiable lvalue.");
579
580 COERCE_REF (toval);
581
582 type = VALUE_TYPE (toval);
583 if (VALUE_LVAL (toval) != lval_internalvar)
584 fromval = value_cast (type, fromval);
585 else
586 COERCE_ARRAY (fromval);
587 CHECK_TYPEDEF (type);
588
589 /* If TOVAL is a special machine register requiring conversion
590 of program values to a special raw format,
591 convert FROMVAL's contents now, with result in `raw_buffer',
592 and set USE_BUFFER to the number of bytes to write. */
593
594 if (VALUE_REGNO (toval) >= 0)
595 {
596 int regno = VALUE_REGNO (toval);
597 if (REGISTER_CONVERTIBLE (regno))
598 {
599 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
600 REGISTER_CONVERT_TO_RAW (fromtype, regno,
601 VALUE_CONTENTS (fromval), raw_buffer);
602 use_buffer = REGISTER_RAW_SIZE (regno);
603 }
604 }
605
606 switch (VALUE_LVAL (toval))
607 {
608 case lval_internalvar:
609 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
610 val = value_copy (VALUE_INTERNALVAR (toval)->value);
611 VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval);
612 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
613 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
614 return val;
615
616 case lval_internalvar_component:
617 set_internalvar_component (VALUE_INTERNALVAR (toval),
618 VALUE_OFFSET (toval),
619 VALUE_BITPOS (toval),
620 VALUE_BITSIZE (toval),
621 fromval);
622 break;
623
624 case lval_memory:
625 {
626 char *dest_buffer;
627 CORE_ADDR changed_addr;
628 int changed_len;
629
630 if (VALUE_BITSIZE (toval))
631 {
632 char buffer[sizeof (LONGEST)];
633 /* We assume that the argument to read_memory is in units of
634 host chars. FIXME: Is that correct? */
635 changed_len = (VALUE_BITPOS (toval)
636 + VALUE_BITSIZE (toval)
637 + HOST_CHAR_BIT - 1)
638 / HOST_CHAR_BIT;
639
640 if (changed_len > (int) sizeof (LONGEST))
641 error ("Can't handle bitfields which don't fit in a %d bit word.",
642 sizeof (LONGEST) * HOST_CHAR_BIT);
643
644 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
645 buffer, changed_len);
646 modify_field (buffer, value_as_long (fromval),
647 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
648 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
649 dest_buffer = buffer;
650 }
651 else if (use_buffer)
652 {
653 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
654 changed_len = use_buffer;
655 dest_buffer = raw_buffer;
656 }
657 else
658 {
659 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
660 changed_len = TYPE_LENGTH (type);
661 dest_buffer = VALUE_CONTENTS (fromval);
662 }
663
664 write_memory (changed_addr, dest_buffer, changed_len);
665 if (memory_changed_hook)
666 memory_changed_hook (changed_addr, changed_len);
667 }
668 break;
669
670 case lval_register:
671 if (VALUE_BITSIZE (toval))
672 {
673 char buffer[sizeof (LONGEST)];
674 int len =
675 REGISTER_RAW_SIZE (VALUE_REGNO (toval)) - VALUE_OFFSET (toval);
676
677 if (len > (int) sizeof (LONGEST))
678 error ("Can't handle bitfields in registers larger than %d bits.",
679 sizeof (LONGEST) * HOST_CHAR_BIT);
680
681 if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
682 > len * HOST_CHAR_BIT)
683 /* Getting this right would involve being very careful about
684 byte order. */
685 error ("Can't assign to bitfields that cross register "
686 "boundaries.");
687
688 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
689 buffer, len);
690 modify_field (buffer, value_as_long (fromval),
691 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
692 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
693 buffer, len);
694 }
695 else if (use_buffer)
696 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
697 raw_buffer, use_buffer);
698 else
699 {
700 /* Do any conversion necessary when storing this type to more
701 than one register. */
702 #ifdef REGISTER_CONVERT_FROM_TYPE
703 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
704 REGISTER_CONVERT_FROM_TYPE (VALUE_REGNO (toval), type, raw_buffer);
705 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
706 raw_buffer, TYPE_LENGTH (type));
707 #else
708 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
709 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
710 #endif
711 }
712 /* Assigning to the stack pointer, frame pointer, and other
713 (architecture and calling convention specific) registers may
714 cause the frame cache to be out of date. We just do this
715 on all assignments to registers for simplicity; I doubt the slowdown
716 matters. */
717 reinit_frame_cache ();
718 break;
719
720 case lval_reg_frame_relative:
721 {
722 /* value is stored in a series of registers in the frame
723 specified by the structure. Copy that value out, modify
724 it, and copy it back in. */
725 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
726 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
727 int byte_offset = VALUE_OFFSET (toval) % reg_size;
728 int reg_offset = VALUE_OFFSET (toval) / reg_size;
729 int amount_copied;
730
731 /* Make the buffer large enough in all cases. */
732 char *buffer = (char *) alloca (amount_to_copy
733 + sizeof (LONGEST)
734 + MAX_REGISTER_RAW_SIZE);
735
736 int regno;
737 struct frame_info *frame;
738
739 /* Figure out which frame this is in currently. */
740 for (frame = get_current_frame ();
741 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
742 frame = get_prev_frame (frame))
743 ;
744
745 if (!frame)
746 error ("Value being assigned to is no longer active.");
747
748 amount_to_copy += (reg_size - amount_to_copy % reg_size);
749
750 /* Copy it out. */
751 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
752 amount_copied = 0);
753 amount_copied < amount_to_copy;
754 amount_copied += reg_size, regno++)
755 {
756 get_saved_register (buffer + amount_copied,
757 (int *) NULL, (CORE_ADDR *) NULL,
758 frame, regno, (enum lval_type *) NULL);
759 }
760
761 /* Modify what needs to be modified. */
762 if (VALUE_BITSIZE (toval))
763 modify_field (buffer + byte_offset,
764 value_as_long (fromval),
765 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
766 else if (use_buffer)
767 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
768 else
769 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
770 TYPE_LENGTH (type));
771
772 /* Copy it back. */
773 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
774 amount_copied = 0);
775 amount_copied < amount_to_copy;
776 amount_copied += reg_size, regno++)
777 {
778 enum lval_type lval;
779 CORE_ADDR addr;
780 int optim;
781
782 /* Just find out where to put it. */
783 get_saved_register ((char *) NULL,
784 &optim, &addr, frame, regno, &lval);
785
786 if (optim)
787 error ("Attempt to assign to a value that was optimized out.");
788 if (lval == lval_memory)
789 write_memory (addr, buffer + amount_copied, reg_size);
790 else if (lval == lval_register)
791 write_register_bytes (addr, buffer + amount_copied, reg_size);
792 else
793 error ("Attempt to assign to an unmodifiable value.");
794 }
795
796 if (register_changed_hook)
797 register_changed_hook (-1);
798 }
799 break;
800
801
802 default:
803 error ("Left operand of assignment is not an lvalue.");
804 }
805
806 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
807 If the field is signed, and is negative, then sign extend. */
808 if ((VALUE_BITSIZE (toval) > 0)
809 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
810 {
811 LONGEST fieldval = value_as_long (fromval);
812 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
813
814 fieldval &= valmask;
815 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
816 fieldval |= ~valmask;
817
818 fromval = value_from_longest (type, fieldval);
819 }
820
821 val = value_copy (toval);
822 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
823 TYPE_LENGTH (type));
824 VALUE_TYPE (val) = type;
825 VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval);
826 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
827 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
828
829 return val;
830 }
831
832 /* Extend a value VAL to COUNT repetitions of its type. */
833
834 value_ptr
835 value_repeat (value_ptr arg1, int count)
836 {
837 register value_ptr val;
838
839 if (VALUE_LVAL (arg1) != lval_memory)
840 error ("Only values in memory can be extended with '@'.");
841 if (count < 1)
842 error ("Invalid number %d of repetitions.", count);
843
844 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
845
846 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
847 VALUE_CONTENTS_ALL_RAW (val),
848 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
849 VALUE_LVAL (val) = lval_memory;
850 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
851
852 return val;
853 }
854
855 value_ptr
856 value_of_variable (struct symbol *var, struct block *b)
857 {
858 value_ptr val;
859 struct frame_info *frame = NULL;
860
861 if (!b)
862 frame = NULL; /* Use selected frame. */
863 else if (symbol_read_needs_frame (var))
864 {
865 frame = block_innermost_frame (b);
866 if (!frame)
867 {
868 if (BLOCK_FUNCTION (b)
869 && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
870 error ("No frame is currently executing in block %s.",
871 SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
872 else
873 error ("No frame is currently executing in specified block");
874 }
875 }
876
877 val = read_var_value (var, frame);
878 if (!val)
879 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
880
881 return val;
882 }
883
884 /* Given a value which is an array, return a value which is a pointer to its
885 first element, regardless of whether or not the array has a nonzero lower
886 bound.
887
888 FIXME: A previous comment here indicated that this routine should be
889 substracting the array's lower bound. It's not clear to me that this
890 is correct. Given an array subscripting operation, it would certainly
891 work to do the adjustment here, essentially computing:
892
893 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
894
895 However I believe a more appropriate and logical place to account for
896 the lower bound is to do so in value_subscript, essentially computing:
897
898 (&array[0] + ((index - lowerbound) * sizeof array[0]))
899
900 As further evidence consider what would happen with operations other
901 than array subscripting, where the caller would get back a value that
902 had an address somewhere before the actual first element of the array,
903 and the information about the lower bound would be lost because of
904 the coercion to pointer type.
905 */
906
907 value_ptr
908 value_coerce_array (value_ptr arg1)
909 {
910 register struct type *type = check_typedef (VALUE_TYPE (arg1));
911
912 if (VALUE_LVAL (arg1) != lval_memory)
913 error ("Attempt to take address of value not located in memory.");
914
915 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
916 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
917 }
918
919 /* Given a value which is a function, return a value which is a pointer
920 to it. */
921
922 value_ptr
923 value_coerce_function (value_ptr arg1)
924 {
925 value_ptr retval;
926
927 if (VALUE_LVAL (arg1) != lval_memory)
928 error ("Attempt to take address of value not located in memory.");
929
930 retval = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
931 (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
932 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
933 return retval;
934 }
935
936 /* Return a pointer value for the object for which ARG1 is the contents. */
937
938 value_ptr
939 value_addr (value_ptr arg1)
940 {
941 value_ptr arg2;
942
943 struct type *type = check_typedef (VALUE_TYPE (arg1));
944 if (TYPE_CODE (type) == TYPE_CODE_REF)
945 {
946 /* Copy the value, but change the type from (T&) to (T*).
947 We keep the same location information, which is efficient,
948 and allows &(&X) to get the location containing the reference. */
949 arg2 = value_copy (arg1);
950 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
951 return arg2;
952 }
953 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
954 return value_coerce_function (arg1);
955
956 if (VALUE_LVAL (arg1) != lval_memory)
957 error ("Attempt to take address of value not located in memory.");
958
959 /* Get target memory address */
960 arg2 = value_from_pointer (lookup_pointer_type (VALUE_TYPE (arg1)),
961 (VALUE_ADDRESS (arg1)
962 + VALUE_OFFSET (arg1)
963 + VALUE_EMBEDDED_OFFSET (arg1)));
964
965 /* This may be a pointer to a base subobject; so remember the
966 full derived object's type ... */
967 VALUE_ENCLOSING_TYPE (arg2) = lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1));
968 /* ... and also the relative position of the subobject in the full object */
969 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
970 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
971 return arg2;
972 }
973
974 /* Given a value of a pointer type, apply the C unary * operator to it. */
975
976 value_ptr
977 value_ind (value_ptr arg1)
978 {
979 struct type *base_type;
980 value_ptr arg2;
981
982 COERCE_ARRAY (arg1);
983
984 base_type = check_typedef (VALUE_TYPE (arg1));
985
986 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
987 error ("not implemented: member types in value_ind");
988
989 /* Allow * on an integer so we can cast it to whatever we want.
990 This returns an int, which seems like the most C-like thing
991 to do. "long long" variables are rare enough that
992 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
993 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
994 return value_at (builtin_type_int,
995 (CORE_ADDR) value_as_long (arg1),
996 VALUE_BFD_SECTION (arg1));
997 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
998 {
999 struct type *enc_type;
1000 /* We may be pointing to something embedded in a larger object */
1001 /* Get the real type of the enclosing object */
1002 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
1003 enc_type = TYPE_TARGET_TYPE (enc_type);
1004 /* Retrieve the enclosing object pointed to */
1005 arg2 = value_at_lazy (enc_type,
1006 value_as_pointer (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
1007 VALUE_BFD_SECTION (arg1));
1008 /* Re-adjust type */
1009 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
1010 /* Add embedding info */
1011 VALUE_ENCLOSING_TYPE (arg2) = enc_type;
1012 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
1013
1014 /* We may be pointing to an object of some derived type */
1015 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1016 return arg2;
1017 }
1018
1019 error ("Attempt to take contents of a non-pointer value.");
1020 return 0; /* For lint -- never reached */
1021 }
1022 \f
1023 /* Pushing small parts of stack frames. */
1024
1025 /* Push one word (the size of object that a register holds). */
1026
1027 CORE_ADDR
1028 push_word (CORE_ADDR sp, ULONGEST word)
1029 {
1030 register int len = REGISTER_SIZE;
1031 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
1032
1033 store_unsigned_integer (buffer, len, word);
1034 if (INNER_THAN (1, 2))
1035 {
1036 /* stack grows downward */
1037 sp -= len;
1038 write_memory (sp, buffer, len);
1039 }
1040 else
1041 {
1042 /* stack grows upward */
1043 write_memory (sp, buffer, len);
1044 sp += len;
1045 }
1046
1047 return sp;
1048 }
1049
1050 /* Push LEN bytes with data at BUFFER. */
1051
1052 CORE_ADDR
1053 push_bytes (CORE_ADDR sp, char *buffer, int len)
1054 {
1055 if (INNER_THAN (1, 2))
1056 {
1057 /* stack grows downward */
1058 sp -= len;
1059 write_memory (sp, buffer, len);
1060 }
1061 else
1062 {
1063 /* stack grows upward */
1064 write_memory (sp, buffer, len);
1065 sp += len;
1066 }
1067
1068 return sp;
1069 }
1070
1071 #ifndef PARM_BOUNDARY
1072 #define PARM_BOUNDARY (0)
1073 #endif
1074
1075 /* Push onto the stack the specified value VALUE. Pad it correctly for
1076 it to be an argument to a function. */
1077
1078 static CORE_ADDR
1079 value_push (register CORE_ADDR sp, value_ptr arg)
1080 {
1081 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
1082 register int container_len = len;
1083 register int offset;
1084
1085 /* How big is the container we're going to put this value in? */
1086 if (PARM_BOUNDARY)
1087 container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1)
1088 & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1));
1089
1090 /* Are we going to put it at the high or low end of the container? */
1091 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1092 offset = container_len - len;
1093 else
1094 offset = 0;
1095
1096 if (INNER_THAN (1, 2))
1097 {
1098 /* stack grows downward */
1099 sp -= container_len;
1100 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1101 }
1102 else
1103 {
1104 /* stack grows upward */
1105 write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len);
1106 sp += container_len;
1107 }
1108
1109 return sp;
1110 }
1111
1112 #ifndef PUSH_ARGUMENTS
1113 #define PUSH_ARGUMENTS default_push_arguments
1114 #endif
1115
1116 CORE_ADDR
1117 default_push_arguments (int nargs, value_ptr *args, CORE_ADDR sp,
1118 int struct_return, CORE_ADDR struct_addr)
1119 {
1120 /* ASSERT ( !struct_return); */
1121 int i;
1122 for (i = nargs - 1; i >= 0; i--)
1123 sp = value_push (sp, args[i]);
1124 return sp;
1125 }
1126
1127
1128 /* A default function for COERCE_FLOAT_TO_DOUBLE: do the coercion only
1129 when we don't have any type for the argument at hand. This occurs
1130 when we have no debug info, or when passing varargs.
1131
1132 This is an annoying default: the rule the compiler follows is to do
1133 the standard promotions whenever there is no prototype in scope,
1134 and almost all targets want this behavior. But there are some old
1135 architectures which want this odd behavior. If you want to go
1136 through them all and fix them, please do. Modern gdbarch-style
1137 targets may find it convenient to use standard_coerce_float_to_double. */
1138 int
1139 default_coerce_float_to_double (struct type *formal, struct type *actual)
1140 {
1141 return formal == NULL;
1142 }
1143
1144
1145 /* Always coerce floats to doubles when there is no prototype in scope.
1146 If your architecture follows the standard type promotion rules for
1147 calling unprototyped functions, your gdbarch init function can pass
1148 this function to set_gdbarch_coerce_float_to_double to use its logic. */
1149 int
1150 standard_coerce_float_to_double (struct type *formal, struct type *actual)
1151 {
1152 return 1;
1153 }
1154
1155
1156 /* Perform the standard coercions that are specified
1157 for arguments to be passed to C functions.
1158
1159 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1160 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1161
1162 static value_ptr
1163 value_arg_coerce (value_ptr arg, struct type *param_type, int is_prototyped)
1164 {
1165 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1166 register struct type *type
1167 = param_type ? check_typedef (param_type) : arg_type;
1168
1169 switch (TYPE_CODE (type))
1170 {
1171 case TYPE_CODE_REF:
1172 if (TYPE_CODE (arg_type) != TYPE_CODE_REF)
1173 {
1174 arg = value_addr (arg);
1175 VALUE_TYPE (arg) = param_type;
1176 return arg;
1177 }
1178 break;
1179 case TYPE_CODE_INT:
1180 case TYPE_CODE_CHAR:
1181 case TYPE_CODE_BOOL:
1182 case TYPE_CODE_ENUM:
1183 /* If we don't have a prototype, coerce to integer type if necessary. */
1184 if (!is_prototyped)
1185 {
1186 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1187 type = builtin_type_int;
1188 }
1189 /* Currently all target ABIs require at least the width of an integer
1190 type for an argument. We may have to conditionalize the following
1191 type coercion for future targets. */
1192 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1193 type = builtin_type_int;
1194 break;
1195 case TYPE_CODE_FLT:
1196 /* FIXME: We should always convert floats to doubles in the
1197 non-prototyped case. As many debugging formats include
1198 no information about prototyping, we have to live with
1199 COERCE_FLOAT_TO_DOUBLE for now. */
1200 if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE (param_type, arg_type))
1201 {
1202 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1203 type = builtin_type_double;
1204 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1205 type = builtin_type_long_double;
1206 }
1207 break;
1208 case TYPE_CODE_FUNC:
1209 type = lookup_pointer_type (type);
1210 break;
1211 case TYPE_CODE_ARRAY:
1212 if (current_language->c_style_arrays)
1213 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1214 break;
1215 case TYPE_CODE_UNDEF:
1216 case TYPE_CODE_PTR:
1217 case TYPE_CODE_STRUCT:
1218 case TYPE_CODE_UNION:
1219 case TYPE_CODE_VOID:
1220 case TYPE_CODE_SET:
1221 case TYPE_CODE_RANGE:
1222 case TYPE_CODE_STRING:
1223 case TYPE_CODE_BITSTRING:
1224 case TYPE_CODE_ERROR:
1225 case TYPE_CODE_MEMBER:
1226 case TYPE_CODE_METHOD:
1227 case TYPE_CODE_COMPLEX:
1228 default:
1229 break;
1230 }
1231
1232 return value_cast (type, arg);
1233 }
1234
1235 /* Determine a function's address and its return type from its value.
1236 Calls error() if the function is not valid for calling. */
1237
1238 static CORE_ADDR
1239 find_function_addr (value_ptr function, struct type **retval_type)
1240 {
1241 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1242 register enum type_code code = TYPE_CODE (ftype);
1243 struct type *value_type;
1244 CORE_ADDR funaddr;
1245
1246 /* If it's a member function, just look at the function
1247 part of it. */
1248
1249 /* Determine address to call. */
1250 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1251 {
1252 funaddr = VALUE_ADDRESS (function);
1253 value_type = TYPE_TARGET_TYPE (ftype);
1254 }
1255 else if (code == TYPE_CODE_PTR)
1256 {
1257 funaddr = value_as_pointer (function);
1258 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1259 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1260 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1261 {
1262 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
1263 value_type = TYPE_TARGET_TYPE (ftype);
1264 }
1265 else
1266 value_type = builtin_type_int;
1267 }
1268 else if (code == TYPE_CODE_INT)
1269 {
1270 /* Handle the case of functions lacking debugging info.
1271 Their values are characters since their addresses are char */
1272 if (TYPE_LENGTH (ftype) == 1)
1273 funaddr = value_as_pointer (value_addr (function));
1274 else
1275 /* Handle integer used as address of a function. */
1276 funaddr = (CORE_ADDR) value_as_long (function);
1277
1278 value_type = builtin_type_int;
1279 }
1280 else
1281 error ("Invalid data type for function to be called.");
1282
1283 *retval_type = value_type;
1284 return funaddr;
1285 }
1286
1287 /* All this stuff with a dummy frame may seem unnecessarily complicated
1288 (why not just save registers in GDB?). The purpose of pushing a dummy
1289 frame which looks just like a real frame is so that if you call a
1290 function and then hit a breakpoint (get a signal, etc), "backtrace"
1291 will look right. Whether the backtrace needs to actually show the
1292 stack at the time the inferior function was called is debatable, but
1293 it certainly needs to not display garbage. So if you are contemplating
1294 making dummy frames be different from normal frames, consider that. */
1295
1296 /* Perform a function call in the inferior.
1297 ARGS is a vector of values of arguments (NARGS of them).
1298 FUNCTION is a value, the function to be called.
1299 Returns a value representing what the function returned.
1300 May fail to return, if a breakpoint or signal is hit
1301 during the execution of the function.
1302
1303 ARGS is modified to contain coerced values. */
1304
1305 static value_ptr hand_function_call (value_ptr function, int nargs,
1306 value_ptr * args);
1307 static value_ptr
1308 hand_function_call (value_ptr function, int nargs, value_ptr *args)
1309 {
1310 register CORE_ADDR sp;
1311 register int i;
1312 int rc;
1313 CORE_ADDR start_sp;
1314 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1315 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1316 and remove any extra bytes which might exist because ULONGEST is
1317 bigger than REGISTER_SIZE.
1318
1319 NOTE: This is pretty wierd, as the call dummy is actually a
1320 sequence of instructions. But CISC machines will have
1321 to pack the instructions into REGISTER_SIZE units (and
1322 so will RISC machines for which INSTRUCTION_SIZE is not
1323 REGISTER_SIZE).
1324
1325 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
1326 target byte order. */
1327
1328 static ULONGEST *dummy;
1329 int sizeof_dummy1;
1330 char *dummy1;
1331 CORE_ADDR old_sp;
1332 struct type *value_type;
1333 unsigned char struct_return;
1334 CORE_ADDR struct_addr = 0;
1335 struct inferior_status *inf_status;
1336 struct cleanup *old_chain;
1337 CORE_ADDR funaddr;
1338 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
1339 CORE_ADDR real_pc;
1340 struct type *param_type = NULL;
1341 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
1342
1343 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1344 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1345 dummy1 = alloca (sizeof_dummy1);
1346 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1347
1348 if (!target_has_execution)
1349 noprocess ();
1350
1351 inf_status = save_inferior_status (1);
1352 old_chain = make_cleanup_restore_inferior_status (inf_status);
1353
1354 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1355 (and POP_FRAME for restoring them). (At least on most machines)
1356 they are saved on the stack in the inferior. */
1357 PUSH_DUMMY_FRAME;
1358
1359 old_sp = sp = read_sp ();
1360
1361 if (INNER_THAN (1, 2))
1362 {
1363 /* Stack grows down */
1364 sp -= sizeof_dummy1;
1365 start_sp = sp;
1366 }
1367 else
1368 {
1369 /* Stack grows up */
1370 start_sp = sp;
1371 sp += sizeof_dummy1;
1372 }
1373
1374 funaddr = find_function_addr (function, &value_type);
1375 CHECK_TYPEDEF (value_type);
1376
1377 {
1378 struct block *b = block_for_pc (funaddr);
1379 /* If compiled without -g, assume GCC 2. */
1380 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1381 }
1382
1383 /* Are we returning a value using a structure return or a normal
1384 value return? */
1385
1386 struct_return = using_struct_return (function, funaddr, value_type,
1387 using_gcc);
1388
1389 /* Create a call sequence customized for this function
1390 and the number of arguments for it. */
1391 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
1392 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1393 REGISTER_SIZE,
1394 (ULONGEST) dummy[i]);
1395
1396 #ifdef GDB_TARGET_IS_HPPA
1397 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1398 value_type, using_gcc);
1399 #else
1400 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1401 value_type, using_gcc);
1402 real_pc = start_sp;
1403 #endif
1404
1405 if (CALL_DUMMY_LOCATION == ON_STACK)
1406 {
1407 write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
1408 }
1409
1410 if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END)
1411 {
1412 /* Convex Unix prohibits executing in the stack segment. */
1413 /* Hope there is empty room at the top of the text segment. */
1414 extern CORE_ADDR text_end;
1415 static int checked = 0;
1416 if (!checked)
1417 for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp)
1418 if (read_memory_integer (start_sp, 1) != 0)
1419 error ("text segment full -- no place to put call");
1420 checked = 1;
1421 sp = old_sp;
1422 real_pc = text_end - sizeof_dummy1;
1423 write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1424 }
1425
1426 if (CALL_DUMMY_LOCATION == AFTER_TEXT_END)
1427 {
1428 extern CORE_ADDR text_end;
1429 int errcode;
1430 sp = old_sp;
1431 real_pc = text_end;
1432 errcode = target_write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1433 if (errcode != 0)
1434 error ("Cannot write text segment -- call_function failed");
1435 }
1436
1437 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
1438 {
1439 real_pc = funaddr;
1440 }
1441
1442 #ifdef lint
1443 sp = old_sp; /* It really is used, for some ifdef's... */
1444 #endif
1445
1446 if (nargs < TYPE_NFIELDS (ftype))
1447 error ("too few arguments in function call");
1448
1449 for (i = nargs - 1; i >= 0; i--)
1450 {
1451 /* If we're off the end of the known arguments, do the standard
1452 promotions. FIXME: if we had a prototype, this should only
1453 be allowed if ... were present. */
1454 if (i >= TYPE_NFIELDS (ftype))
1455 args[i] = value_arg_coerce (args[i], NULL, 0);
1456
1457 else
1458 {
1459 int is_prototyped = TYPE_FLAGS (ftype) & TYPE_FLAG_PROTOTYPED;
1460 param_type = TYPE_FIELD_TYPE (ftype, i);
1461
1462 args[i] = value_arg_coerce (args[i], param_type, is_prototyped);
1463 }
1464
1465 /*elz: this code is to handle the case in which the function to be called
1466 has a pointer to function as parameter and the corresponding actual argument
1467 is the address of a function and not a pointer to function variable.
1468 In aCC compiled code, the calls through pointers to functions (in the body
1469 of the function called by hand) are made via $$dyncall_external which
1470 requires some registers setting, this is taken care of if we call
1471 via a function pointer variable, but not via a function address.
1472 In cc this is not a problem. */
1473
1474 if (using_gcc == 0)
1475 if (param_type)
1476 /* if this parameter is a pointer to function */
1477 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
1478 if (TYPE_CODE (param_type->target_type) == TYPE_CODE_FUNC)
1479 /* elz: FIXME here should go the test about the compiler used
1480 to compile the target. We want to issue the error
1481 message only if the compiler used was HP's aCC.
1482 If we used HP's cc, then there is no problem and no need
1483 to return at this point */
1484 if (using_gcc == 0) /* && compiler == aCC */
1485 /* go see if the actual parameter is a variable of type
1486 pointer to function or just a function */
1487 if (args[i]->lval == not_lval)
1488 {
1489 char *arg_name;
1490 if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1491 error ("\
1492 You cannot use function <%s> as argument. \n\
1493 You must use a pointer to function type variable. Command ignored.", arg_name);
1494 }
1495 }
1496
1497 if (REG_STRUCT_HAS_ADDR_P ())
1498 {
1499 /* This is a machine like the sparc, where we may need to pass a
1500 pointer to the structure, not the structure itself. */
1501 for (i = nargs - 1; i >= 0; i--)
1502 {
1503 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1504 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1505 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1506 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1507 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1508 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1509 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1510 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1511 && TYPE_LENGTH (arg_type) > 8)
1512 )
1513 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1514 {
1515 CORE_ADDR addr;
1516 int len; /* = TYPE_LENGTH (arg_type); */
1517 int aligned_len;
1518 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1519 len = TYPE_LENGTH (arg_type);
1520
1521 if (STACK_ALIGN_P ())
1522 /* MVS 11/22/96: I think at least some of this
1523 stack_align code is really broken. Better to let
1524 PUSH_ARGUMENTS adjust the stack in a target-defined
1525 manner. */
1526 aligned_len = STACK_ALIGN (len);
1527 else
1528 aligned_len = len;
1529 if (INNER_THAN (1, 2))
1530 {
1531 /* stack grows downward */
1532 sp -= aligned_len;
1533 /* ... so the address of the thing we push is the
1534 stack pointer after we push it. */
1535 addr = sp;
1536 }
1537 else
1538 {
1539 /* The stack grows up, so the address of the thing
1540 we push is the stack pointer before we push it. */
1541 addr = sp;
1542 sp += aligned_len;
1543 }
1544 /* Push the structure. */
1545 write_memory (addr, VALUE_CONTENTS_ALL (args[i]), len);
1546 /* The value we're going to pass is the address of the
1547 thing we just pushed. */
1548 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1549 (LONGEST) addr); */
1550 args[i] = value_from_pointer (lookup_pointer_type (arg_type),
1551 addr);
1552 }
1553 }
1554 }
1555
1556
1557 /* Reserve space for the return structure to be written on the
1558 stack, if necessary */
1559
1560 if (struct_return)
1561 {
1562 int len = TYPE_LENGTH (value_type);
1563 if (STACK_ALIGN_P ())
1564 /* MVS 11/22/96: I think at least some of this stack_align
1565 code is really broken. Better to let PUSH_ARGUMENTS adjust
1566 the stack in a target-defined manner. */
1567 len = STACK_ALIGN (len);
1568 if (INNER_THAN (1, 2))
1569 {
1570 /* stack grows downward */
1571 sp -= len;
1572 struct_addr = sp;
1573 }
1574 else
1575 {
1576 /* stack grows upward */
1577 struct_addr = sp;
1578 sp += len;
1579 }
1580 }
1581
1582 /* elz: on HPPA no need for this extra alignment, maybe it is needed
1583 on other architectures. This is because all the alignment is
1584 taken care of in the above code (ifdef REG_STRUCT_HAS_ADDR) and
1585 in hppa_push_arguments */
1586 if (EXTRA_STACK_ALIGNMENT_NEEDED)
1587 {
1588 /* MVS 11/22/96: I think at least some of this stack_align code
1589 is really broken. Better to let PUSH_ARGUMENTS adjust the
1590 stack in a target-defined manner. */
1591 if (STACK_ALIGN_P () && INNER_THAN (1, 2))
1592 {
1593 /* If stack grows down, we must leave a hole at the top. */
1594 int len = 0;
1595
1596 for (i = nargs - 1; i >= 0; i--)
1597 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1598 if (CALL_DUMMY_STACK_ADJUST_P)
1599 len += CALL_DUMMY_STACK_ADJUST;
1600 sp -= STACK_ALIGN (len) - len;
1601 }
1602 }
1603
1604 sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
1605
1606 #ifdef PUSH_RETURN_ADDRESS /* for targets that use no CALL_DUMMY */
1607 /* There are a number of targets now which actually don't write any
1608 CALL_DUMMY instructions into the target, but instead just save the
1609 machine state, push the arguments, and jump directly to the callee
1610 function. Since this doesn't actually involve executing a JSR/BSR
1611 instruction, the return address must be set up by hand, either by
1612 pushing onto the stack or copying into a return-address register
1613 as appropriate. Formerly this has been done in PUSH_ARGUMENTS,
1614 but that's overloading its functionality a bit, so I'm making it
1615 explicit to do it here. */
1616 sp = PUSH_RETURN_ADDRESS (real_pc, sp);
1617 #endif /* PUSH_RETURN_ADDRESS */
1618
1619 if (STACK_ALIGN_P () && !INNER_THAN (1, 2))
1620 {
1621 /* If stack grows up, we must leave a hole at the bottom, note
1622 that sp already has been advanced for the arguments! */
1623 if (CALL_DUMMY_STACK_ADJUST_P)
1624 sp += CALL_DUMMY_STACK_ADJUST;
1625 sp = STACK_ALIGN (sp);
1626 }
1627
1628 /* XXX This seems wrong. For stacks that grow down we shouldn't do
1629 anything here! */
1630 /* MVS 11/22/96: I think at least some of this stack_align code is
1631 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1632 a target-defined manner. */
1633 if (CALL_DUMMY_STACK_ADJUST_P)
1634 if (INNER_THAN (1, 2))
1635 {
1636 /* stack grows downward */
1637 sp -= CALL_DUMMY_STACK_ADJUST;
1638 }
1639
1640 /* Store the address at which the structure is supposed to be
1641 written. Note that this (and the code which reserved the space
1642 above) assumes that gcc was used to compile this function. Since
1643 it doesn't cost us anything but space and if the function is pcc
1644 it will ignore this value, we will make that assumption.
1645
1646 Also note that on some machines (like the sparc) pcc uses a
1647 convention like gcc's. */
1648
1649 if (struct_return)
1650 STORE_STRUCT_RETURN (struct_addr, sp);
1651
1652 /* Write the stack pointer. This is here because the statements above
1653 might fool with it. On SPARC, this write also stores the register
1654 window into the right place in the new stack frame, which otherwise
1655 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1656 write_sp (sp);
1657
1658 if (SAVE_DUMMY_FRAME_TOS_P ())
1659 SAVE_DUMMY_FRAME_TOS (sp);
1660
1661 {
1662 char *retbuf = (char*) alloca (REGISTER_BYTES);
1663 char *name;
1664 struct symbol *symbol;
1665
1666 name = NULL;
1667 symbol = find_pc_function (funaddr);
1668 if (symbol)
1669 {
1670 name = SYMBOL_SOURCE_NAME (symbol);
1671 }
1672 else
1673 {
1674 /* Try the minimal symbols. */
1675 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1676
1677 if (msymbol)
1678 {
1679 name = SYMBOL_SOURCE_NAME (msymbol);
1680 }
1681 }
1682 if (name == NULL)
1683 {
1684 char format[80];
1685 sprintf (format, "at %s", local_hex_format ());
1686 name = alloca (80);
1687 /* FIXME-32x64: assumes funaddr fits in a long. */
1688 sprintf (name, format, (unsigned long) funaddr);
1689 }
1690
1691 /* Execute the stack dummy routine, calling FUNCTION.
1692 When it is done, discard the empty frame
1693 after storing the contents of all regs into retbuf. */
1694 rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
1695
1696 if (rc == 1)
1697 {
1698 /* We stopped inside the FUNCTION because of a random signal.
1699 Further execution of the FUNCTION is not allowed. */
1700
1701 if (unwind_on_signal_p)
1702 {
1703 /* The user wants the context restored. */
1704
1705 /* We must get back to the frame we were before the dummy call. */
1706 POP_FRAME;
1707
1708 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1709 a C++ name with arguments and stuff. */
1710 error ("\
1711 The program being debugged was signaled while in a function called from GDB.\n\
1712 GDB has restored the context to what it was before the call.\n\
1713 To change this behavior use \"set unwindonsignal off\"\n\
1714 Evaluation of the expression containing the function (%s) will be abandoned.",
1715 name);
1716 }
1717 else
1718 {
1719 /* The user wants to stay in the frame where we stopped (default).*/
1720
1721 /* If we did the cleanups, we would print a spurious error
1722 message (Unable to restore previously selected frame),
1723 would write the registers from the inf_status (which is
1724 wrong), and would do other wrong things. */
1725 discard_cleanups (old_chain);
1726 discard_inferior_status (inf_status);
1727
1728 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1729 a C++ name with arguments and stuff. */
1730 error ("\
1731 The program being debugged was signaled while in a function called from GDB.\n\
1732 GDB remains in the frame where the signal was received.\n\
1733 To change this behavior use \"set unwindonsignal on\"\n\
1734 Evaluation of the expression containing the function (%s) will be abandoned.",
1735 name);
1736 }
1737 }
1738
1739 if (rc == 2)
1740 {
1741 /* We hit a breakpoint inside the FUNCTION. */
1742
1743 /* If we did the cleanups, we would print a spurious error
1744 message (Unable to restore previously selected frame),
1745 would write the registers from the inf_status (which is
1746 wrong), and would do other wrong things. */
1747 discard_cleanups (old_chain);
1748 discard_inferior_status (inf_status);
1749
1750 /* The following error message used to say "The expression
1751 which contained the function call has been discarded." It
1752 is a hard concept to explain in a few words. Ideally, GDB
1753 would be able to resume evaluation of the expression when
1754 the function finally is done executing. Perhaps someday
1755 this will be implemented (it would not be easy). */
1756
1757 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1758 a C++ name with arguments and stuff. */
1759 error ("\
1760 The program being debugged stopped while in a function called from GDB.\n\
1761 When the function (%s) is done executing, GDB will silently\n\
1762 stop (instead of continuing to evaluate the expression containing\n\
1763 the function call).", name);
1764 }
1765
1766 /* If we get here the called FUNCTION run to completion. */
1767 do_cleanups (old_chain);
1768
1769 /* Figure out the value returned by the function. */
1770 /* elz: I defined this new macro for the hppa architecture only.
1771 this gives us a way to get the value returned by the function from the stack,
1772 at the same address we told the function to put it.
1773 We cannot assume on the pa that r28 still contains the address of the returned
1774 structure. Usually this will be overwritten by the callee.
1775 I don't know about other architectures, so I defined this macro
1776 */
1777
1778 #ifdef VALUE_RETURNED_FROM_STACK
1779 if (struct_return)
1780 return (value_ptr) VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1781 #endif
1782
1783 return value_being_returned (value_type, retbuf, struct_return);
1784 }
1785 }
1786
1787 value_ptr
1788 call_function_by_hand (value_ptr function, int nargs, value_ptr *args)
1789 {
1790 if (CALL_DUMMY_P)
1791 {
1792 return hand_function_call (function, nargs, args);
1793 }
1794 else
1795 {
1796 error ("Cannot invoke functions on this machine.");
1797 }
1798 }
1799 \f
1800
1801
1802 /* Create a value for an array by allocating space in the inferior, copying
1803 the data into that space, and then setting up an array value.
1804
1805 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1806 populated from the values passed in ELEMVEC.
1807
1808 The element type of the array is inherited from the type of the
1809 first element, and all elements must have the same size (though we
1810 don't currently enforce any restriction on their types). */
1811
1812 value_ptr
1813 value_array (int lowbound, int highbound, value_ptr *elemvec)
1814 {
1815 int nelem;
1816 int idx;
1817 unsigned int typelength;
1818 value_ptr val;
1819 struct type *rangetype;
1820 struct type *arraytype;
1821 CORE_ADDR addr;
1822
1823 /* Validate that the bounds are reasonable and that each of the elements
1824 have the same size. */
1825
1826 nelem = highbound - lowbound + 1;
1827 if (nelem <= 0)
1828 {
1829 error ("bad array bounds (%d, %d)", lowbound, highbound);
1830 }
1831 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1832 for (idx = 1; idx < nelem; idx++)
1833 {
1834 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1835 {
1836 error ("array elements must all be the same size");
1837 }
1838 }
1839
1840 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1841 lowbound, highbound);
1842 arraytype = create_array_type ((struct type *) NULL,
1843 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
1844
1845 if (!current_language->c_style_arrays)
1846 {
1847 val = allocate_value (arraytype);
1848 for (idx = 0; idx < nelem; idx++)
1849 {
1850 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1851 VALUE_CONTENTS_ALL (elemvec[idx]),
1852 typelength);
1853 }
1854 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1855 return val;
1856 }
1857
1858 /* Allocate space to store the array in the inferior, and then initialize
1859 it by copying in each element. FIXME: Is it worth it to create a
1860 local buffer in which to collect each value and then write all the
1861 bytes in one operation? */
1862
1863 addr = allocate_space_in_inferior (nelem * typelength);
1864 for (idx = 0; idx < nelem; idx++)
1865 {
1866 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1867 typelength);
1868 }
1869
1870 /* Create the array type and set up an array value to be evaluated lazily. */
1871
1872 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1873 return (val);
1874 }
1875
1876 /* Create a value for a string constant by allocating space in the inferior,
1877 copying the data into that space, and returning the address with type
1878 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1879 of characters.
1880 Note that string types are like array of char types with a lower bound of
1881 zero and an upper bound of LEN - 1. Also note that the string may contain
1882 embedded null bytes. */
1883
1884 value_ptr
1885 value_string (char *ptr, int len)
1886 {
1887 value_ptr val;
1888 int lowbound = current_language->string_lower_bound;
1889 struct type *rangetype = create_range_type ((struct type *) NULL,
1890 builtin_type_int,
1891 lowbound, len + lowbound - 1);
1892 struct type *stringtype
1893 = create_string_type ((struct type *) NULL, rangetype);
1894 CORE_ADDR addr;
1895
1896 if (current_language->c_style_arrays == 0)
1897 {
1898 val = allocate_value (stringtype);
1899 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1900 return val;
1901 }
1902
1903
1904 /* Allocate space to store the string in the inferior, and then
1905 copy LEN bytes from PTR in gdb to that address in the inferior. */
1906
1907 addr = allocate_space_in_inferior (len);
1908 write_memory (addr, ptr, len);
1909
1910 val = value_at_lazy (stringtype, addr, NULL);
1911 return (val);
1912 }
1913
1914 value_ptr
1915 value_bitstring (char *ptr, int len)
1916 {
1917 value_ptr val;
1918 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1919 0, len - 1);
1920 struct type *type = create_set_type ((struct type *) NULL, domain_type);
1921 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1922 val = allocate_value (type);
1923 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1924 return val;
1925 }
1926 \f
1927 /* See if we can pass arguments in T2 to a function which takes arguments
1928 of types T1. Both t1 and t2 are NULL-terminated vectors. If some
1929 arguments need coercion of some sort, then the coerced values are written
1930 into T2. Return value is 0 if the arguments could be matched, or the
1931 position at which they differ if not.
1932
1933 STATICP is nonzero if the T1 argument list came from a
1934 static member function.
1935
1936 For non-static member functions, we ignore the first argument,
1937 which is the type of the instance variable. This is because we want
1938 to handle calls with objects from derived classes. This is not
1939 entirely correct: we should actually check to make sure that a
1940 requested operation is type secure, shouldn't we? FIXME. */
1941
1942 static int
1943 typecmp (int staticp, struct type *t1[], value_ptr t2[])
1944 {
1945 int i;
1946
1947 if (t2 == 0)
1948 return 1;
1949 if (staticp && t1 == 0)
1950 return t2[1] != 0;
1951 if (t1 == 0)
1952 return 1;
1953 if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID)
1954 return 0;
1955 if (t1[!staticp] == 0)
1956 return 0;
1957 for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
1958 {
1959 struct type *tt1, *tt2;
1960 if (!t2[i])
1961 return i + 1;
1962 tt1 = check_typedef (t1[i]);
1963 tt2 = check_typedef (VALUE_TYPE (t2[i]));
1964 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1965 /* We should be doing hairy argument matching, as below. */
1966 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1967 {
1968 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1969 t2[i] = value_coerce_array (t2[i]);
1970 else
1971 t2[i] = value_addr (t2[i]);
1972 continue;
1973 }
1974
1975 /* djb - 20000715 - Until the new type structure is in the
1976 place, and we can attempt things like implicit conversions,
1977 we need to do this so you can take something like a map<const
1978 char *>, and properly access map["hello"], because the
1979 argument to [] will be a reference to a pointer to a char,
1980 and the argument will be a pointer to a char. */
1981 while ( TYPE_CODE(tt1) == TYPE_CODE_REF ||
1982 TYPE_CODE (tt1) == TYPE_CODE_PTR)
1983 {
1984 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1985 }
1986 while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY ||
1987 TYPE_CODE(tt2) == TYPE_CODE_PTR ||
1988 TYPE_CODE(tt2) == TYPE_CODE_REF)
1989 {
1990 tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) );
1991 }
1992 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1993 continue;
1994 /* Array to pointer is a `trivial conversion' according to the ARM. */
1995
1996 /* We should be doing much hairier argument matching (see section 13.2
1997 of the ARM), but as a quick kludge, just check for the same type
1998 code. */
1999 if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
2000 return i + 1;
2001 }
2002 if (!t1[i])
2003 return 0;
2004 return t2[i] ? i + 1 : 0;
2005 }
2006
2007 /* Helper function used by value_struct_elt to recurse through baseclasses.
2008 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2009 and search in it assuming it has (class) type TYPE.
2010 If found, return value, else return NULL.
2011
2012 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
2013 look for a baseclass named NAME. */
2014
2015 static value_ptr
2016 search_struct_field (char *name, register value_ptr arg1, int offset,
2017 register struct type *type, int looking_for_baseclass)
2018 {
2019 int i;
2020 int nbases = TYPE_N_BASECLASSES (type);
2021
2022 CHECK_TYPEDEF (type);
2023
2024 if (!looking_for_baseclass)
2025 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2026 {
2027 char *t_field_name = TYPE_FIELD_NAME (type, i);
2028
2029 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2030 {
2031 value_ptr v;
2032 if (TYPE_FIELD_STATIC (type, i))
2033 v = value_static_field (type, i);
2034 else
2035 v = value_primitive_field (arg1, offset, i, type);
2036 if (v == 0)
2037 error ("there is no field named %s", name);
2038 return v;
2039 }
2040
2041 if (t_field_name
2042 && (t_field_name[0] == '\0'
2043 || (TYPE_CODE (type) == TYPE_CODE_UNION
2044 && (strcmp_iw (t_field_name, "else") == 0))))
2045 {
2046 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2047 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2048 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2049 {
2050 /* Look for a match through the fields of an anonymous union,
2051 or anonymous struct. C++ provides anonymous unions.
2052
2053 In the GNU Chill implementation of variant record types,
2054 each <alternative field> has an (anonymous) union type,
2055 each member of the union represents a <variant alternative>.
2056 Each <variant alternative> is represented as a struct,
2057 with a member for each <variant field>. */
2058
2059 value_ptr v;
2060 int new_offset = offset;
2061
2062 /* This is pretty gross. In G++, the offset in an anonymous
2063 union is relative to the beginning of the enclosing struct.
2064 In the GNU Chill implementation of variant records,
2065 the bitpos is zero in an anonymous union field, so we
2066 have to add the offset of the union here. */
2067 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2068 || (TYPE_NFIELDS (field_type) > 0
2069 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2070 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2071
2072 v = search_struct_field (name, arg1, new_offset, field_type,
2073 looking_for_baseclass);
2074 if (v)
2075 return v;
2076 }
2077 }
2078 }
2079
2080 for (i = 0; i < nbases; i++)
2081 {
2082 value_ptr v;
2083 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2084 /* If we are looking for baseclasses, this is what we get when we
2085 hit them. But it could happen that the base part's member name
2086 is not yet filled in. */
2087 int found_baseclass = (looking_for_baseclass
2088 && TYPE_BASECLASS_NAME (type, i) != NULL
2089 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
2090
2091 if (BASETYPE_VIA_VIRTUAL (type, i))
2092 {
2093 int boffset;
2094 value_ptr v2 = allocate_value (basetype);
2095
2096 boffset = baseclass_offset (type, i,
2097 VALUE_CONTENTS (arg1) + offset,
2098 VALUE_ADDRESS (arg1)
2099 + VALUE_OFFSET (arg1) + offset);
2100 if (boffset == -1)
2101 error ("virtual baseclass botch");
2102
2103 /* The virtual base class pointer might have been clobbered by the
2104 user program. Make sure that it still points to a valid memory
2105 location. */
2106
2107 boffset += offset;
2108 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2109 {
2110 CORE_ADDR base_addr;
2111
2112 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2113 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2114 TYPE_LENGTH (basetype)) != 0)
2115 error ("virtual baseclass botch");
2116 VALUE_LVAL (v2) = lval_memory;
2117 VALUE_ADDRESS (v2) = base_addr;
2118 }
2119 else
2120 {
2121 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2122 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2123 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2124 if (VALUE_LAZY (arg1))
2125 VALUE_LAZY (v2) = 1;
2126 else
2127 memcpy (VALUE_CONTENTS_RAW (v2),
2128 VALUE_CONTENTS_RAW (arg1) + boffset,
2129 TYPE_LENGTH (basetype));
2130 }
2131
2132 if (found_baseclass)
2133 return v2;
2134 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2135 looking_for_baseclass);
2136 }
2137 else if (found_baseclass)
2138 v = value_primitive_field (arg1, offset, i, type);
2139 else
2140 v = search_struct_field (name, arg1,
2141 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2142 basetype, looking_for_baseclass);
2143 if (v)
2144 return v;
2145 }
2146 return NULL;
2147 }
2148
2149
2150 /* Return the offset (in bytes) of the virtual base of type BASETYPE
2151 * in an object pointed to by VALADDR (on the host), assumed to be of
2152 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2153 * looking (in case VALADDR is the contents of an enclosing object).
2154 *
2155 * This routine recurses on the primary base of the derived class because
2156 * the virtual base entries of the primary base appear before the other
2157 * virtual base entries.
2158 *
2159 * If the virtual base is not found, a negative integer is returned.
2160 * The magnitude of the negative integer is the number of entries in
2161 * the virtual table to skip over (entries corresponding to various
2162 * ancestral classes in the chain of primary bases).
2163 *
2164 * Important: This assumes the HP / Taligent C++ runtime
2165 * conventions. Use baseclass_offset() instead to deal with g++
2166 * conventions. */
2167
2168 void
2169 find_rt_vbase_offset (struct type *type, struct type *basetype, char *valaddr,
2170 int offset, int *boffset_p, int *skip_p)
2171 {
2172 int boffset; /* offset of virtual base */
2173 int index; /* displacement to use in virtual table */
2174 int skip;
2175
2176 value_ptr vp;
2177 CORE_ADDR vtbl; /* the virtual table pointer */
2178 struct type *pbc; /* the primary base class */
2179
2180 /* Look for the virtual base recursively in the primary base, first.
2181 * This is because the derived class object and its primary base
2182 * subobject share the primary virtual table. */
2183
2184 boffset = 0;
2185 pbc = TYPE_PRIMARY_BASE (type);
2186 if (pbc)
2187 {
2188 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2189 if (skip < 0)
2190 {
2191 *boffset_p = boffset;
2192 *skip_p = -1;
2193 return;
2194 }
2195 }
2196 else
2197 skip = 0;
2198
2199
2200 /* Find the index of the virtual base according to HP/Taligent
2201 runtime spec. (Depth-first, left-to-right.) */
2202 index = virtual_base_index_skip_primaries (basetype, type);
2203
2204 if (index < 0)
2205 {
2206 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2207 *boffset_p = 0;
2208 return;
2209 }
2210
2211 /* pai: FIXME -- 32x64 possible problem */
2212 /* First word (4 bytes) in object layout is the vtable pointer */
2213 vtbl = *(CORE_ADDR *) (valaddr + offset);
2214
2215 /* Before the constructor is invoked, things are usually zero'd out. */
2216 if (vtbl == 0)
2217 error ("Couldn't find virtual table -- object may not be constructed yet.");
2218
2219
2220 /* Find virtual base's offset -- jump over entries for primary base
2221 * ancestors, then use the index computed above. But also adjust by
2222 * HP_ACC_VBASE_START for the vtable slots before the start of the
2223 * virtual base entries. Offset is negative -- virtual base entries
2224 * appear _before_ the address point of the virtual table. */
2225
2226 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
2227 & use long type */
2228
2229 /* epstein : FIXME -- added param for overlay section. May not be correct */
2230 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
2231 boffset = value_as_long (vp);
2232 *skip_p = -1;
2233 *boffset_p = boffset;
2234 return;
2235 }
2236
2237
2238 /* Helper function used by value_struct_elt to recurse through baseclasses.
2239 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2240 and search in it assuming it has (class) type TYPE.
2241 If found, return value, else if name matched and args not return (value)-1,
2242 else return NULL. */
2243
2244 static value_ptr
2245 search_struct_method (char *name, register value_ptr *arg1p,
2246 register value_ptr *args, int offset,
2247 int *static_memfuncp, register struct type *type)
2248 {
2249 int i;
2250 value_ptr v;
2251 int name_matched = 0;
2252 char dem_opname[64];
2253
2254 CHECK_TYPEDEF (type);
2255 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2256 {
2257 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2258 /* FIXME! May need to check for ARM demangling here */
2259 if (strncmp (t_field_name, "__", 2) == 0 ||
2260 strncmp (t_field_name, "op", 2) == 0 ||
2261 strncmp (t_field_name, "type", 4) == 0)
2262 {
2263 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2264 t_field_name = dem_opname;
2265 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2266 t_field_name = dem_opname;
2267 }
2268 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2269 {
2270 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2271 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2272 name_matched = 1;
2273
2274 if (j > 0 && args == 0)
2275 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
2276 while (j >= 0)
2277 {
2278 if (TYPE_FN_FIELD_STUB (f, j))
2279 check_stub_method (type, i, j);
2280 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2281 TYPE_FN_FIELD_ARGS (f, j), args))
2282 {
2283 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2284 return value_virtual_fn_field (arg1p, f, j, type, offset);
2285 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2286 *static_memfuncp = 1;
2287 v = value_fn_field (arg1p, f, j, type, offset);
2288 if (v != NULL)
2289 return v;
2290 }
2291 j--;
2292 }
2293 }
2294 }
2295
2296 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2297 {
2298 int base_offset;
2299
2300 if (BASETYPE_VIA_VIRTUAL (type, i))
2301 {
2302 if (TYPE_HAS_VTABLE (type))
2303 {
2304 /* HP aCC compiled type, search for virtual base offset
2305 according to HP/Taligent runtime spec. */
2306 int skip;
2307 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2308 VALUE_CONTENTS_ALL (*arg1p),
2309 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2310 &base_offset, &skip);
2311 if (skip >= 0)
2312 error ("Virtual base class offset not found in vtable");
2313 }
2314 else
2315 {
2316 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2317 char *base_valaddr;
2318
2319 /* The virtual base class pointer might have been clobbered by the
2320 user program. Make sure that it still points to a valid memory
2321 location. */
2322
2323 if (offset < 0 || offset >= TYPE_LENGTH (type))
2324 {
2325 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2326 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2327 + VALUE_OFFSET (*arg1p) + offset,
2328 base_valaddr,
2329 TYPE_LENGTH (baseclass)) != 0)
2330 error ("virtual baseclass botch");
2331 }
2332 else
2333 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2334
2335 base_offset =
2336 baseclass_offset (type, i, base_valaddr,
2337 VALUE_ADDRESS (*arg1p)
2338 + VALUE_OFFSET (*arg1p) + offset);
2339 if (base_offset == -1)
2340 error ("virtual baseclass botch");
2341 }
2342 }
2343 else
2344 {
2345 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2346 }
2347 v = search_struct_method (name, arg1p, args, base_offset + offset,
2348 static_memfuncp, TYPE_BASECLASS (type, i));
2349 if (v == (value_ptr) - 1)
2350 {
2351 name_matched = 1;
2352 }
2353 else if (v)
2354 {
2355 /* FIXME-bothner: Why is this commented out? Why is it here? */
2356 /* *arg1p = arg1_tmp; */
2357 return v;
2358 }
2359 }
2360 if (name_matched)
2361 return (value_ptr) - 1;
2362 else
2363 return NULL;
2364 }
2365
2366 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2367 extract the component named NAME from the ultimate target structure/union
2368 and return it as a value with its appropriate type.
2369 ERR is used in the error message if *ARGP's type is wrong.
2370
2371 C++: ARGS is a list of argument types to aid in the selection of
2372 an appropriate method. Also, handle derived types.
2373
2374 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2375 where the truthvalue of whether the function that was resolved was
2376 a static member function or not is stored.
2377
2378 ERR is an error message to be printed in case the field is not found. */
2379
2380 value_ptr
2381 value_struct_elt (register value_ptr *argp, register value_ptr *args,
2382 char *name, int *static_memfuncp, char *err)
2383 {
2384 register struct type *t;
2385 value_ptr v;
2386
2387 COERCE_ARRAY (*argp);
2388
2389 t = check_typedef (VALUE_TYPE (*argp));
2390
2391 /* Follow pointers until we get to a non-pointer. */
2392
2393 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2394 {
2395 *argp = value_ind (*argp);
2396 /* Don't coerce fn pointer to fn and then back again! */
2397 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2398 COERCE_ARRAY (*argp);
2399 t = check_typedef (VALUE_TYPE (*argp));
2400 }
2401
2402 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2403 error ("not implemented: member type in value_struct_elt");
2404
2405 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2406 && TYPE_CODE (t) != TYPE_CODE_UNION)
2407 error ("Attempt to extract a component of a value that is not a %s.", err);
2408
2409 /* Assume it's not, unless we see that it is. */
2410 if (static_memfuncp)
2411 *static_memfuncp = 0;
2412
2413 if (!args)
2414 {
2415 /* if there are no arguments ...do this... */
2416
2417 /* Try as a field first, because if we succeed, there
2418 is less work to be done. */
2419 v = search_struct_field (name, *argp, 0, t, 0);
2420 if (v)
2421 return v;
2422
2423 /* C++: If it was not found as a data field, then try to
2424 return it as a pointer to a method. */
2425
2426 if (destructor_name_p (name, t))
2427 error ("Cannot get value of destructor");
2428
2429 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2430
2431 if (v == (value_ptr) - 1)
2432 error ("Cannot take address of a method");
2433 else if (v == 0)
2434 {
2435 if (TYPE_NFN_FIELDS (t))
2436 error ("There is no member or method named %s.", name);
2437 else
2438 error ("There is no member named %s.", name);
2439 }
2440 return v;
2441 }
2442
2443 if (destructor_name_p (name, t))
2444 {
2445 if (!args[1])
2446 {
2447 /* Destructors are a special case. */
2448 int m_index, f_index;
2449
2450 v = NULL;
2451 if (get_destructor_fn_field (t, &m_index, &f_index))
2452 {
2453 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2454 f_index, NULL, 0);
2455 }
2456 if (v == NULL)
2457 error ("could not find destructor function named %s.", name);
2458 else
2459 return v;
2460 }
2461 else
2462 {
2463 error ("destructor should not have any argument");
2464 }
2465 }
2466 else
2467 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2468
2469 if (v == (value_ptr) - 1)
2470 {
2471 error ("One of the arguments you tried to pass to %s could not be converted to what the function wants.", name);
2472 }
2473 else if (v == 0)
2474 {
2475 /* See if user tried to invoke data as function. If so,
2476 hand it back. If it's not callable (i.e., a pointer to function),
2477 gdb should give an error. */
2478 v = search_struct_field (name, *argp, 0, t, 0);
2479 }
2480
2481 if (!v)
2482 error ("Structure has no component named %s.", name);
2483 return v;
2484 }
2485
2486 /* Search through the methods of an object (and its bases)
2487 * to find a specified method. Return the pointer to the
2488 * fn_field list of overloaded instances.
2489 * Helper function for value_find_oload_list.
2490 * ARGP is a pointer to a pointer to a value (the object)
2491 * METHOD is a string containing the method name
2492 * OFFSET is the offset within the value
2493 * STATIC_MEMFUNCP is set if the method is static
2494 * TYPE is the assumed type of the object
2495 * NUM_FNS is the number of overloaded instances
2496 * BASETYPE is set to the actual type of the subobject where the method is found
2497 * BOFFSET is the offset of the base subobject where the method is found */
2498
2499 static struct fn_field *
2500 find_method_list (value_ptr *argp, char *method, int offset,
2501 int *static_memfuncp, struct type *type, int *num_fns,
2502 struct type **basetype, int *boffset)
2503 {
2504 int i;
2505 struct fn_field *f;
2506 CHECK_TYPEDEF (type);
2507
2508 *num_fns = 0;
2509
2510 /* First check in object itself */
2511 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2512 {
2513 /* pai: FIXME What about operators and type conversions? */
2514 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2515 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2516 {
2517 *num_fns = TYPE_FN_FIELDLIST_LENGTH (type, i);
2518 *basetype = type;
2519 *boffset = offset;
2520 return TYPE_FN_FIELDLIST1 (type, i);
2521 }
2522 }
2523
2524 /* Not found in object, check in base subobjects */
2525 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2526 {
2527 int base_offset;
2528 if (BASETYPE_VIA_VIRTUAL (type, i))
2529 {
2530 if (TYPE_HAS_VTABLE (type))
2531 {
2532 /* HP aCC compiled type, search for virtual base offset
2533 * according to HP/Taligent runtime spec. */
2534 int skip;
2535 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2536 VALUE_CONTENTS_ALL (*argp),
2537 offset + VALUE_EMBEDDED_OFFSET (*argp),
2538 &base_offset, &skip);
2539 if (skip >= 0)
2540 error ("Virtual base class offset not found in vtable");
2541 }
2542 else
2543 {
2544 /* probably g++ runtime model */
2545 base_offset = VALUE_OFFSET (*argp) + offset;
2546 base_offset =
2547 baseclass_offset (type, i,
2548 VALUE_CONTENTS (*argp) + base_offset,
2549 VALUE_ADDRESS (*argp) + base_offset);
2550 if (base_offset == -1)
2551 error ("virtual baseclass botch");
2552 }
2553 }
2554 else
2555 /* non-virtual base, simply use bit position from debug info */
2556 {
2557 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2558 }
2559 f = find_method_list (argp, method, base_offset + offset,
2560 static_memfuncp, TYPE_BASECLASS (type, i), num_fns, basetype, boffset);
2561 if (f)
2562 return f;
2563 }
2564 return NULL;
2565 }
2566
2567 /* Return the list of overloaded methods of a specified name.
2568 * ARGP is a pointer to a pointer to a value (the object)
2569 * METHOD is the method name
2570 * OFFSET is the offset within the value contents
2571 * STATIC_MEMFUNCP is set if the method is static
2572 * NUM_FNS is the number of overloaded instances
2573 * BASETYPE is set to the type of the base subobject that defines the method
2574 * BOFFSET is the offset of the base subobject which defines the method */
2575
2576 struct fn_field *
2577 value_find_oload_method_list (value_ptr *argp, char *method, int offset,
2578 int *static_memfuncp, int *num_fns,
2579 struct type **basetype, int *boffset)
2580 {
2581 struct type *t;
2582
2583 t = check_typedef (VALUE_TYPE (*argp));
2584
2585 /* code snarfed from value_struct_elt */
2586 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2587 {
2588 *argp = value_ind (*argp);
2589 /* Don't coerce fn pointer to fn and then back again! */
2590 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2591 COERCE_ARRAY (*argp);
2592 t = check_typedef (VALUE_TYPE (*argp));
2593 }
2594
2595 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2596 error ("Not implemented: member type in value_find_oload_lis");
2597
2598 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2599 && TYPE_CODE (t) != TYPE_CODE_UNION)
2600 error ("Attempt to extract a component of a value that is not a struct or union");
2601
2602 /* Assume it's not static, unless we see that it is. */
2603 if (static_memfuncp)
2604 *static_memfuncp = 0;
2605
2606 return find_method_list (argp, method, 0, static_memfuncp, t, num_fns, basetype, boffset);
2607
2608 }
2609
2610 /* Given an array of argument types (ARGTYPES) (which includes an
2611 entry for "this" in the case of C++ methods), the number of
2612 arguments NARGS, the NAME of a function whether it's a method or
2613 not (METHOD), and the degree of laxness (LAX) in conforming to
2614 overload resolution rules in ANSI C++, find the best function that
2615 matches on the argument types according to the overload resolution
2616 rules.
2617
2618 In the case of class methods, the parameter OBJ is an object value
2619 in which to search for overloaded methods.
2620
2621 In the case of non-method functions, the parameter FSYM is a symbol
2622 corresponding to one of the overloaded functions.
2623
2624 Return value is an integer: 0 -> good match, 10 -> debugger applied
2625 non-standard coercions, 100 -> incompatible.
2626
2627 If a method is being searched for, VALP will hold the value.
2628 If a non-method is being searched for, SYMP will hold the symbol for it.
2629
2630 If a method is being searched for, and it is a static method,
2631 then STATICP will point to a non-zero value.
2632
2633 Note: This function does *not* check the value of
2634 overload_resolution. Caller must check it to see whether overload
2635 resolution is permitted.
2636 */
2637
2638 int
2639 find_overload_match (struct type **arg_types, int nargs, char *name, int method,
2640 int lax, value_ptr obj, struct symbol *fsym,
2641 value_ptr *valp, struct symbol **symp, int *staticp)
2642 {
2643 int nparms;
2644 struct type **parm_types;
2645 int champ_nparms = 0;
2646
2647 short oload_champ = -1; /* Index of best overloaded function */
2648 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2649 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2650 short oload_ambig_champ = -1; /* 2nd contender for best match */
2651 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2652 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2653
2654 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2655 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
2656
2657 value_ptr temp = obj;
2658 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
2659 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2660 int num_fns = 0; /* Number of overloaded instances being considered */
2661 struct type *basetype = NULL;
2662 int boffset;
2663 register int jj;
2664 register int ix;
2665
2666 char *obj_type_name = NULL;
2667 char *func_name = NULL;
2668
2669 /* Get the list of overloaded methods or functions */
2670 if (method)
2671 {
2672 int i;
2673 int len;
2674 struct type *domain;
2675 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2676 /* Hack: evaluate_subexp_standard often passes in a pointer
2677 value rather than the object itself, so try again */
2678 if ((!obj_type_name || !*obj_type_name) &&
2679 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2680 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
2681
2682 fns_ptr = value_find_oload_method_list (&temp, name, 0,
2683 staticp,
2684 &num_fns,
2685 &basetype, &boffset);
2686 if (!fns_ptr || !num_fns)
2687 error ("Couldn't find method %s%s%s",
2688 obj_type_name,
2689 (obj_type_name && *obj_type_name) ? "::" : "",
2690 name);
2691 domain = TYPE_DOMAIN_TYPE (fns_ptr[0].type);
2692 len = TYPE_NFN_FIELDS (domain);
2693 /* NOTE: dan/2000-03-10: This stuff is for STABS, which won't
2694 give us the info we need directly in the types. We have to
2695 use the method stub conversion to get it. Be aware that this
2696 is by no means perfect, and if you use STABS, please move to
2697 DWARF-2, or something like it, because trying to improve
2698 overloading using STABS is really a waste of time. */
2699 for (i = 0; i < len; i++)
2700 {
2701 int j;
2702 struct fn_field *f = TYPE_FN_FIELDLIST1 (domain, i);
2703 int len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
2704
2705 for (j = 0; j < len2; j++)
2706 {
2707 if (TYPE_FN_FIELD_STUB (f, j) && (!strcmp_iw (TYPE_FN_FIELDLIST_NAME (domain,i),name)))
2708 check_stub_method (domain, i, j);
2709 }
2710 }
2711 }
2712 else
2713 {
2714 int i = -1;
2715 func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);
2716
2717 /* If the name is NULL this must be a C-style function.
2718 Just return the same symbol. */
2719 if (!func_name)
2720 {
2721 *symp = fsym;
2722 return 0;
2723 }
2724
2725 oload_syms = make_symbol_overload_list (fsym);
2726 while (oload_syms[++i])
2727 num_fns++;
2728 if (!num_fns)
2729 error ("Couldn't find function %s", func_name);
2730 }
2731
2732 oload_champ_bv = NULL;
2733
2734 /* Consider each candidate in turn */
2735 for (ix = 0; ix < num_fns; ix++)
2736 {
2737 if (method)
2738 {
2739 /* For static member functions, we won't have a this pointer, but nothing
2740 else seems to handle them right now, so we just pretend ourselves */
2741 nparms=0;
2742
2743 if (TYPE_FN_FIELD_ARGS(fns_ptr,ix))
2744 {
2745 while (TYPE_CODE(TYPE_FN_FIELD_ARGS(fns_ptr,ix)[nparms]) != TYPE_CODE_VOID)
2746 nparms++;
2747 }
2748 }
2749 else
2750 {
2751 /* If it's not a method, this is the proper place */
2752 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2753 }
2754
2755 /* Prepare array of parameter types */
2756 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2757 for (jj = 0; jj < nparms; jj++)
2758 parm_types[jj] = (method
2759 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj])
2760 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
2761
2762 /* Compare parameter types to supplied argument types */
2763 bv = rank_function (parm_types, nparms, arg_types, nargs);
2764
2765 if (!oload_champ_bv)
2766 {
2767 oload_champ_bv = bv;
2768 oload_champ = 0;
2769 champ_nparms = nparms;
2770 }
2771 else
2772 /* See whether current candidate is better or worse than previous best */
2773 switch (compare_badness (bv, oload_champ_bv))
2774 {
2775 case 0:
2776 oload_ambiguous = 1; /* top two contenders are equally good */
2777 oload_ambig_champ = ix;
2778 break;
2779 case 1:
2780 oload_ambiguous = 2; /* incomparable top contenders */
2781 oload_ambig_champ = ix;
2782 break;
2783 case 2:
2784 oload_champ_bv = bv; /* new champion, record details */
2785 oload_ambiguous = 0;
2786 oload_champ = ix;
2787 oload_ambig_champ = -1;
2788 champ_nparms = nparms;
2789 break;
2790 case 3:
2791 default:
2792 break;
2793 }
2794 xfree (parm_types);
2795 if (overload_debug)
2796 {
2797 if (method)
2798 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2799 else
2800 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
2801 for (jj = 0; jj < nargs; jj++)
2802 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2803 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2804 }
2805 } /* end loop over all candidates */
2806 /* NOTE: dan/2000-03-10: Seems to be a better idea to just pick one
2807 if they have the exact same goodness. This is because there is no
2808 way to differentiate based on return type, which we need to in
2809 cases like overloads of .begin() <It's both const and non-const> */
2810 #if 0
2811 if (oload_ambiguous)
2812 {
2813 if (method)
2814 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2815 obj_type_name,
2816 (obj_type_name && *obj_type_name) ? "::" : "",
2817 name);
2818 else
2819 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2820 func_name);
2821 }
2822 #endif
2823
2824 /* Check how bad the best match is */
2825 for (ix = 1; ix <= nargs; ix++)
2826 {
2827 if (oload_champ_bv->rank[ix] >= 100)
2828 oload_incompatible = 1; /* truly mismatched types */
2829
2830 else if (oload_champ_bv->rank[ix] >= 10)
2831 oload_non_standard = 1; /* non-standard type conversions needed */
2832 }
2833 if (oload_incompatible)
2834 {
2835 if (method)
2836 error ("Cannot resolve method %s%s%s to any overloaded instance",
2837 obj_type_name,
2838 (obj_type_name && *obj_type_name) ? "::" : "",
2839 name);
2840 else
2841 error ("Cannot resolve function %s to any overloaded instance",
2842 func_name);
2843 }
2844 else if (oload_non_standard)
2845 {
2846 if (method)
2847 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2848 obj_type_name,
2849 (obj_type_name && *obj_type_name) ? "::" : "",
2850 name);
2851 else
2852 warning ("Using non-standard conversion to match function %s to supplied arguments",
2853 func_name);
2854 }
2855
2856 if (method)
2857 {
2858 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2859 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2860 else
2861 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2862 }
2863 else
2864 {
2865 *symp = oload_syms[oload_champ];
2866 xfree (func_name);
2867 }
2868
2869 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2870 }
2871
2872 /* C++: return 1 is NAME is a legitimate name for the destructor
2873 of type TYPE. If TYPE does not have a destructor, or
2874 if NAME is inappropriate for TYPE, an error is signaled. */
2875 int
2876 destructor_name_p (const char *name, const struct type *type)
2877 {
2878 /* destructors are a special case. */
2879
2880 if (name[0] == '~')
2881 {
2882 char *dname = type_name_no_tag (type);
2883 char *cp = strchr (dname, '<');
2884 unsigned int len;
2885
2886 /* Do not compare the template part for template classes. */
2887 if (cp == NULL)
2888 len = strlen (dname);
2889 else
2890 len = cp - dname;
2891 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2892 error ("name of destructor must equal name of class");
2893 else
2894 return 1;
2895 }
2896 return 0;
2897 }
2898
2899 /* Helper function for check_field: Given TYPE, a structure/union,
2900 return 1 if the component named NAME from the ultimate
2901 target structure/union is defined, otherwise, return 0. */
2902
2903 static int
2904 check_field_in (register struct type *type, const char *name)
2905 {
2906 register int i;
2907
2908 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2909 {
2910 char *t_field_name = TYPE_FIELD_NAME (type, i);
2911 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2912 return 1;
2913 }
2914
2915 /* C++: If it was not found as a data field, then try to
2916 return it as a pointer to a method. */
2917
2918 /* Destructors are a special case. */
2919 if (destructor_name_p (name, type))
2920 {
2921 int m_index, f_index;
2922
2923 return get_destructor_fn_field (type, &m_index, &f_index);
2924 }
2925
2926 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2927 {
2928 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2929 return 1;
2930 }
2931
2932 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2933 if (check_field_in (TYPE_BASECLASS (type, i), name))
2934 return 1;
2935
2936 return 0;
2937 }
2938
2939
2940 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
2941 return 1 if the component named NAME from the ultimate
2942 target structure/union is defined, otherwise, return 0. */
2943
2944 int
2945 check_field (register value_ptr arg1, const char *name)
2946 {
2947 register struct type *t;
2948
2949 COERCE_ARRAY (arg1);
2950
2951 t = VALUE_TYPE (arg1);
2952
2953 /* Follow pointers until we get to a non-pointer. */
2954
2955 for (;;)
2956 {
2957 CHECK_TYPEDEF (t);
2958 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
2959 break;
2960 t = TYPE_TARGET_TYPE (t);
2961 }
2962
2963 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2964 error ("not implemented: member type in check_field");
2965
2966 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2967 && TYPE_CODE (t) != TYPE_CODE_UNION)
2968 error ("Internal error: `this' is not an aggregate");
2969
2970 return check_field_in (t, name);
2971 }
2972
2973 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2974 return the address of this member as a "pointer to member"
2975 type. If INTYPE is non-null, then it will be the type
2976 of the member we are looking for. This will help us resolve
2977 "pointers to member functions". This function is used
2978 to resolve user expressions of the form "DOMAIN::NAME". */
2979
2980 value_ptr
2981 value_struct_elt_for_reference (struct type *domain, int offset,
2982 struct type *curtype, char *name,
2983 struct type *intype)
2984 {
2985 register struct type *t = curtype;
2986 register int i;
2987 value_ptr v;
2988
2989 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2990 && TYPE_CODE (t) != TYPE_CODE_UNION)
2991 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
2992
2993 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
2994 {
2995 char *t_field_name = TYPE_FIELD_NAME (t, i);
2996
2997 if (t_field_name && STREQ (t_field_name, name))
2998 {
2999 if (TYPE_FIELD_STATIC (t, i))
3000 {
3001 v = value_static_field (t, i);
3002 if (v == NULL)
3003 error ("Internal error: could not find static variable %s",
3004 name);
3005 return v;
3006 }
3007 if (TYPE_FIELD_PACKED (t, i))
3008 error ("pointers to bitfield members not allowed");
3009
3010 return value_from_longest
3011 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
3012 domain)),
3013 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3014 }
3015 }
3016
3017 /* C++: If it was not found as a data field, then try to
3018 return it as a pointer to a method. */
3019
3020 /* Destructors are a special case. */
3021 if (destructor_name_p (name, t))
3022 {
3023 error ("member pointers to destructors not implemented yet");
3024 }
3025
3026 /* Perform all necessary dereferencing. */
3027 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3028 intype = TYPE_TARGET_TYPE (intype);
3029
3030 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3031 {
3032 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3033 char dem_opname[64];
3034
3035 if (strncmp (t_field_name, "__", 2) == 0 ||
3036 strncmp (t_field_name, "op", 2) == 0 ||
3037 strncmp (t_field_name, "type", 4) == 0)
3038 {
3039 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
3040 t_field_name = dem_opname;
3041 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
3042 t_field_name = dem_opname;
3043 }
3044 if (t_field_name && STREQ (t_field_name, name))
3045 {
3046 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
3047 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3048
3049 if (intype == 0 && j > 1)
3050 error ("non-unique member `%s' requires type instantiation", name);
3051 if (intype)
3052 {
3053 while (j--)
3054 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
3055 break;
3056 if (j < 0)
3057 error ("no member function matches that type instantiation");
3058 }
3059 else
3060 j = 0;
3061
3062 if (TYPE_FN_FIELD_STUB (f, j))
3063 check_stub_method (t, i, j);
3064 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3065 {
3066 return value_from_longest
3067 (lookup_reference_type
3068 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3069 domain)),
3070 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
3071 }
3072 else
3073 {
3074 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3075 0, VAR_NAMESPACE, 0, NULL);
3076 if (s == NULL)
3077 {
3078 v = 0;
3079 }
3080 else
3081 {
3082 v = read_var_value (s, 0);
3083 #if 0
3084 VALUE_TYPE (v) = lookup_reference_type
3085 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3086 domain));
3087 #endif
3088 }
3089 return v;
3090 }
3091 }
3092 }
3093 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3094 {
3095 value_ptr v;
3096 int base_offset;
3097
3098 if (BASETYPE_VIA_VIRTUAL (t, i))
3099 base_offset = 0;
3100 else
3101 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3102 v = value_struct_elt_for_reference (domain,
3103 offset + base_offset,
3104 TYPE_BASECLASS (t, i),
3105 name,
3106 intype);
3107 if (v)
3108 return v;
3109 }
3110 return 0;
3111 }
3112
3113
3114 /* Find the real run-time type of a value using RTTI.
3115 * V is a pointer to the value.
3116 * A pointer to the struct type entry of the run-time type
3117 * is returneed.
3118 * FULL is a flag that is set only if the value V includes
3119 * the entire contents of an object of the RTTI type.
3120 * TOP is the offset to the top of the enclosing object of
3121 * the real run-time type. This offset may be for the embedded
3122 * object, or for the enclosing object of V.
3123 * USING_ENC is the flag that distinguishes the two cases.
3124 * If it is 1, then the offset is for the enclosing object,
3125 * otherwise for the embedded object.
3126 *
3127 */
3128
3129 struct type *
3130 value_rtti_type (value_ptr v, int *full, int *top, int *using_enc)
3131 {
3132 struct type *known_type;
3133 struct type *rtti_type;
3134 CORE_ADDR coreptr;
3135 value_ptr vp;
3136 int using_enclosing = 0;
3137 long top_offset = 0;
3138 char rtti_type_name[256];
3139
3140 if (full)
3141 *full = 0;
3142 if (top)
3143 *top = -1;
3144 if (using_enc)
3145 *using_enc = 0;
3146
3147 /* Get declared type */
3148 known_type = VALUE_TYPE (v);
3149 CHECK_TYPEDEF (known_type);
3150 /* RTTI works only or class objects */
3151 if (TYPE_CODE (known_type) != TYPE_CODE_CLASS)
3152 return NULL;
3153 if (TYPE_HAS_VTABLE(known_type))
3154 {
3155 /* If neither the declared type nor the enclosing type of the
3156 * value structure has a HP ANSI C++ style virtual table,
3157 * we can't do anything. */
3158 if (!TYPE_HAS_VTABLE (known_type))
3159 {
3160 known_type = VALUE_ENCLOSING_TYPE (v);
3161 CHECK_TYPEDEF (known_type);
3162 if ((TYPE_CODE (known_type) != TYPE_CODE_CLASS) ||
3163 !TYPE_HAS_VTABLE (known_type))
3164 return NULL; /* No RTTI, or not HP-compiled types */
3165 CHECK_TYPEDEF (known_type);
3166 using_enclosing = 1;
3167 }
3168
3169 if (using_enclosing && using_enc)
3170 *using_enc = 1;
3171
3172 /* First get the virtual table address */
3173 coreptr = *(CORE_ADDR *) ((VALUE_CONTENTS_ALL (v))
3174 + VALUE_OFFSET (v)
3175 + (using_enclosing ? 0 : VALUE_EMBEDDED_OFFSET (v)));
3176 if (coreptr == 0)
3177 return NULL; /* return silently -- maybe called on gdb-generated value */
3178
3179 /* Fetch the top offset of the object */
3180 /* FIXME possible 32x64 problem with pointer size & arithmetic */
3181 vp = value_at (builtin_type_int,
3182 coreptr + 4 * HP_ACC_TOP_OFFSET_OFFSET,
3183 VALUE_BFD_SECTION (v));
3184 top_offset = value_as_long (vp);
3185 if (top)
3186 *top = top_offset;
3187
3188 /* Fetch the typeinfo pointer */
3189 /* FIXME possible 32x64 problem with pointer size & arithmetic */
3190 vp = value_at (builtin_type_int, coreptr + 4 * HP_ACC_TYPEINFO_OFFSET, VALUE_BFD_SECTION (v));
3191 /* Indirect through the typeinfo pointer and retrieve the pointer
3192 * to the string name */
3193 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
3194 if (!coreptr)
3195 error ("Retrieved null typeinfo pointer in trying to determine run-time type");
3196 vp = value_at (builtin_type_int, coreptr + 4, VALUE_BFD_SECTION (v)); /* 4 -> offset of name field */
3197 /* FIXME possible 32x64 problem */
3198
3199 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
3200
3201 read_memory_string (coreptr, rtti_type_name, 256);
3202
3203 if (strlen (rtti_type_name) == 0)
3204 error ("Retrieved null type name from typeinfo");
3205
3206 /* search for type */
3207 rtti_type = lookup_typename (rtti_type_name, (struct block *) 0, 1);
3208
3209 if (!rtti_type)
3210 error ("Could not find run-time type: invalid type name %s in typeinfo??", rtti_type_name);
3211 CHECK_TYPEDEF (rtti_type);
3212 #if 0
3213 printf ("RTTI type name %s, tag %s, full? %d\n", TYPE_NAME (rtti_type), TYPE_TAG_NAME (rtti_type), full ? *full : -1);
3214 #endif
3215 /* Check whether we have the entire object */
3216 if (full /* Non-null pointer passed */
3217 &&
3218 /* Either we checked on the whole object in hand and found the
3219 top offset to be zero */
3220 (((top_offset == 0) &&
3221 using_enclosing &&
3222 TYPE_LENGTH (known_type) == TYPE_LENGTH (rtti_type))
3223 ||
3224 /* Or we checked on the embedded object and top offset was the
3225 same as the embedded offset */
3226 ((top_offset == VALUE_EMBEDDED_OFFSET (v)) &&
3227 !using_enclosing &&
3228 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (v)) == TYPE_LENGTH (rtti_type))))
3229
3230 *full = 1;
3231 }
3232 else
3233 /*
3234 Right now this is G++ RTTI. Plan on this changing in the
3235 future as i get around to setting the vtables properly for G++
3236 compiled stuff. Also, i'll be using the type info functions,
3237 which are always right. Deal with it until then.
3238 */
3239 {
3240 CORE_ADDR vtbl;
3241 struct minimal_symbol *minsym;
3242 struct symbol *sym;
3243 char *demangled_name;
3244 struct type *btype;
3245 /* If the type has no vptr fieldno, try to get it filled in */
3246 if (TYPE_VPTR_FIELDNO(known_type) < 0)
3247 fill_in_vptr_fieldno(known_type);
3248
3249 /* If we still can't find one, give up */
3250 if (TYPE_VPTR_FIELDNO(known_type) < 0)
3251 return NULL;
3252
3253 /* Make sure our basetype and known type match, otherwise, cast
3254 so we can get at the vtable properly.
3255 */
3256 btype = TYPE_VPTR_BASETYPE (known_type);
3257 CHECK_TYPEDEF (btype);
3258 if (btype != known_type )
3259 {
3260 v = value_cast (btype, v);
3261 if (using_enc)
3262 *using_enc=1;
3263 }
3264 /*
3265 We can't use value_ind here, because it would want to use RTTI, and
3266 we'd waste a bunch of time figuring out we already know the type.
3267 Besides, we don't care about the type, just the actual pointer
3268 */
3269 if (VALUE_ADDRESS (value_field (v, TYPE_VPTR_FIELDNO (known_type))) == 0)
3270 return NULL;
3271
3272 /*
3273 If we are enclosed by something that isn't us, adjust the
3274 address properly and set using_enclosing.
3275 */
3276 if (VALUE_ENCLOSING_TYPE(v) != VALUE_TYPE(v))
3277 {
3278 value_ptr tempval;
3279 tempval=value_field(v,TYPE_VPTR_FIELDNO(known_type));
3280 VALUE_ADDRESS(tempval)+=(TYPE_BASECLASS_BITPOS(known_type,TYPE_VPTR_FIELDNO(known_type))/8);
3281 vtbl=value_as_pointer(tempval);
3282 using_enclosing=1;
3283 }
3284 else
3285 {
3286 vtbl=value_as_pointer(value_field(v,TYPE_VPTR_FIELDNO(known_type)));
3287 using_enclosing=0;
3288 }
3289
3290 /* Try to find a symbol that is the vtable */
3291 minsym=lookup_minimal_symbol_by_pc(vtbl);
3292 if (minsym==NULL || (demangled_name=SYMBOL_NAME(minsym))==NULL || !VTBL_PREFIX_P(demangled_name))
3293 return NULL;
3294
3295 /* If we just skip the prefix, we get screwed by namespaces */
3296 demangled_name=cplus_demangle(demangled_name,DMGL_PARAMS|DMGL_ANSI);
3297 *(strchr(demangled_name,' '))=0;
3298
3299 /* Lookup the type for the name */
3300 rtti_type=lookup_typename(demangled_name, (struct block *)0,1);
3301
3302 if (rtti_type==NULL)
3303 return NULL;
3304
3305 if (TYPE_N_BASECLASSES(rtti_type) > 1 && full && (*full) != 1)
3306 {
3307 if (top)
3308 *top=TYPE_BASECLASS_BITPOS(rtti_type,TYPE_VPTR_FIELDNO(rtti_type))/8;
3309 if (top && ((*top) >0))
3310 {
3311 if (TYPE_LENGTH(rtti_type) > TYPE_LENGTH(known_type))
3312 {
3313 if (full)
3314 *full=0;
3315 }
3316 else
3317 {
3318 if (full)
3319 *full=1;
3320 }
3321 }
3322 }
3323 else
3324 {
3325 if (full)
3326 *full=1;
3327 }
3328 if (using_enc)
3329 *using_enc=using_enclosing;
3330 }
3331 return rtti_type;
3332 }
3333
3334 /* Given a pointer value V, find the real (RTTI) type
3335 of the object it points to.
3336 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3337 and refer to the values computed for the object pointed to. */
3338
3339 struct type *
3340 value_rtti_target_type (value_ptr v, int *full, int *top, int *using_enc)
3341 {
3342 value_ptr target;
3343
3344 target = value_ind (v);
3345
3346 return value_rtti_type (target, full, top, using_enc);
3347 }
3348
3349 /* Given a value pointed to by ARGP, check its real run-time type, and
3350 if that is different from the enclosing type, create a new value
3351 using the real run-time type as the enclosing type (and of the same
3352 type as ARGP) and return it, with the embedded offset adjusted to
3353 be the correct offset to the enclosed object
3354 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3355 parameters, computed by value_rtti_type(). If these are available,
3356 they can be supplied and a second call to value_rtti_type() is avoided.
3357 (Pass RTYPE == NULL if they're not available */
3358
3359 value_ptr
3360 value_full_object (value_ptr argp, struct type *rtype, int xfull, int xtop,
3361 int xusing_enc)
3362 {
3363 struct type *real_type;
3364 int full = 0;
3365 int top = -1;
3366 int using_enc = 0;
3367 value_ptr new_val;
3368
3369 if (rtype)
3370 {
3371 real_type = rtype;
3372 full = xfull;
3373 top = xtop;
3374 using_enc = xusing_enc;
3375 }
3376 else
3377 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3378
3379 /* If no RTTI data, or if object is already complete, do nothing */
3380 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3381 return argp;
3382
3383 /* If we have the full object, but for some reason the enclosing
3384 type is wrong, set it *//* pai: FIXME -- sounds iffy */
3385 if (full)
3386 {
3387 VALUE_ENCLOSING_TYPE (argp) = real_type;
3388 return argp;
3389 }
3390
3391 /* Check if object is in memory */
3392 if (VALUE_LVAL (argp) != lval_memory)
3393 {
3394 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
3395
3396 return argp;
3397 }
3398
3399 /* All other cases -- retrieve the complete object */
3400 /* Go back by the computed top_offset from the beginning of the object,
3401 adjusting for the embedded offset of argp if that's what value_rtti_type
3402 used for its computation. */
3403 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
3404 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3405 VALUE_BFD_SECTION (argp));
3406 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3407 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3408 return new_val;
3409 }
3410
3411
3412
3413
3414 /* C++: return the value of the class instance variable, if one exists.
3415 Flag COMPLAIN signals an error if the request is made in an
3416 inappropriate context. */
3417
3418 value_ptr
3419 value_of_this (int complain)
3420 {
3421 struct symbol *func, *sym;
3422 struct block *b;
3423 int i;
3424 static const char funny_this[] = "this";
3425 value_ptr this;
3426
3427 if (selected_frame == 0)
3428 {
3429 if (complain)
3430 error ("no frame selected");
3431 else
3432 return 0;
3433 }
3434
3435 func = get_frame_function (selected_frame);
3436 if (!func)
3437 {
3438 if (complain)
3439 error ("no `this' in nameless context");
3440 else
3441 return 0;
3442 }
3443
3444 b = SYMBOL_BLOCK_VALUE (func);
3445 i = BLOCK_NSYMS (b);
3446 if (i <= 0)
3447 {
3448 if (complain)
3449 error ("no args, no `this'");
3450 else
3451 return 0;
3452 }
3453
3454 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3455 symbol instead of the LOC_ARG one (if both exist). */
3456 sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE);
3457 if (sym == NULL)
3458 {
3459 if (complain)
3460 error ("current stack frame not in method");
3461 else
3462 return NULL;
3463 }
3464
3465 this = read_var_value (sym, selected_frame);
3466 if (this == 0 && complain)
3467 error ("`this' argument at unknown address");
3468 return this;
3469 }
3470
3471 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3472 long, starting at LOWBOUND. The result has the same lower bound as
3473 the original ARRAY. */
3474
3475 value_ptr
3476 value_slice (value_ptr array, int lowbound, int length)
3477 {
3478 struct type *slice_range_type, *slice_type, *range_type;
3479 LONGEST lowerbound, upperbound, offset;
3480 value_ptr slice;
3481 struct type *array_type;
3482 array_type = check_typedef (VALUE_TYPE (array));
3483 COERCE_VARYING_ARRAY (array, array_type);
3484 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3485 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3486 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3487 error ("cannot take slice of non-array");
3488 range_type = TYPE_INDEX_TYPE (array_type);
3489 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3490 error ("slice from bad array or bitstring");
3491 if (lowbound < lowerbound || length < 0
3492 || lowbound + length - 1 > upperbound
3493 /* Chill allows zero-length strings but not arrays. */
3494 || (current_language->la_language == language_chill
3495 && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY))
3496 error ("slice out of range");
3497 /* FIXME-type-allocation: need a way to free this type when we are
3498 done with it. */
3499 slice_range_type = create_range_type ((struct type *) NULL,
3500 TYPE_TARGET_TYPE (range_type),
3501 lowbound, lowbound + length - 1);
3502 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3503 {
3504 int i;
3505 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
3506 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3507 slice = value_zero (slice_type, not_lval);
3508 for (i = 0; i < length; i++)
3509 {
3510 int element = value_bit_index (array_type,
3511 VALUE_CONTENTS (array),
3512 lowbound + i);
3513 if (element < 0)
3514 error ("internal error accessing bitstring");
3515 else if (element > 0)
3516 {
3517 int j = i % TARGET_CHAR_BIT;
3518 if (BITS_BIG_ENDIAN)
3519 j = TARGET_CHAR_BIT - 1 - j;
3520 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3521 }
3522 }
3523 /* We should set the address, bitssize, and bitspos, so the clice
3524 can be used on the LHS, but that may require extensions to
3525 value_assign. For now, just leave as a non_lval. FIXME. */
3526 }
3527 else
3528 {
3529 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3530 offset
3531 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3532 slice_type = create_array_type ((struct type *) NULL, element_type,
3533 slice_range_type);
3534 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3535 slice = allocate_value (slice_type);
3536 if (VALUE_LAZY (array))
3537 VALUE_LAZY (slice) = 1;
3538 else
3539 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3540 TYPE_LENGTH (slice_type));
3541 if (VALUE_LVAL (array) == lval_internalvar)
3542 VALUE_LVAL (slice) = lval_internalvar_component;
3543 else
3544 VALUE_LVAL (slice) = VALUE_LVAL (array);
3545 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3546 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3547 }
3548 return slice;
3549 }
3550
3551 /* Assuming chill_varying_type (VARRAY) is true, return an equivalent
3552 value as a fixed-length array. */
3553
3554 value_ptr
3555 varying_to_slice (value_ptr varray)
3556 {
3557 struct type *vtype = check_typedef (VALUE_TYPE (varray));
3558 LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
3559 VALUE_CONTENTS (varray)
3560 + TYPE_FIELD_BITPOS (vtype, 0) / 8);
3561 return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
3562 }
3563
3564 /* Create a value for a FORTRAN complex number. Currently most of
3565 the time values are coerced to COMPLEX*16 (i.e. a complex number
3566 composed of 2 doubles. This really should be a smarter routine
3567 that figures out precision inteligently as opposed to assuming
3568 doubles. FIXME: fmb */
3569
3570 value_ptr
3571 value_literal_complex (value_ptr arg1, value_ptr arg2, struct type *type)
3572 {
3573 register value_ptr val;
3574 struct type *real_type = TYPE_TARGET_TYPE (type);
3575
3576 val = allocate_value (type);
3577 arg1 = value_cast (real_type, arg1);
3578 arg2 = value_cast (real_type, arg2);
3579
3580 memcpy (VALUE_CONTENTS_RAW (val),
3581 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3582 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3583 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3584 return val;
3585 }
3586
3587 /* Cast a value into the appropriate complex data type. */
3588
3589 static value_ptr
3590 cast_into_complex (struct type *type, register value_ptr val)
3591 {
3592 struct type *real_type = TYPE_TARGET_TYPE (type);
3593 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3594 {
3595 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
3596 value_ptr re_val = allocate_value (val_real_type);
3597 value_ptr im_val = allocate_value (val_real_type);
3598
3599 memcpy (VALUE_CONTENTS_RAW (re_val),
3600 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3601 memcpy (VALUE_CONTENTS_RAW (im_val),
3602 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
3603 TYPE_LENGTH (val_real_type));
3604
3605 return value_literal_complex (re_val, im_val, type);
3606 }
3607 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3608 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3609 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3610 else
3611 error ("cannot cast non-number to complex");
3612 }
3613
3614 void
3615 _initialize_valops (void)
3616 {
3617 #if 0
3618 add_show_from_set
3619 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
3620 "Set automatic abandonment of expressions upon failure.",
3621 &setlist),
3622 &showlist);
3623 #endif
3624
3625 add_show_from_set
3626 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
3627 "Set overload resolution in evaluating C++ functions.",
3628 &setlist),
3629 &showlist);
3630 overload_resolution = 1;
3631
3632 add_show_from_set (
3633 add_set_cmd ("unwindonsignal", no_class, var_boolean,
3634 (char *) &unwind_on_signal_p,
3635 "Set unwinding of stack if a signal is received while in a call dummy.\n\
3636 The unwindonsignal lets the user determine what gdb should do if a signal\n\
3637 is received while in a function called from gdb (call dummy). If set, gdb\n\
3638 unwinds the stack and restore the context to what as it was before the call.\n\
3639 The default is to stop in the frame where the signal was received.", &setlist),
3640 &showlist);
3641 }