gdb: make extract_integer take an array_view
[binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "demangle.h"
29 #include "language.h"
30 #include "gdbcmd.h"
31 #include "regcache.h"
32 #include "cp-abi.h"
33 #include "block.h"
34 #include "infcall.h"
35 #include "dictionary.h"
36 #include "cp-support.h"
37 #include "target-float.h"
38 #include "tracepoint.h"
39 #include "observable.h"
40 #include "objfiles.h"
41 #include "extension.h"
42 #include "gdbtypes.h"
43 #include "gdbsupport/byte-vector.h"
44
45 /* Local functions. */
46
47 static int typecmp (bool staticp, bool varargs, int nargs,
48 struct field t1[], const gdb::array_view<value *> t2);
49
50 static struct value *search_struct_field (const char *, struct value *,
51 struct type *, int);
52
53 static struct value *search_struct_method (const char *, struct value **,
54 gdb::optional<gdb::array_view<value *>>,
55 LONGEST, int *, struct type *);
56
57 static int find_oload_champ_namespace (gdb::array_view<value *> args,
58 const char *, const char *,
59 std::vector<symbol *> *oload_syms,
60 badness_vector *,
61 const int no_adl);
62
63 static int find_oload_champ_namespace_loop (gdb::array_view<value *> args,
64 const char *, const char *,
65 int, std::vector<symbol *> *oload_syms,
66 badness_vector *, int *,
67 const int no_adl);
68
69 static int find_oload_champ (gdb::array_view<value *> args,
70 size_t num_fns,
71 fn_field *methods,
72 xmethod_worker_up *xmethods,
73 symbol **functions,
74 badness_vector *oload_champ_bv);
75
76 static int oload_method_static_p (struct fn_field *, int);
77
78 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
79
80 static enum oload_classification classify_oload_match
81 (const badness_vector &, int, int);
82
83 static struct value *value_struct_elt_for_reference (struct type *,
84 int, struct type *,
85 const char *,
86 struct type *,
87 int, enum noside);
88
89 static struct value *value_namespace_elt (const struct type *,
90 const char *, int , enum noside);
91
92 static struct value *value_maybe_namespace_elt (const struct type *,
93 const char *, int,
94 enum noside);
95
96 static CORE_ADDR allocate_space_in_inferior (int);
97
98 static struct value *cast_into_complex (struct type *, struct value *);
99
100 bool overload_resolution = false;
101 static void
102 show_overload_resolution (struct ui_file *file, int from_tty,
103 struct cmd_list_element *c,
104 const char *value)
105 {
106 fprintf_filtered (file, _("Overload resolution in evaluating "
107 "C++ functions is %s.\n"),
108 value);
109 }
110
111 /* Find the address of function name NAME in the inferior. If OBJF_P
112 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
113 is defined. */
114
115 struct value *
116 find_function_in_inferior (const char *name, struct objfile **objf_p)
117 {
118 struct block_symbol sym;
119
120 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
121 if (sym.symbol != NULL)
122 {
123 if (SYMBOL_CLASS (sym.symbol) != LOC_BLOCK)
124 {
125 error (_("\"%s\" exists in this program but is not a function."),
126 name);
127 }
128
129 if (objf_p)
130 *objf_p = symbol_objfile (sym.symbol);
131
132 return value_of_variable (sym.symbol, sym.block);
133 }
134 else
135 {
136 struct bound_minimal_symbol msymbol =
137 lookup_bound_minimal_symbol (name);
138
139 if (msymbol.minsym != NULL)
140 {
141 struct objfile *objfile = msymbol.objfile;
142 struct gdbarch *gdbarch = objfile->arch ();
143
144 struct type *type;
145 CORE_ADDR maddr;
146 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
147 type = lookup_function_type (type);
148 type = lookup_pointer_type (type);
149 maddr = BMSYMBOL_VALUE_ADDRESS (msymbol);
150
151 if (objf_p)
152 *objf_p = objfile;
153
154 return value_from_pointer (type, maddr);
155 }
156 else
157 {
158 if (!target_has_execution ())
159 error (_("evaluation of this expression "
160 "requires the target program to be active"));
161 else
162 error (_("evaluation of this expression requires the "
163 "program to have a function \"%s\"."),
164 name);
165 }
166 }
167 }
168
169 /* Allocate NBYTES of space in the inferior using the inferior's
170 malloc and return a value that is a pointer to the allocated
171 space. */
172
173 struct value *
174 value_allocate_space_in_inferior (int len)
175 {
176 struct objfile *objf;
177 struct value *val = find_function_in_inferior ("malloc", &objf);
178 struct gdbarch *gdbarch = objf->arch ();
179 struct value *blocklen;
180
181 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
182 val = call_function_by_hand (val, NULL, blocklen);
183 if (value_logical_not (val))
184 {
185 if (!target_has_execution ())
186 error (_("No memory available to program now: "
187 "you need to start the target first"));
188 else
189 error (_("No memory available to program: call to malloc failed"));
190 }
191 return val;
192 }
193
194 static CORE_ADDR
195 allocate_space_in_inferior (int len)
196 {
197 return value_as_long (value_allocate_space_in_inferior (len));
198 }
199
200 /* Cast struct value VAL to type TYPE and return as a value.
201 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
202 for this to work. Typedef to one of the codes is permitted.
203 Returns NULL if the cast is neither an upcast nor a downcast. */
204
205 static struct value *
206 value_cast_structs (struct type *type, struct value *v2)
207 {
208 struct type *t1;
209 struct type *t2;
210 struct value *v;
211
212 gdb_assert (type != NULL && v2 != NULL);
213
214 t1 = check_typedef (type);
215 t2 = check_typedef (value_type (v2));
216
217 /* Check preconditions. */
218 gdb_assert ((t1->code () == TYPE_CODE_STRUCT
219 || t1->code () == TYPE_CODE_UNION)
220 && !!"Precondition is that type is of STRUCT or UNION kind.");
221 gdb_assert ((t2->code () == TYPE_CODE_STRUCT
222 || t2->code () == TYPE_CODE_UNION)
223 && !!"Precondition is that value is of STRUCT or UNION kind");
224
225 if (t1->name () != NULL
226 && t2->name () != NULL
227 && !strcmp (t1->name (), t2->name ()))
228 return NULL;
229
230 /* Upcasting: look in the type of the source to see if it contains the
231 type of the target as a superclass. If so, we'll need to
232 offset the pointer rather than just change its type. */
233 if (t1->name () != NULL)
234 {
235 v = search_struct_field (t1->name (),
236 v2, t2, 1);
237 if (v)
238 return v;
239 }
240
241 /* Downcasting: look in the type of the target to see if it contains the
242 type of the source as a superclass. If so, we'll need to
243 offset the pointer rather than just change its type. */
244 if (t2->name () != NULL)
245 {
246 /* Try downcasting using the run-time type of the value. */
247 int full, using_enc;
248 LONGEST top;
249 struct type *real_type;
250
251 real_type = value_rtti_type (v2, &full, &top, &using_enc);
252 if (real_type)
253 {
254 v = value_full_object (v2, real_type, full, top, using_enc);
255 v = value_at_lazy (real_type, value_address (v));
256 real_type = value_type (v);
257
258 /* We might be trying to cast to the outermost enclosing
259 type, in which case search_struct_field won't work. */
260 if (real_type->name () != NULL
261 && !strcmp (real_type->name (), t1->name ()))
262 return v;
263
264 v = search_struct_field (t2->name (), v, real_type, 1);
265 if (v)
266 return v;
267 }
268
269 /* Try downcasting using information from the destination type
270 T2. This wouldn't work properly for classes with virtual
271 bases, but those were handled above. */
272 v = search_struct_field (t2->name (),
273 value_zero (t1, not_lval), t1, 1);
274 if (v)
275 {
276 /* Downcasting is possible (t1 is superclass of v2). */
277 CORE_ADDR addr2 = value_address (v2);
278
279 addr2 -= value_address (v) + value_embedded_offset (v);
280 return value_at (type, addr2);
281 }
282 }
283
284 return NULL;
285 }
286
287 /* Cast one pointer or reference type to another. Both TYPE and
288 the type of ARG2 should be pointer types, or else both should be
289 reference types. If SUBCLASS_CHECK is non-zero, this will force a
290 check to see whether TYPE is a superclass of ARG2's type. If
291 SUBCLASS_CHECK is zero, then the subclass check is done only when
292 ARG2 is itself non-zero. Returns the new pointer or reference. */
293
294 struct value *
295 value_cast_pointers (struct type *type, struct value *arg2,
296 int subclass_check)
297 {
298 struct type *type1 = check_typedef (type);
299 struct type *type2 = check_typedef (value_type (arg2));
300 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
301 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
302
303 if (t1->code () == TYPE_CODE_STRUCT
304 && t2->code () == TYPE_CODE_STRUCT
305 && (subclass_check || !value_logical_not (arg2)))
306 {
307 struct value *v2;
308
309 if (TYPE_IS_REFERENCE (type2))
310 v2 = coerce_ref (arg2);
311 else
312 v2 = value_ind (arg2);
313 gdb_assert (check_typedef (value_type (v2))->code ()
314 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
315 v2 = value_cast_structs (t1, v2);
316 /* At this point we have what we can have, un-dereference if needed. */
317 if (v2)
318 {
319 struct value *v = value_addr (v2);
320
321 deprecated_set_value_type (v, type);
322 return v;
323 }
324 }
325
326 /* No superclass found, just change the pointer type. */
327 arg2 = value_copy (arg2);
328 deprecated_set_value_type (arg2, type);
329 set_value_enclosing_type (arg2, type);
330 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
331 return arg2;
332 }
333
334 /* See value.h. */
335
336 gdb_mpq
337 value_to_gdb_mpq (struct value *value)
338 {
339 struct type *type = check_typedef (value_type (value));
340
341 gdb_mpq result;
342 if (is_floating_type (type))
343 {
344 double d = target_float_to_host_double (value_contents (value).data (),
345 type);
346 mpq_set_d (result.val, d);
347 }
348 else
349 {
350 gdb_assert (is_integral_type (type)
351 || is_fixed_point_type (type));
352
353 gdb_mpz vz;
354 vz.read (gdb::make_array_view (value_contents (value).data (),
355 TYPE_LENGTH (type)),
356 type_byte_order (type), type->is_unsigned ());
357 mpq_set_z (result.val, vz.val);
358
359 if (is_fixed_point_type (type))
360 mpq_mul (result.val, result.val,
361 type->fixed_point_scaling_factor ().val);
362 }
363
364 return result;
365 }
366
367 /* Assuming that TO_TYPE is a fixed point type, return a value
368 corresponding to the cast of FROM_VAL to that type. */
369
370 static struct value *
371 value_cast_to_fixed_point (struct type *to_type, struct value *from_val)
372 {
373 struct type *from_type = value_type (from_val);
374
375 if (from_type == to_type)
376 return from_val;
377
378 if (!is_floating_type (from_type)
379 && !is_integral_type (from_type)
380 && !is_fixed_point_type (from_type))
381 error (_("Invalid conversion from type %s to fixed point type %s"),
382 from_type->name (), to_type->name ());
383
384 gdb_mpq vq = value_to_gdb_mpq (from_val);
385
386 /* Divide that value by the scaling factor to obtain the unscaled
387 value, first in rational form, and then in integer form. */
388
389 mpq_div (vq.val, vq.val, to_type->fixed_point_scaling_factor ().val);
390 gdb_mpz unscaled = vq.get_rounded ();
391
392 /* Finally, create the result value, and pack the unscaled value
393 in it. */
394 struct value *result = allocate_value (to_type);
395 unscaled.write (gdb::make_array_view (value_contents_raw (result).data (),
396 TYPE_LENGTH (to_type)),
397 type_byte_order (to_type),
398 to_type->is_unsigned ());
399
400 return result;
401 }
402
403 /* Cast value ARG2 to type TYPE and return as a value.
404 More general than a C cast: accepts any two types of the same length,
405 and if ARG2 is an lvalue it can be cast into anything at all. */
406 /* In C++, casts may change pointer or object representations. */
407
408 struct value *
409 value_cast (struct type *type, struct value *arg2)
410 {
411 enum type_code code1;
412 enum type_code code2;
413 int scalar;
414 struct type *type2;
415
416 int convert_to_boolean = 0;
417
418 /* TYPE might be equal in meaning to the existing type of ARG2, but for
419 many reasons, might be a different type object (e.g. TYPE might be a
420 gdbarch owned type, while VALUE_TYPE (ARG2) could be an objfile owned
421 type).
422
423 In this case we want to preserve the LVAL of ARG2 as this allows the
424 resulting value to be used in more places. We do this by calling
425 VALUE_COPY if appropriate. */
426 if (types_deeply_equal (value_type (arg2), type))
427 {
428 /* If the types are exactly equal then we can avoid creating a new
429 value completely. */
430 if (value_type (arg2) != type)
431 {
432 arg2 = value_copy (arg2);
433 deprecated_set_value_type (arg2, type);
434 }
435 return arg2;
436 }
437
438 if (is_fixed_point_type (type))
439 return value_cast_to_fixed_point (type, arg2);
440
441 /* Check if we are casting struct reference to struct reference. */
442 if (TYPE_IS_REFERENCE (check_typedef (type)))
443 {
444 /* We dereference type; then we recurse and finally
445 we generate value of the given reference. Nothing wrong with
446 that. */
447 struct type *t1 = check_typedef (type);
448 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
449 struct value *val = value_cast (dereftype, arg2);
450
451 return value_ref (val, t1->code ());
452 }
453
454 if (TYPE_IS_REFERENCE (check_typedef (value_type (arg2))))
455 /* We deref the value and then do the cast. */
456 return value_cast (type, coerce_ref (arg2));
457
458 /* Strip typedefs / resolve stubs in order to get at the type's
459 code/length, but remember the original type, to use as the
460 resulting type of the cast, in case it was a typedef. */
461 struct type *to_type = type;
462
463 type = check_typedef (type);
464 code1 = type->code ();
465 arg2 = coerce_ref (arg2);
466 type2 = check_typedef (value_type (arg2));
467
468 /* You can't cast to a reference type. See value_cast_pointers
469 instead. */
470 gdb_assert (!TYPE_IS_REFERENCE (type));
471
472 /* A cast to an undetermined-length array_type, such as
473 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
474 where N is sizeof(OBJECT)/sizeof(TYPE). */
475 if (code1 == TYPE_CODE_ARRAY)
476 {
477 struct type *element_type = TYPE_TARGET_TYPE (type);
478 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
479
480 if (element_length > 0 && type->bounds ()->high.kind () == PROP_UNDEFINED)
481 {
482 struct type *range_type = type->index_type ();
483 int val_length = TYPE_LENGTH (type2);
484 LONGEST low_bound, high_bound, new_length;
485
486 if (!get_discrete_bounds (range_type, &low_bound, &high_bound))
487 low_bound = 0, high_bound = 0;
488 new_length = val_length / element_length;
489 if (val_length % element_length != 0)
490 warning (_("array element type size does not "
491 "divide object size in cast"));
492 /* FIXME-type-allocation: need a way to free this type when
493 we are done with it. */
494 range_type = create_static_range_type (NULL,
495 TYPE_TARGET_TYPE (range_type),
496 low_bound,
497 new_length + low_bound - 1);
498 deprecated_set_value_type (arg2,
499 create_array_type (NULL,
500 element_type,
501 range_type));
502 return arg2;
503 }
504 }
505
506 if (current_language->c_style_arrays_p ()
507 && type2->code () == TYPE_CODE_ARRAY
508 && !type2->is_vector ())
509 arg2 = value_coerce_array (arg2);
510
511 if (type2->code () == TYPE_CODE_FUNC)
512 arg2 = value_coerce_function (arg2);
513
514 type2 = check_typedef (value_type (arg2));
515 code2 = type2->code ();
516
517 if (code1 == TYPE_CODE_COMPLEX)
518 return cast_into_complex (to_type, arg2);
519 if (code1 == TYPE_CODE_BOOL)
520 {
521 code1 = TYPE_CODE_INT;
522 convert_to_boolean = 1;
523 }
524 if (code1 == TYPE_CODE_CHAR)
525 code1 = TYPE_CODE_INT;
526 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
527 code2 = TYPE_CODE_INT;
528
529 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
530 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
531 || code2 == TYPE_CODE_RANGE
532 || is_fixed_point_type (type2));
533
534 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
535 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
536 && type->name () != 0)
537 {
538 struct value *v = value_cast_structs (to_type, arg2);
539
540 if (v)
541 return v;
542 }
543
544 if (is_floating_type (type) && scalar)
545 {
546 if (is_floating_value (arg2))
547 {
548 struct value *v = allocate_value (to_type);
549 target_float_convert (value_contents (arg2).data (), type2,
550 value_contents_raw (v).data (), type);
551 return v;
552 }
553 else if (is_fixed_point_type (type2))
554 {
555 gdb_mpq fp_val;
556
557 fp_val.read_fixed_point
558 (gdb::make_array_view (value_contents (arg2).data (),
559 TYPE_LENGTH (type2)),
560 type_byte_order (type2), type2->is_unsigned (),
561 type2->fixed_point_scaling_factor ());
562
563 struct value *v = allocate_value (to_type);
564 target_float_from_host_double (value_contents_raw (v).data (),
565 to_type, mpq_get_d (fp_val.val));
566 return v;
567 }
568
569 /* The only option left is an integral type. */
570 if (type2->is_unsigned ())
571 return value_from_ulongest (to_type, value_as_long (arg2));
572 else
573 return value_from_longest (to_type, value_as_long (arg2));
574 }
575 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
576 || code1 == TYPE_CODE_RANGE)
577 && (scalar || code2 == TYPE_CODE_PTR
578 || code2 == TYPE_CODE_MEMBERPTR))
579 {
580 LONGEST longest;
581
582 /* When we cast pointers to integers, we mustn't use
583 gdbarch_pointer_to_address to find the address the pointer
584 represents, as value_as_long would. GDB should evaluate
585 expressions just as the compiler would --- and the compiler
586 sees a cast as a simple reinterpretation of the pointer's
587 bits. */
588 if (code2 == TYPE_CODE_PTR)
589 longest = extract_unsigned_integer
590 (value_contents (arg2), type_byte_order (type2));
591 else
592 longest = value_as_long (arg2);
593 return value_from_longest (to_type, convert_to_boolean ?
594 (LONGEST) (longest ? 1 : 0) : longest);
595 }
596 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
597 || code2 == TYPE_CODE_ENUM
598 || code2 == TYPE_CODE_RANGE))
599 {
600 /* TYPE_LENGTH (type) is the length of a pointer, but we really
601 want the length of an address! -- we are really dealing with
602 addresses (i.e., gdb representations) not pointers (i.e.,
603 target representations) here.
604
605 This allows things like "print *(int *)0x01000234" to work
606 without printing a misleading message -- which would
607 otherwise occur when dealing with a target having two byte
608 pointers and four byte addresses. */
609
610 int addr_bit = gdbarch_addr_bit (type2->arch ());
611 LONGEST longest = value_as_long (arg2);
612
613 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
614 {
615 if (longest >= ((LONGEST) 1 << addr_bit)
616 || longest <= -((LONGEST) 1 << addr_bit))
617 warning (_("value truncated"));
618 }
619 return value_from_longest (to_type, longest);
620 }
621 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
622 && value_as_long (arg2) == 0)
623 {
624 struct value *result = allocate_value (to_type);
625
626 cplus_make_method_ptr (to_type,
627 value_contents_writeable (result).data (), 0, 0);
628 return result;
629 }
630 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
631 && value_as_long (arg2) == 0)
632 {
633 /* The Itanium C++ ABI represents NULL pointers to members as
634 minus one, instead of biasing the normal case. */
635 return value_from_longest (to_type, -1);
636 }
637 else if (code1 == TYPE_CODE_ARRAY && type->is_vector ()
638 && code2 == TYPE_CODE_ARRAY && type2->is_vector ()
639 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
640 error (_("Cannot convert between vector values of different sizes"));
641 else if (code1 == TYPE_CODE_ARRAY && type->is_vector () && scalar
642 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
643 error (_("can only cast scalar to vector of same size"));
644 else if (code1 == TYPE_CODE_VOID)
645 {
646 return value_zero (to_type, not_lval);
647 }
648 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
649 {
650 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
651 return value_cast_pointers (to_type, arg2, 0);
652
653 arg2 = value_copy (arg2);
654 deprecated_set_value_type (arg2, to_type);
655 set_value_enclosing_type (arg2, to_type);
656 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
657 return arg2;
658 }
659 else if (VALUE_LVAL (arg2) == lval_memory)
660 return value_at_lazy (to_type, value_address (arg2));
661 else
662 {
663 if (current_language->la_language == language_ada)
664 error (_("Invalid type conversion."));
665 error (_("Invalid cast."));
666 }
667 }
668
669 /* The C++ reinterpret_cast operator. */
670
671 struct value *
672 value_reinterpret_cast (struct type *type, struct value *arg)
673 {
674 struct value *result;
675 struct type *real_type = check_typedef (type);
676 struct type *arg_type, *dest_type;
677 int is_ref = 0;
678 enum type_code dest_code, arg_code;
679
680 /* Do reference, function, and array conversion. */
681 arg = coerce_array (arg);
682
683 /* Attempt to preserve the type the user asked for. */
684 dest_type = type;
685
686 /* If we are casting to a reference type, transform
687 reinterpret_cast<T&[&]>(V) to *reinterpret_cast<T*>(&V). */
688 if (TYPE_IS_REFERENCE (real_type))
689 {
690 is_ref = 1;
691 arg = value_addr (arg);
692 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
693 real_type = lookup_pointer_type (real_type);
694 }
695
696 arg_type = value_type (arg);
697
698 dest_code = real_type->code ();
699 arg_code = arg_type->code ();
700
701 /* We can convert pointer types, or any pointer type to int, or int
702 type to pointer. */
703 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
704 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
705 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
706 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
707 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
708 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
709 || (dest_code == arg_code
710 && (dest_code == TYPE_CODE_PTR
711 || dest_code == TYPE_CODE_METHODPTR
712 || dest_code == TYPE_CODE_MEMBERPTR)))
713 result = value_cast (dest_type, arg);
714 else
715 error (_("Invalid reinterpret_cast"));
716
717 if (is_ref)
718 result = value_cast (type, value_ref (value_ind (result),
719 type->code ()));
720
721 return result;
722 }
723
724 /* A helper for value_dynamic_cast. This implements the first of two
725 runtime checks: we iterate over all the base classes of the value's
726 class which are equal to the desired class; if only one of these
727 holds the value, then it is the answer. */
728
729 static int
730 dynamic_cast_check_1 (struct type *desired_type,
731 const gdb_byte *valaddr,
732 LONGEST embedded_offset,
733 CORE_ADDR address,
734 struct value *val,
735 struct type *search_type,
736 CORE_ADDR arg_addr,
737 struct type *arg_type,
738 struct value **result)
739 {
740 int i, result_count = 0;
741
742 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
743 {
744 LONGEST offset = baseclass_offset (search_type, i, valaddr,
745 embedded_offset,
746 address, val);
747
748 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
749 {
750 if (address + embedded_offset + offset >= arg_addr
751 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
752 {
753 ++result_count;
754 if (!*result)
755 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
756 address + embedded_offset + offset);
757 }
758 }
759 else
760 result_count += dynamic_cast_check_1 (desired_type,
761 valaddr,
762 embedded_offset + offset,
763 address, val,
764 TYPE_BASECLASS (search_type, i),
765 arg_addr,
766 arg_type,
767 result);
768 }
769
770 return result_count;
771 }
772
773 /* A helper for value_dynamic_cast. This implements the second of two
774 runtime checks: we look for a unique public sibling class of the
775 argument's declared class. */
776
777 static int
778 dynamic_cast_check_2 (struct type *desired_type,
779 const gdb_byte *valaddr,
780 LONGEST embedded_offset,
781 CORE_ADDR address,
782 struct value *val,
783 struct type *search_type,
784 struct value **result)
785 {
786 int i, result_count = 0;
787
788 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
789 {
790 LONGEST offset;
791
792 if (! BASETYPE_VIA_PUBLIC (search_type, i))
793 continue;
794
795 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
796 address, val);
797 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
798 {
799 ++result_count;
800 if (*result == NULL)
801 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
802 address + embedded_offset + offset);
803 }
804 else
805 result_count += dynamic_cast_check_2 (desired_type,
806 valaddr,
807 embedded_offset + offset,
808 address, val,
809 TYPE_BASECLASS (search_type, i),
810 result);
811 }
812
813 return result_count;
814 }
815
816 /* The C++ dynamic_cast operator. */
817
818 struct value *
819 value_dynamic_cast (struct type *type, struct value *arg)
820 {
821 int full, using_enc;
822 LONGEST top;
823 struct type *resolved_type = check_typedef (type);
824 struct type *arg_type = check_typedef (value_type (arg));
825 struct type *class_type, *rtti_type;
826 struct value *result, *tem, *original_arg = arg;
827 CORE_ADDR addr;
828 int is_ref = TYPE_IS_REFERENCE (resolved_type);
829
830 if (resolved_type->code () != TYPE_CODE_PTR
831 && !TYPE_IS_REFERENCE (resolved_type))
832 error (_("Argument to dynamic_cast must be a pointer or reference type"));
833 if (TYPE_TARGET_TYPE (resolved_type)->code () != TYPE_CODE_VOID
834 && TYPE_TARGET_TYPE (resolved_type)->code () != TYPE_CODE_STRUCT)
835 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
836
837 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
838 if (resolved_type->code () == TYPE_CODE_PTR)
839 {
840 if (arg_type->code () != TYPE_CODE_PTR
841 && ! (arg_type->code () == TYPE_CODE_INT
842 && value_as_long (arg) == 0))
843 error (_("Argument to dynamic_cast does not have pointer type"));
844 if (arg_type->code () == TYPE_CODE_PTR)
845 {
846 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
847 if (arg_type->code () != TYPE_CODE_STRUCT)
848 error (_("Argument to dynamic_cast does "
849 "not have pointer to class type"));
850 }
851
852 /* Handle NULL pointers. */
853 if (value_as_long (arg) == 0)
854 return value_zero (type, not_lval);
855
856 arg = value_ind (arg);
857 }
858 else
859 {
860 if (arg_type->code () != TYPE_CODE_STRUCT)
861 error (_("Argument to dynamic_cast does not have class type"));
862 }
863
864 /* If the classes are the same, just return the argument. */
865 if (class_types_same_p (class_type, arg_type))
866 return value_cast (type, arg);
867
868 /* If the target type is a unique base class of the argument's
869 declared type, just cast it. */
870 if (is_ancestor (class_type, arg_type))
871 {
872 if (is_unique_ancestor (class_type, arg))
873 return value_cast (type, original_arg);
874 error (_("Ambiguous dynamic_cast"));
875 }
876
877 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
878 if (! rtti_type)
879 error (_("Couldn't determine value's most derived type for dynamic_cast"));
880
881 /* Compute the most derived object's address. */
882 addr = value_address (arg);
883 if (full)
884 {
885 /* Done. */
886 }
887 else if (using_enc)
888 addr += top;
889 else
890 addr += top + value_embedded_offset (arg);
891
892 /* dynamic_cast<void *> means to return a pointer to the
893 most-derived object. */
894 if (resolved_type->code () == TYPE_CODE_PTR
895 && TYPE_TARGET_TYPE (resolved_type)->code () == TYPE_CODE_VOID)
896 return value_at_lazy (type, addr);
897
898 tem = value_at (type, addr);
899 type = value_type (tem);
900
901 /* The first dynamic check specified in 5.2.7. */
902 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
903 {
904 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
905 return tem;
906 result = NULL;
907 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
908 value_contents_for_printing (tem).data (),
909 value_embedded_offset (tem),
910 value_address (tem), tem,
911 rtti_type, addr,
912 arg_type,
913 &result) == 1)
914 return value_cast (type,
915 is_ref
916 ? value_ref (result, resolved_type->code ())
917 : value_addr (result));
918 }
919
920 /* The second dynamic check specified in 5.2.7. */
921 result = NULL;
922 if (is_public_ancestor (arg_type, rtti_type)
923 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
924 value_contents_for_printing (tem).data (),
925 value_embedded_offset (tem),
926 value_address (tem), tem,
927 rtti_type, &result) == 1)
928 return value_cast (type,
929 is_ref
930 ? value_ref (result, resolved_type->code ())
931 : value_addr (result));
932
933 if (resolved_type->code () == TYPE_CODE_PTR)
934 return value_zero (type, not_lval);
935
936 error (_("dynamic_cast failed"));
937 }
938
939 /* Create a not_lval value of numeric type TYPE that is one, and return it. */
940
941 struct value *
942 value_one (struct type *type)
943 {
944 struct type *type1 = check_typedef (type);
945 struct value *val;
946
947 if (is_integral_type (type1) || is_floating_type (type1))
948 {
949 val = value_from_longest (type, (LONGEST) 1);
950 }
951 else if (type1->code () == TYPE_CODE_ARRAY && type1->is_vector ())
952 {
953 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
954 int i;
955 LONGEST low_bound, high_bound;
956
957 if (!get_array_bounds (type1, &low_bound, &high_bound))
958 error (_("Could not determine the vector bounds"));
959
960 val = allocate_value (type);
961 gdb::array_view<gdb_byte> val_contents = value_contents_writeable (val);
962 int elt_len = TYPE_LENGTH (eltype);
963
964 for (i = 0; i < high_bound - low_bound + 1; i++)
965 {
966 value *tmp = value_one (eltype);
967 copy (value_contents_all (tmp),
968 val_contents.slice (i * elt_len, elt_len));
969 }
970 }
971 else
972 {
973 error (_("Not a numeric type."));
974 }
975
976 /* value_one result is never used for assignments to. */
977 gdb_assert (VALUE_LVAL (val) == not_lval);
978
979 return val;
980 }
981
982 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack.
983 The type of the created value may differ from the passed type TYPE.
984 Make sure to retrieve the returned values's new type after this call
985 e.g. in case the type is a variable length array. */
986
987 static struct value *
988 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
989 {
990 struct value *val;
991
992 if (check_typedef (type)->code () == TYPE_CODE_VOID)
993 error (_("Attempt to dereference a generic pointer."));
994
995 val = value_from_contents_and_address (type, NULL, addr);
996
997 if (!lazy)
998 value_fetch_lazy (val);
999
1000 return val;
1001 }
1002
1003 /* Return a value with type TYPE located at ADDR.
1004
1005 Call value_at only if the data needs to be fetched immediately;
1006 if we can be 'lazy' and defer the fetch, perhaps indefinitely, call
1007 value_at_lazy instead. value_at_lazy simply records the address of
1008 the data and sets the lazy-evaluation-required flag. The lazy flag
1009 is tested in the value_contents macro, which is used if and when
1010 the contents are actually required. The type of the created value
1011 may differ from the passed type TYPE. Make sure to retrieve the
1012 returned values's new type after this call e.g. in case the type
1013 is a variable length array.
1014
1015 Note: value_at does *NOT* handle embedded offsets; perform such
1016 adjustments before or after calling it. */
1017
1018 struct value *
1019 value_at (struct type *type, CORE_ADDR addr)
1020 {
1021 return get_value_at (type, addr, 0);
1022 }
1023
1024 /* Return a lazy value with type TYPE located at ADDR (cf. value_at).
1025 The type of the created value may differ from the passed type TYPE.
1026 Make sure to retrieve the returned values's new type after this call
1027 e.g. in case the type is a variable length array. */
1028
1029 struct value *
1030 value_at_lazy (struct type *type, CORE_ADDR addr)
1031 {
1032 return get_value_at (type, addr, 1);
1033 }
1034
1035 void
1036 read_value_memory (struct value *val, LONGEST bit_offset,
1037 int stack, CORE_ADDR memaddr,
1038 gdb_byte *buffer, size_t length)
1039 {
1040 ULONGEST xfered_total = 0;
1041 struct gdbarch *arch = get_value_arch (val);
1042 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1043 enum target_object object;
1044
1045 object = stack ? TARGET_OBJECT_STACK_MEMORY : TARGET_OBJECT_MEMORY;
1046
1047 while (xfered_total < length)
1048 {
1049 enum target_xfer_status status;
1050 ULONGEST xfered_partial;
1051
1052 status = target_xfer_partial (current_inferior ()->top_target (),
1053 object, NULL,
1054 buffer + xfered_total * unit_size, NULL,
1055 memaddr + xfered_total,
1056 length - xfered_total,
1057 &xfered_partial);
1058
1059 if (status == TARGET_XFER_OK)
1060 /* nothing */;
1061 else if (status == TARGET_XFER_UNAVAILABLE)
1062 mark_value_bits_unavailable (val, (xfered_total * HOST_CHAR_BIT
1063 + bit_offset),
1064 xfered_partial * HOST_CHAR_BIT);
1065 else if (status == TARGET_XFER_EOF)
1066 memory_error (TARGET_XFER_E_IO, memaddr + xfered_total);
1067 else
1068 memory_error (status, memaddr + xfered_total);
1069
1070 xfered_total += xfered_partial;
1071 QUIT;
1072 }
1073 }
1074
1075 /* Store the contents of FROMVAL into the location of TOVAL.
1076 Return a new value with the location of TOVAL and contents of FROMVAL. */
1077
1078 struct value *
1079 value_assign (struct value *toval, struct value *fromval)
1080 {
1081 struct type *type;
1082 struct value *val;
1083 struct frame_id old_frame;
1084
1085 if (!deprecated_value_modifiable (toval))
1086 error (_("Left operand of assignment is not a modifiable lvalue."));
1087
1088 toval = coerce_ref (toval);
1089
1090 type = value_type (toval);
1091 if (VALUE_LVAL (toval) != lval_internalvar)
1092 fromval = value_cast (type, fromval);
1093 else
1094 {
1095 /* Coerce arrays and functions to pointers, except for arrays
1096 which only live in GDB's storage. */
1097 if (!value_must_coerce_to_target (fromval))
1098 fromval = coerce_array (fromval);
1099 }
1100
1101 type = check_typedef (type);
1102
1103 /* Since modifying a register can trash the frame chain, and
1104 modifying memory can trash the frame cache, we save the old frame
1105 and then restore the new frame afterwards. */
1106 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1107
1108 switch (VALUE_LVAL (toval))
1109 {
1110 case lval_internalvar:
1111 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1112 return value_of_internalvar (type->arch (),
1113 VALUE_INTERNALVAR (toval));
1114
1115 case lval_internalvar_component:
1116 {
1117 LONGEST offset = value_offset (toval);
1118
1119 /* Are we dealing with a bitfield?
1120
1121 It is important to mention that `value_parent (toval)' is
1122 non-NULL iff `value_bitsize (toval)' is non-zero. */
1123 if (value_bitsize (toval))
1124 {
1125 /* VALUE_INTERNALVAR below refers to the parent value, while
1126 the offset is relative to this parent value. */
1127 gdb_assert (value_parent (value_parent (toval)) == NULL);
1128 offset += value_offset (value_parent (toval));
1129 }
1130
1131 set_internalvar_component (VALUE_INTERNALVAR (toval),
1132 offset,
1133 value_bitpos (toval),
1134 value_bitsize (toval),
1135 fromval);
1136 }
1137 break;
1138
1139 case lval_memory:
1140 {
1141 const gdb_byte *dest_buffer;
1142 CORE_ADDR changed_addr;
1143 int changed_len;
1144 gdb_byte buffer[sizeof (LONGEST)];
1145
1146 if (value_bitsize (toval))
1147 {
1148 struct value *parent = value_parent (toval);
1149
1150 changed_addr = value_address (parent) + value_offset (toval);
1151 changed_len = (value_bitpos (toval)
1152 + value_bitsize (toval)
1153 + HOST_CHAR_BIT - 1)
1154 / HOST_CHAR_BIT;
1155
1156 /* If we can read-modify-write exactly the size of the
1157 containing type (e.g. short or int) then do so. This
1158 is safer for volatile bitfields mapped to hardware
1159 registers. */
1160 if (changed_len < TYPE_LENGTH (type)
1161 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1162 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1163 changed_len = TYPE_LENGTH (type);
1164
1165 if (changed_len > (int) sizeof (LONGEST))
1166 error (_("Can't handle bitfields which "
1167 "don't fit in a %d bit word."),
1168 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1169
1170 read_memory (changed_addr, buffer, changed_len);
1171 modify_field (type, buffer, value_as_long (fromval),
1172 value_bitpos (toval), value_bitsize (toval));
1173 dest_buffer = buffer;
1174 }
1175 else
1176 {
1177 changed_addr = value_address (toval);
1178 changed_len = type_length_units (type);
1179 dest_buffer = value_contents (fromval).data ();
1180 }
1181
1182 write_memory_with_notification (changed_addr, dest_buffer, changed_len);
1183 }
1184 break;
1185
1186 case lval_register:
1187 {
1188 struct frame_info *frame;
1189 struct gdbarch *gdbarch;
1190 int value_reg;
1191
1192 /* Figure out which frame this register value is in. The value
1193 holds the frame_id for the next frame, that is the frame this
1194 register value was unwound from.
1195
1196 Below we will call put_frame_register_bytes which requires that
1197 we pass it the actual frame in which the register value is
1198 valid, i.e. not the next frame. */
1199 frame = frame_find_by_id (VALUE_NEXT_FRAME_ID (toval));
1200 frame = get_prev_frame_always (frame);
1201
1202 value_reg = VALUE_REGNUM (toval);
1203
1204 if (!frame)
1205 error (_("Value being assigned to is no longer active."));
1206
1207 gdbarch = get_frame_arch (frame);
1208
1209 if (value_bitsize (toval))
1210 {
1211 struct value *parent = value_parent (toval);
1212 LONGEST offset = value_offset (parent) + value_offset (toval);
1213 size_t changed_len;
1214 gdb_byte buffer[sizeof (LONGEST)];
1215 int optim, unavail;
1216
1217 changed_len = (value_bitpos (toval)
1218 + value_bitsize (toval)
1219 + HOST_CHAR_BIT - 1)
1220 / HOST_CHAR_BIT;
1221
1222 if (changed_len > sizeof (LONGEST))
1223 error (_("Can't handle bitfields which "
1224 "don't fit in a %d bit word."),
1225 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1226
1227 if (!get_frame_register_bytes (frame, value_reg, offset,
1228 {buffer, changed_len},
1229 &optim, &unavail))
1230 {
1231 if (optim)
1232 throw_error (OPTIMIZED_OUT_ERROR,
1233 _("value has been optimized out"));
1234 if (unavail)
1235 throw_error (NOT_AVAILABLE_ERROR,
1236 _("value is not available"));
1237 }
1238
1239 modify_field (type, buffer, value_as_long (fromval),
1240 value_bitpos (toval), value_bitsize (toval));
1241
1242 put_frame_register_bytes (frame, value_reg, offset,
1243 {buffer, changed_len});
1244 }
1245 else
1246 {
1247 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval),
1248 type))
1249 {
1250 /* If TOVAL is a special machine register requiring
1251 conversion of program values to a special raw
1252 format. */
1253 gdbarch_value_to_register (gdbarch, frame,
1254 VALUE_REGNUM (toval), type,
1255 value_contents (fromval).data ());
1256 }
1257 else
1258 {
1259 gdb::array_view<const gdb_byte> contents
1260 = gdb::make_array_view (value_contents (fromval).data (),
1261 TYPE_LENGTH (type));
1262 put_frame_register_bytes (frame, value_reg,
1263 value_offset (toval),
1264 contents);
1265 }
1266 }
1267
1268 gdb::observers::register_changed.notify (frame, value_reg);
1269 break;
1270 }
1271
1272 case lval_computed:
1273 {
1274 const struct lval_funcs *funcs = value_computed_funcs (toval);
1275
1276 if (funcs->write != NULL)
1277 {
1278 funcs->write (toval, fromval);
1279 break;
1280 }
1281 }
1282 /* Fall through. */
1283
1284 default:
1285 error (_("Left operand of assignment is not an lvalue."));
1286 }
1287
1288 /* Assigning to the stack pointer, frame pointer, and other
1289 (architecture and calling convention specific) registers may
1290 cause the frame cache and regcache to be out of date. Assigning to memory
1291 also can. We just do this on all assignments to registers or
1292 memory, for simplicity's sake; I doubt the slowdown matters. */
1293 switch (VALUE_LVAL (toval))
1294 {
1295 case lval_memory:
1296 case lval_register:
1297 case lval_computed:
1298
1299 gdb::observers::target_changed.notify
1300 (current_inferior ()->top_target ());
1301
1302 /* Having destroyed the frame cache, restore the selected
1303 frame. */
1304
1305 /* FIXME: cagney/2002-11-02: There has to be a better way of
1306 doing this. Instead of constantly saving/restoring the
1307 frame. Why not create a get_selected_frame() function that,
1308 having saved the selected frame's ID can automatically
1309 re-find the previously selected frame automatically. */
1310
1311 {
1312 struct frame_info *fi = frame_find_by_id (old_frame);
1313
1314 if (fi != NULL)
1315 select_frame (fi);
1316 }
1317
1318 break;
1319 default:
1320 break;
1321 }
1322
1323 /* If the field does not entirely fill a LONGEST, then zero the sign
1324 bits. If the field is signed, and is negative, then sign
1325 extend. */
1326 if ((value_bitsize (toval) > 0)
1327 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1328 {
1329 LONGEST fieldval = value_as_long (fromval);
1330 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1331
1332 fieldval &= valmask;
1333 if (!type->is_unsigned ()
1334 && (fieldval & (valmask ^ (valmask >> 1))))
1335 fieldval |= ~valmask;
1336
1337 fromval = value_from_longest (type, fieldval);
1338 }
1339
1340 /* The return value is a copy of TOVAL so it shares its location
1341 information, but its contents are updated from FROMVAL. This
1342 implies the returned value is not lazy, even if TOVAL was. */
1343 val = value_copy (toval);
1344 set_value_lazy (val, 0);
1345 copy (value_contents (fromval), value_contents_raw (val));
1346
1347 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1348 in the case of pointer types. For object types, the enclosing type
1349 and embedded offset must *not* be copied: the target object refered
1350 to by TOVAL retains its original dynamic type after assignment. */
1351 if (type->code () == TYPE_CODE_PTR)
1352 {
1353 set_value_enclosing_type (val, value_enclosing_type (fromval));
1354 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1355 }
1356
1357 return val;
1358 }
1359
1360 /* Extend a value ARG1 to COUNT repetitions of its type. */
1361
1362 struct value *
1363 value_repeat (struct value *arg1, int count)
1364 {
1365 struct value *val;
1366
1367 if (VALUE_LVAL (arg1) != lval_memory)
1368 error (_("Only values in memory can be extended with '@'."));
1369 if (count < 1)
1370 error (_("Invalid number %d of repetitions."), count);
1371
1372 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1373
1374 VALUE_LVAL (val) = lval_memory;
1375 set_value_address (val, value_address (arg1));
1376
1377 read_value_memory (val, 0, value_stack (val), value_address (val),
1378 value_contents_all_raw (val).data (),
1379 type_length_units (value_enclosing_type (val)));
1380
1381 return val;
1382 }
1383
1384 struct value *
1385 value_of_variable (struct symbol *var, const struct block *b)
1386 {
1387 struct frame_info *frame = NULL;
1388
1389 if (symbol_read_needs_frame (var))
1390 frame = get_selected_frame (_("No frame selected."));
1391
1392 return read_var_value (var, b, frame);
1393 }
1394
1395 struct value *
1396 address_of_variable (struct symbol *var, const struct block *b)
1397 {
1398 struct type *type = SYMBOL_TYPE (var);
1399 struct value *val;
1400
1401 /* Evaluate it first; if the result is a memory address, we're fine.
1402 Lazy evaluation pays off here. */
1403
1404 val = value_of_variable (var, b);
1405 type = value_type (val);
1406
1407 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1408 || type->code () == TYPE_CODE_FUNC)
1409 {
1410 CORE_ADDR addr = value_address (val);
1411
1412 return value_from_pointer (lookup_pointer_type (type), addr);
1413 }
1414
1415 /* Not a memory address; check what the problem was. */
1416 switch (VALUE_LVAL (val))
1417 {
1418 case lval_register:
1419 {
1420 struct frame_info *frame;
1421 const char *regname;
1422
1423 frame = frame_find_by_id (VALUE_NEXT_FRAME_ID (val));
1424 gdb_assert (frame);
1425
1426 regname = gdbarch_register_name (get_frame_arch (frame),
1427 VALUE_REGNUM (val));
1428 gdb_assert (regname && *regname);
1429
1430 error (_("Address requested for identifier "
1431 "\"%s\" which is in register $%s"),
1432 var->print_name (), regname);
1433 break;
1434 }
1435
1436 default:
1437 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1438 var->print_name ());
1439 break;
1440 }
1441
1442 return val;
1443 }
1444
1445 /* See value.h. */
1446
1447 bool
1448 value_must_coerce_to_target (struct value *val)
1449 {
1450 struct type *valtype;
1451
1452 /* The only lval kinds which do not live in target memory. */
1453 if (VALUE_LVAL (val) != not_lval
1454 && VALUE_LVAL (val) != lval_internalvar
1455 && VALUE_LVAL (val) != lval_xcallable)
1456 return false;
1457
1458 valtype = check_typedef (value_type (val));
1459
1460 switch (valtype->code ())
1461 {
1462 case TYPE_CODE_ARRAY:
1463 return valtype->is_vector () ? 0 : 1;
1464 case TYPE_CODE_STRING:
1465 return true;
1466 default:
1467 return false;
1468 }
1469 }
1470
1471 /* Make sure that VAL lives in target memory if it's supposed to. For
1472 instance, strings are constructed as character arrays in GDB's
1473 storage, and this function copies them to the target. */
1474
1475 struct value *
1476 value_coerce_to_target (struct value *val)
1477 {
1478 LONGEST length;
1479 CORE_ADDR addr;
1480
1481 if (!value_must_coerce_to_target (val))
1482 return val;
1483
1484 length = TYPE_LENGTH (check_typedef (value_type (val)));
1485 addr = allocate_space_in_inferior (length);
1486 write_memory (addr, value_contents (val).data (), length);
1487 return value_at_lazy (value_type (val), addr);
1488 }
1489
1490 /* Given a value which is an array, return a value which is a pointer
1491 to its first element, regardless of whether or not the array has a
1492 nonzero lower bound.
1493
1494 FIXME: A previous comment here indicated that this routine should
1495 be substracting the array's lower bound. It's not clear to me that
1496 this is correct. Given an array subscripting operation, it would
1497 certainly work to do the adjustment here, essentially computing:
1498
1499 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1500
1501 However I believe a more appropriate and logical place to account
1502 for the lower bound is to do so in value_subscript, essentially
1503 computing:
1504
1505 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1506
1507 As further evidence consider what would happen with operations
1508 other than array subscripting, where the caller would get back a
1509 value that had an address somewhere before the actual first element
1510 of the array, and the information about the lower bound would be
1511 lost because of the coercion to pointer type. */
1512
1513 struct value *
1514 value_coerce_array (struct value *arg1)
1515 {
1516 struct type *type = check_typedef (value_type (arg1));
1517
1518 /* If the user tries to do something requiring a pointer with an
1519 array that has not yet been pushed to the target, then this would
1520 be a good time to do so. */
1521 arg1 = value_coerce_to_target (arg1);
1522
1523 if (VALUE_LVAL (arg1) != lval_memory)
1524 error (_("Attempt to take address of value not located in memory."));
1525
1526 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1527 value_address (arg1));
1528 }
1529
1530 /* Given a value which is a function, return a value which is a pointer
1531 to it. */
1532
1533 struct value *
1534 value_coerce_function (struct value *arg1)
1535 {
1536 struct value *retval;
1537
1538 if (VALUE_LVAL (arg1) != lval_memory)
1539 error (_("Attempt to take address of value not located in memory."));
1540
1541 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1542 value_address (arg1));
1543 return retval;
1544 }
1545
1546 /* Return a pointer value for the object for which ARG1 is the
1547 contents. */
1548
1549 struct value *
1550 value_addr (struct value *arg1)
1551 {
1552 struct value *arg2;
1553 struct type *type = check_typedef (value_type (arg1));
1554
1555 if (TYPE_IS_REFERENCE (type))
1556 {
1557 if (value_bits_synthetic_pointer (arg1, value_embedded_offset (arg1),
1558 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1559 arg1 = coerce_ref (arg1);
1560 else
1561 {
1562 /* Copy the value, but change the type from (T&) to (T*). We
1563 keep the same location information, which is efficient, and
1564 allows &(&X) to get the location containing the reference.
1565 Do the same to its enclosing type for consistency. */
1566 struct type *type_ptr
1567 = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1568 struct type *enclosing_type
1569 = check_typedef (value_enclosing_type (arg1));
1570 struct type *enclosing_type_ptr
1571 = lookup_pointer_type (TYPE_TARGET_TYPE (enclosing_type));
1572
1573 arg2 = value_copy (arg1);
1574 deprecated_set_value_type (arg2, type_ptr);
1575 set_value_enclosing_type (arg2, enclosing_type_ptr);
1576
1577 return arg2;
1578 }
1579 }
1580 if (type->code () == TYPE_CODE_FUNC)
1581 return value_coerce_function (arg1);
1582
1583 /* If this is an array that has not yet been pushed to the target,
1584 then this would be a good time to force it to memory. */
1585 arg1 = value_coerce_to_target (arg1);
1586
1587 if (VALUE_LVAL (arg1) != lval_memory)
1588 error (_("Attempt to take address of value not located in memory."));
1589
1590 /* Get target memory address. */
1591 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1592 (value_address (arg1)
1593 + value_embedded_offset (arg1)));
1594
1595 /* This may be a pointer to a base subobject; so remember the
1596 full derived object's type ... */
1597 set_value_enclosing_type (arg2,
1598 lookup_pointer_type (value_enclosing_type (arg1)));
1599 /* ... and also the relative position of the subobject in the full
1600 object. */
1601 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1602 return arg2;
1603 }
1604
1605 /* Return a reference value for the object for which ARG1 is the
1606 contents. */
1607
1608 struct value *
1609 value_ref (struct value *arg1, enum type_code refcode)
1610 {
1611 struct value *arg2;
1612 struct type *type = check_typedef (value_type (arg1));
1613
1614 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
1615
1616 if ((type->code () == TYPE_CODE_REF
1617 || type->code () == TYPE_CODE_RVALUE_REF)
1618 && type->code () == refcode)
1619 return arg1;
1620
1621 arg2 = value_addr (arg1);
1622 deprecated_set_value_type (arg2, lookup_reference_type (type, refcode));
1623 return arg2;
1624 }
1625
1626 /* Given a value of a pointer type, apply the C unary * operator to
1627 it. */
1628
1629 struct value *
1630 value_ind (struct value *arg1)
1631 {
1632 struct type *base_type;
1633 struct value *arg2;
1634
1635 arg1 = coerce_array (arg1);
1636
1637 base_type = check_typedef (value_type (arg1));
1638
1639 if (VALUE_LVAL (arg1) == lval_computed)
1640 {
1641 const struct lval_funcs *funcs = value_computed_funcs (arg1);
1642
1643 if (funcs->indirect)
1644 {
1645 struct value *result = funcs->indirect (arg1);
1646
1647 if (result)
1648 return result;
1649 }
1650 }
1651
1652 if (base_type->code () == TYPE_CODE_PTR)
1653 {
1654 struct type *enc_type;
1655
1656 /* We may be pointing to something embedded in a larger object.
1657 Get the real type of the enclosing object. */
1658 enc_type = check_typedef (value_enclosing_type (arg1));
1659 enc_type = TYPE_TARGET_TYPE (enc_type);
1660
1661 CORE_ADDR base_addr;
1662 if (check_typedef (enc_type)->code () == TYPE_CODE_FUNC
1663 || check_typedef (enc_type)->code () == TYPE_CODE_METHOD)
1664 {
1665 /* For functions, go through find_function_addr, which knows
1666 how to handle function descriptors. */
1667 base_addr = find_function_addr (arg1, NULL);
1668 }
1669 else
1670 {
1671 /* Retrieve the enclosing object pointed to. */
1672 base_addr = (value_as_address (arg1)
1673 - value_pointed_to_offset (arg1));
1674 }
1675 arg2 = value_at_lazy (enc_type, base_addr);
1676 enc_type = value_type (arg2);
1677 return readjust_indirect_value_type (arg2, enc_type, base_type,
1678 arg1, base_addr);
1679 }
1680
1681 error (_("Attempt to take contents of a non-pointer value."));
1682 }
1683 \f
1684 /* Create a value for an array by allocating space in GDB, copying the
1685 data into that space, and then setting up an array value.
1686
1687 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1688 is populated from the values passed in ELEMVEC.
1689
1690 The element type of the array is inherited from the type of the
1691 first element, and all elements must have the same size (though we
1692 don't currently enforce any restriction on their types). */
1693
1694 struct value *
1695 value_array (int lowbound, int highbound, struct value **elemvec)
1696 {
1697 int nelem;
1698 int idx;
1699 ULONGEST typelength;
1700 struct value *val;
1701 struct type *arraytype;
1702
1703 /* Validate that the bounds are reasonable and that each of the
1704 elements have the same size. */
1705
1706 nelem = highbound - lowbound + 1;
1707 if (nelem <= 0)
1708 {
1709 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1710 }
1711 typelength = type_length_units (value_enclosing_type (elemvec[0]));
1712 for (idx = 1; idx < nelem; idx++)
1713 {
1714 if (type_length_units (value_enclosing_type (elemvec[idx]))
1715 != typelength)
1716 {
1717 error (_("array elements must all be the same size"));
1718 }
1719 }
1720
1721 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1722 lowbound, highbound);
1723
1724 if (!current_language->c_style_arrays_p ())
1725 {
1726 val = allocate_value (arraytype);
1727 for (idx = 0; idx < nelem; idx++)
1728 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1729 typelength);
1730 return val;
1731 }
1732
1733 /* Allocate space to store the array, and then initialize it by
1734 copying in each element. */
1735
1736 val = allocate_value (arraytype);
1737 for (idx = 0; idx < nelem; idx++)
1738 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1739 return val;
1740 }
1741
1742 struct value *
1743 value_cstring (const char *ptr, ssize_t len, struct type *char_type)
1744 {
1745 struct value *val;
1746 int lowbound = current_language->string_lower_bound ();
1747 ssize_t highbound = len / TYPE_LENGTH (char_type);
1748 struct type *stringtype
1749 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1750
1751 val = allocate_value (stringtype);
1752 memcpy (value_contents_raw (val).data (), ptr, len);
1753 return val;
1754 }
1755
1756 /* Create a value for a string constant by allocating space in the
1757 inferior, copying the data into that space, and returning the
1758 address with type TYPE_CODE_STRING. PTR points to the string
1759 constant data; LEN is number of characters.
1760
1761 Note that string types are like array of char types with a lower
1762 bound of zero and an upper bound of LEN - 1. Also note that the
1763 string may contain embedded null bytes. */
1764
1765 struct value *
1766 value_string (const char *ptr, ssize_t len, struct type *char_type)
1767 {
1768 struct value *val;
1769 int lowbound = current_language->string_lower_bound ();
1770 ssize_t highbound = len / TYPE_LENGTH (char_type);
1771 struct type *stringtype
1772 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1773
1774 val = allocate_value (stringtype);
1775 memcpy (value_contents_raw (val).data (), ptr, len);
1776 return val;
1777 }
1778
1779 \f
1780 /* See if we can pass arguments in T2 to a function which takes arguments
1781 of types T1. T1 is a list of NARGS arguments, and T2 is an array_view
1782 of the values we're trying to pass. If some arguments need coercion of
1783 some sort, then the coerced values are written into T2. Return value is
1784 0 if the arguments could be matched, or the position at which they
1785 differ if not.
1786
1787 STATICP is nonzero if the T1 argument list came from a static
1788 member function. T2 must still include the ``this'' pointer, but
1789 it will be skipped.
1790
1791 For non-static member functions, we ignore the first argument,
1792 which is the type of the instance variable. This is because we
1793 want to handle calls with objects from derived classes. This is
1794 not entirely correct: we should actually check to make sure that a
1795 requested operation is type secure, shouldn't we? FIXME. */
1796
1797 static int
1798 typecmp (bool staticp, bool varargs, int nargs,
1799 struct field t1[], gdb::array_view<value *> t2)
1800 {
1801 int i;
1802
1803 /* Skip ``this'' argument if applicable. T2 will always include
1804 THIS. */
1805 if (staticp)
1806 t2 = t2.slice (1);
1807
1808 for (i = 0;
1809 (i < nargs) && t1[i].type ()->code () != TYPE_CODE_VOID;
1810 i++)
1811 {
1812 struct type *tt1, *tt2;
1813
1814 if (i == t2.size ())
1815 return i + 1;
1816
1817 tt1 = check_typedef (t1[i].type ());
1818 tt2 = check_typedef (value_type (t2[i]));
1819
1820 if (TYPE_IS_REFERENCE (tt1)
1821 /* We should be doing hairy argument matching, as below. */
1822 && (check_typedef (TYPE_TARGET_TYPE (tt1))->code ()
1823 == tt2->code ()))
1824 {
1825 if (tt2->code () == TYPE_CODE_ARRAY)
1826 t2[i] = value_coerce_array (t2[i]);
1827 else
1828 t2[i] = value_ref (t2[i], tt1->code ());
1829 continue;
1830 }
1831
1832 /* djb - 20000715 - Until the new type structure is in the
1833 place, and we can attempt things like implicit conversions,
1834 we need to do this so you can take something like a map<const
1835 char *>, and properly access map["hello"], because the
1836 argument to [] will be a reference to a pointer to a char,
1837 and the argument will be a pointer to a char. */
1838 while (TYPE_IS_REFERENCE (tt1) || tt1->code () == TYPE_CODE_PTR)
1839 {
1840 tt1 = check_typedef ( TYPE_TARGET_TYPE (tt1) );
1841 }
1842 while (tt2->code () == TYPE_CODE_ARRAY
1843 || tt2->code () == TYPE_CODE_PTR
1844 || TYPE_IS_REFERENCE (tt2))
1845 {
1846 tt2 = check_typedef (TYPE_TARGET_TYPE (tt2));
1847 }
1848 if (tt1->code () == tt2->code ())
1849 continue;
1850 /* Array to pointer is a `trivial conversion' according to the
1851 ARM. */
1852
1853 /* We should be doing much hairier argument matching (see
1854 section 13.2 of the ARM), but as a quick kludge, just check
1855 for the same type code. */
1856 if (t1[i].type ()->code () != value_type (t2[i])->code ())
1857 return i + 1;
1858 }
1859 if (varargs || i == t2.size ())
1860 return 0;
1861 return i + 1;
1862 }
1863
1864 /* Helper class for search_struct_field that keeps track of found
1865 results and possibly throws an exception if the search yields
1866 ambiguous results. See search_struct_field for description of
1867 LOOKING_FOR_BASECLASS. */
1868
1869 struct struct_field_searcher
1870 {
1871 /* A found field. */
1872 struct found_field
1873 {
1874 /* Path to the structure where the field was found. */
1875 std::vector<struct type *> path;
1876
1877 /* The field found. */
1878 struct value *field_value;
1879 };
1880
1881 /* See corresponding fields for description of parameters. */
1882 struct_field_searcher (const char *name,
1883 struct type *outermost_type,
1884 bool looking_for_baseclass)
1885 : m_name (name),
1886 m_looking_for_baseclass (looking_for_baseclass),
1887 m_outermost_type (outermost_type)
1888 {
1889 }
1890
1891 /* The search entry point. If LOOKING_FOR_BASECLASS is true and the
1892 base class search yields ambiguous results, this throws an
1893 exception. If LOOKING_FOR_BASECLASS is false, the found fields
1894 are accumulated and the caller (search_struct_field) takes care
1895 of throwing an error if the field search yields ambiguous
1896 results. The latter is done that way so that the error message
1897 can include a list of all the found candidates. */
1898 void search (struct value *arg, LONGEST offset, struct type *type);
1899
1900 const std::vector<found_field> &fields ()
1901 {
1902 return m_fields;
1903 }
1904
1905 struct value *baseclass ()
1906 {
1907 return m_baseclass;
1908 }
1909
1910 private:
1911 /* Update results to include V, a found field/baseclass. */
1912 void update_result (struct value *v, LONGEST boffset);
1913
1914 /* The name of the field/baseclass we're searching for. */
1915 const char *m_name;
1916
1917 /* Whether we're looking for a baseclass, or a field. */
1918 const bool m_looking_for_baseclass;
1919
1920 /* The offset of the baseclass containing the field/baseclass we
1921 last recorded. */
1922 LONGEST m_last_boffset = 0;
1923
1924 /* If looking for a baseclass, then the result is stored here. */
1925 struct value *m_baseclass = nullptr;
1926
1927 /* When looking for fields, the found candidates are stored
1928 here. */
1929 std::vector<found_field> m_fields;
1930
1931 /* The type of the initial type passed to search_struct_field; this
1932 is used for error reporting when the lookup is ambiguous. */
1933 struct type *m_outermost_type;
1934
1935 /* The full path to the struct being inspected. E.g. for field 'x'
1936 defined in class B inherited by class A, we have A and B pushed
1937 on the path. */
1938 std::vector <struct type *> m_struct_path;
1939 };
1940
1941 void
1942 struct_field_searcher::update_result (struct value *v, LONGEST boffset)
1943 {
1944 if (v != NULL)
1945 {
1946 if (m_looking_for_baseclass)
1947 {
1948 if (m_baseclass != nullptr
1949 /* The result is not ambiguous if all the classes that are
1950 found occupy the same space. */
1951 && m_last_boffset != boffset)
1952 error (_("base class '%s' is ambiguous in type '%s'"),
1953 m_name, TYPE_SAFE_NAME (m_outermost_type));
1954
1955 m_baseclass = v;
1956 m_last_boffset = boffset;
1957 }
1958 else
1959 {
1960 /* The field is not ambiguous if it occupies the same
1961 space. */
1962 if (m_fields.empty () || m_last_boffset != boffset)
1963 m_fields.push_back ({m_struct_path, v});
1964 else
1965 {
1966 /*Fields can occupy the same space and have the same name (be
1967 ambiguous). This can happen when fields in two different base
1968 classes are marked [[no_unique_address]] and have the same name.
1969 The C++ standard says that such fields can only occupy the same
1970 space if they are of different type, but we don't rely on that in
1971 the following code. */
1972 bool ambiguous = false, insert = true;
1973 for (const found_field &field: m_fields)
1974 {
1975 if(field.path.back () != m_struct_path.back ())
1976 {
1977 /* Same boffset points to members of different classes.
1978 We have found an ambiguity and should record it. */
1979 ambiguous = true;
1980 }
1981 else
1982 {
1983 /* We don't need to insert this value again, because a
1984 non-ambiguous path already leads to it. */
1985 insert = false;
1986 break;
1987 }
1988 }
1989 if (ambiguous && insert)
1990 m_fields.push_back ({m_struct_path, v});
1991 }
1992 }
1993 }
1994 }
1995
1996 /* A helper for search_struct_field. This does all the work; most
1997 arguments are as passed to search_struct_field. */
1998
1999 void
2000 struct_field_searcher::search (struct value *arg1, LONGEST offset,
2001 struct type *type)
2002 {
2003 int i;
2004 int nbases;
2005
2006 m_struct_path.push_back (type);
2007 SCOPE_EXIT { m_struct_path.pop_back (); };
2008
2009 type = check_typedef (type);
2010 nbases = TYPE_N_BASECLASSES (type);
2011
2012 if (!m_looking_for_baseclass)
2013 for (i = type->num_fields () - 1; i >= nbases; i--)
2014 {
2015 const char *t_field_name = type->field (i).name ();
2016
2017 if (t_field_name && (strcmp_iw (t_field_name, m_name) == 0))
2018 {
2019 struct value *v;
2020
2021 if (field_is_static (&type->field (i)))
2022 v = value_static_field (type, i);
2023 else
2024 v = value_primitive_field (arg1, offset, i, type);
2025
2026 update_result (v, offset);
2027 return;
2028 }
2029
2030 if (t_field_name
2031 && t_field_name[0] == '\0')
2032 {
2033 struct type *field_type = type->field (i).type ();
2034
2035 if (field_type->code () == TYPE_CODE_UNION
2036 || field_type->code () == TYPE_CODE_STRUCT)
2037 {
2038 /* Look for a match through the fields of an anonymous
2039 union, or anonymous struct. C++ provides anonymous
2040 unions.
2041
2042 In the GNU Chill (now deleted from GDB)
2043 implementation of variant record types, each
2044 <alternative field> has an (anonymous) union type,
2045 each member of the union represents a <variant
2046 alternative>. Each <variant alternative> is
2047 represented as a struct, with a member for each
2048 <variant field>. */
2049
2050 LONGEST new_offset = offset;
2051
2052 /* This is pretty gross. In G++, the offset in an
2053 anonymous union is relative to the beginning of the
2054 enclosing struct. In the GNU Chill (now deleted
2055 from GDB) implementation of variant records, the
2056 bitpos is zero in an anonymous union field, so we
2057 have to add the offset of the union here. */
2058 if (field_type->code () == TYPE_CODE_STRUCT
2059 || (field_type->num_fields () > 0
2060 && field_type->field (0).loc_bitpos () == 0))
2061 new_offset += type->field (i).loc_bitpos () / 8;
2062
2063 search (arg1, new_offset, field_type);
2064 }
2065 }
2066 }
2067
2068 for (i = 0; i < nbases; i++)
2069 {
2070 struct value *v = NULL;
2071 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2072 /* If we are looking for baseclasses, this is what we get when
2073 we hit them. But it could happen that the base part's member
2074 name is not yet filled in. */
2075 int found_baseclass = (m_looking_for_baseclass
2076 && TYPE_BASECLASS_NAME (type, i) != NULL
2077 && (strcmp_iw (m_name,
2078 TYPE_BASECLASS_NAME (type,
2079 i)) == 0));
2080 LONGEST boffset = value_embedded_offset (arg1) + offset;
2081
2082 if (BASETYPE_VIA_VIRTUAL (type, i))
2083 {
2084 struct value *v2;
2085
2086 boffset = baseclass_offset (type, i,
2087 value_contents_for_printing (arg1).data (),
2088 value_embedded_offset (arg1) + offset,
2089 value_address (arg1),
2090 arg1);
2091
2092 /* The virtual base class pointer might have been clobbered
2093 by the user program. Make sure that it still points to a
2094 valid memory location. */
2095
2096 boffset += value_embedded_offset (arg1) + offset;
2097 if (boffset < 0
2098 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
2099 {
2100 CORE_ADDR base_addr;
2101
2102 base_addr = value_address (arg1) + boffset;
2103 v2 = value_at_lazy (basetype, base_addr);
2104 if (target_read_memory (base_addr,
2105 value_contents_raw (v2).data (),
2106 TYPE_LENGTH (value_type (v2))) != 0)
2107 error (_("virtual baseclass botch"));
2108 }
2109 else
2110 {
2111 v2 = value_copy (arg1);
2112 deprecated_set_value_type (v2, basetype);
2113 set_value_embedded_offset (v2, boffset);
2114 }
2115
2116 if (found_baseclass)
2117 v = v2;
2118 else
2119 search (v2, 0, TYPE_BASECLASS (type, i));
2120 }
2121 else if (found_baseclass)
2122 v = value_primitive_field (arg1, offset, i, type);
2123 else
2124 {
2125 search (arg1, offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2126 basetype);
2127 }
2128
2129 update_result (v, boffset);
2130 }
2131 }
2132
2133 /* Helper function used by value_struct_elt to recurse through
2134 baseclasses. Look for a field NAME in ARG1. Search in it assuming
2135 it has (class) type TYPE. If found, return value, else return NULL.
2136
2137 If LOOKING_FOR_BASECLASS, then instead of looking for struct
2138 fields, look for a baseclass named NAME. */
2139
2140 static struct value *
2141 search_struct_field (const char *name, struct value *arg1,
2142 struct type *type, int looking_for_baseclass)
2143 {
2144 struct_field_searcher searcher (name, type, looking_for_baseclass);
2145
2146 searcher.search (arg1, 0, type);
2147
2148 if (!looking_for_baseclass)
2149 {
2150 const auto &fields = searcher.fields ();
2151
2152 if (fields.empty ())
2153 return nullptr;
2154 else if (fields.size () == 1)
2155 return fields[0].field_value;
2156 else
2157 {
2158 std::string candidates;
2159
2160 for (auto &&candidate : fields)
2161 {
2162 gdb_assert (!candidate.path.empty ());
2163
2164 struct type *field_type = value_type (candidate.field_value);
2165 struct type *struct_type = candidate.path.back ();
2166
2167 std::string path;
2168 bool first = true;
2169 for (struct type *t : candidate.path)
2170 {
2171 if (first)
2172 first = false;
2173 else
2174 path += " -> ";
2175 path += t->name ();
2176 }
2177
2178 candidates += string_printf ("\n '%s %s::%s' (%s)",
2179 TYPE_SAFE_NAME (field_type),
2180 TYPE_SAFE_NAME (struct_type),
2181 name,
2182 path.c_str ());
2183 }
2184
2185 error (_("Request for member '%s' is ambiguous in type '%s'."
2186 " Candidates are:%s"),
2187 name, TYPE_SAFE_NAME (type),
2188 candidates.c_str ());
2189 }
2190 }
2191 else
2192 return searcher.baseclass ();
2193 }
2194
2195 /* Helper function used by value_struct_elt to recurse through
2196 baseclasses. Look for a field NAME in ARG1. Adjust the address of
2197 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2198 TYPE.
2199
2200 ARGS is an optional array of argument values used to help finding NAME.
2201 The contents of ARGS can be adjusted if type coercion is required in
2202 order to find a matching NAME.
2203
2204 If found, return value, else if name matched and args not return
2205 (value) -1, else return NULL. */
2206
2207 static struct value *
2208 search_struct_method (const char *name, struct value **arg1p,
2209 gdb::optional<gdb::array_view<value *>> args,
2210 LONGEST offset, int *static_memfuncp,
2211 struct type *type)
2212 {
2213 int i;
2214 struct value *v;
2215 int name_matched = 0;
2216
2217 type = check_typedef (type);
2218 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2219 {
2220 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2221
2222 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2223 {
2224 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2225 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2226
2227 name_matched = 1;
2228 check_stub_method_group (type, i);
2229 if (j > 0 && !args.has_value ())
2230 error (_("cannot resolve overloaded method "
2231 "`%s': no arguments supplied"), name);
2232 else if (j == 0 && !args.has_value ())
2233 {
2234 v = value_fn_field (arg1p, f, j, type, offset);
2235 if (v != NULL)
2236 return v;
2237 }
2238 else
2239 while (j >= 0)
2240 {
2241 gdb_assert (args.has_value ());
2242 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2243 TYPE_FN_FIELD_TYPE (f, j)->has_varargs (),
2244 TYPE_FN_FIELD_TYPE (f, j)->num_fields (),
2245 TYPE_FN_FIELD_ARGS (f, j), *args))
2246 {
2247 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2248 return value_virtual_fn_field (arg1p, f, j,
2249 type, offset);
2250 if (TYPE_FN_FIELD_STATIC_P (f, j)
2251 && static_memfuncp)
2252 *static_memfuncp = 1;
2253 v = value_fn_field (arg1p, f, j, type, offset);
2254 if (v != NULL)
2255 return v;
2256 }
2257 j--;
2258 }
2259 }
2260 }
2261
2262 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2263 {
2264 LONGEST base_offset;
2265 LONGEST this_offset;
2266
2267 if (BASETYPE_VIA_VIRTUAL (type, i))
2268 {
2269 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2270 struct value *base_val;
2271 const gdb_byte *base_valaddr;
2272
2273 /* The virtual base class pointer might have been
2274 clobbered by the user program. Make sure that it
2275 still points to a valid memory location. */
2276
2277 if (offset < 0 || offset >= TYPE_LENGTH (type))
2278 {
2279 CORE_ADDR address;
2280
2281 gdb::byte_vector tmp (TYPE_LENGTH (baseclass));
2282 address = value_address (*arg1p);
2283
2284 if (target_read_memory (address + offset,
2285 tmp.data (), TYPE_LENGTH (baseclass)) != 0)
2286 error (_("virtual baseclass botch"));
2287
2288 base_val = value_from_contents_and_address (baseclass,
2289 tmp.data (),
2290 address + offset);
2291 base_valaddr = value_contents_for_printing (base_val).data ();
2292 this_offset = 0;
2293 }
2294 else
2295 {
2296 base_val = *arg1p;
2297 base_valaddr = value_contents_for_printing (*arg1p).data ();
2298 this_offset = offset;
2299 }
2300
2301 base_offset = baseclass_offset (type, i, base_valaddr,
2302 this_offset, value_address (base_val),
2303 base_val);
2304 }
2305 else
2306 {
2307 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2308 }
2309 v = search_struct_method (name, arg1p, args, base_offset + offset,
2310 static_memfuncp, TYPE_BASECLASS (type, i));
2311 if (v == (struct value *) - 1)
2312 {
2313 name_matched = 1;
2314 }
2315 else if (v)
2316 {
2317 /* FIXME-bothner: Why is this commented out? Why is it here? */
2318 /* *arg1p = arg1_tmp; */
2319 return v;
2320 }
2321 }
2322 if (name_matched)
2323 return (struct value *) - 1;
2324 else
2325 return NULL;
2326 }
2327
2328 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2329 extract the component named NAME from the ultimate target
2330 structure/union and return it as a value with its appropriate type.
2331 ERR is used in the error message if *ARGP's type is wrong.
2332
2333 C++: ARGS is a list of argument types to aid in the selection of
2334 an appropriate method. Also, handle derived types.
2335
2336 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2337 where the truthvalue of whether the function that was resolved was
2338 a static member function or not is stored.
2339
2340 ERR is an error message to be printed in case the field is not
2341 found. */
2342
2343 struct value *
2344 value_struct_elt (struct value **argp,
2345 gdb::optional<gdb::array_view<value *>> args,
2346 const char *name, int *static_memfuncp, const char *err)
2347 {
2348 struct type *t;
2349 struct value *v;
2350
2351 *argp = coerce_array (*argp);
2352
2353 t = check_typedef (value_type (*argp));
2354
2355 /* Follow pointers until we get to a non-pointer. */
2356
2357 while (t->is_pointer_or_reference ())
2358 {
2359 *argp = value_ind (*argp);
2360 /* Don't coerce fn pointer to fn and then back again! */
2361 if (check_typedef (value_type (*argp))->code () != TYPE_CODE_FUNC)
2362 *argp = coerce_array (*argp);
2363 t = check_typedef (value_type (*argp));
2364 }
2365
2366 if (t->code () != TYPE_CODE_STRUCT
2367 && t->code () != TYPE_CODE_UNION)
2368 error (_("Attempt to extract a component of a value that is not a %s."),
2369 err);
2370
2371 /* Assume it's not, unless we see that it is. */
2372 if (static_memfuncp)
2373 *static_memfuncp = 0;
2374
2375 if (!args.has_value ())
2376 {
2377 /* if there are no arguments ...do this... */
2378
2379 /* Try as a field first, because if we succeed, there is less
2380 work to be done. */
2381 v = search_struct_field (name, *argp, t, 0);
2382 if (v)
2383 return v;
2384
2385 /* C++: If it was not found as a data field, then try to
2386 return it as a pointer to a method. */
2387 v = search_struct_method (name, argp, args, 0,
2388 static_memfuncp, t);
2389
2390 if (v == (struct value *) - 1)
2391 error (_("Cannot take address of method %s."), name);
2392 else if (v == 0)
2393 {
2394 if (TYPE_NFN_FIELDS (t))
2395 error (_("There is no member or method named %s."), name);
2396 else
2397 error (_("There is no member named %s."), name);
2398 }
2399 return v;
2400 }
2401
2402 v = search_struct_method (name, argp, args, 0,
2403 static_memfuncp, t);
2404
2405 if (v == (struct value *) - 1)
2406 {
2407 error (_("One of the arguments you tried to pass to %s could not "
2408 "be converted to what the function wants."), name);
2409 }
2410 else if (v == 0)
2411 {
2412 /* See if user tried to invoke data as function. If so, hand it
2413 back. If it's not callable (i.e., a pointer to function),
2414 gdb should give an error. */
2415 v = search_struct_field (name, *argp, t, 0);
2416 /* If we found an ordinary field, then it is not a method call.
2417 So, treat it as if it were a static member function. */
2418 if (v && static_memfuncp)
2419 *static_memfuncp = 1;
2420 }
2421
2422 if (!v)
2423 throw_error (NOT_FOUND_ERROR,
2424 _("Structure has no component named %s."), name);
2425 return v;
2426 }
2427
2428 /* Given *ARGP, a value of type structure or union, or a pointer/reference
2429 to a structure or union, extract and return its component (field) of
2430 type FTYPE at the specified BITPOS.
2431 Throw an exception on error. */
2432
2433 struct value *
2434 value_struct_elt_bitpos (struct value **argp, int bitpos, struct type *ftype,
2435 const char *err)
2436 {
2437 struct type *t;
2438 int i;
2439
2440 *argp = coerce_array (*argp);
2441
2442 t = check_typedef (value_type (*argp));
2443
2444 while (t->is_pointer_or_reference ())
2445 {
2446 *argp = value_ind (*argp);
2447 if (check_typedef (value_type (*argp))->code () != TYPE_CODE_FUNC)
2448 *argp = coerce_array (*argp);
2449 t = check_typedef (value_type (*argp));
2450 }
2451
2452 if (t->code () != TYPE_CODE_STRUCT
2453 && t->code () != TYPE_CODE_UNION)
2454 error (_("Attempt to extract a component of a value that is not a %s."),
2455 err);
2456
2457 for (i = TYPE_N_BASECLASSES (t); i < t->num_fields (); i++)
2458 {
2459 if (!field_is_static (&t->field (i))
2460 && bitpos == t->field (i).loc_bitpos ()
2461 && types_equal (ftype, t->field (i).type ()))
2462 return value_primitive_field (*argp, 0, i, t);
2463 }
2464
2465 error (_("No field with matching bitpos and type."));
2466
2467 /* Never hit. */
2468 return NULL;
2469 }
2470
2471 /* Search through the methods of an object (and its bases) to find a
2472 specified method. Return a reference to the fn_field list METHODS of
2473 overloaded instances defined in the source language. If available
2474 and matching, a vector of matching xmethods defined in extension
2475 languages are also returned in XMETHODS.
2476
2477 Helper function for value_find_oload_list.
2478 ARGP is a pointer to a pointer to a value (the object).
2479 METHOD is a string containing the method name.
2480 OFFSET is the offset within the value.
2481 TYPE is the assumed type of the object.
2482 METHODS is a pointer to the matching overloaded instances defined
2483 in the source language. Since this is a recursive function,
2484 *METHODS should be set to NULL when calling this function.
2485 NUM_FNS is the number of overloaded instances. *NUM_FNS should be set to
2486 0 when calling this function.
2487 XMETHODS is the vector of matching xmethod workers. *XMETHODS
2488 should also be set to NULL when calling this function.
2489 BASETYPE is set to the actual type of the subobject where the
2490 method is found.
2491 BOFFSET is the offset of the base subobject where the method is found. */
2492
2493 static void
2494 find_method_list (struct value **argp, const char *method,
2495 LONGEST offset, struct type *type,
2496 gdb::array_view<fn_field> *methods,
2497 std::vector<xmethod_worker_up> *xmethods,
2498 struct type **basetype, LONGEST *boffset)
2499 {
2500 int i;
2501 struct fn_field *f = NULL;
2502
2503 gdb_assert (methods != NULL && xmethods != NULL);
2504 type = check_typedef (type);
2505
2506 /* First check in object itself.
2507 This function is called recursively to search through base classes.
2508 If there is a source method match found at some stage, then we need not
2509 look for source methods in consequent recursive calls. */
2510 if (methods->empty ())
2511 {
2512 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2513 {
2514 /* pai: FIXME What about operators and type conversions? */
2515 const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2516
2517 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2518 {
2519 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2520 f = TYPE_FN_FIELDLIST1 (type, i);
2521 *methods = gdb::make_array_view (f, len);
2522
2523 *basetype = type;
2524 *boffset = offset;
2525
2526 /* Resolve any stub methods. */
2527 check_stub_method_group (type, i);
2528
2529 break;
2530 }
2531 }
2532 }
2533
2534 /* Unlike source methods, xmethods can be accumulated over successive
2535 recursive calls. In other words, an xmethod named 'm' in a class
2536 will not hide an xmethod named 'm' in its base class(es). We want
2537 it to be this way because xmethods are after all convenience functions
2538 and hence there is no point restricting them with something like method
2539 hiding. Moreover, if hiding is done for xmethods as well, then we will
2540 have to provide a mechanism to un-hide (like the 'using' construct). */
2541 get_matching_xmethod_workers (type, method, xmethods);
2542
2543 /* If source methods are not found in current class, look for them in the
2544 base classes. We also have to go through the base classes to gather
2545 extension methods. */
2546 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2547 {
2548 LONGEST base_offset;
2549
2550 if (BASETYPE_VIA_VIRTUAL (type, i))
2551 {
2552 base_offset = baseclass_offset (type, i,
2553 value_contents_for_printing (*argp).data (),
2554 value_offset (*argp) + offset,
2555 value_address (*argp), *argp);
2556 }
2557 else /* Non-virtual base, simply use bit position from debug
2558 info. */
2559 {
2560 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2561 }
2562
2563 find_method_list (argp, method, base_offset + offset,
2564 TYPE_BASECLASS (type, i), methods,
2565 xmethods, basetype, boffset);
2566 }
2567 }
2568
2569 /* Return the list of overloaded methods of a specified name. The methods
2570 could be those GDB finds in the binary, or xmethod. Methods found in
2571 the binary are returned in METHODS, and xmethods are returned in
2572 XMETHODS.
2573
2574 ARGP is a pointer to a pointer to a value (the object).
2575 METHOD is the method name.
2576 OFFSET is the offset within the value contents.
2577 METHODS is the list of matching overloaded instances defined in
2578 the source language.
2579 XMETHODS is the vector of matching xmethod workers defined in
2580 extension languages.
2581 BASETYPE is set to the type of the base subobject that defines the
2582 method.
2583 BOFFSET is the offset of the base subobject which defines the method. */
2584
2585 static void
2586 value_find_oload_method_list (struct value **argp, const char *method,
2587 LONGEST offset,
2588 gdb::array_view<fn_field> *methods,
2589 std::vector<xmethod_worker_up> *xmethods,
2590 struct type **basetype, LONGEST *boffset)
2591 {
2592 struct type *t;
2593
2594 t = check_typedef (value_type (*argp));
2595
2596 /* Code snarfed from value_struct_elt. */
2597 while (t->is_pointer_or_reference ())
2598 {
2599 *argp = value_ind (*argp);
2600 /* Don't coerce fn pointer to fn and then back again! */
2601 if (check_typedef (value_type (*argp))->code () != TYPE_CODE_FUNC)
2602 *argp = coerce_array (*argp);
2603 t = check_typedef (value_type (*argp));
2604 }
2605
2606 if (t->code () != TYPE_CODE_STRUCT
2607 && t->code () != TYPE_CODE_UNION)
2608 error (_("Attempt to extract a component of a "
2609 "value that is not a struct or union"));
2610
2611 gdb_assert (methods != NULL && xmethods != NULL);
2612
2613 /* Clear the lists. */
2614 *methods = {};
2615 xmethods->clear ();
2616
2617 find_method_list (argp, method, 0, t, methods, xmethods,
2618 basetype, boffset);
2619 }
2620
2621 /* Given an array of arguments (ARGS) (which includes an entry for
2622 "this" in the case of C++ methods), the NAME of a function, and
2623 whether it's a method or not (METHOD), find the best function that
2624 matches on the argument types according to the overload resolution
2625 rules.
2626
2627 METHOD can be one of three values:
2628 NON_METHOD for non-member functions.
2629 METHOD: for member functions.
2630 BOTH: used for overload resolution of operators where the
2631 candidates are expected to be either member or non member
2632 functions. In this case the first argument ARGTYPES
2633 (representing 'this') is expected to be a reference to the
2634 target object, and will be dereferenced when attempting the
2635 non-member search.
2636
2637 In the case of class methods, the parameter OBJ is an object value
2638 in which to search for overloaded methods.
2639
2640 In the case of non-method functions, the parameter FSYM is a symbol
2641 corresponding to one of the overloaded functions.
2642
2643 Return value is an integer: 0 -> good match, 10 -> debugger applied
2644 non-standard coercions, 100 -> incompatible.
2645
2646 If a method is being searched for, VALP will hold the value.
2647 If a non-method is being searched for, SYMP will hold the symbol
2648 for it.
2649
2650 If a method is being searched for, and it is a static method,
2651 then STATICP will point to a non-zero value.
2652
2653 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2654 ADL overload candidates when performing overload resolution for a fully
2655 qualified name.
2656
2657 If NOSIDE is EVAL_AVOID_SIDE_EFFECTS, then OBJP's memory cannot be
2658 read while picking the best overload match (it may be all zeroes and thus
2659 not have a vtable pointer), in which case skip virtual function lookup.
2660 This is ok as typically EVAL_AVOID_SIDE_EFFECTS is only used to determine
2661 the result type.
2662
2663 Note: This function does *not* check the value of
2664 overload_resolution. Caller must check it to see whether overload
2665 resolution is permitted. */
2666
2667 int
2668 find_overload_match (gdb::array_view<value *> args,
2669 const char *name, enum oload_search_type method,
2670 struct value **objp, struct symbol *fsym,
2671 struct value **valp, struct symbol **symp,
2672 int *staticp, const int no_adl,
2673 const enum noside noside)
2674 {
2675 struct value *obj = (objp ? *objp : NULL);
2676 struct type *obj_type = obj ? value_type (obj) : NULL;
2677 /* Index of best overloaded function. */
2678 int func_oload_champ = -1;
2679 int method_oload_champ = -1;
2680 int src_method_oload_champ = -1;
2681 int ext_method_oload_champ = -1;
2682
2683 /* The measure for the current best match. */
2684 badness_vector method_badness;
2685 badness_vector func_badness;
2686 badness_vector ext_method_badness;
2687 badness_vector src_method_badness;
2688
2689 struct value *temp = obj;
2690 /* For methods, the list of overloaded methods. */
2691 gdb::array_view<fn_field> methods;
2692 /* For non-methods, the list of overloaded function symbols. */
2693 std::vector<symbol *> functions;
2694 /* For xmethods, the vector of xmethod workers. */
2695 std::vector<xmethod_worker_up> xmethods;
2696 struct type *basetype = NULL;
2697 LONGEST boffset;
2698
2699 const char *obj_type_name = NULL;
2700 const char *func_name = NULL;
2701 gdb::unique_xmalloc_ptr<char> temp_func;
2702 enum oload_classification match_quality;
2703 enum oload_classification method_match_quality = INCOMPATIBLE;
2704 enum oload_classification src_method_match_quality = INCOMPATIBLE;
2705 enum oload_classification ext_method_match_quality = INCOMPATIBLE;
2706 enum oload_classification func_match_quality = INCOMPATIBLE;
2707
2708 /* Get the list of overloaded methods or functions. */
2709 if (method == METHOD || method == BOTH)
2710 {
2711 gdb_assert (obj);
2712
2713 /* OBJ may be a pointer value rather than the object itself. */
2714 obj = coerce_ref (obj);
2715 while (check_typedef (value_type (obj))->code () == TYPE_CODE_PTR)
2716 obj = coerce_ref (value_ind (obj));
2717 obj_type_name = value_type (obj)->name ();
2718
2719 /* First check whether this is a data member, e.g. a pointer to
2720 a function. */
2721 if (check_typedef (value_type (obj))->code () == TYPE_CODE_STRUCT)
2722 {
2723 *valp = search_struct_field (name, obj,
2724 check_typedef (value_type (obj)), 0);
2725 if (*valp)
2726 {
2727 *staticp = 1;
2728 return 0;
2729 }
2730 }
2731
2732 /* Retrieve the list of methods with the name NAME. */
2733 value_find_oload_method_list (&temp, name, 0, &methods,
2734 &xmethods, &basetype, &boffset);
2735 /* If this is a method only search, and no methods were found
2736 the search has failed. */
2737 if (method == METHOD && methods.empty () && xmethods.empty ())
2738 error (_("Couldn't find method %s%s%s"),
2739 obj_type_name,
2740 (obj_type_name && *obj_type_name) ? "::" : "",
2741 name);
2742 /* If we are dealing with stub method types, they should have
2743 been resolved by find_method_list via
2744 value_find_oload_method_list above. */
2745 if (!methods.empty ())
2746 {
2747 gdb_assert (TYPE_SELF_TYPE (methods[0].type) != NULL);
2748
2749 src_method_oload_champ
2750 = find_oload_champ (args,
2751 methods.size (),
2752 methods.data (), NULL, NULL,
2753 &src_method_badness);
2754
2755 src_method_match_quality = classify_oload_match
2756 (src_method_badness, args.size (),
2757 oload_method_static_p (methods.data (), src_method_oload_champ));
2758 }
2759
2760 if (!xmethods.empty ())
2761 {
2762 ext_method_oload_champ
2763 = find_oload_champ (args,
2764 xmethods.size (),
2765 NULL, xmethods.data (), NULL,
2766 &ext_method_badness);
2767 ext_method_match_quality = classify_oload_match (ext_method_badness,
2768 args.size (), 0);
2769 }
2770
2771 if (src_method_oload_champ >= 0 && ext_method_oload_champ >= 0)
2772 {
2773 switch (compare_badness (ext_method_badness, src_method_badness))
2774 {
2775 case 0: /* Src method and xmethod are equally good. */
2776 /* If src method and xmethod are equally good, then
2777 xmethod should be the winner. Hence, fall through to the
2778 case where a xmethod is better than the source
2779 method, except when the xmethod match quality is
2780 non-standard. */
2781 /* FALLTHROUGH */
2782 case 1: /* Src method and ext method are incompatible. */
2783 /* If ext method match is not standard, then let source method
2784 win. Otherwise, fallthrough to let xmethod win. */
2785 if (ext_method_match_quality != STANDARD)
2786 {
2787 method_oload_champ = src_method_oload_champ;
2788 method_badness = src_method_badness;
2789 ext_method_oload_champ = -1;
2790 method_match_quality = src_method_match_quality;
2791 break;
2792 }
2793 /* FALLTHROUGH */
2794 case 2: /* Ext method is champion. */
2795 method_oload_champ = ext_method_oload_champ;
2796 method_badness = ext_method_badness;
2797 src_method_oload_champ = -1;
2798 method_match_quality = ext_method_match_quality;
2799 break;
2800 case 3: /* Src method is champion. */
2801 method_oload_champ = src_method_oload_champ;
2802 method_badness = src_method_badness;
2803 ext_method_oload_champ = -1;
2804 method_match_quality = src_method_match_quality;
2805 break;
2806 default:
2807 gdb_assert_not_reached ("Unexpected overload comparison "
2808 "result");
2809 break;
2810 }
2811 }
2812 else if (src_method_oload_champ >= 0)
2813 {
2814 method_oload_champ = src_method_oload_champ;
2815 method_badness = src_method_badness;
2816 method_match_quality = src_method_match_quality;
2817 }
2818 else if (ext_method_oload_champ >= 0)
2819 {
2820 method_oload_champ = ext_method_oload_champ;
2821 method_badness = ext_method_badness;
2822 method_match_quality = ext_method_match_quality;
2823 }
2824 }
2825
2826 if (method == NON_METHOD || method == BOTH)
2827 {
2828 const char *qualified_name = NULL;
2829
2830 /* If the overload match is being search for both as a method
2831 and non member function, the first argument must now be
2832 dereferenced. */
2833 if (method == BOTH)
2834 args[0] = value_ind (args[0]);
2835
2836 if (fsym)
2837 {
2838 qualified_name = fsym->natural_name ();
2839
2840 /* If we have a function with a C++ name, try to extract just
2841 the function part. Do not try this for non-functions (e.g.
2842 function pointers). */
2843 if (qualified_name
2844 && (check_typedef (SYMBOL_TYPE (fsym))->code ()
2845 == TYPE_CODE_FUNC))
2846 {
2847 temp_func = cp_func_name (qualified_name);
2848
2849 /* If cp_func_name did not remove anything, the name of the
2850 symbol did not include scope or argument types - it was
2851 probably a C-style function. */
2852 if (temp_func != nullptr)
2853 {
2854 if (strcmp (temp_func.get (), qualified_name) == 0)
2855 func_name = NULL;
2856 else
2857 func_name = temp_func.get ();
2858 }
2859 }
2860 }
2861 else
2862 {
2863 func_name = name;
2864 qualified_name = name;
2865 }
2866
2867 /* If there was no C++ name, this must be a C-style function or
2868 not a function at all. Just return the same symbol. Do the
2869 same if cp_func_name fails for some reason. */
2870 if (func_name == NULL)
2871 {
2872 *symp = fsym;
2873 return 0;
2874 }
2875
2876 func_oload_champ = find_oload_champ_namespace (args,
2877 func_name,
2878 qualified_name,
2879 &functions,
2880 &func_badness,
2881 no_adl);
2882
2883 if (func_oload_champ >= 0)
2884 func_match_quality = classify_oload_match (func_badness,
2885 args.size (), 0);
2886 }
2887
2888 /* Did we find a match ? */
2889 if (method_oload_champ == -1 && func_oload_champ == -1)
2890 throw_error (NOT_FOUND_ERROR,
2891 _("No symbol \"%s\" in current context."),
2892 name);
2893
2894 /* If we have found both a method match and a function
2895 match, find out which one is better, and calculate match
2896 quality. */
2897 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2898 {
2899 switch (compare_badness (func_badness, method_badness))
2900 {
2901 case 0: /* Top two contenders are equally good. */
2902 /* FIXME: GDB does not support the general ambiguous case.
2903 All candidates should be collected and presented the
2904 user. */
2905 error (_("Ambiguous overload resolution"));
2906 break;
2907 case 1: /* Incomparable top contenders. */
2908 /* This is an error incompatible candidates
2909 should not have been proposed. */
2910 error (_("Internal error: incompatible "
2911 "overload candidates proposed"));
2912 break;
2913 case 2: /* Function champion. */
2914 method_oload_champ = -1;
2915 match_quality = func_match_quality;
2916 break;
2917 case 3: /* Method champion. */
2918 func_oload_champ = -1;
2919 match_quality = method_match_quality;
2920 break;
2921 default:
2922 error (_("Internal error: unexpected overload comparison result"));
2923 break;
2924 }
2925 }
2926 else
2927 {
2928 /* We have either a method match or a function match. */
2929 if (method_oload_champ >= 0)
2930 match_quality = method_match_quality;
2931 else
2932 match_quality = func_match_quality;
2933 }
2934
2935 if (match_quality == INCOMPATIBLE)
2936 {
2937 if (method == METHOD)
2938 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2939 obj_type_name,
2940 (obj_type_name && *obj_type_name) ? "::" : "",
2941 name);
2942 else
2943 error (_("Cannot resolve function %s to any overloaded instance"),
2944 func_name);
2945 }
2946 else if (match_quality == NON_STANDARD)
2947 {
2948 if (method == METHOD)
2949 warning (_("Using non-standard conversion to match "
2950 "method %s%s%s to supplied arguments"),
2951 obj_type_name,
2952 (obj_type_name && *obj_type_name) ? "::" : "",
2953 name);
2954 else
2955 warning (_("Using non-standard conversion to match "
2956 "function %s to supplied arguments"),
2957 func_name);
2958 }
2959
2960 if (staticp != NULL)
2961 *staticp = oload_method_static_p (methods.data (), method_oload_champ);
2962
2963 if (method_oload_champ >= 0)
2964 {
2965 if (src_method_oload_champ >= 0)
2966 {
2967 if (TYPE_FN_FIELD_VIRTUAL_P (methods, method_oload_champ)
2968 && noside != EVAL_AVOID_SIDE_EFFECTS)
2969 {
2970 *valp = value_virtual_fn_field (&temp, methods.data (),
2971 method_oload_champ, basetype,
2972 boffset);
2973 }
2974 else
2975 *valp = value_fn_field (&temp, methods.data (),
2976 method_oload_champ, basetype, boffset);
2977 }
2978 else
2979 *valp = value_from_xmethod
2980 (std::move (xmethods[ext_method_oload_champ]));
2981 }
2982 else
2983 *symp = functions[func_oload_champ];
2984
2985 if (objp)
2986 {
2987 struct type *temp_type = check_typedef (value_type (temp));
2988 struct type *objtype = check_typedef (obj_type);
2989
2990 if (temp_type->code () != TYPE_CODE_PTR
2991 && objtype->is_pointer_or_reference ())
2992 {
2993 temp = value_addr (temp);
2994 }
2995 *objp = temp;
2996 }
2997
2998 switch (match_quality)
2999 {
3000 case INCOMPATIBLE:
3001 return 100;
3002 case NON_STANDARD:
3003 return 10;
3004 default: /* STANDARD */
3005 return 0;
3006 }
3007 }
3008
3009 /* Find the best overload match, searching for FUNC_NAME in namespaces
3010 contained in QUALIFIED_NAME until it either finds a good match or
3011 runs out of namespaces. It stores the overloaded functions in
3012 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. If NO_ADL,
3013 argument dependent lookup is not performed. */
3014
3015 static int
3016 find_oload_champ_namespace (gdb::array_view<value *> args,
3017 const char *func_name,
3018 const char *qualified_name,
3019 std::vector<symbol *> *oload_syms,
3020 badness_vector *oload_champ_bv,
3021 const int no_adl)
3022 {
3023 int oload_champ;
3024
3025 find_oload_champ_namespace_loop (args,
3026 func_name,
3027 qualified_name, 0,
3028 oload_syms, oload_champ_bv,
3029 &oload_champ,
3030 no_adl);
3031
3032 return oload_champ;
3033 }
3034
3035 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
3036 how deep we've looked for namespaces, and the champ is stored in
3037 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
3038 if it isn't. Other arguments are the same as in
3039 find_oload_champ_namespace. */
3040
3041 static int
3042 find_oload_champ_namespace_loop (gdb::array_view<value *> args,
3043 const char *func_name,
3044 const char *qualified_name,
3045 int namespace_len,
3046 std::vector<symbol *> *oload_syms,
3047 badness_vector *oload_champ_bv,
3048 int *oload_champ,
3049 const int no_adl)
3050 {
3051 int next_namespace_len = namespace_len;
3052 int searched_deeper = 0;
3053 int new_oload_champ;
3054 char *new_namespace;
3055
3056 if (next_namespace_len != 0)
3057 {
3058 gdb_assert (qualified_name[next_namespace_len] == ':');
3059 next_namespace_len += 2;
3060 }
3061 next_namespace_len +=
3062 cp_find_first_component (qualified_name + next_namespace_len);
3063
3064 /* First, see if we have a deeper namespace we can search in.
3065 If we get a good match there, use it. */
3066
3067 if (qualified_name[next_namespace_len] == ':')
3068 {
3069 searched_deeper = 1;
3070
3071 if (find_oload_champ_namespace_loop (args,
3072 func_name, qualified_name,
3073 next_namespace_len,
3074 oload_syms, oload_champ_bv,
3075 oload_champ, no_adl))
3076 {
3077 return 1;
3078 }
3079 };
3080
3081 /* If we reach here, either we're in the deepest namespace or we
3082 didn't find a good match in a deeper namespace. But, in the
3083 latter case, we still have a bad match in a deeper namespace;
3084 note that we might not find any match at all in the current
3085 namespace. (There's always a match in the deepest namespace,
3086 because this overload mechanism only gets called if there's a
3087 function symbol to start off with.) */
3088
3089 new_namespace = (char *) alloca (namespace_len + 1);
3090 strncpy (new_namespace, qualified_name, namespace_len);
3091 new_namespace[namespace_len] = '\0';
3092
3093 std::vector<symbol *> new_oload_syms
3094 = make_symbol_overload_list (func_name, new_namespace);
3095
3096 /* If we have reached the deepest level perform argument
3097 determined lookup. */
3098 if (!searched_deeper && !no_adl)
3099 {
3100 int ix;
3101 struct type **arg_types;
3102
3103 /* Prepare list of argument types for overload resolution. */
3104 arg_types = (struct type **)
3105 alloca (args.size () * (sizeof (struct type *)));
3106 for (ix = 0; ix < args.size (); ix++)
3107 arg_types[ix] = value_type (args[ix]);
3108 add_symbol_overload_list_adl ({arg_types, args.size ()}, func_name,
3109 &new_oload_syms);
3110 }
3111
3112 badness_vector new_oload_champ_bv;
3113 new_oload_champ = find_oload_champ (args,
3114 new_oload_syms.size (),
3115 NULL, NULL, new_oload_syms.data (),
3116 &new_oload_champ_bv);
3117
3118 /* Case 1: We found a good match. Free earlier matches (if any),
3119 and return it. Case 2: We didn't find a good match, but we're
3120 not the deepest function. Then go with the bad match that the
3121 deeper function found. Case 3: We found a bad match, and we're
3122 the deepest function. Then return what we found, even though
3123 it's a bad match. */
3124
3125 if (new_oload_champ != -1
3126 && classify_oload_match (new_oload_champ_bv, args.size (), 0) == STANDARD)
3127 {
3128 *oload_syms = std::move (new_oload_syms);
3129 *oload_champ = new_oload_champ;
3130 *oload_champ_bv = std::move (new_oload_champ_bv);
3131 return 1;
3132 }
3133 else if (searched_deeper)
3134 {
3135 return 0;
3136 }
3137 else
3138 {
3139 *oload_syms = std::move (new_oload_syms);
3140 *oload_champ = new_oload_champ;
3141 *oload_champ_bv = std::move (new_oload_champ_bv);
3142 return 0;
3143 }
3144 }
3145
3146 /* Look for a function to take ARGS. Find the best match from among
3147 the overloaded methods or functions given by METHODS or FUNCTIONS
3148 or XMETHODS, respectively. One, and only one of METHODS, FUNCTIONS
3149 and XMETHODS can be non-NULL.
3150
3151 NUM_FNS is the length of the array pointed at by METHODS, FUNCTIONS
3152 or XMETHODS, whichever is non-NULL.
3153
3154 Return the index of the best match; store an indication of the
3155 quality of the match in OLOAD_CHAMP_BV. */
3156
3157 static int
3158 find_oload_champ (gdb::array_view<value *> args,
3159 size_t num_fns,
3160 fn_field *methods,
3161 xmethod_worker_up *xmethods,
3162 symbol **functions,
3163 badness_vector *oload_champ_bv)
3164 {
3165 /* A measure of how good an overloaded instance is. */
3166 badness_vector bv;
3167 /* Index of best overloaded function. */
3168 int oload_champ = -1;
3169 /* Current ambiguity state for overload resolution. */
3170 int oload_ambiguous = 0;
3171 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
3172
3173 /* A champion can be found among methods alone, or among functions
3174 alone, or in xmethods alone, but not in more than one of these
3175 groups. */
3176 gdb_assert ((methods != NULL) + (functions != NULL) + (xmethods != NULL)
3177 == 1);
3178
3179 /* Consider each candidate in turn. */
3180 for (size_t ix = 0; ix < num_fns; ix++)
3181 {
3182 int jj;
3183 int static_offset = 0;
3184 std::vector<type *> parm_types;
3185
3186 if (xmethods != NULL)
3187 parm_types = xmethods[ix]->get_arg_types ();
3188 else
3189 {
3190 size_t nparms;
3191
3192 if (methods != NULL)
3193 {
3194 nparms = TYPE_FN_FIELD_TYPE (methods, ix)->num_fields ();
3195 static_offset = oload_method_static_p (methods, ix);
3196 }
3197 else
3198 nparms = SYMBOL_TYPE (functions[ix])->num_fields ();
3199
3200 parm_types.reserve (nparms);
3201 for (jj = 0; jj < nparms; jj++)
3202 {
3203 type *t = (methods != NULL
3204 ? (TYPE_FN_FIELD_ARGS (methods, ix)[jj].type ())
3205 : SYMBOL_TYPE (functions[ix])->field (jj).type ());
3206 parm_types.push_back (t);
3207 }
3208 }
3209
3210 /* Compare parameter types to supplied argument types. Skip
3211 THIS for static methods. */
3212 bv = rank_function (parm_types,
3213 args.slice (static_offset));
3214
3215 if (overload_debug)
3216 {
3217 if (methods != NULL)
3218 fprintf_filtered (gdb_stderr,
3219 "Overloaded method instance %s, # of parms %d\n",
3220 methods[ix].physname, (int) parm_types.size ());
3221 else if (xmethods != NULL)
3222 fprintf_filtered (gdb_stderr,
3223 "Xmethod worker, # of parms %d\n",
3224 (int) parm_types.size ());
3225 else
3226 fprintf_filtered (gdb_stderr,
3227 "Overloaded function instance "
3228 "%s # of parms %d\n",
3229 functions[ix]->demangled_name (),
3230 (int) parm_types.size ());
3231
3232 fprintf_filtered (gdb_stderr,
3233 "...Badness of length : {%d, %d}\n",
3234 bv[0].rank, bv[0].subrank);
3235
3236 for (jj = 1; jj < bv.size (); jj++)
3237 fprintf_filtered (gdb_stderr,
3238 "...Badness of arg %d : {%d, %d}\n",
3239 jj, bv[jj].rank, bv[jj].subrank);
3240 }
3241
3242 if (oload_champ_bv->empty ())
3243 {
3244 *oload_champ_bv = std::move (bv);
3245 oload_champ = 0;
3246 }
3247 else /* See whether current candidate is better or worse than
3248 previous best. */
3249 switch (compare_badness (bv, *oload_champ_bv))
3250 {
3251 case 0: /* Top two contenders are equally good. */
3252 oload_ambiguous = 1;
3253 break;
3254 case 1: /* Incomparable top contenders. */
3255 oload_ambiguous = 2;
3256 break;
3257 case 2: /* New champion, record details. */
3258 *oload_champ_bv = std::move (bv);
3259 oload_ambiguous = 0;
3260 oload_champ = ix;
3261 break;
3262 case 3:
3263 default:
3264 break;
3265 }
3266 if (overload_debug)
3267 fprintf_filtered (gdb_stderr, "Overload resolution "
3268 "champion is %d, ambiguous? %d\n",
3269 oload_champ, oload_ambiguous);
3270 }
3271
3272 return oload_champ;
3273 }
3274
3275 /* Return 1 if we're looking at a static method, 0 if we're looking at
3276 a non-static method or a function that isn't a method. */
3277
3278 static int
3279 oload_method_static_p (struct fn_field *fns_ptr, int index)
3280 {
3281 if (fns_ptr && index >= 0 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
3282 return 1;
3283 else
3284 return 0;
3285 }
3286
3287 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
3288
3289 static enum oload_classification
3290 classify_oload_match (const badness_vector &oload_champ_bv,
3291 int nargs,
3292 int static_offset)
3293 {
3294 int ix;
3295 enum oload_classification worst = STANDARD;
3296
3297 for (ix = 1; ix <= nargs - static_offset; ix++)
3298 {
3299 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
3300 or worse return INCOMPATIBLE. */
3301 if (compare_ranks (oload_champ_bv[ix],
3302 INCOMPATIBLE_TYPE_BADNESS) <= 0)
3303 return INCOMPATIBLE; /* Truly mismatched types. */
3304 /* Otherwise If this conversion is as bad as
3305 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
3306 else if (compare_ranks (oload_champ_bv[ix],
3307 NS_POINTER_CONVERSION_BADNESS) <= 0)
3308 worst = NON_STANDARD; /* Non-standard type conversions
3309 needed. */
3310 }
3311
3312 /* If no INCOMPATIBLE classification was found, return the worst one
3313 that was found (if any). */
3314 return worst;
3315 }
3316
3317 /* C++: return 1 is NAME is a legitimate name for the destructor of
3318 type TYPE. If TYPE does not have a destructor, or if NAME is
3319 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
3320 have CHECK_TYPEDEF applied, this function will apply it itself. */
3321
3322 int
3323 destructor_name_p (const char *name, struct type *type)
3324 {
3325 if (name[0] == '~')
3326 {
3327 const char *dname = type_name_or_error (type);
3328 const char *cp = strchr (dname, '<');
3329 unsigned int len;
3330
3331 /* Do not compare the template part for template classes. */
3332 if (cp == NULL)
3333 len = strlen (dname);
3334 else
3335 len = cp - dname;
3336 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3337 error (_("name of destructor must equal name of class"));
3338 else
3339 return 1;
3340 }
3341 return 0;
3342 }
3343
3344 /* Find an enum constant named NAME in TYPE. TYPE must be an "enum
3345 class". If the name is found, return a value representing it;
3346 otherwise throw an exception. */
3347
3348 static struct value *
3349 enum_constant_from_type (struct type *type, const char *name)
3350 {
3351 int i;
3352 int name_len = strlen (name);
3353
3354 gdb_assert (type->code () == TYPE_CODE_ENUM
3355 && type->is_declared_class ());
3356
3357 for (i = TYPE_N_BASECLASSES (type); i < type->num_fields (); ++i)
3358 {
3359 const char *fname = type->field (i).name ();
3360 int len;
3361
3362 if (type->field (i).loc_kind () != FIELD_LOC_KIND_ENUMVAL
3363 || fname == NULL)
3364 continue;
3365
3366 /* Look for the trailing "::NAME", since enum class constant
3367 names are qualified here. */
3368 len = strlen (fname);
3369 if (len + 2 >= name_len
3370 && fname[len - name_len - 2] == ':'
3371 && fname[len - name_len - 1] == ':'
3372 && strcmp (&fname[len - name_len], name) == 0)
3373 return value_from_longest (type, type->field (i).loc_enumval ());
3374 }
3375
3376 error (_("no constant named \"%s\" in enum \"%s\""),
3377 name, type->name ());
3378 }
3379
3380 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3381 return the appropriate member (or the address of the member, if
3382 WANT_ADDRESS). This function is used to resolve user expressions
3383 of the form "DOMAIN::NAME". For more details on what happens, see
3384 the comment before value_struct_elt_for_reference. */
3385
3386 struct value *
3387 value_aggregate_elt (struct type *curtype, const char *name,
3388 struct type *expect_type, int want_address,
3389 enum noside noside)
3390 {
3391 switch (curtype->code ())
3392 {
3393 case TYPE_CODE_STRUCT:
3394 case TYPE_CODE_UNION:
3395 return value_struct_elt_for_reference (curtype, 0, curtype,
3396 name, expect_type,
3397 want_address, noside);
3398 case TYPE_CODE_NAMESPACE:
3399 return value_namespace_elt (curtype, name,
3400 want_address, noside);
3401
3402 case TYPE_CODE_ENUM:
3403 return enum_constant_from_type (curtype, name);
3404
3405 default:
3406 internal_error (__FILE__, __LINE__,
3407 _("non-aggregate type in value_aggregate_elt"));
3408 }
3409 }
3410
3411 /* Compares the two method/function types T1 and T2 for "equality"
3412 with respect to the methods' parameters. If the types of the
3413 two parameter lists are the same, returns 1; 0 otherwise. This
3414 comparison may ignore any artificial parameters in T1 if
3415 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3416 the first artificial parameter in T1, assumed to be a 'this' pointer.
3417
3418 The type T2 is expected to have come from make_params (in eval.c). */
3419
3420 static int
3421 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3422 {
3423 int start = 0;
3424
3425 if (t1->num_fields () > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3426 ++start;
3427
3428 /* If skipping artificial fields, find the first real field
3429 in T1. */
3430 if (skip_artificial)
3431 {
3432 while (start < t1->num_fields ()
3433 && TYPE_FIELD_ARTIFICIAL (t1, start))
3434 ++start;
3435 }
3436
3437 /* Now compare parameters. */
3438
3439 /* Special case: a method taking void. T1 will contain no
3440 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3441 if ((t1->num_fields () - start) == 0 && t2->num_fields () == 1
3442 && t2->field (0).type ()->code () == TYPE_CODE_VOID)
3443 return 1;
3444
3445 if ((t1->num_fields () - start) == t2->num_fields ())
3446 {
3447 int i;
3448
3449 for (i = 0; i < t2->num_fields (); ++i)
3450 {
3451 if (compare_ranks (rank_one_type (t1->field (start + i).type (),
3452 t2->field (i).type (), NULL),
3453 EXACT_MATCH_BADNESS) != 0)
3454 return 0;
3455 }
3456
3457 return 1;
3458 }
3459
3460 return 0;
3461 }
3462
3463 /* C++: Given an aggregate type VT, and a class type CLS, search
3464 recursively for CLS using value V; If found, store the offset
3465 which is either fetched from the virtual base pointer if CLS
3466 is virtual or accumulated offset of its parent classes if
3467 CLS is non-virtual in *BOFFS, set ISVIRT to indicate if CLS
3468 is virtual, and return true. If not found, return false. */
3469
3470 static bool
3471 get_baseclass_offset (struct type *vt, struct type *cls,
3472 struct value *v, int *boffs, bool *isvirt)
3473 {
3474 for (int i = 0; i < TYPE_N_BASECLASSES (vt); i++)
3475 {
3476 struct type *t = vt->field (i).type ();
3477 if (types_equal (t, cls))
3478 {
3479 if (BASETYPE_VIA_VIRTUAL (vt, i))
3480 {
3481 const gdb_byte *adr = value_contents_for_printing (v).data ();
3482 *boffs = baseclass_offset (vt, i, adr, value_offset (v),
3483 value_as_long (v), v);
3484 *isvirt = true;
3485 }
3486 else
3487 *isvirt = false;
3488 return true;
3489 }
3490
3491 if (get_baseclass_offset (check_typedef (t), cls, v, boffs, isvirt))
3492 {
3493 if (*isvirt == false) /* Add non-virtual base offset. */
3494 {
3495 const gdb_byte *adr = value_contents_for_printing (v).data ();
3496 *boffs += baseclass_offset (vt, i, adr, value_offset (v),
3497 value_as_long (v), v);
3498 }
3499 return true;
3500 }
3501 }
3502
3503 return false;
3504 }
3505
3506 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3507 return the address of this member as a "pointer to member" type.
3508 If INTYPE is non-null, then it will be the type of the member we
3509 are looking for. This will help us resolve "pointers to member
3510 functions". This function is used to resolve user expressions of
3511 the form "DOMAIN::NAME". */
3512
3513 static struct value *
3514 value_struct_elt_for_reference (struct type *domain, int offset,
3515 struct type *curtype, const char *name,
3516 struct type *intype,
3517 int want_address,
3518 enum noside noside)
3519 {
3520 struct type *t = check_typedef (curtype);
3521 int i;
3522 struct value *result;
3523
3524 if (t->code () != TYPE_CODE_STRUCT
3525 && t->code () != TYPE_CODE_UNION)
3526 error (_("Internal error: non-aggregate type "
3527 "to value_struct_elt_for_reference"));
3528
3529 for (i = t->num_fields () - 1; i >= TYPE_N_BASECLASSES (t); i--)
3530 {
3531 const char *t_field_name = t->field (i).name ();
3532
3533 if (t_field_name && strcmp (t_field_name, name) == 0)
3534 {
3535 if (field_is_static (&t->field (i)))
3536 {
3537 struct value *v = value_static_field (t, i);
3538 if (want_address)
3539 v = value_addr (v);
3540 return v;
3541 }
3542 if (TYPE_FIELD_PACKED (t, i))
3543 error (_("pointers to bitfield members not allowed"));
3544
3545 if (want_address)
3546 return value_from_longest
3547 (lookup_memberptr_type (t->field (i).type (), domain),
3548 offset + (LONGEST) (t->field (i).loc_bitpos () >> 3));
3549 else if (noside != EVAL_NORMAL)
3550 return allocate_value (t->field (i).type ());
3551 else
3552 {
3553 /* Try to evaluate NAME as a qualified name with implicit
3554 this pointer. In this case, attempt to return the
3555 equivalent to `this->*(&TYPE::NAME)'. */
3556 struct value *v = value_of_this_silent (current_language);
3557 if (v != NULL)
3558 {
3559 struct value *ptr, *this_v = v;
3560 long mem_offset;
3561 struct type *type, *tmp;
3562
3563 ptr = value_aggregate_elt (domain, name, NULL, 1, noside);
3564 type = check_typedef (value_type (ptr));
3565 gdb_assert (type != NULL
3566 && type->code () == TYPE_CODE_MEMBERPTR);
3567 tmp = lookup_pointer_type (TYPE_SELF_TYPE (type));
3568 v = value_cast_pointers (tmp, v, 1);
3569 mem_offset = value_as_long (ptr);
3570 if (domain != curtype)
3571 {
3572 /* Find class offset of type CURTYPE from either its
3573 parent type DOMAIN or the type of implied this. */
3574 int boff = 0;
3575 bool isvirt = false;
3576 if (get_baseclass_offset (domain, curtype, v, &boff,
3577 &isvirt))
3578 mem_offset += boff;
3579 else
3580 {
3581 struct type *p = check_typedef (value_type (this_v));
3582 p = check_typedef (TYPE_TARGET_TYPE (p));
3583 if (get_baseclass_offset (p, curtype, this_v,
3584 &boff, &isvirt))
3585 mem_offset += boff;
3586 }
3587 }
3588 tmp = lookup_pointer_type (TYPE_TARGET_TYPE (type));
3589 result = value_from_pointer (tmp,
3590 value_as_long (v) + mem_offset);
3591 return value_ind (result);
3592 }
3593
3594 error (_("Cannot reference non-static field \"%s\""), name);
3595 }
3596 }
3597 }
3598
3599 /* C++: If it was not found as a data field, then try to return it
3600 as a pointer to a method. */
3601
3602 /* Perform all necessary dereferencing. */
3603 while (intype && intype->code () == TYPE_CODE_PTR)
3604 intype = TYPE_TARGET_TYPE (intype);
3605
3606 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3607 {
3608 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3609
3610 if (t_field_name && strcmp (t_field_name, name) == 0)
3611 {
3612 int j;
3613 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3614 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3615
3616 check_stub_method_group (t, i);
3617
3618 if (intype)
3619 {
3620 for (j = 0; j < len; ++j)
3621 {
3622 if (TYPE_CONST (intype) != TYPE_FN_FIELD_CONST (f, j))
3623 continue;
3624 if (TYPE_VOLATILE (intype) != TYPE_FN_FIELD_VOLATILE (f, j))
3625 continue;
3626
3627 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3628 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3629 intype, 1))
3630 break;
3631 }
3632
3633 if (j == len)
3634 error (_("no member function matches "
3635 "that type instantiation"));
3636 }
3637 else
3638 {
3639 int ii;
3640
3641 j = -1;
3642 for (ii = 0; ii < len; ++ii)
3643 {
3644 /* Skip artificial methods. This is necessary if,
3645 for example, the user wants to "print
3646 subclass::subclass" with only one user-defined
3647 constructor. There is no ambiguity in this case.
3648 We are careful here to allow artificial methods
3649 if they are the unique result. */
3650 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3651 {
3652 if (j == -1)
3653 j = ii;
3654 continue;
3655 }
3656
3657 /* Desired method is ambiguous if more than one
3658 method is defined. */
3659 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3660 error (_("non-unique member `%s' requires "
3661 "type instantiation"), name);
3662
3663 j = ii;
3664 }
3665
3666 if (j == -1)
3667 error (_("no matching member function"));
3668 }
3669
3670 if (TYPE_FN_FIELD_STATIC_P (f, j))
3671 {
3672 struct symbol *s =
3673 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3674 0, VAR_DOMAIN, 0).symbol;
3675
3676 if (s == NULL)
3677 return NULL;
3678
3679 if (want_address)
3680 return value_addr (read_var_value (s, 0, 0));
3681 else
3682 return read_var_value (s, 0, 0);
3683 }
3684
3685 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3686 {
3687 if (want_address)
3688 {
3689 result = allocate_value
3690 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3691 cplus_make_method_ptr (value_type (result),
3692 value_contents_writeable (result).data (),
3693 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3694 }
3695 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3696 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3697 else
3698 error (_("Cannot reference virtual member function \"%s\""),
3699 name);
3700 }
3701 else
3702 {
3703 struct symbol *s =
3704 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3705 0, VAR_DOMAIN, 0).symbol;
3706
3707 if (s == NULL)
3708 return NULL;
3709
3710 struct value *v = read_var_value (s, 0, 0);
3711 if (!want_address)
3712 result = v;
3713 else
3714 {
3715 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3716 cplus_make_method_ptr (value_type (result),
3717 value_contents_writeable (result).data (),
3718 value_address (v), 0);
3719 }
3720 }
3721 return result;
3722 }
3723 }
3724 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3725 {
3726 struct value *v;
3727 int base_offset;
3728
3729 if (BASETYPE_VIA_VIRTUAL (t, i))
3730 base_offset = 0;
3731 else
3732 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3733 v = value_struct_elt_for_reference (domain,
3734 offset + base_offset,
3735 TYPE_BASECLASS (t, i),
3736 name, intype,
3737 want_address, noside);
3738 if (v)
3739 return v;
3740 }
3741
3742 /* As a last chance, pretend that CURTYPE is a namespace, and look
3743 it up that way; this (frequently) works for types nested inside
3744 classes. */
3745
3746 return value_maybe_namespace_elt (curtype, name,
3747 want_address, noside);
3748 }
3749
3750 /* C++: Return the member NAME of the namespace given by the type
3751 CURTYPE. */
3752
3753 static struct value *
3754 value_namespace_elt (const struct type *curtype,
3755 const char *name, int want_address,
3756 enum noside noside)
3757 {
3758 struct value *retval = value_maybe_namespace_elt (curtype, name,
3759 want_address,
3760 noside);
3761
3762 if (retval == NULL)
3763 error (_("No symbol \"%s\" in namespace \"%s\"."),
3764 name, curtype->name ());
3765
3766 return retval;
3767 }
3768
3769 /* A helper function used by value_namespace_elt and
3770 value_struct_elt_for_reference. It looks up NAME inside the
3771 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3772 is a class and NAME refers to a type in CURTYPE itself (as opposed
3773 to, say, some base class of CURTYPE). */
3774
3775 static struct value *
3776 value_maybe_namespace_elt (const struct type *curtype,
3777 const char *name, int want_address,
3778 enum noside noside)
3779 {
3780 const char *namespace_name = curtype->name ();
3781 struct block_symbol sym;
3782 struct value *result;
3783
3784 sym = cp_lookup_symbol_namespace (namespace_name, name,
3785 get_selected_block (0), VAR_DOMAIN);
3786
3787 if (sym.symbol == NULL)
3788 return NULL;
3789 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3790 && (SYMBOL_CLASS (sym.symbol) == LOC_TYPEDEF))
3791 result = allocate_value (SYMBOL_TYPE (sym.symbol));
3792 else
3793 result = value_of_variable (sym.symbol, sym.block);
3794
3795 if (want_address)
3796 result = value_addr (result);
3797
3798 return result;
3799 }
3800
3801 /* Given a pointer or a reference value V, find its real (RTTI) type.
3802
3803 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3804 and refer to the values computed for the object pointed to. */
3805
3806 struct type *
3807 value_rtti_indirect_type (struct value *v, int *full,
3808 LONGEST *top, int *using_enc)
3809 {
3810 struct value *target = NULL;
3811 struct type *type, *real_type, *target_type;
3812
3813 type = value_type (v);
3814 type = check_typedef (type);
3815 if (TYPE_IS_REFERENCE (type))
3816 target = coerce_ref (v);
3817 else if (type->code () == TYPE_CODE_PTR)
3818 {
3819
3820 try
3821 {
3822 target = value_ind (v);
3823 }
3824 catch (const gdb_exception_error &except)
3825 {
3826 if (except.error == MEMORY_ERROR)
3827 {
3828 /* value_ind threw a memory error. The pointer is NULL or
3829 contains an uninitialized value: we can't determine any
3830 type. */
3831 return NULL;
3832 }
3833 throw;
3834 }
3835 }
3836 else
3837 return NULL;
3838
3839 real_type = value_rtti_type (target, full, top, using_enc);
3840
3841 if (real_type)
3842 {
3843 /* Copy qualifiers to the referenced object. */
3844 target_type = value_type (target);
3845 real_type = make_cv_type (TYPE_CONST (target_type),
3846 TYPE_VOLATILE (target_type), real_type, NULL);
3847 if (TYPE_IS_REFERENCE (type))
3848 real_type = lookup_reference_type (real_type, type->code ());
3849 else if (type->code () == TYPE_CODE_PTR)
3850 real_type = lookup_pointer_type (real_type);
3851 else
3852 internal_error (__FILE__, __LINE__, _("Unexpected value type."));
3853
3854 /* Copy qualifiers to the pointer/reference. */
3855 real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type),
3856 real_type, NULL);
3857 }
3858
3859 return real_type;
3860 }
3861
3862 /* Given a value pointed to by ARGP, check its real run-time type, and
3863 if that is different from the enclosing type, create a new value
3864 using the real run-time type as the enclosing type (and of the same
3865 type as ARGP) and return it, with the embedded offset adjusted to
3866 be the correct offset to the enclosed object. RTYPE is the type,
3867 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3868 by value_rtti_type(). If these are available, they can be supplied
3869 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3870 NULL if they're not available. */
3871
3872 struct value *
3873 value_full_object (struct value *argp,
3874 struct type *rtype,
3875 int xfull, int xtop,
3876 int xusing_enc)
3877 {
3878 struct type *real_type;
3879 int full = 0;
3880 LONGEST top = -1;
3881 int using_enc = 0;
3882 struct value *new_val;
3883
3884 if (rtype)
3885 {
3886 real_type = rtype;
3887 full = xfull;
3888 top = xtop;
3889 using_enc = xusing_enc;
3890 }
3891 else
3892 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3893
3894 /* If no RTTI data, or if object is already complete, do nothing. */
3895 if (!real_type || real_type == value_enclosing_type (argp))
3896 return argp;
3897
3898 /* In a destructor we might see a real type that is a superclass of
3899 the object's type. In this case it is better to leave the object
3900 as-is. */
3901 if (full
3902 && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp)))
3903 return argp;
3904
3905 /* If we have the full object, but for some reason the enclosing
3906 type is wrong, set it. */
3907 /* pai: FIXME -- sounds iffy */
3908 if (full)
3909 {
3910 argp = value_copy (argp);
3911 set_value_enclosing_type (argp, real_type);
3912 return argp;
3913 }
3914
3915 /* Check if object is in memory. */
3916 if (VALUE_LVAL (argp) != lval_memory)
3917 {
3918 warning (_("Couldn't retrieve complete object of RTTI "
3919 "type %s; object may be in register(s)."),
3920 real_type->name ());
3921
3922 return argp;
3923 }
3924
3925 /* All other cases -- retrieve the complete object. */
3926 /* Go back by the computed top_offset from the beginning of the
3927 object, adjusting for the embedded offset of argp if that's what
3928 value_rtti_type used for its computation. */
3929 new_val = value_at_lazy (real_type, value_address (argp) - top +
3930 (using_enc ? 0 : value_embedded_offset (argp)));
3931 deprecated_set_value_type (new_val, value_type (argp));
3932 set_value_embedded_offset (new_val, (using_enc
3933 ? top + value_embedded_offset (argp)
3934 : top));
3935 return new_val;
3936 }
3937
3938
3939 /* Return the value of the local variable, if one exists. Throw error
3940 otherwise, such as if the request is made in an inappropriate context. */
3941
3942 struct value *
3943 value_of_this (const struct language_defn *lang)
3944 {
3945 struct block_symbol sym;
3946 const struct block *b;
3947 struct frame_info *frame;
3948
3949 if (lang->name_of_this () == NULL)
3950 error (_("no `this' in current language"));
3951
3952 frame = get_selected_frame (_("no frame selected"));
3953
3954 b = get_frame_block (frame, NULL);
3955
3956 sym = lookup_language_this (lang, b);
3957 if (sym.symbol == NULL)
3958 error (_("current stack frame does not contain a variable named `%s'"),
3959 lang->name_of_this ());
3960
3961 return read_var_value (sym.symbol, sym.block, frame);
3962 }
3963
3964 /* Return the value of the local variable, if one exists. Return NULL
3965 otherwise. Never throw error. */
3966
3967 struct value *
3968 value_of_this_silent (const struct language_defn *lang)
3969 {
3970 struct value *ret = NULL;
3971
3972 try
3973 {
3974 ret = value_of_this (lang);
3975 }
3976 catch (const gdb_exception_error &except)
3977 {
3978 }
3979
3980 return ret;
3981 }
3982
3983 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3984 elements long, starting at LOWBOUND. The result has the same lower
3985 bound as the original ARRAY. */
3986
3987 struct value *
3988 value_slice (struct value *array, int lowbound, int length)
3989 {
3990 struct type *slice_range_type, *slice_type, *range_type;
3991 LONGEST lowerbound, upperbound;
3992 struct value *slice;
3993 struct type *array_type;
3994
3995 array_type = check_typedef (value_type (array));
3996 if (array_type->code () != TYPE_CODE_ARRAY
3997 && array_type->code () != TYPE_CODE_STRING)
3998 error (_("cannot take slice of non-array"));
3999
4000 if (type_not_allocated (array_type))
4001 error (_("array not allocated"));
4002 if (type_not_associated (array_type))
4003 error (_("array not associated"));
4004
4005 range_type = array_type->index_type ();
4006 if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
4007 error (_("slice from bad array or bitstring"));
4008
4009 if (lowbound < lowerbound || length < 0
4010 || lowbound + length - 1 > upperbound)
4011 error (_("slice out of range"));
4012
4013 /* FIXME-type-allocation: need a way to free this type when we are
4014 done with it. */
4015 slice_range_type = create_static_range_type (NULL,
4016 TYPE_TARGET_TYPE (range_type),
4017 lowbound,
4018 lowbound + length - 1);
4019
4020 {
4021 struct type *element_type = TYPE_TARGET_TYPE (array_type);
4022 LONGEST offset
4023 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
4024
4025 slice_type = create_array_type (NULL,
4026 element_type,
4027 slice_range_type);
4028 slice_type->set_code (array_type->code ());
4029
4030 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
4031 slice = allocate_value_lazy (slice_type);
4032 else
4033 {
4034 slice = allocate_value (slice_type);
4035 value_contents_copy (slice, 0, array, offset,
4036 type_length_units (slice_type));
4037 }
4038
4039 set_value_component_location (slice, array);
4040 set_value_offset (slice, value_offset (array) + offset);
4041 }
4042
4043 return slice;
4044 }
4045
4046 /* See value.h. */
4047
4048 struct value *
4049 value_literal_complex (struct value *arg1,
4050 struct value *arg2,
4051 struct type *type)
4052 {
4053 struct value *val;
4054 struct type *real_type = TYPE_TARGET_TYPE (type);
4055
4056 val = allocate_value (type);
4057 arg1 = value_cast (real_type, arg1);
4058 arg2 = value_cast (real_type, arg2);
4059
4060 int len = TYPE_LENGTH (real_type);
4061
4062 copy (value_contents (arg1),
4063 value_contents_raw (val).slice (0, len));
4064 copy (value_contents (arg2),
4065 value_contents_raw (val).slice (len, len));
4066
4067 return val;
4068 }
4069
4070 /* See value.h. */
4071
4072 struct value *
4073 value_real_part (struct value *value)
4074 {
4075 struct type *type = check_typedef (value_type (value));
4076 struct type *ttype = TYPE_TARGET_TYPE (type);
4077
4078 gdb_assert (type->code () == TYPE_CODE_COMPLEX);
4079 return value_from_component (value, ttype, 0);
4080 }
4081
4082 /* See value.h. */
4083
4084 struct value *
4085 value_imaginary_part (struct value *value)
4086 {
4087 struct type *type = check_typedef (value_type (value));
4088 struct type *ttype = TYPE_TARGET_TYPE (type);
4089
4090 gdb_assert (type->code () == TYPE_CODE_COMPLEX);
4091 return value_from_component (value, ttype,
4092 TYPE_LENGTH (check_typedef (ttype)));
4093 }
4094
4095 /* Cast a value into the appropriate complex data type. */
4096
4097 static struct value *
4098 cast_into_complex (struct type *type, struct value *val)
4099 {
4100 struct type *real_type = TYPE_TARGET_TYPE (type);
4101
4102 if (value_type (val)->code () == TYPE_CODE_COMPLEX)
4103 {
4104 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
4105 struct value *re_val = allocate_value (val_real_type);
4106 struct value *im_val = allocate_value (val_real_type);
4107 int len = TYPE_LENGTH (val_real_type);
4108
4109 copy (value_contents (val).slice (0, len),
4110 value_contents_raw (re_val));
4111 copy (value_contents (val).slice (len, len),
4112 value_contents_raw (im_val));
4113
4114 return value_literal_complex (re_val, im_val, type);
4115 }
4116 else if (value_type (val)->code () == TYPE_CODE_FLT
4117 || value_type (val)->code () == TYPE_CODE_INT)
4118 return value_literal_complex (val,
4119 value_zero (real_type, not_lval),
4120 type);
4121 else
4122 error (_("cannot cast non-number to complex"));
4123 }
4124
4125 void _initialize_valops ();
4126 void
4127 _initialize_valops ()
4128 {
4129 add_setshow_boolean_cmd ("overload-resolution", class_support,
4130 &overload_resolution, _("\
4131 Set overload resolution in evaluating C++ functions."), _("\
4132 Show overload resolution in evaluating C++ functions."),
4133 NULL, NULL,
4134 show_overload_resolution,
4135 &setlist, &showlist);
4136 overload_resolution = 1;
4137 }