gdb: replace NULL terminated array with array_view
[binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "demangle.h"
29 #include "language.h"
30 #include "gdbcmd.h"
31 #include "regcache.h"
32 #include "cp-abi.h"
33 #include "block.h"
34 #include "infcall.h"
35 #include "dictionary.h"
36 #include "cp-support.h"
37 #include "target-float.h"
38 #include "tracepoint.h"
39 #include "observable.h"
40 #include "objfiles.h"
41 #include "extension.h"
42 #include "gdbtypes.h"
43 #include "gdbsupport/byte-vector.h"
44
45 /* Local functions. */
46
47 static int typecmp (bool staticp, bool varargs, int nargs,
48 struct field t1[], const gdb::array_view<value *> t2);
49
50 static struct value *search_struct_field (const char *, struct value *,
51 struct type *, int);
52
53 static struct value *search_struct_method (const char *, struct value **,
54 gdb::array_view<value *> *,
55 LONGEST, int *, struct type *);
56
57 static int find_oload_champ_namespace (gdb::array_view<value *> args,
58 const char *, const char *,
59 std::vector<symbol *> *oload_syms,
60 badness_vector *,
61 const int no_adl);
62
63 static int find_oload_champ_namespace_loop (gdb::array_view<value *> args,
64 const char *, const char *,
65 int, std::vector<symbol *> *oload_syms,
66 badness_vector *, int *,
67 const int no_adl);
68
69 static int find_oload_champ (gdb::array_view<value *> args,
70 size_t num_fns,
71 fn_field *methods,
72 xmethod_worker_up *xmethods,
73 symbol **functions,
74 badness_vector *oload_champ_bv);
75
76 static int oload_method_static_p (struct fn_field *, int);
77
78 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
79
80 static enum oload_classification classify_oload_match
81 (const badness_vector &, int, int);
82
83 static struct value *value_struct_elt_for_reference (struct type *,
84 int, struct type *,
85 const char *,
86 struct type *,
87 int, enum noside);
88
89 static struct value *value_namespace_elt (const struct type *,
90 const char *, int , enum noside);
91
92 static struct value *value_maybe_namespace_elt (const struct type *,
93 const char *, int,
94 enum noside);
95
96 static CORE_ADDR allocate_space_in_inferior (int);
97
98 static struct value *cast_into_complex (struct type *, struct value *);
99
100 bool overload_resolution = false;
101 static void
102 show_overload_resolution (struct ui_file *file, int from_tty,
103 struct cmd_list_element *c,
104 const char *value)
105 {
106 fprintf_filtered (file, _("Overload resolution in evaluating "
107 "C++ functions is %s.\n"),
108 value);
109 }
110
111 /* Find the address of function name NAME in the inferior. If OBJF_P
112 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
113 is defined. */
114
115 struct value *
116 find_function_in_inferior (const char *name, struct objfile **objf_p)
117 {
118 struct block_symbol sym;
119
120 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
121 if (sym.symbol != NULL)
122 {
123 if (SYMBOL_CLASS (sym.symbol) != LOC_BLOCK)
124 {
125 error (_("\"%s\" exists in this program but is not a function."),
126 name);
127 }
128
129 if (objf_p)
130 *objf_p = symbol_objfile (sym.symbol);
131
132 return value_of_variable (sym.symbol, sym.block);
133 }
134 else
135 {
136 struct bound_minimal_symbol msymbol =
137 lookup_bound_minimal_symbol (name);
138
139 if (msymbol.minsym != NULL)
140 {
141 struct objfile *objfile = msymbol.objfile;
142 struct gdbarch *gdbarch = objfile->arch ();
143
144 struct type *type;
145 CORE_ADDR maddr;
146 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
147 type = lookup_function_type (type);
148 type = lookup_pointer_type (type);
149 maddr = BMSYMBOL_VALUE_ADDRESS (msymbol);
150
151 if (objf_p)
152 *objf_p = objfile;
153
154 return value_from_pointer (type, maddr);
155 }
156 else
157 {
158 if (!target_has_execution ())
159 error (_("evaluation of this expression "
160 "requires the target program to be active"));
161 else
162 error (_("evaluation of this expression requires the "
163 "program to have a function \"%s\"."),
164 name);
165 }
166 }
167 }
168
169 /* Allocate NBYTES of space in the inferior using the inferior's
170 malloc and return a value that is a pointer to the allocated
171 space. */
172
173 struct value *
174 value_allocate_space_in_inferior (int len)
175 {
176 struct objfile *objf;
177 struct value *val = find_function_in_inferior ("malloc", &objf);
178 struct gdbarch *gdbarch = objf->arch ();
179 struct value *blocklen;
180
181 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
182 val = call_function_by_hand (val, NULL, blocklen);
183 if (value_logical_not (val))
184 {
185 if (!target_has_execution ())
186 error (_("No memory available to program now: "
187 "you need to start the target first"));
188 else
189 error (_("No memory available to program: call to malloc failed"));
190 }
191 return val;
192 }
193
194 static CORE_ADDR
195 allocate_space_in_inferior (int len)
196 {
197 return value_as_long (value_allocate_space_in_inferior (len));
198 }
199
200 /* Cast struct value VAL to type TYPE and return as a value.
201 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
202 for this to work. Typedef to one of the codes is permitted.
203 Returns NULL if the cast is neither an upcast nor a downcast. */
204
205 static struct value *
206 value_cast_structs (struct type *type, struct value *v2)
207 {
208 struct type *t1;
209 struct type *t2;
210 struct value *v;
211
212 gdb_assert (type != NULL && v2 != NULL);
213
214 t1 = check_typedef (type);
215 t2 = check_typedef (value_type (v2));
216
217 /* Check preconditions. */
218 gdb_assert ((t1->code () == TYPE_CODE_STRUCT
219 || t1->code () == TYPE_CODE_UNION)
220 && !!"Precondition is that type is of STRUCT or UNION kind.");
221 gdb_assert ((t2->code () == TYPE_CODE_STRUCT
222 || t2->code () == TYPE_CODE_UNION)
223 && !!"Precondition is that value is of STRUCT or UNION kind");
224
225 if (t1->name () != NULL
226 && t2->name () != NULL
227 && !strcmp (t1->name (), t2->name ()))
228 return NULL;
229
230 /* Upcasting: look in the type of the source to see if it contains the
231 type of the target as a superclass. If so, we'll need to
232 offset the pointer rather than just change its type. */
233 if (t1->name () != NULL)
234 {
235 v = search_struct_field (t1->name (),
236 v2, t2, 1);
237 if (v)
238 return v;
239 }
240
241 /* Downcasting: look in the type of the target to see if it contains the
242 type of the source as a superclass. If so, we'll need to
243 offset the pointer rather than just change its type. */
244 if (t2->name () != NULL)
245 {
246 /* Try downcasting using the run-time type of the value. */
247 int full, using_enc;
248 LONGEST top;
249 struct type *real_type;
250
251 real_type = value_rtti_type (v2, &full, &top, &using_enc);
252 if (real_type)
253 {
254 v = value_full_object (v2, real_type, full, top, using_enc);
255 v = value_at_lazy (real_type, value_address (v));
256 real_type = value_type (v);
257
258 /* We might be trying to cast to the outermost enclosing
259 type, in which case search_struct_field won't work. */
260 if (real_type->name () != NULL
261 && !strcmp (real_type->name (), t1->name ()))
262 return v;
263
264 v = search_struct_field (t2->name (), v, real_type, 1);
265 if (v)
266 return v;
267 }
268
269 /* Try downcasting using information from the destination type
270 T2. This wouldn't work properly for classes with virtual
271 bases, but those were handled above. */
272 v = search_struct_field (t2->name (),
273 value_zero (t1, not_lval), t1, 1);
274 if (v)
275 {
276 /* Downcasting is possible (t1 is superclass of v2). */
277 CORE_ADDR addr2 = value_address (v2);
278
279 addr2 -= value_address (v) + value_embedded_offset (v);
280 return value_at (type, addr2);
281 }
282 }
283
284 return NULL;
285 }
286
287 /* Cast one pointer or reference type to another. Both TYPE and
288 the type of ARG2 should be pointer types, or else both should be
289 reference types. If SUBCLASS_CHECK is non-zero, this will force a
290 check to see whether TYPE is a superclass of ARG2's type. If
291 SUBCLASS_CHECK is zero, then the subclass check is done only when
292 ARG2 is itself non-zero. Returns the new pointer or reference. */
293
294 struct value *
295 value_cast_pointers (struct type *type, struct value *arg2,
296 int subclass_check)
297 {
298 struct type *type1 = check_typedef (type);
299 struct type *type2 = check_typedef (value_type (arg2));
300 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
301 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
302
303 if (t1->code () == TYPE_CODE_STRUCT
304 && t2->code () == TYPE_CODE_STRUCT
305 && (subclass_check || !value_logical_not (arg2)))
306 {
307 struct value *v2;
308
309 if (TYPE_IS_REFERENCE (type2))
310 v2 = coerce_ref (arg2);
311 else
312 v2 = value_ind (arg2);
313 gdb_assert (check_typedef (value_type (v2))->code ()
314 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
315 v2 = value_cast_structs (t1, v2);
316 /* At this point we have what we can have, un-dereference if needed. */
317 if (v2)
318 {
319 struct value *v = value_addr (v2);
320
321 deprecated_set_value_type (v, type);
322 return v;
323 }
324 }
325
326 /* No superclass found, just change the pointer type. */
327 arg2 = value_copy (arg2);
328 deprecated_set_value_type (arg2, type);
329 set_value_enclosing_type (arg2, type);
330 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
331 return arg2;
332 }
333
334 /* See value.h. */
335
336 gdb_mpq
337 value_to_gdb_mpq (struct value *value)
338 {
339 struct type *type = check_typedef (value_type (value));
340
341 gdb_mpq result;
342 if (is_floating_type (type))
343 {
344 double d = target_float_to_host_double (value_contents (value),
345 type);
346 mpq_set_d (result.val, d);
347 }
348 else
349 {
350 gdb_assert (is_integral_type (type)
351 || is_fixed_point_type (type));
352
353 gdb_mpz vz;
354 vz.read (gdb::make_array_view (value_contents (value),
355 TYPE_LENGTH (type)),
356 type_byte_order (type), type->is_unsigned ());
357 mpq_set_z (result.val, vz.val);
358
359 if (is_fixed_point_type (type))
360 mpq_mul (result.val, result.val,
361 type->fixed_point_scaling_factor ().val);
362 }
363
364 return result;
365 }
366
367 /* Assuming that TO_TYPE is a fixed point type, return a value
368 corresponding to the cast of FROM_VAL to that type. */
369
370 static struct value *
371 value_cast_to_fixed_point (struct type *to_type, struct value *from_val)
372 {
373 struct type *from_type = value_type (from_val);
374
375 if (from_type == to_type)
376 return from_val;
377
378 if (!is_floating_type (from_type)
379 && !is_integral_type (from_type)
380 && !is_fixed_point_type (from_type))
381 error (_("Invalid conversion from type %s to fixed point type %s"),
382 from_type->name (), to_type->name ());
383
384 gdb_mpq vq = value_to_gdb_mpq (from_val);
385
386 /* Divide that value by the scaling factor to obtain the unscaled
387 value, first in rational form, and then in integer form. */
388
389 mpq_div (vq.val, vq.val, to_type->fixed_point_scaling_factor ().val);
390 gdb_mpz unscaled = vq.get_rounded ();
391
392 /* Finally, create the result value, and pack the unscaled value
393 in it. */
394 struct value *result = allocate_value (to_type);
395 unscaled.write (gdb::make_array_view (value_contents_raw (result),
396 TYPE_LENGTH (to_type)),
397 type_byte_order (to_type),
398 to_type->is_unsigned ());
399
400 return result;
401 }
402
403 /* Cast value ARG2 to type TYPE and return as a value.
404 More general than a C cast: accepts any two types of the same length,
405 and if ARG2 is an lvalue it can be cast into anything at all. */
406 /* In C++, casts may change pointer or object representations. */
407
408 struct value *
409 value_cast (struct type *type, struct value *arg2)
410 {
411 enum type_code code1;
412 enum type_code code2;
413 int scalar;
414 struct type *type2;
415
416 int convert_to_boolean = 0;
417
418 /* TYPE might be equal in meaning to the existing type of ARG2, but for
419 many reasons, might be a different type object (e.g. TYPE might be a
420 gdbarch owned type, while VALUE_TYPE (ARG2) could be an objfile owned
421 type).
422
423 In this case we want to preserve the LVAL of ARG2 as this allows the
424 resulting value to be used in more places. We do this by calling
425 VALUE_COPY if appropriate. */
426 if (types_deeply_equal (value_type (arg2), type))
427 {
428 /* If the types are exactly equal then we can avoid creating a new
429 value completely. */
430 if (value_type (arg2) != type)
431 {
432 arg2 = value_copy (arg2);
433 deprecated_set_value_type (arg2, type);
434 }
435 return arg2;
436 }
437
438 if (is_fixed_point_type (type))
439 return value_cast_to_fixed_point (type, arg2);
440
441 /* Check if we are casting struct reference to struct reference. */
442 if (TYPE_IS_REFERENCE (check_typedef (type)))
443 {
444 /* We dereference type; then we recurse and finally
445 we generate value of the given reference. Nothing wrong with
446 that. */
447 struct type *t1 = check_typedef (type);
448 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
449 struct value *val = value_cast (dereftype, arg2);
450
451 return value_ref (val, t1->code ());
452 }
453
454 if (TYPE_IS_REFERENCE (check_typedef (value_type (arg2))))
455 /* We deref the value and then do the cast. */
456 return value_cast (type, coerce_ref (arg2));
457
458 /* Strip typedefs / resolve stubs in order to get at the type's
459 code/length, but remember the original type, to use as the
460 resulting type of the cast, in case it was a typedef. */
461 struct type *to_type = type;
462
463 type = check_typedef (type);
464 code1 = type->code ();
465 arg2 = coerce_ref (arg2);
466 type2 = check_typedef (value_type (arg2));
467
468 /* You can't cast to a reference type. See value_cast_pointers
469 instead. */
470 gdb_assert (!TYPE_IS_REFERENCE (type));
471
472 /* A cast to an undetermined-length array_type, such as
473 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
474 where N is sizeof(OBJECT)/sizeof(TYPE). */
475 if (code1 == TYPE_CODE_ARRAY)
476 {
477 struct type *element_type = TYPE_TARGET_TYPE (type);
478 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
479
480 if (element_length > 0 && type->bounds ()->high.kind () == PROP_UNDEFINED)
481 {
482 struct type *range_type = type->index_type ();
483 int val_length = TYPE_LENGTH (type2);
484 LONGEST low_bound, high_bound, new_length;
485
486 if (!get_discrete_bounds (range_type, &low_bound, &high_bound))
487 low_bound = 0, high_bound = 0;
488 new_length = val_length / element_length;
489 if (val_length % element_length != 0)
490 warning (_("array element type size does not "
491 "divide object size in cast"));
492 /* FIXME-type-allocation: need a way to free this type when
493 we are done with it. */
494 range_type = create_static_range_type (NULL,
495 TYPE_TARGET_TYPE (range_type),
496 low_bound,
497 new_length + low_bound - 1);
498 deprecated_set_value_type (arg2,
499 create_array_type (NULL,
500 element_type,
501 range_type));
502 return arg2;
503 }
504 }
505
506 if (current_language->c_style_arrays_p ()
507 && type2->code () == TYPE_CODE_ARRAY
508 && !type2->is_vector ())
509 arg2 = value_coerce_array (arg2);
510
511 if (type2->code () == TYPE_CODE_FUNC)
512 arg2 = value_coerce_function (arg2);
513
514 type2 = check_typedef (value_type (arg2));
515 code2 = type2->code ();
516
517 if (code1 == TYPE_CODE_COMPLEX)
518 return cast_into_complex (to_type, arg2);
519 if (code1 == TYPE_CODE_BOOL)
520 {
521 code1 = TYPE_CODE_INT;
522 convert_to_boolean = 1;
523 }
524 if (code1 == TYPE_CODE_CHAR)
525 code1 = TYPE_CODE_INT;
526 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
527 code2 = TYPE_CODE_INT;
528
529 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
530 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
531 || code2 == TYPE_CODE_RANGE
532 || is_fixed_point_type (type2));
533
534 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
535 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
536 && type->name () != 0)
537 {
538 struct value *v = value_cast_structs (to_type, arg2);
539
540 if (v)
541 return v;
542 }
543
544 if (is_floating_type (type) && scalar)
545 {
546 if (is_floating_value (arg2))
547 {
548 struct value *v = allocate_value (to_type);
549 target_float_convert (value_contents (arg2), type2,
550 value_contents_raw (v), type);
551 return v;
552 }
553 else if (is_fixed_point_type (type2))
554 {
555 gdb_mpq fp_val;
556
557 fp_val.read_fixed_point
558 (gdb::make_array_view (value_contents (arg2), TYPE_LENGTH (type2)),
559 type_byte_order (type2), type2->is_unsigned (),
560 type2->fixed_point_scaling_factor ());
561
562 struct value *v = allocate_value (to_type);
563 target_float_from_host_double (value_contents_raw (v),
564 to_type, mpq_get_d (fp_val.val));
565 return v;
566 }
567
568 /* The only option left is an integral type. */
569 if (type2->is_unsigned ())
570 return value_from_ulongest (to_type, value_as_long (arg2));
571 else
572 return value_from_longest (to_type, value_as_long (arg2));
573 }
574 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
575 || code1 == TYPE_CODE_RANGE)
576 && (scalar || code2 == TYPE_CODE_PTR
577 || code2 == TYPE_CODE_MEMBERPTR))
578 {
579 LONGEST longest;
580
581 /* When we cast pointers to integers, we mustn't use
582 gdbarch_pointer_to_address to find the address the pointer
583 represents, as value_as_long would. GDB should evaluate
584 expressions just as the compiler would --- and the compiler
585 sees a cast as a simple reinterpretation of the pointer's
586 bits. */
587 if (code2 == TYPE_CODE_PTR)
588 longest = extract_unsigned_integer
589 (value_contents (arg2), TYPE_LENGTH (type2),
590 type_byte_order (type2));
591 else
592 longest = value_as_long (arg2);
593 return value_from_longest (to_type, convert_to_boolean ?
594 (LONGEST) (longest ? 1 : 0) : longest);
595 }
596 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
597 || code2 == TYPE_CODE_ENUM
598 || code2 == TYPE_CODE_RANGE))
599 {
600 /* TYPE_LENGTH (type) is the length of a pointer, but we really
601 want the length of an address! -- we are really dealing with
602 addresses (i.e., gdb representations) not pointers (i.e.,
603 target representations) here.
604
605 This allows things like "print *(int *)0x01000234" to work
606 without printing a misleading message -- which would
607 otherwise occur when dealing with a target having two byte
608 pointers and four byte addresses. */
609
610 int addr_bit = gdbarch_addr_bit (type2->arch ());
611 LONGEST longest = value_as_long (arg2);
612
613 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
614 {
615 if (longest >= ((LONGEST) 1 << addr_bit)
616 || longest <= -((LONGEST) 1 << addr_bit))
617 warning (_("value truncated"));
618 }
619 return value_from_longest (to_type, longest);
620 }
621 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
622 && value_as_long (arg2) == 0)
623 {
624 struct value *result = allocate_value (to_type);
625
626 cplus_make_method_ptr (to_type, value_contents_writeable (result), 0, 0);
627 return result;
628 }
629 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
630 && value_as_long (arg2) == 0)
631 {
632 /* The Itanium C++ ABI represents NULL pointers to members as
633 minus one, instead of biasing the normal case. */
634 return value_from_longest (to_type, -1);
635 }
636 else if (code1 == TYPE_CODE_ARRAY && type->is_vector ()
637 && code2 == TYPE_CODE_ARRAY && type2->is_vector ()
638 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
639 error (_("Cannot convert between vector values of different sizes"));
640 else if (code1 == TYPE_CODE_ARRAY && type->is_vector () && scalar
641 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
642 error (_("can only cast scalar to vector of same size"));
643 else if (code1 == TYPE_CODE_VOID)
644 {
645 return value_zero (to_type, not_lval);
646 }
647 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
648 {
649 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
650 return value_cast_pointers (to_type, arg2, 0);
651
652 arg2 = value_copy (arg2);
653 deprecated_set_value_type (arg2, to_type);
654 set_value_enclosing_type (arg2, to_type);
655 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
656 return arg2;
657 }
658 else if (VALUE_LVAL (arg2) == lval_memory)
659 return value_at_lazy (to_type, value_address (arg2));
660 else
661 {
662 if (current_language->la_language == language_ada)
663 error (_("Invalid type conversion."));
664 error (_("Invalid cast."));
665 }
666 }
667
668 /* The C++ reinterpret_cast operator. */
669
670 struct value *
671 value_reinterpret_cast (struct type *type, struct value *arg)
672 {
673 struct value *result;
674 struct type *real_type = check_typedef (type);
675 struct type *arg_type, *dest_type;
676 int is_ref = 0;
677 enum type_code dest_code, arg_code;
678
679 /* Do reference, function, and array conversion. */
680 arg = coerce_array (arg);
681
682 /* Attempt to preserve the type the user asked for. */
683 dest_type = type;
684
685 /* If we are casting to a reference type, transform
686 reinterpret_cast<T&[&]>(V) to *reinterpret_cast<T*>(&V). */
687 if (TYPE_IS_REFERENCE (real_type))
688 {
689 is_ref = 1;
690 arg = value_addr (arg);
691 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
692 real_type = lookup_pointer_type (real_type);
693 }
694
695 arg_type = value_type (arg);
696
697 dest_code = real_type->code ();
698 arg_code = arg_type->code ();
699
700 /* We can convert pointer types, or any pointer type to int, or int
701 type to pointer. */
702 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
703 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
704 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
705 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
706 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
707 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
708 || (dest_code == arg_code
709 && (dest_code == TYPE_CODE_PTR
710 || dest_code == TYPE_CODE_METHODPTR
711 || dest_code == TYPE_CODE_MEMBERPTR)))
712 result = value_cast (dest_type, arg);
713 else
714 error (_("Invalid reinterpret_cast"));
715
716 if (is_ref)
717 result = value_cast (type, value_ref (value_ind (result),
718 type->code ()));
719
720 return result;
721 }
722
723 /* A helper for value_dynamic_cast. This implements the first of two
724 runtime checks: we iterate over all the base classes of the value's
725 class which are equal to the desired class; if only one of these
726 holds the value, then it is the answer. */
727
728 static int
729 dynamic_cast_check_1 (struct type *desired_type,
730 const gdb_byte *valaddr,
731 LONGEST embedded_offset,
732 CORE_ADDR address,
733 struct value *val,
734 struct type *search_type,
735 CORE_ADDR arg_addr,
736 struct type *arg_type,
737 struct value **result)
738 {
739 int i, result_count = 0;
740
741 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
742 {
743 LONGEST offset = baseclass_offset (search_type, i, valaddr,
744 embedded_offset,
745 address, val);
746
747 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
748 {
749 if (address + embedded_offset + offset >= arg_addr
750 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
751 {
752 ++result_count;
753 if (!*result)
754 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
755 address + embedded_offset + offset);
756 }
757 }
758 else
759 result_count += dynamic_cast_check_1 (desired_type,
760 valaddr,
761 embedded_offset + offset,
762 address, val,
763 TYPE_BASECLASS (search_type, i),
764 arg_addr,
765 arg_type,
766 result);
767 }
768
769 return result_count;
770 }
771
772 /* A helper for value_dynamic_cast. This implements the second of two
773 runtime checks: we look for a unique public sibling class of the
774 argument's declared class. */
775
776 static int
777 dynamic_cast_check_2 (struct type *desired_type,
778 const gdb_byte *valaddr,
779 LONGEST embedded_offset,
780 CORE_ADDR address,
781 struct value *val,
782 struct type *search_type,
783 struct value **result)
784 {
785 int i, result_count = 0;
786
787 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
788 {
789 LONGEST offset;
790
791 if (! BASETYPE_VIA_PUBLIC (search_type, i))
792 continue;
793
794 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
795 address, val);
796 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
797 {
798 ++result_count;
799 if (*result == NULL)
800 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
801 address + embedded_offset + offset);
802 }
803 else
804 result_count += dynamic_cast_check_2 (desired_type,
805 valaddr,
806 embedded_offset + offset,
807 address, val,
808 TYPE_BASECLASS (search_type, i),
809 result);
810 }
811
812 return result_count;
813 }
814
815 /* The C++ dynamic_cast operator. */
816
817 struct value *
818 value_dynamic_cast (struct type *type, struct value *arg)
819 {
820 int full, using_enc;
821 LONGEST top;
822 struct type *resolved_type = check_typedef (type);
823 struct type *arg_type = check_typedef (value_type (arg));
824 struct type *class_type, *rtti_type;
825 struct value *result, *tem, *original_arg = arg;
826 CORE_ADDR addr;
827 int is_ref = TYPE_IS_REFERENCE (resolved_type);
828
829 if (resolved_type->code () != TYPE_CODE_PTR
830 && !TYPE_IS_REFERENCE (resolved_type))
831 error (_("Argument to dynamic_cast must be a pointer or reference type"));
832 if (TYPE_TARGET_TYPE (resolved_type)->code () != TYPE_CODE_VOID
833 && TYPE_TARGET_TYPE (resolved_type)->code () != TYPE_CODE_STRUCT)
834 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
835
836 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
837 if (resolved_type->code () == TYPE_CODE_PTR)
838 {
839 if (arg_type->code () != TYPE_CODE_PTR
840 && ! (arg_type->code () == TYPE_CODE_INT
841 && value_as_long (arg) == 0))
842 error (_("Argument to dynamic_cast does not have pointer type"));
843 if (arg_type->code () == TYPE_CODE_PTR)
844 {
845 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
846 if (arg_type->code () != TYPE_CODE_STRUCT)
847 error (_("Argument to dynamic_cast does "
848 "not have pointer to class type"));
849 }
850
851 /* Handle NULL pointers. */
852 if (value_as_long (arg) == 0)
853 return value_zero (type, not_lval);
854
855 arg = value_ind (arg);
856 }
857 else
858 {
859 if (arg_type->code () != TYPE_CODE_STRUCT)
860 error (_("Argument to dynamic_cast does not have class type"));
861 }
862
863 /* If the classes are the same, just return the argument. */
864 if (class_types_same_p (class_type, arg_type))
865 return value_cast (type, arg);
866
867 /* If the target type is a unique base class of the argument's
868 declared type, just cast it. */
869 if (is_ancestor (class_type, arg_type))
870 {
871 if (is_unique_ancestor (class_type, arg))
872 return value_cast (type, original_arg);
873 error (_("Ambiguous dynamic_cast"));
874 }
875
876 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
877 if (! rtti_type)
878 error (_("Couldn't determine value's most derived type for dynamic_cast"));
879
880 /* Compute the most derived object's address. */
881 addr = value_address (arg);
882 if (full)
883 {
884 /* Done. */
885 }
886 else if (using_enc)
887 addr += top;
888 else
889 addr += top + value_embedded_offset (arg);
890
891 /* dynamic_cast<void *> means to return a pointer to the
892 most-derived object. */
893 if (resolved_type->code () == TYPE_CODE_PTR
894 && TYPE_TARGET_TYPE (resolved_type)->code () == TYPE_CODE_VOID)
895 return value_at_lazy (type, addr);
896
897 tem = value_at (type, addr);
898 type = value_type (tem);
899
900 /* The first dynamic check specified in 5.2.7. */
901 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
902 {
903 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
904 return tem;
905 result = NULL;
906 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
907 value_contents_for_printing (tem),
908 value_embedded_offset (tem),
909 value_address (tem), tem,
910 rtti_type, addr,
911 arg_type,
912 &result) == 1)
913 return value_cast (type,
914 is_ref
915 ? value_ref (result, resolved_type->code ())
916 : value_addr (result));
917 }
918
919 /* The second dynamic check specified in 5.2.7. */
920 result = NULL;
921 if (is_public_ancestor (arg_type, rtti_type)
922 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
923 value_contents_for_printing (tem),
924 value_embedded_offset (tem),
925 value_address (tem), tem,
926 rtti_type, &result) == 1)
927 return value_cast (type,
928 is_ref
929 ? value_ref (result, resolved_type->code ())
930 : value_addr (result));
931
932 if (resolved_type->code () == TYPE_CODE_PTR)
933 return value_zero (type, not_lval);
934
935 error (_("dynamic_cast failed"));
936 }
937
938 /* Create a value of type TYPE that is zero, and return it. */
939
940 struct value *
941 value_zero (struct type *type, enum lval_type lv)
942 {
943 struct value *val = allocate_value (type);
944
945 VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv);
946 return val;
947 }
948
949 /* Create a not_lval value of numeric type TYPE that is one, and return it. */
950
951 struct value *
952 value_one (struct type *type)
953 {
954 struct type *type1 = check_typedef (type);
955 struct value *val;
956
957 if (is_integral_type (type1) || is_floating_type (type1))
958 {
959 val = value_from_longest (type, (LONGEST) 1);
960 }
961 else if (type1->code () == TYPE_CODE_ARRAY && type1->is_vector ())
962 {
963 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
964 int i;
965 LONGEST low_bound, high_bound;
966 struct value *tmp;
967
968 if (!get_array_bounds (type1, &low_bound, &high_bound))
969 error (_("Could not determine the vector bounds"));
970
971 val = allocate_value (type);
972 for (i = 0; i < high_bound - low_bound + 1; i++)
973 {
974 tmp = value_one (eltype);
975 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
976 value_contents_all (tmp), TYPE_LENGTH (eltype));
977 }
978 }
979 else
980 {
981 error (_("Not a numeric type."));
982 }
983
984 /* value_one result is never used for assignments to. */
985 gdb_assert (VALUE_LVAL (val) == not_lval);
986
987 return val;
988 }
989
990 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack.
991 The type of the created value may differ from the passed type TYPE.
992 Make sure to retrieve the returned values's new type after this call
993 e.g. in case the type is a variable length array. */
994
995 static struct value *
996 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
997 {
998 struct value *val;
999
1000 if (check_typedef (type)->code () == TYPE_CODE_VOID)
1001 error (_("Attempt to dereference a generic pointer."));
1002
1003 val = value_from_contents_and_address (type, NULL, addr);
1004
1005 if (!lazy)
1006 value_fetch_lazy (val);
1007
1008 return val;
1009 }
1010
1011 /* Return a value with type TYPE located at ADDR.
1012
1013 Call value_at only if the data needs to be fetched immediately;
1014 if we can be 'lazy' and defer the fetch, perhaps indefinitely, call
1015 value_at_lazy instead. value_at_lazy simply records the address of
1016 the data and sets the lazy-evaluation-required flag. The lazy flag
1017 is tested in the value_contents macro, which is used if and when
1018 the contents are actually required. The type of the created value
1019 may differ from the passed type TYPE. Make sure to retrieve the
1020 returned values's new type after this call e.g. in case the type
1021 is a variable length array.
1022
1023 Note: value_at does *NOT* handle embedded offsets; perform such
1024 adjustments before or after calling it. */
1025
1026 struct value *
1027 value_at (struct type *type, CORE_ADDR addr)
1028 {
1029 return get_value_at (type, addr, 0);
1030 }
1031
1032 /* Return a lazy value with type TYPE located at ADDR (cf. value_at).
1033 The type of the created value may differ from the passed type TYPE.
1034 Make sure to retrieve the returned values's new type after this call
1035 e.g. in case the type is a variable length array. */
1036
1037 struct value *
1038 value_at_lazy (struct type *type, CORE_ADDR addr)
1039 {
1040 return get_value_at (type, addr, 1);
1041 }
1042
1043 void
1044 read_value_memory (struct value *val, LONGEST bit_offset,
1045 int stack, CORE_ADDR memaddr,
1046 gdb_byte *buffer, size_t length)
1047 {
1048 ULONGEST xfered_total = 0;
1049 struct gdbarch *arch = get_value_arch (val);
1050 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1051 enum target_object object;
1052
1053 object = stack ? TARGET_OBJECT_STACK_MEMORY : TARGET_OBJECT_MEMORY;
1054
1055 while (xfered_total < length)
1056 {
1057 enum target_xfer_status status;
1058 ULONGEST xfered_partial;
1059
1060 status = target_xfer_partial (current_inferior ()->top_target (),
1061 object, NULL,
1062 buffer + xfered_total * unit_size, NULL,
1063 memaddr + xfered_total,
1064 length - xfered_total,
1065 &xfered_partial);
1066
1067 if (status == TARGET_XFER_OK)
1068 /* nothing */;
1069 else if (status == TARGET_XFER_UNAVAILABLE)
1070 mark_value_bits_unavailable (val, (xfered_total * HOST_CHAR_BIT
1071 + bit_offset),
1072 xfered_partial * HOST_CHAR_BIT);
1073 else if (status == TARGET_XFER_EOF)
1074 memory_error (TARGET_XFER_E_IO, memaddr + xfered_total);
1075 else
1076 memory_error (status, memaddr + xfered_total);
1077
1078 xfered_total += xfered_partial;
1079 QUIT;
1080 }
1081 }
1082
1083 /* Store the contents of FROMVAL into the location of TOVAL.
1084 Return a new value with the location of TOVAL and contents of FROMVAL. */
1085
1086 struct value *
1087 value_assign (struct value *toval, struct value *fromval)
1088 {
1089 struct type *type;
1090 struct value *val;
1091 struct frame_id old_frame;
1092
1093 if (!deprecated_value_modifiable (toval))
1094 error (_("Left operand of assignment is not a modifiable lvalue."));
1095
1096 toval = coerce_ref (toval);
1097
1098 type = value_type (toval);
1099 if (VALUE_LVAL (toval) != lval_internalvar)
1100 fromval = value_cast (type, fromval);
1101 else
1102 {
1103 /* Coerce arrays and functions to pointers, except for arrays
1104 which only live in GDB's storage. */
1105 if (!value_must_coerce_to_target (fromval))
1106 fromval = coerce_array (fromval);
1107 }
1108
1109 type = check_typedef (type);
1110
1111 /* Since modifying a register can trash the frame chain, and
1112 modifying memory can trash the frame cache, we save the old frame
1113 and then restore the new frame afterwards. */
1114 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1115
1116 switch (VALUE_LVAL (toval))
1117 {
1118 case lval_internalvar:
1119 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1120 return value_of_internalvar (type->arch (),
1121 VALUE_INTERNALVAR (toval));
1122
1123 case lval_internalvar_component:
1124 {
1125 LONGEST offset = value_offset (toval);
1126
1127 /* Are we dealing with a bitfield?
1128
1129 It is important to mention that `value_parent (toval)' is
1130 non-NULL iff `value_bitsize (toval)' is non-zero. */
1131 if (value_bitsize (toval))
1132 {
1133 /* VALUE_INTERNALVAR below refers to the parent value, while
1134 the offset is relative to this parent value. */
1135 gdb_assert (value_parent (value_parent (toval)) == NULL);
1136 offset += value_offset (value_parent (toval));
1137 }
1138
1139 set_internalvar_component (VALUE_INTERNALVAR (toval),
1140 offset,
1141 value_bitpos (toval),
1142 value_bitsize (toval),
1143 fromval);
1144 }
1145 break;
1146
1147 case lval_memory:
1148 {
1149 const gdb_byte *dest_buffer;
1150 CORE_ADDR changed_addr;
1151 int changed_len;
1152 gdb_byte buffer[sizeof (LONGEST)];
1153
1154 if (value_bitsize (toval))
1155 {
1156 struct value *parent = value_parent (toval);
1157
1158 changed_addr = value_address (parent) + value_offset (toval);
1159 changed_len = (value_bitpos (toval)
1160 + value_bitsize (toval)
1161 + HOST_CHAR_BIT - 1)
1162 / HOST_CHAR_BIT;
1163
1164 /* If we can read-modify-write exactly the size of the
1165 containing type (e.g. short or int) then do so. This
1166 is safer for volatile bitfields mapped to hardware
1167 registers. */
1168 if (changed_len < TYPE_LENGTH (type)
1169 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1170 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1171 changed_len = TYPE_LENGTH (type);
1172
1173 if (changed_len > (int) sizeof (LONGEST))
1174 error (_("Can't handle bitfields which "
1175 "don't fit in a %d bit word."),
1176 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1177
1178 read_memory (changed_addr, buffer, changed_len);
1179 modify_field (type, buffer, value_as_long (fromval),
1180 value_bitpos (toval), value_bitsize (toval));
1181 dest_buffer = buffer;
1182 }
1183 else
1184 {
1185 changed_addr = value_address (toval);
1186 changed_len = type_length_units (type);
1187 dest_buffer = value_contents (fromval);
1188 }
1189
1190 write_memory_with_notification (changed_addr, dest_buffer, changed_len);
1191 }
1192 break;
1193
1194 case lval_register:
1195 {
1196 struct frame_info *frame;
1197 struct gdbarch *gdbarch;
1198 int value_reg;
1199
1200 /* Figure out which frame this is in currently.
1201
1202 We use VALUE_FRAME_ID for obtaining the value's frame id instead of
1203 VALUE_NEXT_FRAME_ID due to requiring a frame which may be passed to
1204 put_frame_register_bytes() below. That function will (eventually)
1205 perform the necessary unwind operation by first obtaining the next
1206 frame. */
1207 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1208
1209 value_reg = VALUE_REGNUM (toval);
1210
1211 if (!frame)
1212 error (_("Value being assigned to is no longer active."));
1213
1214 gdbarch = get_frame_arch (frame);
1215
1216 if (value_bitsize (toval))
1217 {
1218 struct value *parent = value_parent (toval);
1219 LONGEST offset = value_offset (parent) + value_offset (toval);
1220 size_t changed_len;
1221 gdb_byte buffer[sizeof (LONGEST)];
1222 int optim, unavail;
1223
1224 changed_len = (value_bitpos (toval)
1225 + value_bitsize (toval)
1226 + HOST_CHAR_BIT - 1)
1227 / HOST_CHAR_BIT;
1228
1229 if (changed_len > sizeof (LONGEST))
1230 error (_("Can't handle bitfields which "
1231 "don't fit in a %d bit word."),
1232 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1233
1234 if (!get_frame_register_bytes (frame, value_reg, offset,
1235 {buffer, changed_len},
1236 &optim, &unavail))
1237 {
1238 if (optim)
1239 throw_error (OPTIMIZED_OUT_ERROR,
1240 _("value has been optimized out"));
1241 if (unavail)
1242 throw_error (NOT_AVAILABLE_ERROR,
1243 _("value is not available"));
1244 }
1245
1246 modify_field (type, buffer, value_as_long (fromval),
1247 value_bitpos (toval), value_bitsize (toval));
1248
1249 put_frame_register_bytes (frame, value_reg, offset,
1250 {buffer, changed_len});
1251 }
1252 else
1253 {
1254 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval),
1255 type))
1256 {
1257 /* If TOVAL is a special machine register requiring
1258 conversion of program values to a special raw
1259 format. */
1260 gdbarch_value_to_register (gdbarch, frame,
1261 VALUE_REGNUM (toval), type,
1262 value_contents (fromval));
1263 }
1264 else
1265 {
1266 gdb::array_view<const gdb_byte> contents
1267 = gdb::make_array_view (value_contents (fromval),
1268 TYPE_LENGTH (type));
1269 put_frame_register_bytes (frame, value_reg,
1270 value_offset (toval),
1271 contents);
1272 }
1273 }
1274
1275 gdb::observers::register_changed.notify (frame, value_reg);
1276 break;
1277 }
1278
1279 case lval_computed:
1280 {
1281 const struct lval_funcs *funcs = value_computed_funcs (toval);
1282
1283 if (funcs->write != NULL)
1284 {
1285 funcs->write (toval, fromval);
1286 break;
1287 }
1288 }
1289 /* Fall through. */
1290
1291 default:
1292 error (_("Left operand of assignment is not an lvalue."));
1293 }
1294
1295 /* Assigning to the stack pointer, frame pointer, and other
1296 (architecture and calling convention specific) registers may
1297 cause the frame cache and regcache to be out of date. Assigning to memory
1298 also can. We just do this on all assignments to registers or
1299 memory, for simplicity's sake; I doubt the slowdown matters. */
1300 switch (VALUE_LVAL (toval))
1301 {
1302 case lval_memory:
1303 case lval_register:
1304 case lval_computed:
1305
1306 gdb::observers::target_changed.notify
1307 (current_inferior ()->top_target ());
1308
1309 /* Having destroyed the frame cache, restore the selected
1310 frame. */
1311
1312 /* FIXME: cagney/2002-11-02: There has to be a better way of
1313 doing this. Instead of constantly saving/restoring the
1314 frame. Why not create a get_selected_frame() function that,
1315 having saved the selected frame's ID can automatically
1316 re-find the previously selected frame automatically. */
1317
1318 {
1319 struct frame_info *fi = frame_find_by_id (old_frame);
1320
1321 if (fi != NULL)
1322 select_frame (fi);
1323 }
1324
1325 break;
1326 default:
1327 break;
1328 }
1329
1330 /* If the field does not entirely fill a LONGEST, then zero the sign
1331 bits. If the field is signed, and is negative, then sign
1332 extend. */
1333 if ((value_bitsize (toval) > 0)
1334 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1335 {
1336 LONGEST fieldval = value_as_long (fromval);
1337 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1338
1339 fieldval &= valmask;
1340 if (!type->is_unsigned ()
1341 && (fieldval & (valmask ^ (valmask >> 1))))
1342 fieldval |= ~valmask;
1343
1344 fromval = value_from_longest (type, fieldval);
1345 }
1346
1347 /* The return value is a copy of TOVAL so it shares its location
1348 information, but its contents are updated from FROMVAL. This
1349 implies the returned value is not lazy, even if TOVAL was. */
1350 val = value_copy (toval);
1351 set_value_lazy (val, 0);
1352 memcpy (value_contents_raw (val), value_contents (fromval),
1353 TYPE_LENGTH (type));
1354
1355 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1356 in the case of pointer types. For object types, the enclosing type
1357 and embedded offset must *not* be copied: the target object refered
1358 to by TOVAL retains its original dynamic type after assignment. */
1359 if (type->code () == TYPE_CODE_PTR)
1360 {
1361 set_value_enclosing_type (val, value_enclosing_type (fromval));
1362 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1363 }
1364
1365 return val;
1366 }
1367
1368 /* Extend a value ARG1 to COUNT repetitions of its type. */
1369
1370 struct value *
1371 value_repeat (struct value *arg1, int count)
1372 {
1373 struct value *val;
1374
1375 if (VALUE_LVAL (arg1) != lval_memory)
1376 error (_("Only values in memory can be extended with '@'."));
1377 if (count < 1)
1378 error (_("Invalid number %d of repetitions."), count);
1379
1380 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1381
1382 VALUE_LVAL (val) = lval_memory;
1383 set_value_address (val, value_address (arg1));
1384
1385 read_value_memory (val, 0, value_stack (val), value_address (val),
1386 value_contents_all_raw (val),
1387 type_length_units (value_enclosing_type (val)));
1388
1389 return val;
1390 }
1391
1392 struct value *
1393 value_of_variable (struct symbol *var, const struct block *b)
1394 {
1395 struct frame_info *frame = NULL;
1396
1397 if (symbol_read_needs_frame (var))
1398 frame = get_selected_frame (_("No frame selected."));
1399
1400 return read_var_value (var, b, frame);
1401 }
1402
1403 struct value *
1404 address_of_variable (struct symbol *var, const struct block *b)
1405 {
1406 struct type *type = SYMBOL_TYPE (var);
1407 struct value *val;
1408
1409 /* Evaluate it first; if the result is a memory address, we're fine.
1410 Lazy evaluation pays off here. */
1411
1412 val = value_of_variable (var, b);
1413 type = value_type (val);
1414
1415 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1416 || type->code () == TYPE_CODE_FUNC)
1417 {
1418 CORE_ADDR addr = value_address (val);
1419
1420 return value_from_pointer (lookup_pointer_type (type), addr);
1421 }
1422
1423 /* Not a memory address; check what the problem was. */
1424 switch (VALUE_LVAL (val))
1425 {
1426 case lval_register:
1427 {
1428 struct frame_info *frame;
1429 const char *regname;
1430
1431 frame = frame_find_by_id (VALUE_NEXT_FRAME_ID (val));
1432 gdb_assert (frame);
1433
1434 regname = gdbarch_register_name (get_frame_arch (frame),
1435 VALUE_REGNUM (val));
1436 gdb_assert (regname && *regname);
1437
1438 error (_("Address requested for identifier "
1439 "\"%s\" which is in register $%s"),
1440 var->print_name (), regname);
1441 break;
1442 }
1443
1444 default:
1445 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1446 var->print_name ());
1447 break;
1448 }
1449
1450 return val;
1451 }
1452
1453 /* See value.h. */
1454
1455 bool
1456 value_must_coerce_to_target (struct value *val)
1457 {
1458 struct type *valtype;
1459
1460 /* The only lval kinds which do not live in target memory. */
1461 if (VALUE_LVAL (val) != not_lval
1462 && VALUE_LVAL (val) != lval_internalvar
1463 && VALUE_LVAL (val) != lval_xcallable)
1464 return false;
1465
1466 valtype = check_typedef (value_type (val));
1467
1468 switch (valtype->code ())
1469 {
1470 case TYPE_CODE_ARRAY:
1471 return valtype->is_vector () ? 0 : 1;
1472 case TYPE_CODE_STRING:
1473 return true;
1474 default:
1475 return false;
1476 }
1477 }
1478
1479 /* Make sure that VAL lives in target memory if it's supposed to. For
1480 instance, strings are constructed as character arrays in GDB's
1481 storage, and this function copies them to the target. */
1482
1483 struct value *
1484 value_coerce_to_target (struct value *val)
1485 {
1486 LONGEST length;
1487 CORE_ADDR addr;
1488
1489 if (!value_must_coerce_to_target (val))
1490 return val;
1491
1492 length = TYPE_LENGTH (check_typedef (value_type (val)));
1493 addr = allocate_space_in_inferior (length);
1494 write_memory (addr, value_contents (val), length);
1495 return value_at_lazy (value_type (val), addr);
1496 }
1497
1498 /* Given a value which is an array, return a value which is a pointer
1499 to its first element, regardless of whether or not the array has a
1500 nonzero lower bound.
1501
1502 FIXME: A previous comment here indicated that this routine should
1503 be substracting the array's lower bound. It's not clear to me that
1504 this is correct. Given an array subscripting operation, it would
1505 certainly work to do the adjustment here, essentially computing:
1506
1507 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1508
1509 However I believe a more appropriate and logical place to account
1510 for the lower bound is to do so in value_subscript, essentially
1511 computing:
1512
1513 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1514
1515 As further evidence consider what would happen with operations
1516 other than array subscripting, where the caller would get back a
1517 value that had an address somewhere before the actual first element
1518 of the array, and the information about the lower bound would be
1519 lost because of the coercion to pointer type. */
1520
1521 struct value *
1522 value_coerce_array (struct value *arg1)
1523 {
1524 struct type *type = check_typedef (value_type (arg1));
1525
1526 /* If the user tries to do something requiring a pointer with an
1527 array that has not yet been pushed to the target, then this would
1528 be a good time to do so. */
1529 arg1 = value_coerce_to_target (arg1);
1530
1531 if (VALUE_LVAL (arg1) != lval_memory)
1532 error (_("Attempt to take address of value not located in memory."));
1533
1534 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1535 value_address (arg1));
1536 }
1537
1538 /* Given a value which is a function, return a value which is a pointer
1539 to it. */
1540
1541 struct value *
1542 value_coerce_function (struct value *arg1)
1543 {
1544 struct value *retval;
1545
1546 if (VALUE_LVAL (arg1) != lval_memory)
1547 error (_("Attempt to take address of value not located in memory."));
1548
1549 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1550 value_address (arg1));
1551 return retval;
1552 }
1553
1554 /* Return a pointer value for the object for which ARG1 is the
1555 contents. */
1556
1557 struct value *
1558 value_addr (struct value *arg1)
1559 {
1560 struct value *arg2;
1561 struct type *type = check_typedef (value_type (arg1));
1562
1563 if (TYPE_IS_REFERENCE (type))
1564 {
1565 if (value_bits_synthetic_pointer (arg1, value_embedded_offset (arg1),
1566 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1567 arg1 = coerce_ref (arg1);
1568 else
1569 {
1570 /* Copy the value, but change the type from (T&) to (T*). We
1571 keep the same location information, which is efficient, and
1572 allows &(&X) to get the location containing the reference.
1573 Do the same to its enclosing type for consistency. */
1574 struct type *type_ptr
1575 = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1576 struct type *enclosing_type
1577 = check_typedef (value_enclosing_type (arg1));
1578 struct type *enclosing_type_ptr
1579 = lookup_pointer_type (TYPE_TARGET_TYPE (enclosing_type));
1580
1581 arg2 = value_copy (arg1);
1582 deprecated_set_value_type (arg2, type_ptr);
1583 set_value_enclosing_type (arg2, enclosing_type_ptr);
1584
1585 return arg2;
1586 }
1587 }
1588 if (type->code () == TYPE_CODE_FUNC)
1589 return value_coerce_function (arg1);
1590
1591 /* If this is an array that has not yet been pushed to the target,
1592 then this would be a good time to force it to memory. */
1593 arg1 = value_coerce_to_target (arg1);
1594
1595 if (VALUE_LVAL (arg1) != lval_memory)
1596 error (_("Attempt to take address of value not located in memory."));
1597
1598 /* Get target memory address. */
1599 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1600 (value_address (arg1)
1601 + value_embedded_offset (arg1)));
1602
1603 /* This may be a pointer to a base subobject; so remember the
1604 full derived object's type ... */
1605 set_value_enclosing_type (arg2,
1606 lookup_pointer_type (value_enclosing_type (arg1)));
1607 /* ... and also the relative position of the subobject in the full
1608 object. */
1609 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1610 return arg2;
1611 }
1612
1613 /* Return a reference value for the object for which ARG1 is the
1614 contents. */
1615
1616 struct value *
1617 value_ref (struct value *arg1, enum type_code refcode)
1618 {
1619 struct value *arg2;
1620 struct type *type = check_typedef (value_type (arg1));
1621
1622 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
1623
1624 if ((type->code () == TYPE_CODE_REF
1625 || type->code () == TYPE_CODE_RVALUE_REF)
1626 && type->code () == refcode)
1627 return arg1;
1628
1629 arg2 = value_addr (arg1);
1630 deprecated_set_value_type (arg2, lookup_reference_type (type, refcode));
1631 return arg2;
1632 }
1633
1634 /* Given a value of a pointer type, apply the C unary * operator to
1635 it. */
1636
1637 struct value *
1638 value_ind (struct value *arg1)
1639 {
1640 struct type *base_type;
1641 struct value *arg2;
1642
1643 arg1 = coerce_array (arg1);
1644
1645 base_type = check_typedef (value_type (arg1));
1646
1647 if (VALUE_LVAL (arg1) == lval_computed)
1648 {
1649 const struct lval_funcs *funcs = value_computed_funcs (arg1);
1650
1651 if (funcs->indirect)
1652 {
1653 struct value *result = funcs->indirect (arg1);
1654
1655 if (result)
1656 return result;
1657 }
1658 }
1659
1660 if (base_type->code () == TYPE_CODE_PTR)
1661 {
1662 struct type *enc_type;
1663
1664 /* We may be pointing to something embedded in a larger object.
1665 Get the real type of the enclosing object. */
1666 enc_type = check_typedef (value_enclosing_type (arg1));
1667 enc_type = TYPE_TARGET_TYPE (enc_type);
1668
1669 CORE_ADDR base_addr;
1670 if (check_typedef (enc_type)->code () == TYPE_CODE_FUNC
1671 || check_typedef (enc_type)->code () == TYPE_CODE_METHOD)
1672 {
1673 /* For functions, go through find_function_addr, which knows
1674 how to handle function descriptors. */
1675 base_addr = find_function_addr (arg1, NULL);
1676 }
1677 else
1678 {
1679 /* Retrieve the enclosing object pointed to. */
1680 base_addr = (value_as_address (arg1)
1681 - value_pointed_to_offset (arg1));
1682 }
1683 arg2 = value_at_lazy (enc_type, base_addr);
1684 enc_type = value_type (arg2);
1685 return readjust_indirect_value_type (arg2, enc_type, base_type,
1686 arg1, base_addr);
1687 }
1688
1689 error (_("Attempt to take contents of a non-pointer value."));
1690 }
1691 \f
1692 /* Create a value for an array by allocating space in GDB, copying the
1693 data into that space, and then setting up an array value.
1694
1695 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1696 is populated from the values passed in ELEMVEC.
1697
1698 The element type of the array is inherited from the type of the
1699 first element, and all elements must have the same size (though we
1700 don't currently enforce any restriction on their types). */
1701
1702 struct value *
1703 value_array (int lowbound, int highbound, struct value **elemvec)
1704 {
1705 int nelem;
1706 int idx;
1707 ULONGEST typelength;
1708 struct value *val;
1709 struct type *arraytype;
1710
1711 /* Validate that the bounds are reasonable and that each of the
1712 elements have the same size. */
1713
1714 nelem = highbound - lowbound + 1;
1715 if (nelem <= 0)
1716 {
1717 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1718 }
1719 typelength = type_length_units (value_enclosing_type (elemvec[0]));
1720 for (idx = 1; idx < nelem; idx++)
1721 {
1722 if (type_length_units (value_enclosing_type (elemvec[idx]))
1723 != typelength)
1724 {
1725 error (_("array elements must all be the same size"));
1726 }
1727 }
1728
1729 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1730 lowbound, highbound);
1731
1732 if (!current_language->c_style_arrays_p ())
1733 {
1734 val = allocate_value (arraytype);
1735 for (idx = 0; idx < nelem; idx++)
1736 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1737 typelength);
1738 return val;
1739 }
1740
1741 /* Allocate space to store the array, and then initialize it by
1742 copying in each element. */
1743
1744 val = allocate_value (arraytype);
1745 for (idx = 0; idx < nelem; idx++)
1746 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1747 return val;
1748 }
1749
1750 struct value *
1751 value_cstring (const char *ptr, ssize_t len, struct type *char_type)
1752 {
1753 struct value *val;
1754 int lowbound = current_language->string_lower_bound ();
1755 ssize_t highbound = len / TYPE_LENGTH (char_type);
1756 struct type *stringtype
1757 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1758
1759 val = allocate_value (stringtype);
1760 memcpy (value_contents_raw (val), ptr, len);
1761 return val;
1762 }
1763
1764 /* Create a value for a string constant by allocating space in the
1765 inferior, copying the data into that space, and returning the
1766 address with type TYPE_CODE_STRING. PTR points to the string
1767 constant data; LEN is number of characters.
1768
1769 Note that string types are like array of char types with a lower
1770 bound of zero and an upper bound of LEN - 1. Also note that the
1771 string may contain embedded null bytes. */
1772
1773 struct value *
1774 value_string (const char *ptr, ssize_t len, struct type *char_type)
1775 {
1776 struct value *val;
1777 int lowbound = current_language->string_lower_bound ();
1778 ssize_t highbound = len / TYPE_LENGTH (char_type);
1779 struct type *stringtype
1780 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1781
1782 val = allocate_value (stringtype);
1783 memcpy (value_contents_raw (val), ptr, len);
1784 return val;
1785 }
1786
1787 \f
1788 /* See if we can pass arguments in T2 to a function which takes arguments
1789 of types T1. T1 is a list of NARGS arguments, and T2 is an array_view
1790 of the values we're trying to pass. If some arguments need coercion of
1791 some sort, then the coerced values are written into T2. Return value is
1792 0 if the arguments could be matched, or the position at which they
1793 differ if not.
1794
1795 STATICP is nonzero if the T1 argument list came from a static
1796 member function. T2 must still include the ``this'' pointer, but
1797 it will be skipped.
1798
1799 For non-static member functions, we ignore the first argument,
1800 which is the type of the instance variable. This is because we
1801 want to handle calls with objects from derived classes. This is
1802 not entirely correct: we should actually check to make sure that a
1803 requested operation is type secure, shouldn't we? FIXME. */
1804
1805 static int
1806 typecmp (bool staticp, bool varargs, int nargs,
1807 struct field t1[], gdb::array_view<value *> t2)
1808 {
1809 int i;
1810
1811 /* Skip ``this'' argument if applicable. T2 will always include
1812 THIS. */
1813 if (staticp)
1814 t2 = t2.slice (1);
1815
1816 for (i = 0;
1817 (i < nargs) && t1[i].type ()->code () != TYPE_CODE_VOID;
1818 i++)
1819 {
1820 struct type *tt1, *tt2;
1821
1822 if (i == t2.size ())
1823 return i + 1;
1824
1825 tt1 = check_typedef (t1[i].type ());
1826 tt2 = check_typedef (value_type (t2[i]));
1827
1828 if (TYPE_IS_REFERENCE (tt1)
1829 /* We should be doing hairy argument matching, as below. */
1830 && (check_typedef (TYPE_TARGET_TYPE (tt1))->code ()
1831 == tt2->code ()))
1832 {
1833 if (tt2->code () == TYPE_CODE_ARRAY)
1834 t2[i] = value_coerce_array (t2[i]);
1835 else
1836 t2[i] = value_ref (t2[i], tt1->code ());
1837 continue;
1838 }
1839
1840 /* djb - 20000715 - Until the new type structure is in the
1841 place, and we can attempt things like implicit conversions,
1842 we need to do this so you can take something like a map<const
1843 char *>, and properly access map["hello"], because the
1844 argument to [] will be a reference to a pointer to a char,
1845 and the argument will be a pointer to a char. */
1846 while (TYPE_IS_REFERENCE (tt1) || tt1->code () == TYPE_CODE_PTR)
1847 {
1848 tt1 = check_typedef ( TYPE_TARGET_TYPE (tt1) );
1849 }
1850 while (tt2->code () == TYPE_CODE_ARRAY
1851 || tt2->code () == TYPE_CODE_PTR
1852 || TYPE_IS_REFERENCE (tt2))
1853 {
1854 tt2 = check_typedef (TYPE_TARGET_TYPE (tt2));
1855 }
1856 if (tt1->code () == tt2->code ())
1857 continue;
1858 /* Array to pointer is a `trivial conversion' according to the
1859 ARM. */
1860
1861 /* We should be doing much hairier argument matching (see
1862 section 13.2 of the ARM), but as a quick kludge, just check
1863 for the same type code. */
1864 if (t1[i].type ()->code () != value_type (t2[i])->code ())
1865 return i + 1;
1866 }
1867 if (varargs || i == t2.size ())
1868 return 0;
1869 return i + 1;
1870 }
1871
1872 /* Helper class for search_struct_field that keeps track of found
1873 results and possibly throws an exception if the search yields
1874 ambiguous results. See search_struct_field for description of
1875 LOOKING_FOR_BASECLASS. */
1876
1877 struct struct_field_searcher
1878 {
1879 /* A found field. */
1880 struct found_field
1881 {
1882 /* Path to the structure where the field was found. */
1883 std::vector<struct type *> path;
1884
1885 /* The field found. */
1886 struct value *field_value;
1887 };
1888
1889 /* See corresponding fields for description of parameters. */
1890 struct_field_searcher (const char *name,
1891 struct type *outermost_type,
1892 bool looking_for_baseclass)
1893 : m_name (name),
1894 m_looking_for_baseclass (looking_for_baseclass),
1895 m_outermost_type (outermost_type)
1896 {
1897 }
1898
1899 /* The search entry point. If LOOKING_FOR_BASECLASS is true and the
1900 base class search yields ambiguous results, this throws an
1901 exception. If LOOKING_FOR_BASECLASS is false, the found fields
1902 are accumulated and the caller (search_struct_field) takes care
1903 of throwing an error if the field search yields ambiguous
1904 results. The latter is done that way so that the error message
1905 can include a list of all the found candidates. */
1906 void search (struct value *arg, LONGEST offset, struct type *type);
1907
1908 const std::vector<found_field> &fields ()
1909 {
1910 return m_fields;
1911 }
1912
1913 struct value *baseclass ()
1914 {
1915 return m_baseclass;
1916 }
1917
1918 private:
1919 /* Update results to include V, a found field/baseclass. */
1920 void update_result (struct value *v, LONGEST boffset);
1921
1922 /* The name of the field/baseclass we're searching for. */
1923 const char *m_name;
1924
1925 /* Whether we're looking for a baseclass, or a field. */
1926 const bool m_looking_for_baseclass;
1927
1928 /* The offset of the baseclass containing the field/baseclass we
1929 last recorded. */
1930 LONGEST m_last_boffset = 0;
1931
1932 /* If looking for a baseclass, then the result is stored here. */
1933 struct value *m_baseclass = nullptr;
1934
1935 /* When looking for fields, the found candidates are stored
1936 here. */
1937 std::vector<found_field> m_fields;
1938
1939 /* The type of the initial type passed to search_struct_field; this
1940 is used for error reporting when the lookup is ambiguous. */
1941 struct type *m_outermost_type;
1942
1943 /* The full path to the struct being inspected. E.g. for field 'x'
1944 defined in class B inherited by class A, we have A and B pushed
1945 on the path. */
1946 std::vector <struct type *> m_struct_path;
1947 };
1948
1949 void
1950 struct_field_searcher::update_result (struct value *v, LONGEST boffset)
1951 {
1952 if (v != NULL)
1953 {
1954 if (m_looking_for_baseclass)
1955 {
1956 if (m_baseclass != nullptr
1957 /* The result is not ambiguous if all the classes that are
1958 found occupy the same space. */
1959 && m_last_boffset != boffset)
1960 error (_("base class '%s' is ambiguous in type '%s'"),
1961 m_name, TYPE_SAFE_NAME (m_outermost_type));
1962
1963 m_baseclass = v;
1964 m_last_boffset = boffset;
1965 }
1966 else
1967 {
1968 /* The field is not ambiguous if it occupies the same
1969 space. */
1970 if (m_fields.empty () || m_last_boffset != boffset)
1971 m_fields.push_back ({m_struct_path, v});
1972 }
1973 }
1974 }
1975
1976 /* A helper for search_struct_field. This does all the work; most
1977 arguments are as passed to search_struct_field. */
1978
1979 void
1980 struct_field_searcher::search (struct value *arg1, LONGEST offset,
1981 struct type *type)
1982 {
1983 int i;
1984 int nbases;
1985
1986 m_struct_path.push_back (type);
1987 SCOPE_EXIT { m_struct_path.pop_back (); };
1988
1989 type = check_typedef (type);
1990 nbases = TYPE_N_BASECLASSES (type);
1991
1992 if (!m_looking_for_baseclass)
1993 for (i = type->num_fields () - 1; i >= nbases; i--)
1994 {
1995 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1996
1997 if (t_field_name && (strcmp_iw (t_field_name, m_name) == 0))
1998 {
1999 struct value *v;
2000
2001 if (field_is_static (&type->field (i)))
2002 v = value_static_field (type, i);
2003 else
2004 v = value_primitive_field (arg1, offset, i, type);
2005
2006 update_result (v, offset);
2007 return;
2008 }
2009
2010 if (t_field_name
2011 && t_field_name[0] == '\0')
2012 {
2013 struct type *field_type = type->field (i).type ();
2014
2015 if (field_type->code () == TYPE_CODE_UNION
2016 || field_type->code () == TYPE_CODE_STRUCT)
2017 {
2018 /* Look for a match through the fields of an anonymous
2019 union, or anonymous struct. C++ provides anonymous
2020 unions.
2021
2022 In the GNU Chill (now deleted from GDB)
2023 implementation of variant record types, each
2024 <alternative field> has an (anonymous) union type,
2025 each member of the union represents a <variant
2026 alternative>. Each <variant alternative> is
2027 represented as a struct, with a member for each
2028 <variant field>. */
2029
2030 LONGEST new_offset = offset;
2031
2032 /* This is pretty gross. In G++, the offset in an
2033 anonymous union is relative to the beginning of the
2034 enclosing struct. In the GNU Chill (now deleted
2035 from GDB) implementation of variant records, the
2036 bitpos is zero in an anonymous union field, so we
2037 have to add the offset of the union here. */
2038 if (field_type->code () == TYPE_CODE_STRUCT
2039 || (field_type->num_fields () > 0
2040 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2041 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2042
2043 search (arg1, new_offset, field_type);
2044 }
2045 }
2046 }
2047
2048 for (i = 0; i < nbases; i++)
2049 {
2050 struct value *v = NULL;
2051 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2052 /* If we are looking for baseclasses, this is what we get when
2053 we hit them. But it could happen that the base part's member
2054 name is not yet filled in. */
2055 int found_baseclass = (m_looking_for_baseclass
2056 && TYPE_BASECLASS_NAME (type, i) != NULL
2057 && (strcmp_iw (m_name,
2058 TYPE_BASECLASS_NAME (type,
2059 i)) == 0));
2060 LONGEST boffset = value_embedded_offset (arg1) + offset;
2061
2062 if (BASETYPE_VIA_VIRTUAL (type, i))
2063 {
2064 struct value *v2;
2065
2066 boffset = baseclass_offset (type, i,
2067 value_contents_for_printing (arg1),
2068 value_embedded_offset (arg1) + offset,
2069 value_address (arg1),
2070 arg1);
2071
2072 /* The virtual base class pointer might have been clobbered
2073 by the user program. Make sure that it still points to a
2074 valid memory location. */
2075
2076 boffset += value_embedded_offset (arg1) + offset;
2077 if (boffset < 0
2078 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
2079 {
2080 CORE_ADDR base_addr;
2081
2082 base_addr = value_address (arg1) + boffset;
2083 v2 = value_at_lazy (basetype, base_addr);
2084 if (target_read_memory (base_addr,
2085 value_contents_raw (v2),
2086 TYPE_LENGTH (value_type (v2))) != 0)
2087 error (_("virtual baseclass botch"));
2088 }
2089 else
2090 {
2091 v2 = value_copy (arg1);
2092 deprecated_set_value_type (v2, basetype);
2093 set_value_embedded_offset (v2, boffset);
2094 }
2095
2096 if (found_baseclass)
2097 v = v2;
2098 else
2099 search (v2, 0, TYPE_BASECLASS (type, i));
2100 }
2101 else if (found_baseclass)
2102 v = value_primitive_field (arg1, offset, i, type);
2103 else
2104 {
2105 search (arg1, offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2106 basetype);
2107 }
2108
2109 update_result (v, boffset);
2110 }
2111 }
2112
2113 /* Helper function used by value_struct_elt to recurse through
2114 baseclasses. Look for a field NAME in ARG1. Search in it assuming
2115 it has (class) type TYPE. If found, return value, else return NULL.
2116
2117 If LOOKING_FOR_BASECLASS, then instead of looking for struct
2118 fields, look for a baseclass named NAME. */
2119
2120 static struct value *
2121 search_struct_field (const char *name, struct value *arg1,
2122 struct type *type, int looking_for_baseclass)
2123 {
2124 struct_field_searcher searcher (name, type, looking_for_baseclass);
2125
2126 searcher.search (arg1, 0, type);
2127
2128 if (!looking_for_baseclass)
2129 {
2130 const auto &fields = searcher.fields ();
2131
2132 if (fields.empty ())
2133 return nullptr;
2134 else if (fields.size () == 1)
2135 return fields[0].field_value;
2136 else
2137 {
2138 std::string candidates;
2139
2140 for (auto &&candidate : fields)
2141 {
2142 gdb_assert (!candidate.path.empty ());
2143
2144 struct type *field_type = value_type (candidate.field_value);
2145 struct type *struct_type = candidate.path.back ();
2146
2147 std::string path;
2148 bool first = true;
2149 for (struct type *t : candidate.path)
2150 {
2151 if (first)
2152 first = false;
2153 else
2154 path += " -> ";
2155 path += t->name ();
2156 }
2157
2158 candidates += string_printf ("\n '%s %s::%s' (%s)",
2159 TYPE_SAFE_NAME (field_type),
2160 TYPE_SAFE_NAME (struct_type),
2161 name,
2162 path.c_str ());
2163 }
2164
2165 error (_("Request for member '%s' is ambiguous in type '%s'."
2166 " Candidates are:%s"),
2167 name, TYPE_SAFE_NAME (type),
2168 candidates.c_str ());
2169 }
2170 }
2171 else
2172 return searcher.baseclass ();
2173 }
2174
2175 /* Helper function used by value_struct_elt to recurse through
2176 baseclasses. Look for a field NAME in ARG1. Adjust the address of
2177 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2178 TYPE.
2179
2180 The ARGS array pointer is to a list of argument values used to help
2181 finding NAME, though ARGS can be nullptr. The contents of ARGS can be
2182 adjusted if type coercion is required in order to find a matching NAME.
2183
2184 If found, return value, else if name matched and args not return
2185 (value) -1, else return NULL. */
2186
2187 static struct value *
2188 search_struct_method (const char *name, struct value **arg1p,
2189 gdb::array_view<value *> *args, LONGEST offset,
2190 int *static_memfuncp, struct type *type)
2191 {
2192 int i;
2193 struct value *v;
2194 int name_matched = 0;
2195
2196 type = check_typedef (type);
2197 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2198 {
2199 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2200
2201 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2202 {
2203 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2204 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2205
2206 name_matched = 1;
2207 check_stub_method_group (type, i);
2208 if (j > 0 && args == nullptr)
2209 error (_("cannot resolve overloaded method "
2210 "`%s': no arguments supplied"), name);
2211 else if (j == 0 && args == nullptr)
2212 {
2213 v = value_fn_field (arg1p, f, j, type, offset);
2214 if (v != NULL)
2215 return v;
2216 }
2217 else
2218 while (j >= 0)
2219 {
2220 gdb_assert (args != nullptr);
2221 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2222 TYPE_FN_FIELD_TYPE (f, j)->has_varargs (),
2223 TYPE_FN_FIELD_TYPE (f, j)->num_fields (),
2224 TYPE_FN_FIELD_ARGS (f, j), *args))
2225 {
2226 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2227 return value_virtual_fn_field (arg1p, f, j,
2228 type, offset);
2229 if (TYPE_FN_FIELD_STATIC_P (f, j)
2230 && static_memfuncp)
2231 *static_memfuncp = 1;
2232 v = value_fn_field (arg1p, f, j, type, offset);
2233 if (v != NULL)
2234 return v;
2235 }
2236 j--;
2237 }
2238 }
2239 }
2240
2241 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2242 {
2243 LONGEST base_offset;
2244 LONGEST this_offset;
2245
2246 if (BASETYPE_VIA_VIRTUAL (type, i))
2247 {
2248 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2249 struct value *base_val;
2250 const gdb_byte *base_valaddr;
2251
2252 /* The virtual base class pointer might have been
2253 clobbered by the user program. Make sure that it
2254 still points to a valid memory location. */
2255
2256 if (offset < 0 || offset >= TYPE_LENGTH (type))
2257 {
2258 CORE_ADDR address;
2259
2260 gdb::byte_vector tmp (TYPE_LENGTH (baseclass));
2261 address = value_address (*arg1p);
2262
2263 if (target_read_memory (address + offset,
2264 tmp.data (), TYPE_LENGTH (baseclass)) != 0)
2265 error (_("virtual baseclass botch"));
2266
2267 base_val = value_from_contents_and_address (baseclass,
2268 tmp.data (),
2269 address + offset);
2270 base_valaddr = value_contents_for_printing (base_val);
2271 this_offset = 0;
2272 }
2273 else
2274 {
2275 base_val = *arg1p;
2276 base_valaddr = value_contents_for_printing (*arg1p);
2277 this_offset = offset;
2278 }
2279
2280 base_offset = baseclass_offset (type, i, base_valaddr,
2281 this_offset, value_address (base_val),
2282 base_val);
2283 }
2284 else
2285 {
2286 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2287 }
2288 v = search_struct_method (name, arg1p, args, base_offset + offset,
2289 static_memfuncp, TYPE_BASECLASS (type, i));
2290 if (v == (struct value *) - 1)
2291 {
2292 name_matched = 1;
2293 }
2294 else if (v)
2295 {
2296 /* FIXME-bothner: Why is this commented out? Why is it here? */
2297 /* *arg1p = arg1_tmp; */
2298 return v;
2299 }
2300 }
2301 if (name_matched)
2302 return (struct value *) - 1;
2303 else
2304 return NULL;
2305 }
2306
2307 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2308 extract the component named NAME from the ultimate target
2309 structure/union and return it as a value with its appropriate type.
2310 ERR is used in the error message if *ARGP's type is wrong.
2311
2312 C++: ARGS is a list of argument types to aid in the selection of
2313 an appropriate method. Also, handle derived types.
2314
2315 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2316 where the truthvalue of whether the function that was resolved was
2317 a static member function or not is stored.
2318
2319 ERR is an error message to be printed in case the field is not
2320 found. */
2321
2322 struct value *
2323 value_struct_elt (struct value **argp, gdb::array_view<value *> *args,
2324 const char *name, int *static_memfuncp, const char *err)
2325 {
2326 struct type *t;
2327 struct value *v;
2328
2329 *argp = coerce_array (*argp);
2330
2331 t = check_typedef (value_type (*argp));
2332
2333 /* Follow pointers until we get to a non-pointer. */
2334
2335 while (t->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2336 {
2337 *argp = value_ind (*argp);
2338 /* Don't coerce fn pointer to fn and then back again! */
2339 if (check_typedef (value_type (*argp))->code () != TYPE_CODE_FUNC)
2340 *argp = coerce_array (*argp);
2341 t = check_typedef (value_type (*argp));
2342 }
2343
2344 if (t->code () != TYPE_CODE_STRUCT
2345 && t->code () != TYPE_CODE_UNION)
2346 error (_("Attempt to extract a component of a value that is not a %s."),
2347 err);
2348
2349 /* Assume it's not, unless we see that it is. */
2350 if (static_memfuncp)
2351 *static_memfuncp = 0;
2352
2353 if (args == nullptr)
2354 {
2355 /* if there are no arguments ...do this... */
2356
2357 /* Try as a field first, because if we succeed, there is less
2358 work to be done. */
2359 v = search_struct_field (name, *argp, t, 0);
2360 if (v)
2361 return v;
2362
2363 /* C++: If it was not found as a data field, then try to
2364 return it as a pointer to a method. */
2365 v = search_struct_method (name, argp, args, 0,
2366 static_memfuncp, t);
2367
2368 if (v == (struct value *) - 1)
2369 error (_("Cannot take address of method %s."), name);
2370 else if (v == 0)
2371 {
2372 if (TYPE_NFN_FIELDS (t))
2373 error (_("There is no member or method named %s."), name);
2374 else
2375 error (_("There is no member named %s."), name);
2376 }
2377 return v;
2378 }
2379
2380 v = search_struct_method (name, argp, args, 0,
2381 static_memfuncp, t);
2382
2383 if (v == (struct value *) - 1)
2384 {
2385 error (_("One of the arguments you tried to pass to %s could not "
2386 "be converted to what the function wants."), name);
2387 }
2388 else if (v == 0)
2389 {
2390 /* See if user tried to invoke data as function. If so, hand it
2391 back. If it's not callable (i.e., a pointer to function),
2392 gdb should give an error. */
2393 v = search_struct_field (name, *argp, t, 0);
2394 /* If we found an ordinary field, then it is not a method call.
2395 So, treat it as if it were a static member function. */
2396 if (v && static_memfuncp)
2397 *static_memfuncp = 1;
2398 }
2399
2400 if (!v)
2401 throw_error (NOT_FOUND_ERROR,
2402 _("Structure has no component named %s."), name);
2403 return v;
2404 }
2405
2406 /* Given *ARGP, a value of type structure or union, or a pointer/reference
2407 to a structure or union, extract and return its component (field) of
2408 type FTYPE at the specified BITPOS.
2409 Throw an exception on error. */
2410
2411 struct value *
2412 value_struct_elt_bitpos (struct value **argp, int bitpos, struct type *ftype,
2413 const char *err)
2414 {
2415 struct type *t;
2416 int i;
2417
2418 *argp = coerce_array (*argp);
2419
2420 t = check_typedef (value_type (*argp));
2421
2422 while (t->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2423 {
2424 *argp = value_ind (*argp);
2425 if (check_typedef (value_type (*argp))->code () != TYPE_CODE_FUNC)
2426 *argp = coerce_array (*argp);
2427 t = check_typedef (value_type (*argp));
2428 }
2429
2430 if (t->code () != TYPE_CODE_STRUCT
2431 && t->code () != TYPE_CODE_UNION)
2432 error (_("Attempt to extract a component of a value that is not a %s."),
2433 err);
2434
2435 for (i = TYPE_N_BASECLASSES (t); i < t->num_fields (); i++)
2436 {
2437 if (!field_is_static (&t->field (i))
2438 && bitpos == TYPE_FIELD_BITPOS (t, i)
2439 && types_equal (ftype, t->field (i).type ()))
2440 return value_primitive_field (*argp, 0, i, t);
2441 }
2442
2443 error (_("No field with matching bitpos and type."));
2444
2445 /* Never hit. */
2446 return NULL;
2447 }
2448
2449 /* Search through the methods of an object (and its bases) to find a
2450 specified method. Return a reference to the fn_field list METHODS of
2451 overloaded instances defined in the source language. If available
2452 and matching, a vector of matching xmethods defined in extension
2453 languages are also returned in XMETHODS.
2454
2455 Helper function for value_find_oload_list.
2456 ARGP is a pointer to a pointer to a value (the object).
2457 METHOD is a string containing the method name.
2458 OFFSET is the offset within the value.
2459 TYPE is the assumed type of the object.
2460 METHODS is a pointer to the matching overloaded instances defined
2461 in the source language. Since this is a recursive function,
2462 *METHODS should be set to NULL when calling this function.
2463 NUM_FNS is the number of overloaded instances. *NUM_FNS should be set to
2464 0 when calling this function.
2465 XMETHODS is the vector of matching xmethod workers. *XMETHODS
2466 should also be set to NULL when calling this function.
2467 BASETYPE is set to the actual type of the subobject where the
2468 method is found.
2469 BOFFSET is the offset of the base subobject where the method is found. */
2470
2471 static void
2472 find_method_list (struct value **argp, const char *method,
2473 LONGEST offset, struct type *type,
2474 gdb::array_view<fn_field> *methods,
2475 std::vector<xmethod_worker_up> *xmethods,
2476 struct type **basetype, LONGEST *boffset)
2477 {
2478 int i;
2479 struct fn_field *f = NULL;
2480
2481 gdb_assert (methods != NULL && xmethods != NULL);
2482 type = check_typedef (type);
2483
2484 /* First check in object itself.
2485 This function is called recursively to search through base classes.
2486 If there is a source method match found at some stage, then we need not
2487 look for source methods in consequent recursive calls. */
2488 if (methods->empty ())
2489 {
2490 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2491 {
2492 /* pai: FIXME What about operators and type conversions? */
2493 const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2494
2495 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2496 {
2497 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2498 f = TYPE_FN_FIELDLIST1 (type, i);
2499 *methods = gdb::make_array_view (f, len);
2500
2501 *basetype = type;
2502 *boffset = offset;
2503
2504 /* Resolve any stub methods. */
2505 check_stub_method_group (type, i);
2506
2507 break;
2508 }
2509 }
2510 }
2511
2512 /* Unlike source methods, xmethods can be accumulated over successive
2513 recursive calls. In other words, an xmethod named 'm' in a class
2514 will not hide an xmethod named 'm' in its base class(es). We want
2515 it to be this way because xmethods are after all convenience functions
2516 and hence there is no point restricting them with something like method
2517 hiding. Moreover, if hiding is done for xmethods as well, then we will
2518 have to provide a mechanism to un-hide (like the 'using' construct). */
2519 get_matching_xmethod_workers (type, method, xmethods);
2520
2521 /* If source methods are not found in current class, look for them in the
2522 base classes. We also have to go through the base classes to gather
2523 extension methods. */
2524 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2525 {
2526 LONGEST base_offset;
2527
2528 if (BASETYPE_VIA_VIRTUAL (type, i))
2529 {
2530 base_offset = baseclass_offset (type, i,
2531 value_contents_for_printing (*argp),
2532 value_offset (*argp) + offset,
2533 value_address (*argp), *argp);
2534 }
2535 else /* Non-virtual base, simply use bit position from debug
2536 info. */
2537 {
2538 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2539 }
2540
2541 find_method_list (argp, method, base_offset + offset,
2542 TYPE_BASECLASS (type, i), methods,
2543 xmethods, basetype, boffset);
2544 }
2545 }
2546
2547 /* Return the list of overloaded methods of a specified name. The methods
2548 could be those GDB finds in the binary, or xmethod. Methods found in
2549 the binary are returned in METHODS, and xmethods are returned in
2550 XMETHODS.
2551
2552 ARGP is a pointer to a pointer to a value (the object).
2553 METHOD is the method name.
2554 OFFSET is the offset within the value contents.
2555 METHODS is the list of matching overloaded instances defined in
2556 the source language.
2557 XMETHODS is the vector of matching xmethod workers defined in
2558 extension languages.
2559 BASETYPE is set to the type of the base subobject that defines the
2560 method.
2561 BOFFSET is the offset of the base subobject which defines the method. */
2562
2563 static void
2564 value_find_oload_method_list (struct value **argp, const char *method,
2565 LONGEST offset,
2566 gdb::array_view<fn_field> *methods,
2567 std::vector<xmethod_worker_up> *xmethods,
2568 struct type **basetype, LONGEST *boffset)
2569 {
2570 struct type *t;
2571
2572 t = check_typedef (value_type (*argp));
2573
2574 /* Code snarfed from value_struct_elt. */
2575 while (t->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2576 {
2577 *argp = value_ind (*argp);
2578 /* Don't coerce fn pointer to fn and then back again! */
2579 if (check_typedef (value_type (*argp))->code () != TYPE_CODE_FUNC)
2580 *argp = coerce_array (*argp);
2581 t = check_typedef (value_type (*argp));
2582 }
2583
2584 if (t->code () != TYPE_CODE_STRUCT
2585 && t->code () != TYPE_CODE_UNION)
2586 error (_("Attempt to extract a component of a "
2587 "value that is not a struct or union"));
2588
2589 gdb_assert (methods != NULL && xmethods != NULL);
2590
2591 /* Clear the lists. */
2592 *methods = {};
2593 xmethods->clear ();
2594
2595 find_method_list (argp, method, 0, t, methods, xmethods,
2596 basetype, boffset);
2597 }
2598
2599 /* Given an array of arguments (ARGS) (which includes an entry for
2600 "this" in the case of C++ methods), the NAME of a function, and
2601 whether it's a method or not (METHOD), find the best function that
2602 matches on the argument types according to the overload resolution
2603 rules.
2604
2605 METHOD can be one of three values:
2606 NON_METHOD for non-member functions.
2607 METHOD: for member functions.
2608 BOTH: used for overload resolution of operators where the
2609 candidates are expected to be either member or non member
2610 functions. In this case the first argument ARGTYPES
2611 (representing 'this') is expected to be a reference to the
2612 target object, and will be dereferenced when attempting the
2613 non-member search.
2614
2615 In the case of class methods, the parameter OBJ is an object value
2616 in which to search for overloaded methods.
2617
2618 In the case of non-method functions, the parameter FSYM is a symbol
2619 corresponding to one of the overloaded functions.
2620
2621 Return value is an integer: 0 -> good match, 10 -> debugger applied
2622 non-standard coercions, 100 -> incompatible.
2623
2624 If a method is being searched for, VALP will hold the value.
2625 If a non-method is being searched for, SYMP will hold the symbol
2626 for it.
2627
2628 If a method is being searched for, and it is a static method,
2629 then STATICP will point to a non-zero value.
2630
2631 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2632 ADL overload candidates when performing overload resolution for a fully
2633 qualified name.
2634
2635 If NOSIDE is EVAL_AVOID_SIDE_EFFECTS, then OBJP's memory cannot be
2636 read while picking the best overload match (it may be all zeroes and thus
2637 not have a vtable pointer), in which case skip virtual function lookup.
2638 This is ok as typically EVAL_AVOID_SIDE_EFFECTS is only used to determine
2639 the result type.
2640
2641 Note: This function does *not* check the value of
2642 overload_resolution. Caller must check it to see whether overload
2643 resolution is permitted. */
2644
2645 int
2646 find_overload_match (gdb::array_view<value *> args,
2647 const char *name, enum oload_search_type method,
2648 struct value **objp, struct symbol *fsym,
2649 struct value **valp, struct symbol **symp,
2650 int *staticp, const int no_adl,
2651 const enum noside noside)
2652 {
2653 struct value *obj = (objp ? *objp : NULL);
2654 struct type *obj_type = obj ? value_type (obj) : NULL;
2655 /* Index of best overloaded function. */
2656 int func_oload_champ = -1;
2657 int method_oload_champ = -1;
2658 int src_method_oload_champ = -1;
2659 int ext_method_oload_champ = -1;
2660
2661 /* The measure for the current best match. */
2662 badness_vector method_badness;
2663 badness_vector func_badness;
2664 badness_vector ext_method_badness;
2665 badness_vector src_method_badness;
2666
2667 struct value *temp = obj;
2668 /* For methods, the list of overloaded methods. */
2669 gdb::array_view<fn_field> methods;
2670 /* For non-methods, the list of overloaded function symbols. */
2671 std::vector<symbol *> functions;
2672 /* For xmethods, the vector of xmethod workers. */
2673 std::vector<xmethod_worker_up> xmethods;
2674 struct type *basetype = NULL;
2675 LONGEST boffset;
2676
2677 const char *obj_type_name = NULL;
2678 const char *func_name = NULL;
2679 gdb::unique_xmalloc_ptr<char> temp_func;
2680 enum oload_classification match_quality;
2681 enum oload_classification method_match_quality = INCOMPATIBLE;
2682 enum oload_classification src_method_match_quality = INCOMPATIBLE;
2683 enum oload_classification ext_method_match_quality = INCOMPATIBLE;
2684 enum oload_classification func_match_quality = INCOMPATIBLE;
2685
2686 /* Get the list of overloaded methods or functions. */
2687 if (method == METHOD || method == BOTH)
2688 {
2689 gdb_assert (obj);
2690
2691 /* OBJ may be a pointer value rather than the object itself. */
2692 obj = coerce_ref (obj);
2693 while (check_typedef (value_type (obj))->code () == TYPE_CODE_PTR)
2694 obj = coerce_ref (value_ind (obj));
2695 obj_type_name = value_type (obj)->name ();
2696
2697 /* First check whether this is a data member, e.g. a pointer to
2698 a function. */
2699 if (check_typedef (value_type (obj))->code () == TYPE_CODE_STRUCT)
2700 {
2701 *valp = search_struct_field (name, obj,
2702 check_typedef (value_type (obj)), 0);
2703 if (*valp)
2704 {
2705 *staticp = 1;
2706 return 0;
2707 }
2708 }
2709
2710 /* Retrieve the list of methods with the name NAME. */
2711 value_find_oload_method_list (&temp, name, 0, &methods,
2712 &xmethods, &basetype, &boffset);
2713 /* If this is a method only search, and no methods were found
2714 the search has failed. */
2715 if (method == METHOD && methods.empty () && xmethods.empty ())
2716 error (_("Couldn't find method %s%s%s"),
2717 obj_type_name,
2718 (obj_type_name && *obj_type_name) ? "::" : "",
2719 name);
2720 /* If we are dealing with stub method types, they should have
2721 been resolved by find_method_list via
2722 value_find_oload_method_list above. */
2723 if (!methods.empty ())
2724 {
2725 gdb_assert (TYPE_SELF_TYPE (methods[0].type) != NULL);
2726
2727 src_method_oload_champ
2728 = find_oload_champ (args,
2729 methods.size (),
2730 methods.data (), NULL, NULL,
2731 &src_method_badness);
2732
2733 src_method_match_quality = classify_oload_match
2734 (src_method_badness, args.size (),
2735 oload_method_static_p (methods.data (), src_method_oload_champ));
2736 }
2737
2738 if (!xmethods.empty ())
2739 {
2740 ext_method_oload_champ
2741 = find_oload_champ (args,
2742 xmethods.size (),
2743 NULL, xmethods.data (), NULL,
2744 &ext_method_badness);
2745 ext_method_match_quality = classify_oload_match (ext_method_badness,
2746 args.size (), 0);
2747 }
2748
2749 if (src_method_oload_champ >= 0 && ext_method_oload_champ >= 0)
2750 {
2751 switch (compare_badness (ext_method_badness, src_method_badness))
2752 {
2753 case 0: /* Src method and xmethod are equally good. */
2754 /* If src method and xmethod are equally good, then
2755 xmethod should be the winner. Hence, fall through to the
2756 case where a xmethod is better than the source
2757 method, except when the xmethod match quality is
2758 non-standard. */
2759 /* FALLTHROUGH */
2760 case 1: /* Src method and ext method are incompatible. */
2761 /* If ext method match is not standard, then let source method
2762 win. Otherwise, fallthrough to let xmethod win. */
2763 if (ext_method_match_quality != STANDARD)
2764 {
2765 method_oload_champ = src_method_oload_champ;
2766 method_badness = src_method_badness;
2767 ext_method_oload_champ = -1;
2768 method_match_quality = src_method_match_quality;
2769 break;
2770 }
2771 /* FALLTHROUGH */
2772 case 2: /* Ext method is champion. */
2773 method_oload_champ = ext_method_oload_champ;
2774 method_badness = ext_method_badness;
2775 src_method_oload_champ = -1;
2776 method_match_quality = ext_method_match_quality;
2777 break;
2778 case 3: /* Src method is champion. */
2779 method_oload_champ = src_method_oload_champ;
2780 method_badness = src_method_badness;
2781 ext_method_oload_champ = -1;
2782 method_match_quality = src_method_match_quality;
2783 break;
2784 default:
2785 gdb_assert_not_reached ("Unexpected overload comparison "
2786 "result");
2787 break;
2788 }
2789 }
2790 else if (src_method_oload_champ >= 0)
2791 {
2792 method_oload_champ = src_method_oload_champ;
2793 method_badness = src_method_badness;
2794 method_match_quality = src_method_match_quality;
2795 }
2796 else if (ext_method_oload_champ >= 0)
2797 {
2798 method_oload_champ = ext_method_oload_champ;
2799 method_badness = ext_method_badness;
2800 method_match_quality = ext_method_match_quality;
2801 }
2802 }
2803
2804 if (method == NON_METHOD || method == BOTH)
2805 {
2806 const char *qualified_name = NULL;
2807
2808 /* If the overload match is being search for both as a method
2809 and non member function, the first argument must now be
2810 dereferenced. */
2811 if (method == BOTH)
2812 args[0] = value_ind (args[0]);
2813
2814 if (fsym)
2815 {
2816 qualified_name = fsym->natural_name ();
2817
2818 /* If we have a function with a C++ name, try to extract just
2819 the function part. Do not try this for non-functions (e.g.
2820 function pointers). */
2821 if (qualified_name
2822 && (check_typedef (SYMBOL_TYPE (fsym))->code ()
2823 == TYPE_CODE_FUNC))
2824 {
2825 temp_func = cp_func_name (qualified_name);
2826
2827 /* If cp_func_name did not remove anything, the name of the
2828 symbol did not include scope or argument types - it was
2829 probably a C-style function. */
2830 if (temp_func != nullptr)
2831 {
2832 if (strcmp (temp_func.get (), qualified_name) == 0)
2833 func_name = NULL;
2834 else
2835 func_name = temp_func.get ();
2836 }
2837 }
2838 }
2839 else
2840 {
2841 func_name = name;
2842 qualified_name = name;
2843 }
2844
2845 /* If there was no C++ name, this must be a C-style function or
2846 not a function at all. Just return the same symbol. Do the
2847 same if cp_func_name fails for some reason. */
2848 if (func_name == NULL)
2849 {
2850 *symp = fsym;
2851 return 0;
2852 }
2853
2854 func_oload_champ = find_oload_champ_namespace (args,
2855 func_name,
2856 qualified_name,
2857 &functions,
2858 &func_badness,
2859 no_adl);
2860
2861 if (func_oload_champ >= 0)
2862 func_match_quality = classify_oload_match (func_badness,
2863 args.size (), 0);
2864 }
2865
2866 /* Did we find a match ? */
2867 if (method_oload_champ == -1 && func_oload_champ == -1)
2868 throw_error (NOT_FOUND_ERROR,
2869 _("No symbol \"%s\" in current context."),
2870 name);
2871
2872 /* If we have found both a method match and a function
2873 match, find out which one is better, and calculate match
2874 quality. */
2875 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2876 {
2877 switch (compare_badness (func_badness, method_badness))
2878 {
2879 case 0: /* Top two contenders are equally good. */
2880 /* FIXME: GDB does not support the general ambiguous case.
2881 All candidates should be collected and presented the
2882 user. */
2883 error (_("Ambiguous overload resolution"));
2884 break;
2885 case 1: /* Incomparable top contenders. */
2886 /* This is an error incompatible candidates
2887 should not have been proposed. */
2888 error (_("Internal error: incompatible "
2889 "overload candidates proposed"));
2890 break;
2891 case 2: /* Function champion. */
2892 method_oload_champ = -1;
2893 match_quality = func_match_quality;
2894 break;
2895 case 3: /* Method champion. */
2896 func_oload_champ = -1;
2897 match_quality = method_match_quality;
2898 break;
2899 default:
2900 error (_("Internal error: unexpected overload comparison result"));
2901 break;
2902 }
2903 }
2904 else
2905 {
2906 /* We have either a method match or a function match. */
2907 if (method_oload_champ >= 0)
2908 match_quality = method_match_quality;
2909 else
2910 match_quality = func_match_quality;
2911 }
2912
2913 if (match_quality == INCOMPATIBLE)
2914 {
2915 if (method == METHOD)
2916 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2917 obj_type_name,
2918 (obj_type_name && *obj_type_name) ? "::" : "",
2919 name);
2920 else
2921 error (_("Cannot resolve function %s to any overloaded instance"),
2922 func_name);
2923 }
2924 else if (match_quality == NON_STANDARD)
2925 {
2926 if (method == METHOD)
2927 warning (_("Using non-standard conversion to match "
2928 "method %s%s%s to supplied arguments"),
2929 obj_type_name,
2930 (obj_type_name && *obj_type_name) ? "::" : "",
2931 name);
2932 else
2933 warning (_("Using non-standard conversion to match "
2934 "function %s to supplied arguments"),
2935 func_name);
2936 }
2937
2938 if (staticp != NULL)
2939 *staticp = oload_method_static_p (methods.data (), method_oload_champ);
2940
2941 if (method_oload_champ >= 0)
2942 {
2943 if (src_method_oload_champ >= 0)
2944 {
2945 if (TYPE_FN_FIELD_VIRTUAL_P (methods, method_oload_champ)
2946 && noside != EVAL_AVOID_SIDE_EFFECTS)
2947 {
2948 *valp = value_virtual_fn_field (&temp, methods.data (),
2949 method_oload_champ, basetype,
2950 boffset);
2951 }
2952 else
2953 *valp = value_fn_field (&temp, methods.data (),
2954 method_oload_champ, basetype, boffset);
2955 }
2956 else
2957 *valp = value_from_xmethod
2958 (std::move (xmethods[ext_method_oload_champ]));
2959 }
2960 else
2961 *symp = functions[func_oload_champ];
2962
2963 if (objp)
2964 {
2965 struct type *temp_type = check_typedef (value_type (temp));
2966 struct type *objtype = check_typedef (obj_type);
2967
2968 if (temp_type->code () != TYPE_CODE_PTR
2969 && (objtype->code () == TYPE_CODE_PTR
2970 || TYPE_IS_REFERENCE (objtype)))
2971 {
2972 temp = value_addr (temp);
2973 }
2974 *objp = temp;
2975 }
2976
2977 switch (match_quality)
2978 {
2979 case INCOMPATIBLE:
2980 return 100;
2981 case NON_STANDARD:
2982 return 10;
2983 default: /* STANDARD */
2984 return 0;
2985 }
2986 }
2987
2988 /* Find the best overload match, searching for FUNC_NAME in namespaces
2989 contained in QUALIFIED_NAME until it either finds a good match or
2990 runs out of namespaces. It stores the overloaded functions in
2991 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. If NO_ADL,
2992 argument dependent lookup is not performed. */
2993
2994 static int
2995 find_oload_champ_namespace (gdb::array_view<value *> args,
2996 const char *func_name,
2997 const char *qualified_name,
2998 std::vector<symbol *> *oload_syms,
2999 badness_vector *oload_champ_bv,
3000 const int no_adl)
3001 {
3002 int oload_champ;
3003
3004 find_oload_champ_namespace_loop (args,
3005 func_name,
3006 qualified_name, 0,
3007 oload_syms, oload_champ_bv,
3008 &oload_champ,
3009 no_adl);
3010
3011 return oload_champ;
3012 }
3013
3014 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
3015 how deep we've looked for namespaces, and the champ is stored in
3016 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
3017 if it isn't. Other arguments are the same as in
3018 find_oload_champ_namespace. */
3019
3020 static int
3021 find_oload_champ_namespace_loop (gdb::array_view<value *> args,
3022 const char *func_name,
3023 const char *qualified_name,
3024 int namespace_len,
3025 std::vector<symbol *> *oload_syms,
3026 badness_vector *oload_champ_bv,
3027 int *oload_champ,
3028 const int no_adl)
3029 {
3030 int next_namespace_len = namespace_len;
3031 int searched_deeper = 0;
3032 int new_oload_champ;
3033 char *new_namespace;
3034
3035 if (next_namespace_len != 0)
3036 {
3037 gdb_assert (qualified_name[next_namespace_len] == ':');
3038 next_namespace_len += 2;
3039 }
3040 next_namespace_len +=
3041 cp_find_first_component (qualified_name + next_namespace_len);
3042
3043 /* First, see if we have a deeper namespace we can search in.
3044 If we get a good match there, use it. */
3045
3046 if (qualified_name[next_namespace_len] == ':')
3047 {
3048 searched_deeper = 1;
3049
3050 if (find_oload_champ_namespace_loop (args,
3051 func_name, qualified_name,
3052 next_namespace_len,
3053 oload_syms, oload_champ_bv,
3054 oload_champ, no_adl))
3055 {
3056 return 1;
3057 }
3058 };
3059
3060 /* If we reach here, either we're in the deepest namespace or we
3061 didn't find a good match in a deeper namespace. But, in the
3062 latter case, we still have a bad match in a deeper namespace;
3063 note that we might not find any match at all in the current
3064 namespace. (There's always a match in the deepest namespace,
3065 because this overload mechanism only gets called if there's a
3066 function symbol to start off with.) */
3067
3068 new_namespace = (char *) alloca (namespace_len + 1);
3069 strncpy (new_namespace, qualified_name, namespace_len);
3070 new_namespace[namespace_len] = '\0';
3071
3072 std::vector<symbol *> new_oload_syms
3073 = make_symbol_overload_list (func_name, new_namespace);
3074
3075 /* If we have reached the deepest level perform argument
3076 determined lookup. */
3077 if (!searched_deeper && !no_adl)
3078 {
3079 int ix;
3080 struct type **arg_types;
3081
3082 /* Prepare list of argument types for overload resolution. */
3083 arg_types = (struct type **)
3084 alloca (args.size () * (sizeof (struct type *)));
3085 for (ix = 0; ix < args.size (); ix++)
3086 arg_types[ix] = value_type (args[ix]);
3087 add_symbol_overload_list_adl ({arg_types, args.size ()}, func_name,
3088 &new_oload_syms);
3089 }
3090
3091 badness_vector new_oload_champ_bv;
3092 new_oload_champ = find_oload_champ (args,
3093 new_oload_syms.size (),
3094 NULL, NULL, new_oload_syms.data (),
3095 &new_oload_champ_bv);
3096
3097 /* Case 1: We found a good match. Free earlier matches (if any),
3098 and return it. Case 2: We didn't find a good match, but we're
3099 not the deepest function. Then go with the bad match that the
3100 deeper function found. Case 3: We found a bad match, and we're
3101 the deepest function. Then return what we found, even though
3102 it's a bad match. */
3103
3104 if (new_oload_champ != -1
3105 && classify_oload_match (new_oload_champ_bv, args.size (), 0) == STANDARD)
3106 {
3107 *oload_syms = std::move (new_oload_syms);
3108 *oload_champ = new_oload_champ;
3109 *oload_champ_bv = std::move (new_oload_champ_bv);
3110 return 1;
3111 }
3112 else if (searched_deeper)
3113 {
3114 return 0;
3115 }
3116 else
3117 {
3118 *oload_syms = std::move (new_oload_syms);
3119 *oload_champ = new_oload_champ;
3120 *oload_champ_bv = std::move (new_oload_champ_bv);
3121 return 0;
3122 }
3123 }
3124
3125 /* Look for a function to take ARGS. Find the best match from among
3126 the overloaded methods or functions given by METHODS or FUNCTIONS
3127 or XMETHODS, respectively. One, and only one of METHODS, FUNCTIONS
3128 and XMETHODS can be non-NULL.
3129
3130 NUM_FNS is the length of the array pointed at by METHODS, FUNCTIONS
3131 or XMETHODS, whichever is non-NULL.
3132
3133 Return the index of the best match; store an indication of the
3134 quality of the match in OLOAD_CHAMP_BV. */
3135
3136 static int
3137 find_oload_champ (gdb::array_view<value *> args,
3138 size_t num_fns,
3139 fn_field *methods,
3140 xmethod_worker_up *xmethods,
3141 symbol **functions,
3142 badness_vector *oload_champ_bv)
3143 {
3144 /* A measure of how good an overloaded instance is. */
3145 badness_vector bv;
3146 /* Index of best overloaded function. */
3147 int oload_champ = -1;
3148 /* Current ambiguity state for overload resolution. */
3149 int oload_ambiguous = 0;
3150 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
3151
3152 /* A champion can be found among methods alone, or among functions
3153 alone, or in xmethods alone, but not in more than one of these
3154 groups. */
3155 gdb_assert ((methods != NULL) + (functions != NULL) + (xmethods != NULL)
3156 == 1);
3157
3158 /* Consider each candidate in turn. */
3159 for (size_t ix = 0; ix < num_fns; ix++)
3160 {
3161 int jj;
3162 int static_offset = 0;
3163 std::vector<type *> parm_types;
3164
3165 if (xmethods != NULL)
3166 parm_types = xmethods[ix]->get_arg_types ();
3167 else
3168 {
3169 size_t nparms;
3170
3171 if (methods != NULL)
3172 {
3173 nparms = TYPE_FN_FIELD_TYPE (methods, ix)->num_fields ();
3174 static_offset = oload_method_static_p (methods, ix);
3175 }
3176 else
3177 nparms = SYMBOL_TYPE (functions[ix])->num_fields ();
3178
3179 parm_types.reserve (nparms);
3180 for (jj = 0; jj < nparms; jj++)
3181 {
3182 type *t = (methods != NULL
3183 ? (TYPE_FN_FIELD_ARGS (methods, ix)[jj].type ())
3184 : SYMBOL_TYPE (functions[ix])->field (jj).type ());
3185 parm_types.push_back (t);
3186 }
3187 }
3188
3189 /* Compare parameter types to supplied argument types. Skip
3190 THIS for static methods. */
3191 bv = rank_function (parm_types,
3192 args.slice (static_offset));
3193
3194 if (overload_debug)
3195 {
3196 if (methods != NULL)
3197 fprintf_filtered (gdb_stderr,
3198 "Overloaded method instance %s, # of parms %d\n",
3199 methods[ix].physname, (int) parm_types.size ());
3200 else if (xmethods != NULL)
3201 fprintf_filtered (gdb_stderr,
3202 "Xmethod worker, # of parms %d\n",
3203 (int) parm_types.size ());
3204 else
3205 fprintf_filtered (gdb_stderr,
3206 "Overloaded function instance "
3207 "%s # of parms %d\n",
3208 functions[ix]->demangled_name (),
3209 (int) parm_types.size ());
3210
3211 fprintf_filtered (gdb_stderr,
3212 "...Badness of length : {%d, %d}\n",
3213 bv[0].rank, bv[0].subrank);
3214
3215 for (jj = 1; jj < bv.size (); jj++)
3216 fprintf_filtered (gdb_stderr,
3217 "...Badness of arg %d : {%d, %d}\n",
3218 jj, bv[jj].rank, bv[jj].subrank);
3219 }
3220
3221 if (oload_champ_bv->empty ())
3222 {
3223 *oload_champ_bv = std::move (bv);
3224 oload_champ = 0;
3225 }
3226 else /* See whether current candidate is better or worse than
3227 previous best. */
3228 switch (compare_badness (bv, *oload_champ_bv))
3229 {
3230 case 0: /* Top two contenders are equally good. */
3231 oload_ambiguous = 1;
3232 break;
3233 case 1: /* Incomparable top contenders. */
3234 oload_ambiguous = 2;
3235 break;
3236 case 2: /* New champion, record details. */
3237 *oload_champ_bv = std::move (bv);
3238 oload_ambiguous = 0;
3239 oload_champ = ix;
3240 break;
3241 case 3:
3242 default:
3243 break;
3244 }
3245 if (overload_debug)
3246 fprintf_filtered (gdb_stderr, "Overload resolution "
3247 "champion is %d, ambiguous? %d\n",
3248 oload_champ, oload_ambiguous);
3249 }
3250
3251 return oload_champ;
3252 }
3253
3254 /* Return 1 if we're looking at a static method, 0 if we're looking at
3255 a non-static method or a function that isn't a method. */
3256
3257 static int
3258 oload_method_static_p (struct fn_field *fns_ptr, int index)
3259 {
3260 if (fns_ptr && index >= 0 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
3261 return 1;
3262 else
3263 return 0;
3264 }
3265
3266 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
3267
3268 static enum oload_classification
3269 classify_oload_match (const badness_vector &oload_champ_bv,
3270 int nargs,
3271 int static_offset)
3272 {
3273 int ix;
3274 enum oload_classification worst = STANDARD;
3275
3276 for (ix = 1; ix <= nargs - static_offset; ix++)
3277 {
3278 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
3279 or worse return INCOMPATIBLE. */
3280 if (compare_ranks (oload_champ_bv[ix],
3281 INCOMPATIBLE_TYPE_BADNESS) <= 0)
3282 return INCOMPATIBLE; /* Truly mismatched types. */
3283 /* Otherwise If this conversion is as bad as
3284 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
3285 else if (compare_ranks (oload_champ_bv[ix],
3286 NS_POINTER_CONVERSION_BADNESS) <= 0)
3287 worst = NON_STANDARD; /* Non-standard type conversions
3288 needed. */
3289 }
3290
3291 /* If no INCOMPATIBLE classification was found, return the worst one
3292 that was found (if any). */
3293 return worst;
3294 }
3295
3296 /* C++: return 1 is NAME is a legitimate name for the destructor of
3297 type TYPE. If TYPE does not have a destructor, or if NAME is
3298 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
3299 have CHECK_TYPEDEF applied, this function will apply it itself. */
3300
3301 int
3302 destructor_name_p (const char *name, struct type *type)
3303 {
3304 if (name[0] == '~')
3305 {
3306 const char *dname = type_name_or_error (type);
3307 const char *cp = strchr (dname, '<');
3308 unsigned int len;
3309
3310 /* Do not compare the template part for template classes. */
3311 if (cp == NULL)
3312 len = strlen (dname);
3313 else
3314 len = cp - dname;
3315 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3316 error (_("name of destructor must equal name of class"));
3317 else
3318 return 1;
3319 }
3320 return 0;
3321 }
3322
3323 /* Find an enum constant named NAME in TYPE. TYPE must be an "enum
3324 class". If the name is found, return a value representing it;
3325 otherwise throw an exception. */
3326
3327 static struct value *
3328 enum_constant_from_type (struct type *type, const char *name)
3329 {
3330 int i;
3331 int name_len = strlen (name);
3332
3333 gdb_assert (type->code () == TYPE_CODE_ENUM
3334 && type->is_declared_class ());
3335
3336 for (i = TYPE_N_BASECLASSES (type); i < type->num_fields (); ++i)
3337 {
3338 const char *fname = TYPE_FIELD_NAME (type, i);
3339 int len;
3340
3341 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_ENUMVAL
3342 || fname == NULL)
3343 continue;
3344
3345 /* Look for the trailing "::NAME", since enum class constant
3346 names are qualified here. */
3347 len = strlen (fname);
3348 if (len + 2 >= name_len
3349 && fname[len - name_len - 2] == ':'
3350 && fname[len - name_len - 1] == ':'
3351 && strcmp (&fname[len - name_len], name) == 0)
3352 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, i));
3353 }
3354
3355 error (_("no constant named \"%s\" in enum \"%s\""),
3356 name, type->name ());
3357 }
3358
3359 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3360 return the appropriate member (or the address of the member, if
3361 WANT_ADDRESS). This function is used to resolve user expressions
3362 of the form "DOMAIN::NAME". For more details on what happens, see
3363 the comment before value_struct_elt_for_reference. */
3364
3365 struct value *
3366 value_aggregate_elt (struct type *curtype, const char *name,
3367 struct type *expect_type, int want_address,
3368 enum noside noside)
3369 {
3370 switch (curtype->code ())
3371 {
3372 case TYPE_CODE_STRUCT:
3373 case TYPE_CODE_UNION:
3374 return value_struct_elt_for_reference (curtype, 0, curtype,
3375 name, expect_type,
3376 want_address, noside);
3377 case TYPE_CODE_NAMESPACE:
3378 return value_namespace_elt (curtype, name,
3379 want_address, noside);
3380
3381 case TYPE_CODE_ENUM:
3382 return enum_constant_from_type (curtype, name);
3383
3384 default:
3385 internal_error (__FILE__, __LINE__,
3386 _("non-aggregate type in value_aggregate_elt"));
3387 }
3388 }
3389
3390 /* Compares the two method/function types T1 and T2 for "equality"
3391 with respect to the methods' parameters. If the types of the
3392 two parameter lists are the same, returns 1; 0 otherwise. This
3393 comparison may ignore any artificial parameters in T1 if
3394 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3395 the first artificial parameter in T1, assumed to be a 'this' pointer.
3396
3397 The type T2 is expected to have come from make_params (in eval.c). */
3398
3399 static int
3400 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3401 {
3402 int start = 0;
3403
3404 if (t1->num_fields () > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3405 ++start;
3406
3407 /* If skipping artificial fields, find the first real field
3408 in T1. */
3409 if (skip_artificial)
3410 {
3411 while (start < t1->num_fields ()
3412 && TYPE_FIELD_ARTIFICIAL (t1, start))
3413 ++start;
3414 }
3415
3416 /* Now compare parameters. */
3417
3418 /* Special case: a method taking void. T1 will contain no
3419 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3420 if ((t1->num_fields () - start) == 0 && t2->num_fields () == 1
3421 && t2->field (0).type ()->code () == TYPE_CODE_VOID)
3422 return 1;
3423
3424 if ((t1->num_fields () - start) == t2->num_fields ())
3425 {
3426 int i;
3427
3428 for (i = 0; i < t2->num_fields (); ++i)
3429 {
3430 if (compare_ranks (rank_one_type (t1->field (start + i).type (),
3431 t2->field (i).type (), NULL),
3432 EXACT_MATCH_BADNESS) != 0)
3433 return 0;
3434 }
3435
3436 return 1;
3437 }
3438
3439 return 0;
3440 }
3441
3442 /* C++: Given an aggregate type VT, and a class type CLS, search
3443 recursively for CLS using value V; If found, store the offset
3444 which is either fetched from the virtual base pointer if CLS
3445 is virtual or accumulated offset of its parent classes if
3446 CLS is non-virtual in *BOFFS, set ISVIRT to indicate if CLS
3447 is virtual, and return true. If not found, return false. */
3448
3449 static bool
3450 get_baseclass_offset (struct type *vt, struct type *cls,
3451 struct value *v, int *boffs, bool *isvirt)
3452 {
3453 for (int i = 0; i < TYPE_N_BASECLASSES (vt); i++)
3454 {
3455 struct type *t = vt->field (i).type ();
3456 if (types_equal (t, cls))
3457 {
3458 if (BASETYPE_VIA_VIRTUAL (vt, i))
3459 {
3460 const gdb_byte *adr = value_contents_for_printing (v);
3461 *boffs = baseclass_offset (vt, i, adr, value_offset (v),
3462 value_as_long (v), v);
3463 *isvirt = true;
3464 }
3465 else
3466 *isvirt = false;
3467 return true;
3468 }
3469
3470 if (get_baseclass_offset (check_typedef (t), cls, v, boffs, isvirt))
3471 {
3472 if (*isvirt == false) /* Add non-virtual base offset. */
3473 {
3474 const gdb_byte *adr = value_contents_for_printing (v);
3475 *boffs += baseclass_offset (vt, i, adr, value_offset (v),
3476 value_as_long (v), v);
3477 }
3478 return true;
3479 }
3480 }
3481
3482 return false;
3483 }
3484
3485 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3486 return the address of this member as a "pointer to member" type.
3487 If INTYPE is non-null, then it will be the type of the member we
3488 are looking for. This will help us resolve "pointers to member
3489 functions". This function is used to resolve user expressions of
3490 the form "DOMAIN::NAME". */
3491
3492 static struct value *
3493 value_struct_elt_for_reference (struct type *domain, int offset,
3494 struct type *curtype, const char *name,
3495 struct type *intype,
3496 int want_address,
3497 enum noside noside)
3498 {
3499 struct type *t = check_typedef (curtype);
3500 int i;
3501 struct value *result;
3502
3503 if (t->code () != TYPE_CODE_STRUCT
3504 && t->code () != TYPE_CODE_UNION)
3505 error (_("Internal error: non-aggregate type "
3506 "to value_struct_elt_for_reference"));
3507
3508 for (i = t->num_fields () - 1; i >= TYPE_N_BASECLASSES (t); i--)
3509 {
3510 const char *t_field_name = TYPE_FIELD_NAME (t, i);
3511
3512 if (t_field_name && strcmp (t_field_name, name) == 0)
3513 {
3514 if (field_is_static (&t->field (i)))
3515 {
3516 struct value *v = value_static_field (t, i);
3517 if (want_address)
3518 v = value_addr (v);
3519 return v;
3520 }
3521 if (TYPE_FIELD_PACKED (t, i))
3522 error (_("pointers to bitfield members not allowed"));
3523
3524 if (want_address)
3525 return value_from_longest
3526 (lookup_memberptr_type (t->field (i).type (), domain),
3527 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3528 else if (noside != EVAL_NORMAL)
3529 return allocate_value (t->field (i).type ());
3530 else
3531 {
3532 /* Try to evaluate NAME as a qualified name with implicit
3533 this pointer. In this case, attempt to return the
3534 equivalent to `this->*(&TYPE::NAME)'. */
3535 struct value *v = value_of_this_silent (current_language);
3536 if (v != NULL)
3537 {
3538 struct value *ptr, *this_v = v;
3539 long mem_offset;
3540 struct type *type, *tmp;
3541
3542 ptr = value_aggregate_elt (domain, name, NULL, 1, noside);
3543 type = check_typedef (value_type (ptr));
3544 gdb_assert (type != NULL
3545 && type->code () == TYPE_CODE_MEMBERPTR);
3546 tmp = lookup_pointer_type (TYPE_SELF_TYPE (type));
3547 v = value_cast_pointers (tmp, v, 1);
3548 mem_offset = value_as_long (ptr);
3549 if (domain != curtype)
3550 {
3551 /* Find class offset of type CURTYPE from either its
3552 parent type DOMAIN or the type of implied this. */
3553 int boff = 0;
3554 bool isvirt = false;
3555 if (get_baseclass_offset (domain, curtype, v, &boff,
3556 &isvirt))
3557 mem_offset += boff;
3558 else
3559 {
3560 struct type *p = check_typedef (value_type (this_v));
3561 p = check_typedef (TYPE_TARGET_TYPE (p));
3562 if (get_baseclass_offset (p, curtype, this_v,
3563 &boff, &isvirt))
3564 mem_offset += boff;
3565 }
3566 }
3567 tmp = lookup_pointer_type (TYPE_TARGET_TYPE (type));
3568 result = value_from_pointer (tmp,
3569 value_as_long (v) + mem_offset);
3570 return value_ind (result);
3571 }
3572
3573 error (_("Cannot reference non-static field \"%s\""), name);
3574 }
3575 }
3576 }
3577
3578 /* C++: If it was not found as a data field, then try to return it
3579 as a pointer to a method. */
3580
3581 /* Perform all necessary dereferencing. */
3582 while (intype && intype->code () == TYPE_CODE_PTR)
3583 intype = TYPE_TARGET_TYPE (intype);
3584
3585 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3586 {
3587 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3588
3589 if (t_field_name && strcmp (t_field_name, name) == 0)
3590 {
3591 int j;
3592 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3593 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3594
3595 check_stub_method_group (t, i);
3596
3597 if (intype)
3598 {
3599 for (j = 0; j < len; ++j)
3600 {
3601 if (TYPE_CONST (intype) != TYPE_FN_FIELD_CONST (f, j))
3602 continue;
3603 if (TYPE_VOLATILE (intype) != TYPE_FN_FIELD_VOLATILE (f, j))
3604 continue;
3605
3606 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3607 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3608 intype, 1))
3609 break;
3610 }
3611
3612 if (j == len)
3613 error (_("no member function matches "
3614 "that type instantiation"));
3615 }
3616 else
3617 {
3618 int ii;
3619
3620 j = -1;
3621 for (ii = 0; ii < len; ++ii)
3622 {
3623 /* Skip artificial methods. This is necessary if,
3624 for example, the user wants to "print
3625 subclass::subclass" with only one user-defined
3626 constructor. There is no ambiguity in this case.
3627 We are careful here to allow artificial methods
3628 if they are the unique result. */
3629 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3630 {
3631 if (j == -1)
3632 j = ii;
3633 continue;
3634 }
3635
3636 /* Desired method is ambiguous if more than one
3637 method is defined. */
3638 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3639 error (_("non-unique member `%s' requires "
3640 "type instantiation"), name);
3641
3642 j = ii;
3643 }
3644
3645 if (j == -1)
3646 error (_("no matching member function"));
3647 }
3648
3649 if (TYPE_FN_FIELD_STATIC_P (f, j))
3650 {
3651 struct symbol *s =
3652 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3653 0, VAR_DOMAIN, 0).symbol;
3654
3655 if (s == NULL)
3656 return NULL;
3657
3658 if (want_address)
3659 return value_addr (read_var_value (s, 0, 0));
3660 else
3661 return read_var_value (s, 0, 0);
3662 }
3663
3664 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3665 {
3666 if (want_address)
3667 {
3668 result = allocate_value
3669 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3670 cplus_make_method_ptr (value_type (result),
3671 value_contents_writeable (result),
3672 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3673 }
3674 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3675 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3676 else
3677 error (_("Cannot reference virtual member function \"%s\""),
3678 name);
3679 }
3680 else
3681 {
3682 struct symbol *s =
3683 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3684 0, VAR_DOMAIN, 0).symbol;
3685
3686 if (s == NULL)
3687 return NULL;
3688
3689 struct value *v = read_var_value (s, 0, 0);
3690 if (!want_address)
3691 result = v;
3692 else
3693 {
3694 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3695 cplus_make_method_ptr (value_type (result),
3696 value_contents_writeable (result),
3697 value_address (v), 0);
3698 }
3699 }
3700 return result;
3701 }
3702 }
3703 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3704 {
3705 struct value *v;
3706 int base_offset;
3707
3708 if (BASETYPE_VIA_VIRTUAL (t, i))
3709 base_offset = 0;
3710 else
3711 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3712 v = value_struct_elt_for_reference (domain,
3713 offset + base_offset,
3714 TYPE_BASECLASS (t, i),
3715 name, intype,
3716 want_address, noside);
3717 if (v)
3718 return v;
3719 }
3720
3721 /* As a last chance, pretend that CURTYPE is a namespace, and look
3722 it up that way; this (frequently) works for types nested inside
3723 classes. */
3724
3725 return value_maybe_namespace_elt (curtype, name,
3726 want_address, noside);
3727 }
3728
3729 /* C++: Return the member NAME of the namespace given by the type
3730 CURTYPE. */
3731
3732 static struct value *
3733 value_namespace_elt (const struct type *curtype,
3734 const char *name, int want_address,
3735 enum noside noside)
3736 {
3737 struct value *retval = value_maybe_namespace_elt (curtype, name,
3738 want_address,
3739 noside);
3740
3741 if (retval == NULL)
3742 error (_("No symbol \"%s\" in namespace \"%s\"."),
3743 name, curtype->name ());
3744
3745 return retval;
3746 }
3747
3748 /* A helper function used by value_namespace_elt and
3749 value_struct_elt_for_reference. It looks up NAME inside the
3750 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3751 is a class and NAME refers to a type in CURTYPE itself (as opposed
3752 to, say, some base class of CURTYPE). */
3753
3754 static struct value *
3755 value_maybe_namespace_elt (const struct type *curtype,
3756 const char *name, int want_address,
3757 enum noside noside)
3758 {
3759 const char *namespace_name = curtype->name ();
3760 struct block_symbol sym;
3761 struct value *result;
3762
3763 sym = cp_lookup_symbol_namespace (namespace_name, name,
3764 get_selected_block (0), VAR_DOMAIN);
3765
3766 if (sym.symbol == NULL)
3767 return NULL;
3768 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3769 && (SYMBOL_CLASS (sym.symbol) == LOC_TYPEDEF))
3770 result = allocate_value (SYMBOL_TYPE (sym.symbol));
3771 else
3772 result = value_of_variable (sym.symbol, sym.block);
3773
3774 if (want_address)
3775 result = value_addr (result);
3776
3777 return result;
3778 }
3779
3780 /* Given a pointer or a reference value V, find its real (RTTI) type.
3781
3782 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3783 and refer to the values computed for the object pointed to. */
3784
3785 struct type *
3786 value_rtti_indirect_type (struct value *v, int *full,
3787 LONGEST *top, int *using_enc)
3788 {
3789 struct value *target = NULL;
3790 struct type *type, *real_type, *target_type;
3791
3792 type = value_type (v);
3793 type = check_typedef (type);
3794 if (TYPE_IS_REFERENCE (type))
3795 target = coerce_ref (v);
3796 else if (type->code () == TYPE_CODE_PTR)
3797 {
3798
3799 try
3800 {
3801 target = value_ind (v);
3802 }
3803 catch (const gdb_exception_error &except)
3804 {
3805 if (except.error == MEMORY_ERROR)
3806 {
3807 /* value_ind threw a memory error. The pointer is NULL or
3808 contains an uninitialized value: we can't determine any
3809 type. */
3810 return NULL;
3811 }
3812 throw;
3813 }
3814 }
3815 else
3816 return NULL;
3817
3818 real_type = value_rtti_type (target, full, top, using_enc);
3819
3820 if (real_type)
3821 {
3822 /* Copy qualifiers to the referenced object. */
3823 target_type = value_type (target);
3824 real_type = make_cv_type (TYPE_CONST (target_type),
3825 TYPE_VOLATILE (target_type), real_type, NULL);
3826 if (TYPE_IS_REFERENCE (type))
3827 real_type = lookup_reference_type (real_type, type->code ());
3828 else if (type->code () == TYPE_CODE_PTR)
3829 real_type = lookup_pointer_type (real_type);
3830 else
3831 internal_error (__FILE__, __LINE__, _("Unexpected value type."));
3832
3833 /* Copy qualifiers to the pointer/reference. */
3834 real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type),
3835 real_type, NULL);
3836 }
3837
3838 return real_type;
3839 }
3840
3841 /* Given a value pointed to by ARGP, check its real run-time type, and
3842 if that is different from the enclosing type, create a new value
3843 using the real run-time type as the enclosing type (and of the same
3844 type as ARGP) and return it, with the embedded offset adjusted to
3845 be the correct offset to the enclosed object. RTYPE is the type,
3846 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3847 by value_rtti_type(). If these are available, they can be supplied
3848 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3849 NULL if they're not available. */
3850
3851 struct value *
3852 value_full_object (struct value *argp,
3853 struct type *rtype,
3854 int xfull, int xtop,
3855 int xusing_enc)
3856 {
3857 struct type *real_type;
3858 int full = 0;
3859 LONGEST top = -1;
3860 int using_enc = 0;
3861 struct value *new_val;
3862
3863 if (rtype)
3864 {
3865 real_type = rtype;
3866 full = xfull;
3867 top = xtop;
3868 using_enc = xusing_enc;
3869 }
3870 else
3871 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3872
3873 /* If no RTTI data, or if object is already complete, do nothing. */
3874 if (!real_type || real_type == value_enclosing_type (argp))
3875 return argp;
3876
3877 /* In a destructor we might see a real type that is a superclass of
3878 the object's type. In this case it is better to leave the object
3879 as-is. */
3880 if (full
3881 && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp)))
3882 return argp;
3883
3884 /* If we have the full object, but for some reason the enclosing
3885 type is wrong, set it. */
3886 /* pai: FIXME -- sounds iffy */
3887 if (full)
3888 {
3889 argp = value_copy (argp);
3890 set_value_enclosing_type (argp, real_type);
3891 return argp;
3892 }
3893
3894 /* Check if object is in memory. */
3895 if (VALUE_LVAL (argp) != lval_memory)
3896 {
3897 warning (_("Couldn't retrieve complete object of RTTI "
3898 "type %s; object may be in register(s)."),
3899 real_type->name ());
3900
3901 return argp;
3902 }
3903
3904 /* All other cases -- retrieve the complete object. */
3905 /* Go back by the computed top_offset from the beginning of the
3906 object, adjusting for the embedded offset of argp if that's what
3907 value_rtti_type used for its computation. */
3908 new_val = value_at_lazy (real_type, value_address (argp) - top +
3909 (using_enc ? 0 : value_embedded_offset (argp)));
3910 deprecated_set_value_type (new_val, value_type (argp));
3911 set_value_embedded_offset (new_val, (using_enc
3912 ? top + value_embedded_offset (argp)
3913 : top));
3914 return new_val;
3915 }
3916
3917
3918 /* Return the value of the local variable, if one exists. Throw error
3919 otherwise, such as if the request is made in an inappropriate context. */
3920
3921 struct value *
3922 value_of_this (const struct language_defn *lang)
3923 {
3924 struct block_symbol sym;
3925 const struct block *b;
3926 struct frame_info *frame;
3927
3928 if (lang->name_of_this () == NULL)
3929 error (_("no `this' in current language"));
3930
3931 frame = get_selected_frame (_("no frame selected"));
3932
3933 b = get_frame_block (frame, NULL);
3934
3935 sym = lookup_language_this (lang, b);
3936 if (sym.symbol == NULL)
3937 error (_("current stack frame does not contain a variable named `%s'"),
3938 lang->name_of_this ());
3939
3940 return read_var_value (sym.symbol, sym.block, frame);
3941 }
3942
3943 /* Return the value of the local variable, if one exists. Return NULL
3944 otherwise. Never throw error. */
3945
3946 struct value *
3947 value_of_this_silent (const struct language_defn *lang)
3948 {
3949 struct value *ret = NULL;
3950
3951 try
3952 {
3953 ret = value_of_this (lang);
3954 }
3955 catch (const gdb_exception_error &except)
3956 {
3957 }
3958
3959 return ret;
3960 }
3961
3962 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3963 elements long, starting at LOWBOUND. The result has the same lower
3964 bound as the original ARRAY. */
3965
3966 struct value *
3967 value_slice (struct value *array, int lowbound, int length)
3968 {
3969 struct type *slice_range_type, *slice_type, *range_type;
3970 LONGEST lowerbound, upperbound;
3971 struct value *slice;
3972 struct type *array_type;
3973
3974 array_type = check_typedef (value_type (array));
3975 if (array_type->code () != TYPE_CODE_ARRAY
3976 && array_type->code () != TYPE_CODE_STRING)
3977 error (_("cannot take slice of non-array"));
3978
3979 if (type_not_allocated (array_type))
3980 error (_("array not allocated"));
3981 if (type_not_associated (array_type))
3982 error (_("array not associated"));
3983
3984 range_type = array_type->index_type ();
3985 if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
3986 error (_("slice from bad array or bitstring"));
3987
3988 if (lowbound < lowerbound || length < 0
3989 || lowbound + length - 1 > upperbound)
3990 error (_("slice out of range"));
3991
3992 /* FIXME-type-allocation: need a way to free this type when we are
3993 done with it. */
3994 slice_range_type = create_static_range_type (NULL,
3995 TYPE_TARGET_TYPE (range_type),
3996 lowbound,
3997 lowbound + length - 1);
3998
3999 {
4000 struct type *element_type = TYPE_TARGET_TYPE (array_type);
4001 LONGEST offset
4002 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
4003
4004 slice_type = create_array_type (NULL,
4005 element_type,
4006 slice_range_type);
4007 slice_type->set_code (array_type->code ());
4008
4009 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
4010 slice = allocate_value_lazy (slice_type);
4011 else
4012 {
4013 slice = allocate_value (slice_type);
4014 value_contents_copy (slice, 0, array, offset,
4015 type_length_units (slice_type));
4016 }
4017
4018 set_value_component_location (slice, array);
4019 set_value_offset (slice, value_offset (array) + offset);
4020 }
4021
4022 return slice;
4023 }
4024
4025 /* See value.h. */
4026
4027 struct value *
4028 value_literal_complex (struct value *arg1,
4029 struct value *arg2,
4030 struct type *type)
4031 {
4032 struct value *val;
4033 struct type *real_type = TYPE_TARGET_TYPE (type);
4034
4035 val = allocate_value (type);
4036 arg1 = value_cast (real_type, arg1);
4037 arg2 = value_cast (real_type, arg2);
4038
4039 memcpy (value_contents_raw (val),
4040 value_contents (arg1), TYPE_LENGTH (real_type));
4041 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
4042 value_contents (arg2), TYPE_LENGTH (real_type));
4043 return val;
4044 }
4045
4046 /* See value.h. */
4047
4048 struct value *
4049 value_real_part (struct value *value)
4050 {
4051 struct type *type = check_typedef (value_type (value));
4052 struct type *ttype = TYPE_TARGET_TYPE (type);
4053
4054 gdb_assert (type->code () == TYPE_CODE_COMPLEX);
4055 return value_from_component (value, ttype, 0);
4056 }
4057
4058 /* See value.h. */
4059
4060 struct value *
4061 value_imaginary_part (struct value *value)
4062 {
4063 struct type *type = check_typedef (value_type (value));
4064 struct type *ttype = TYPE_TARGET_TYPE (type);
4065
4066 gdb_assert (type->code () == TYPE_CODE_COMPLEX);
4067 return value_from_component (value, ttype,
4068 TYPE_LENGTH (check_typedef (ttype)));
4069 }
4070
4071 /* Cast a value into the appropriate complex data type. */
4072
4073 static struct value *
4074 cast_into_complex (struct type *type, struct value *val)
4075 {
4076 struct type *real_type = TYPE_TARGET_TYPE (type);
4077
4078 if (value_type (val)->code () == TYPE_CODE_COMPLEX)
4079 {
4080 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
4081 struct value *re_val = allocate_value (val_real_type);
4082 struct value *im_val = allocate_value (val_real_type);
4083
4084 memcpy (value_contents_raw (re_val),
4085 value_contents (val), TYPE_LENGTH (val_real_type));
4086 memcpy (value_contents_raw (im_val),
4087 value_contents (val) + TYPE_LENGTH (val_real_type),
4088 TYPE_LENGTH (val_real_type));
4089
4090 return value_literal_complex (re_val, im_val, type);
4091 }
4092 else if (value_type (val)->code () == TYPE_CODE_FLT
4093 || value_type (val)->code () == TYPE_CODE_INT)
4094 return value_literal_complex (val,
4095 value_zero (real_type, not_lval),
4096 type);
4097 else
4098 error (_("cannot cast non-number to complex"));
4099 }
4100
4101 void _initialize_valops ();
4102 void
4103 _initialize_valops ()
4104 {
4105 add_setshow_boolean_cmd ("overload-resolution", class_support,
4106 &overload_resolution, _("\
4107 Set overload resolution in evaluating C++ functions."), _("\
4108 Show overload resolution in evaluating C++ functions."),
4109 NULL, NULL,
4110 show_overload_resolution,
4111 &setlist, &showlist);
4112 overload_resolution = 1;
4113 }