* configure.in: Check for working mmap, ansi headers, string.h,
[binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 #include "defs.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcore.h"
28 #include "target.h"
29 #include "demangle.h"
30 #include "language.h"
31
32 #include <errno.h>
33 #include "gdb_string.h"
34
35 /* Local functions. */
36
37 static int typecmp PARAMS ((int staticp, struct type *t1[], value_ptr t2[]));
38
39 static CORE_ADDR find_function_addr PARAMS ((value_ptr, struct type **));
40
41 static CORE_ADDR value_push PARAMS ((CORE_ADDR, value_ptr));
42
43 static value_ptr search_struct_field PARAMS ((char *, value_ptr, int,
44 struct type *, int));
45
46 static value_ptr search_struct_method PARAMS ((char *, value_ptr *,
47 value_ptr *,
48 int, int *, struct type *));
49
50 static int check_field_in PARAMS ((struct type *, const char *));
51
52 static CORE_ADDR allocate_space_in_inferior PARAMS ((int));
53
54 static value_ptr cast_into_complex PARAMS ((struct type *, value_ptr));
55
56 #define VALUE_SUBSTRING_START(VAL) VALUE_FRAME(VAL)
57
58 \f
59 /* Allocate NBYTES of space in the inferior using the inferior's malloc
60 and return a value that is a pointer to the allocated space. */
61
62 static CORE_ADDR
63 allocate_space_in_inferior (len)
64 int len;
65 {
66 register value_ptr val;
67 register struct symbol *sym;
68 struct minimal_symbol *msymbol;
69 struct type *type;
70 value_ptr blocklen;
71 LONGEST maddr;
72
73 /* Find the address of malloc in the inferior. */
74
75 sym = lookup_symbol ("malloc", 0, VAR_NAMESPACE, 0, NULL);
76 if (sym != NULL)
77 {
78 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
79 {
80 error ("\"malloc\" exists in this program but is not a function.");
81 }
82 val = value_of_variable (sym, NULL);
83 }
84 else
85 {
86 msymbol = lookup_minimal_symbol ("malloc", NULL, NULL);
87 if (msymbol != NULL)
88 {
89 type = lookup_pointer_type (builtin_type_char);
90 type = lookup_function_type (type);
91 type = lookup_pointer_type (type);
92 maddr = (LONGEST) SYMBOL_VALUE_ADDRESS (msymbol);
93 val = value_from_longest (type, maddr);
94 }
95 else
96 {
97 error ("evaluation of this expression requires the program to have a function \"malloc\".");
98 }
99 }
100
101 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
102 val = call_function_by_hand (val, 1, &blocklen);
103 if (value_logical_not (val))
104 {
105 error ("No memory available to program.");
106 }
107 return (value_as_long (val));
108 }
109
110 /* Cast value ARG2 to type TYPE and return as a value.
111 More general than a C cast: accepts any two types of the same length,
112 and if ARG2 is an lvalue it can be cast into anything at all. */
113 /* In C++, casts may change pointer or object representations. */
114
115 value_ptr
116 value_cast (type, arg2)
117 struct type *type;
118 register value_ptr arg2;
119 {
120 register enum type_code code1 = TYPE_CODE (type);
121 register enum type_code code2;
122 register int scalar;
123
124 if (VALUE_TYPE (arg2) == type)
125 return arg2;
126
127 COERCE_REF(arg2);
128
129 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
130 is treated like a cast to (TYPE [N])OBJECT,
131 where N is sizeof(OBJECT)/sizeof(TYPE). */
132 if (code1 == TYPE_CODE_ARRAY
133 && TYPE_LENGTH (TYPE_TARGET_TYPE (type)) > 0
134 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
135 {
136 struct type *element_type = TYPE_TARGET_TYPE (type);
137 struct type *range_type = TYPE_INDEX_TYPE (type);
138 int low_bound = TYPE_LOW_BOUND (range_type);
139 int val_length = TYPE_LENGTH (VALUE_TYPE (arg2));
140 int new_length = val_length / TYPE_LENGTH (element_type);
141 if (val_length % TYPE_LENGTH (element_type) != 0)
142 warning("array element type size does not divide object size in cast");
143 /* FIXME-type-allocation: need a way to free this type when we are
144 done with it. */
145 range_type = create_range_type ((struct type *) NULL,
146 TYPE_TARGET_TYPE (range_type),
147 low_bound, new_length + low_bound - 1);
148 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
149 element_type, range_type);
150 return arg2;
151 }
152
153 if (current_language->c_style_arrays
154 && (VALUE_REPEATED (arg2)
155 || TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_ARRAY))
156 arg2 = value_coerce_array (arg2);
157
158 if (TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_FUNC)
159 arg2 = value_coerce_function (arg2);
160
161 COERCE_VARYING_ARRAY (arg2);
162
163 code2 = TYPE_CODE (VALUE_TYPE (arg2));
164
165 if (code1 == TYPE_CODE_COMPLEX)
166 return cast_into_complex (type, arg2);
167 if (code1 == TYPE_CODE_BOOL)
168 code1 = TYPE_CODE_INT;
169 if (code2 == TYPE_CODE_BOOL)
170 code2 = TYPE_CODE_INT;
171
172 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
173 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
174
175 if ( code1 == TYPE_CODE_STRUCT
176 && code2 == TYPE_CODE_STRUCT
177 && TYPE_NAME (type) != 0)
178 {
179 /* Look in the type of the source to see if it contains the
180 type of the target as a superclass. If so, we'll need to
181 offset the object in addition to changing its type. */
182 value_ptr v = search_struct_field (type_name_no_tag (type),
183 arg2, 0, VALUE_TYPE (arg2), 1);
184 if (v)
185 {
186 VALUE_TYPE (v) = type;
187 return v;
188 }
189 }
190 if (code1 == TYPE_CODE_FLT && scalar)
191 return value_from_double (type, value_as_double (arg2));
192 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
193 || code1 == TYPE_CODE_RANGE)
194 && (scalar || code2 == TYPE_CODE_PTR))
195 return value_from_longest (type, value_as_long (arg2));
196 else if (TYPE_LENGTH (type) == TYPE_LENGTH (VALUE_TYPE (arg2)))
197 {
198 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
199 {
200 /* Look in the type of the source to see if it contains the
201 type of the target as a superclass. If so, we'll need to
202 offset the pointer rather than just change its type. */
203 struct type *t1 = TYPE_TARGET_TYPE (type);
204 struct type *t2 = TYPE_TARGET_TYPE (VALUE_TYPE (arg2));
205 if ( TYPE_CODE (t1) == TYPE_CODE_STRUCT
206 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
207 && TYPE_NAME (t1) != 0) /* if name unknown, can't have supercl */
208 {
209 value_ptr v = search_struct_field (type_name_no_tag (t1),
210 value_ind (arg2), 0, t2, 1);
211 if (v)
212 {
213 v = value_addr (v);
214 VALUE_TYPE (v) = type;
215 return v;
216 }
217 }
218 /* No superclass found, just fall through to change ptr type. */
219 }
220 VALUE_TYPE (arg2) = type;
221 return arg2;
222 }
223 else if (chill_varying_type (type))
224 {
225 struct type *range1, *range2, *eltype1, *eltype2;
226 value_ptr val;
227 int count1, count2;
228 char *valaddr, *valaddr_data;
229 if (code2 == TYPE_CODE_BITSTRING)
230 error ("not implemented: converting bitstring to varying type");
231 if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING)
232 || (eltype1 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1)),
233 eltype2 = TYPE_TARGET_TYPE (VALUE_TYPE (arg2)),
234 (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2)
235 /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ )))
236 error ("Invalid conversion to varying type");
237 range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0);
238 range2 = TYPE_FIELD_TYPE (VALUE_TYPE (arg2), 0);
239 count1 = TYPE_HIGH_BOUND (range1) - TYPE_LOW_BOUND (range1) + 1;
240 count2 = TYPE_HIGH_BOUND (range2) - TYPE_LOW_BOUND (range2) + 1;
241 if (count2 > count1)
242 error ("target varying type is too small");
243 val = allocate_value (type);
244 valaddr = VALUE_CONTENTS_RAW (val);
245 valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8;
246 /* Set val's __var_length field to count2. */
247 store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)),
248 count2);
249 /* Set the __var_data field to count2 elements copied from arg2. */
250 memcpy (valaddr_data, VALUE_CONTENTS (arg2),
251 count2 * TYPE_LENGTH (eltype2));
252 /* Zero the rest of the __var_data field of val. */
253 memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0',
254 (count1 - count2) * TYPE_LENGTH (eltype2));
255 return val;
256 }
257 else if (VALUE_LVAL (arg2) == lval_memory)
258 {
259 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2));
260 }
261 else if (code1 == TYPE_CODE_VOID)
262 {
263 return value_zero (builtin_type_void, not_lval);
264 }
265 else
266 {
267 error ("Invalid cast.");
268 return 0;
269 }
270 }
271
272 /* Create a value of type TYPE that is zero, and return it. */
273
274 value_ptr
275 value_zero (type, lv)
276 struct type *type;
277 enum lval_type lv;
278 {
279 register value_ptr val = allocate_value (type);
280
281 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (type));
282 VALUE_LVAL (val) = lv;
283
284 return val;
285 }
286
287 /* Return a value with type TYPE located at ADDR.
288
289 Call value_at only if the data needs to be fetched immediately;
290 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
291 value_at_lazy instead. value_at_lazy simply records the address of
292 the data and sets the lazy-evaluation-required flag. The lazy flag
293 is tested in the VALUE_CONTENTS macro, which is used if and when
294 the contents are actually required. */
295
296 value_ptr
297 value_at (type, addr)
298 struct type *type;
299 CORE_ADDR addr;
300 {
301 register value_ptr val;
302
303 if (TYPE_CODE (type) == TYPE_CODE_VOID)
304 error ("Attempt to dereference a generic pointer.");
305
306 val = allocate_value (type);
307
308 read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (type));
309
310 VALUE_LVAL (val) = lval_memory;
311 VALUE_ADDRESS (val) = addr;
312
313 return val;
314 }
315
316 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
317
318 value_ptr
319 value_at_lazy (type, addr)
320 struct type *type;
321 CORE_ADDR addr;
322 {
323 register value_ptr val;
324
325 if (TYPE_CODE (type) == TYPE_CODE_VOID)
326 error ("Attempt to dereference a generic pointer.");
327
328 val = allocate_value (type);
329
330 VALUE_LVAL (val) = lval_memory;
331 VALUE_ADDRESS (val) = addr;
332 VALUE_LAZY (val) = 1;
333
334 return val;
335 }
336
337 /* Called only from the VALUE_CONTENTS macro, if the current data for
338 a variable needs to be loaded into VALUE_CONTENTS(VAL). Fetches the
339 data from the user's process, and clears the lazy flag to indicate
340 that the data in the buffer is valid.
341
342 If the value is zero-length, we avoid calling read_memory, which would
343 abort. We mark the value as fetched anyway -- all 0 bytes of it.
344
345 This function returns a value because it is used in the VALUE_CONTENTS
346 macro as part of an expression, where a void would not work. The
347 value is ignored. */
348
349 int
350 value_fetch_lazy (val)
351 register value_ptr val;
352 {
353 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
354
355 if (TYPE_LENGTH (VALUE_TYPE (val)))
356 read_memory (addr, VALUE_CONTENTS_RAW (val),
357 TYPE_LENGTH (VALUE_TYPE (val)));
358 VALUE_LAZY (val) = 0;
359 return 0;
360 }
361
362
363 /* Store the contents of FROMVAL into the location of TOVAL.
364 Return a new value with the location of TOVAL and contents of FROMVAL. */
365
366 value_ptr
367 value_assign (toval, fromval)
368 register value_ptr toval, fromval;
369 {
370 register struct type *type;
371 register value_ptr val;
372 char raw_buffer[MAX_REGISTER_RAW_SIZE];
373 int use_buffer = 0;
374
375 if (!toval->modifiable)
376 error ("Left operand of assignment is not a modifiable lvalue.");
377
378 COERCE_ARRAY (fromval);
379 COERCE_REF (toval);
380
381 type = VALUE_TYPE (toval);
382 if (VALUE_LVAL (toval) != lval_internalvar)
383 fromval = value_cast (type, fromval);
384
385 /* If TOVAL is a special machine register requiring conversion
386 of program values to a special raw format,
387 convert FROMVAL's contents now, with result in `raw_buffer',
388 and set USE_BUFFER to the number of bytes to write. */
389
390 #ifdef REGISTER_CONVERTIBLE
391 if (VALUE_REGNO (toval) >= 0
392 && REGISTER_CONVERTIBLE (VALUE_REGNO (toval)))
393 {
394 int regno = VALUE_REGNO (toval);
395 if (REGISTER_CONVERTIBLE (regno))
396 {
397 REGISTER_CONVERT_TO_RAW (VALUE_TYPE (fromval), regno,
398 VALUE_CONTENTS (fromval), raw_buffer);
399 use_buffer = REGISTER_RAW_SIZE (regno);
400 }
401 }
402 #endif
403
404 switch (VALUE_LVAL (toval))
405 {
406 case lval_internalvar:
407 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
408 break;
409
410 case lval_internalvar_component:
411 set_internalvar_component (VALUE_INTERNALVAR (toval),
412 VALUE_OFFSET (toval),
413 VALUE_BITPOS (toval),
414 VALUE_BITSIZE (toval),
415 fromval);
416 break;
417
418 case lval_memory:
419 if (VALUE_BITSIZE (toval))
420 {
421 char buffer[sizeof (LONGEST)];
422 /* We assume that the argument to read_memory is in units of
423 host chars. FIXME: Is that correct? */
424 int len = (VALUE_BITPOS (toval)
425 + VALUE_BITSIZE (toval)
426 + HOST_CHAR_BIT - 1)
427 / HOST_CHAR_BIT;
428
429 if (len > sizeof (LONGEST))
430 error ("Can't handle bitfields which don't fit in a %d bit word.",
431 sizeof (LONGEST) * HOST_CHAR_BIT);
432
433 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
434 buffer, len);
435 modify_field (buffer, value_as_long (fromval),
436 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
437 write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
438 buffer, len);
439 }
440 else if (use_buffer)
441 write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
442 raw_buffer, use_buffer);
443 else
444 write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
445 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
446 break;
447
448 case lval_register:
449 if (VALUE_BITSIZE (toval))
450 {
451 char buffer[sizeof (LONGEST)];
452 int len = REGISTER_RAW_SIZE (VALUE_REGNO (toval));
453
454 if (len > sizeof (LONGEST))
455 error ("Can't handle bitfields in registers larger than %d bits.",
456 sizeof (LONGEST) * HOST_CHAR_BIT);
457
458 if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
459 > len * HOST_CHAR_BIT)
460 /* Getting this right would involve being very careful about
461 byte order. */
462 error ("\
463 Can't handle bitfield which doesn't fit in a single register.");
464
465 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
466 buffer, len);
467 modify_field (buffer, value_as_long (fromval),
468 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
469 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
470 buffer, len);
471 }
472 else if (use_buffer)
473 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
474 raw_buffer, use_buffer);
475 else
476 {
477 /* Do any conversion necessary when storing this type to more
478 than one register. */
479 #ifdef REGISTER_CONVERT_FROM_TYPE
480 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
481 REGISTER_CONVERT_FROM_TYPE(VALUE_REGNO (toval), type, raw_buffer);
482 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
483 raw_buffer, TYPE_LENGTH (type));
484 #else
485 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
486 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
487 #endif
488 }
489 /* Assigning to the stack pointer, frame pointer, and other
490 (architecture and calling convention specific) registers may
491 cause the frame cache to be out of date. We just do this
492 on all assignments to registers for simplicity; I doubt the slowdown
493 matters. */
494 reinit_frame_cache ();
495 break;
496
497 case lval_reg_frame_relative:
498 {
499 /* value is stored in a series of registers in the frame
500 specified by the structure. Copy that value out, modify
501 it, and copy it back in. */
502 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
503 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
504 int byte_offset = VALUE_OFFSET (toval) % reg_size;
505 int reg_offset = VALUE_OFFSET (toval) / reg_size;
506 int amount_copied;
507
508 /* Make the buffer large enough in all cases. */
509 char *buffer = (char *) alloca (amount_to_copy
510 + sizeof (LONGEST)
511 + MAX_REGISTER_RAW_SIZE);
512
513 int regno;
514 struct frame_info *frame;
515
516 /* Figure out which frame this is in currently. */
517 for (frame = get_current_frame ();
518 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
519 frame = get_prev_frame (frame))
520 ;
521
522 if (!frame)
523 error ("Value being assigned to is no longer active.");
524
525 amount_to_copy += (reg_size - amount_to_copy % reg_size);
526
527 /* Copy it out. */
528 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
529 amount_copied = 0);
530 amount_copied < amount_to_copy;
531 amount_copied += reg_size, regno++)
532 {
533 get_saved_register (buffer + amount_copied,
534 (int *)NULL, (CORE_ADDR *)NULL,
535 frame, regno, (enum lval_type *)NULL);
536 }
537
538 /* Modify what needs to be modified. */
539 if (VALUE_BITSIZE (toval))
540 modify_field (buffer + byte_offset,
541 value_as_long (fromval),
542 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
543 else if (use_buffer)
544 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
545 else
546 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
547 TYPE_LENGTH (type));
548
549 /* Copy it back. */
550 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
551 amount_copied = 0);
552 amount_copied < amount_to_copy;
553 amount_copied += reg_size, regno++)
554 {
555 enum lval_type lval;
556 CORE_ADDR addr;
557 int optim;
558
559 /* Just find out where to put it. */
560 get_saved_register ((char *)NULL,
561 &optim, &addr, frame, regno, &lval);
562
563 if (optim)
564 error ("Attempt to assign to a value that was optimized out.");
565 if (lval == lval_memory)
566 write_memory (addr, buffer + amount_copied, reg_size);
567 else if (lval == lval_register)
568 write_register_bytes (addr, buffer + amount_copied, reg_size);
569 else
570 error ("Attempt to assign to an unmodifiable value.");
571 }
572 }
573 break;
574
575
576 default:
577 error ("Left operand of assignment is not an lvalue.");
578 }
579
580 /* Return a value just like TOVAL except with the contents of FROMVAL
581 (except in the case of the type if TOVAL is an internalvar). */
582
583 if (VALUE_LVAL (toval) == lval_internalvar
584 || VALUE_LVAL (toval) == lval_internalvar_component)
585 {
586 type = VALUE_TYPE (fromval);
587 }
588
589 val = allocate_value (type);
590 memcpy (val, toval, VALUE_CONTENTS_RAW (val) - (char *) val);
591 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
592 TYPE_LENGTH (type));
593 VALUE_TYPE (val) = type;
594
595 return val;
596 }
597
598 /* Extend a value VAL to COUNT repetitions of its type. */
599
600 value_ptr
601 value_repeat (arg1, count)
602 value_ptr arg1;
603 int count;
604 {
605 register value_ptr val;
606
607 if (VALUE_LVAL (arg1) != lval_memory)
608 error ("Only values in memory can be extended with '@'.");
609 if (count < 1)
610 error ("Invalid number %d of repetitions.", count);
611 if (VALUE_REPEATED (arg1))
612 error ("Cannot create artificial arrays of artificial arrays.");
613
614 val = allocate_repeat_value (VALUE_TYPE (arg1), count);
615
616 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
617 VALUE_CONTENTS_RAW (val),
618 TYPE_LENGTH (VALUE_TYPE (val)) * count);
619 VALUE_LVAL (val) = lval_memory;
620 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
621
622 return val;
623 }
624
625 value_ptr
626 value_of_variable (var, b)
627 struct symbol *var;
628 struct block *b;
629 {
630 value_ptr val;
631 struct frame_info *frame;
632
633 if (b == NULL)
634 /* Use selected frame. */
635 frame = NULL;
636 else
637 {
638 frame = block_innermost_frame (b);
639 if (frame == NULL && symbol_read_needs_frame (var))
640 {
641 if (BLOCK_FUNCTION (b) != NULL
642 && SYMBOL_NAME (BLOCK_FUNCTION (b)) != NULL)
643 error ("No frame is currently executing in block %s.",
644 SYMBOL_NAME (BLOCK_FUNCTION (b)));
645 else
646 error ("No frame is currently executing in specified block");
647 }
648 }
649 val = read_var_value (var, frame);
650 if (val == 0)
651 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
652 return val;
653 }
654
655 /* Given a value which is an array, return a value which is a pointer to its
656 first element, regardless of whether or not the array has a nonzero lower
657 bound.
658
659 FIXME: A previous comment here indicated that this routine should be
660 substracting the array's lower bound. It's not clear to me that this
661 is correct. Given an array subscripting operation, it would certainly
662 work to do the adjustment here, essentially computing:
663
664 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
665
666 However I believe a more appropriate and logical place to account for
667 the lower bound is to do so in value_subscript, essentially computing:
668
669 (&array[0] + ((index - lowerbound) * sizeof array[0]))
670
671 As further evidence consider what would happen with operations other
672 than array subscripting, where the caller would get back a value that
673 had an address somewhere before the actual first element of the array,
674 and the information about the lower bound would be lost because of
675 the coercion to pointer type.
676 */
677
678 value_ptr
679 value_coerce_array (arg1)
680 value_ptr arg1;
681 {
682 register struct type *type;
683
684 if (VALUE_LVAL (arg1) != lval_memory)
685 error ("Attempt to take address of value not located in memory.");
686
687 /* Get type of elements. */
688 if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_ARRAY
689 || TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_STRING)
690 type = TYPE_TARGET_TYPE (VALUE_TYPE (arg1));
691 else
692 /* A phony array made by value_repeat.
693 Its type is the type of the elements, not an array type. */
694 type = VALUE_TYPE (arg1);
695
696 return value_from_longest (lookup_pointer_type (type),
697 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
698 }
699
700 /* Given a value which is a function, return a value which is a pointer
701 to it. */
702
703 value_ptr
704 value_coerce_function (arg1)
705 value_ptr arg1;
706 {
707
708 if (VALUE_LVAL (arg1) != lval_memory)
709 error ("Attempt to take address of value not located in memory.");
710
711 return value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)),
712 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
713 }
714
715 /* Return a pointer value for the object for which ARG1 is the contents. */
716
717 value_ptr
718 value_addr (arg1)
719 value_ptr arg1;
720 {
721 struct type *type = VALUE_TYPE (arg1);
722 if (TYPE_CODE (type) == TYPE_CODE_REF)
723 {
724 /* Copy the value, but change the type from (T&) to (T*).
725 We keep the same location information, which is efficient,
726 and allows &(&X) to get the location containing the reference. */
727 value_ptr arg2 = value_copy (arg1);
728 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
729 return arg2;
730 }
731 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
732 return value_coerce_function (arg1);
733
734 if (VALUE_LVAL (arg1) != lval_memory)
735 error ("Attempt to take address of value not located in memory.");
736
737 return value_from_longest (lookup_pointer_type (type),
738 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
739 }
740
741 /* Given a value of a pointer type, apply the C unary * operator to it. */
742
743 value_ptr
744 value_ind (arg1)
745 value_ptr arg1;
746 {
747 COERCE_ARRAY (arg1);
748
749 if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_MEMBER)
750 error ("not implemented: member types in value_ind");
751
752 /* Allow * on an integer so we can cast it to whatever we want.
753 This returns an int, which seems like the most C-like thing
754 to do. "long long" variables are rare enough that
755 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
756 if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_INT)
757 return value_at (builtin_type_int,
758 (CORE_ADDR) value_as_long (arg1));
759 else if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_PTR)
760 return value_at_lazy (TYPE_TARGET_TYPE (VALUE_TYPE (arg1)),
761 value_as_pointer (arg1));
762 error ("Attempt to take contents of a non-pointer value.");
763 return 0; /* For lint -- never reached */
764 }
765 \f
766 /* Pushing small parts of stack frames. */
767
768 /* Push one word (the size of object that a register holds). */
769
770 CORE_ADDR
771 push_word (sp, word)
772 CORE_ADDR sp;
773 unsigned LONGEST word;
774 {
775 register int len = REGISTER_SIZE;
776 char buffer[MAX_REGISTER_RAW_SIZE];
777
778 store_unsigned_integer (buffer, len, word);
779 #if 1 INNER_THAN 2
780 sp -= len;
781 write_memory (sp, buffer, len);
782 #else /* stack grows upward */
783 write_memory (sp, buffer, len);
784 sp += len;
785 #endif /* stack grows upward */
786
787 return sp;
788 }
789
790 /* Push LEN bytes with data at BUFFER. */
791
792 CORE_ADDR
793 push_bytes (sp, buffer, len)
794 CORE_ADDR sp;
795 char *buffer;
796 int len;
797 {
798 #if 1 INNER_THAN 2
799 sp -= len;
800 write_memory (sp, buffer, len);
801 #else /* stack grows upward */
802 write_memory (sp, buffer, len);
803 sp += len;
804 #endif /* stack grows upward */
805
806 return sp;
807 }
808
809 /* Push onto the stack the specified value VALUE. */
810
811 static CORE_ADDR
812 value_push (sp, arg)
813 register CORE_ADDR sp;
814 value_ptr arg;
815 {
816 register int len = TYPE_LENGTH (VALUE_TYPE (arg));
817
818 #if 1 INNER_THAN 2
819 sp -= len;
820 write_memory (sp, VALUE_CONTENTS (arg), len);
821 #else /* stack grows upward */
822 write_memory (sp, VALUE_CONTENTS (arg), len);
823 sp += len;
824 #endif /* stack grows upward */
825
826 return sp;
827 }
828
829 /* Perform the standard coercions that are specified
830 for arguments to be passed to C functions.
831
832 If PARAM_TYPE is non-NULL, it is the expected parameter type. */
833
834 static value_ptr
835 value_arg_coerce (arg, param_type)
836 value_ptr arg;
837 struct type *param_type;
838 {
839 register struct type *type;
840
841 #if 1 /* FIXME: This is only a temporary patch. -fnf */
842 if (current_language->c_style_arrays
843 && (VALUE_REPEATED (arg)
844 || TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_ARRAY))
845 arg = value_coerce_array (arg);
846 #endif
847
848 type = param_type ? param_type : VALUE_TYPE (arg);
849
850 switch (TYPE_CODE (type))
851 {
852 case TYPE_CODE_REF:
853 if (TYPE_CODE (VALUE_TYPE (arg)) != TYPE_CODE_REF)
854 {
855 arg = value_addr (arg);
856 VALUE_TYPE (arg) = param_type;
857 return arg;
858 }
859 break;
860 case TYPE_CODE_INT:
861 case TYPE_CODE_CHAR:
862 case TYPE_CODE_BOOL:
863 case TYPE_CODE_ENUM:
864 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
865 type = builtin_type_int;
866 break;
867 case TYPE_CODE_FLT:
868 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
869 type = builtin_type_double;
870 break;
871 case TYPE_CODE_FUNC:
872 type = lookup_pointer_type (type);
873 break;
874 case TYPE_CODE_UNDEF:
875 case TYPE_CODE_PTR:
876 case TYPE_CODE_ARRAY:
877 case TYPE_CODE_STRUCT:
878 case TYPE_CODE_UNION:
879 case TYPE_CODE_VOID:
880 case TYPE_CODE_SET:
881 case TYPE_CODE_RANGE:
882 case TYPE_CODE_STRING:
883 case TYPE_CODE_BITSTRING:
884 case TYPE_CODE_ERROR:
885 case TYPE_CODE_MEMBER:
886 case TYPE_CODE_METHOD:
887 case TYPE_CODE_COMPLEX:
888 default:
889 break;
890 }
891
892 return value_cast (type, arg);
893 }
894
895 /* Determine a function's address and its return type from its value.
896 Calls error() if the function is not valid for calling. */
897
898 static CORE_ADDR
899 find_function_addr (function, retval_type)
900 value_ptr function;
901 struct type **retval_type;
902 {
903 register struct type *ftype = VALUE_TYPE (function);
904 register enum type_code code = TYPE_CODE (ftype);
905 struct type *value_type;
906 CORE_ADDR funaddr;
907
908 /* If it's a member function, just look at the function
909 part of it. */
910
911 /* Determine address to call. */
912 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
913 {
914 funaddr = VALUE_ADDRESS (function);
915 value_type = TYPE_TARGET_TYPE (ftype);
916 }
917 else if (code == TYPE_CODE_PTR)
918 {
919 funaddr = value_as_pointer (function);
920 if (TYPE_CODE (TYPE_TARGET_TYPE (ftype)) == TYPE_CODE_FUNC
921 || TYPE_CODE (TYPE_TARGET_TYPE (ftype)) == TYPE_CODE_METHOD)
922 {
923 #ifdef CONVERT_FROM_FUNC_PTR_ADDR
924 /* FIXME: This is a workaround for the unusual function
925 pointer representation on the RS/6000, see comment
926 in config/rs6000/tm-rs6000.h */
927 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
928 #endif
929 value_type = TYPE_TARGET_TYPE (TYPE_TARGET_TYPE (ftype));
930 }
931 else
932 value_type = builtin_type_int;
933 }
934 else if (code == TYPE_CODE_INT)
935 {
936 /* Handle the case of functions lacking debugging info.
937 Their values are characters since their addresses are char */
938 if (TYPE_LENGTH (ftype) == 1)
939 funaddr = value_as_pointer (value_addr (function));
940 else
941 /* Handle integer used as address of a function. */
942 funaddr = (CORE_ADDR) value_as_long (function);
943
944 value_type = builtin_type_int;
945 }
946 else
947 error ("Invalid data type for function to be called.");
948
949 *retval_type = value_type;
950 return funaddr;
951 }
952
953 #if defined (CALL_DUMMY)
954 /* All this stuff with a dummy frame may seem unnecessarily complicated
955 (why not just save registers in GDB?). The purpose of pushing a dummy
956 frame which looks just like a real frame is so that if you call a
957 function and then hit a breakpoint (get a signal, etc), "backtrace"
958 will look right. Whether the backtrace needs to actually show the
959 stack at the time the inferior function was called is debatable, but
960 it certainly needs to not display garbage. So if you are contemplating
961 making dummy frames be different from normal frames, consider that. */
962
963 /* Perform a function call in the inferior.
964 ARGS is a vector of values of arguments (NARGS of them).
965 FUNCTION is a value, the function to be called.
966 Returns a value representing what the function returned.
967 May fail to return, if a breakpoint or signal is hit
968 during the execution of the function.
969
970 ARGS is modified to contain coerced values. */
971
972 value_ptr
973 call_function_by_hand (function, nargs, args)
974 value_ptr function;
975 int nargs;
976 value_ptr *args;
977 {
978 register CORE_ADDR sp;
979 register int i;
980 CORE_ADDR start_sp;
981 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
982 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
983 and remove any extra bytes which might exist because unsigned LONGEST is
984 bigger than REGISTER_SIZE. */
985 static unsigned LONGEST dummy[] = CALL_DUMMY;
986 char dummy1[REGISTER_SIZE * sizeof dummy / sizeof (unsigned LONGEST)];
987 CORE_ADDR old_sp;
988 struct type *value_type;
989 unsigned char struct_return;
990 CORE_ADDR struct_addr;
991 struct inferior_status inf_status;
992 struct cleanup *old_chain;
993 CORE_ADDR funaddr;
994 int using_gcc;
995 CORE_ADDR real_pc;
996 struct type *ftype = SYMBOL_TYPE (function);
997
998 if (!target_has_execution)
999 noprocess();
1000
1001 save_inferior_status (&inf_status, 1);
1002 old_chain = make_cleanup (restore_inferior_status, &inf_status);
1003
1004 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1005 (and POP_FRAME for restoring them). (At least on most machines)
1006 they are saved on the stack in the inferior. */
1007 PUSH_DUMMY_FRAME;
1008
1009 old_sp = sp = read_sp ();
1010
1011 #if 1 INNER_THAN 2 /* Stack grows down */
1012 sp -= sizeof dummy1;
1013 start_sp = sp;
1014 #else /* Stack grows up */
1015 start_sp = sp;
1016 sp += sizeof dummy1;
1017 #endif
1018
1019 funaddr = find_function_addr (function, &value_type);
1020
1021 {
1022 struct block *b = block_for_pc (funaddr);
1023 /* If compiled without -g, assume GCC. */
1024 using_gcc = b == NULL ? 0 : BLOCK_GCC_COMPILED (b);
1025 }
1026
1027 /* Are we returning a value using a structure return or a normal
1028 value return? */
1029
1030 struct_return = using_struct_return (function, funaddr, value_type,
1031 using_gcc);
1032
1033 /* Create a call sequence customized for this function
1034 and the number of arguments for it. */
1035 for (i = 0; i < sizeof dummy / sizeof (dummy[0]); i++)
1036 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1037 REGISTER_SIZE,
1038 (unsigned LONGEST)dummy[i]);
1039
1040 #ifdef GDB_TARGET_IS_HPPA
1041 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1042 value_type, using_gcc);
1043 #else
1044 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1045 value_type, using_gcc);
1046 real_pc = start_sp;
1047 #endif
1048
1049 #if CALL_DUMMY_LOCATION == ON_STACK
1050 write_memory (start_sp, (char *)dummy1, sizeof dummy1);
1051 #endif /* On stack. */
1052
1053 #if CALL_DUMMY_LOCATION == BEFORE_TEXT_END
1054 /* Convex Unix prohibits executing in the stack segment. */
1055 /* Hope there is empty room at the top of the text segment. */
1056 {
1057 extern CORE_ADDR text_end;
1058 static checked = 0;
1059 if (!checked)
1060 for (start_sp = text_end - sizeof dummy1; start_sp < text_end; ++start_sp)
1061 if (read_memory_integer (start_sp, 1) != 0)
1062 error ("text segment full -- no place to put call");
1063 checked = 1;
1064 sp = old_sp;
1065 real_pc = text_end - sizeof dummy1;
1066 write_memory (real_pc, (char *)dummy1, sizeof dummy1);
1067 }
1068 #endif /* Before text_end. */
1069
1070 #if CALL_DUMMY_LOCATION == AFTER_TEXT_END
1071 {
1072 extern CORE_ADDR text_end;
1073 int errcode;
1074 sp = old_sp;
1075 real_pc = text_end;
1076 errcode = target_write_memory (real_pc, (char *)dummy1, sizeof dummy1);
1077 if (errcode != 0)
1078 error ("Cannot write text segment -- call_function failed");
1079 }
1080 #endif /* After text_end. */
1081
1082 #if CALL_DUMMY_LOCATION == AT_ENTRY_POINT
1083 real_pc = funaddr;
1084 #endif /* At entry point. */
1085
1086 #ifdef lint
1087 sp = old_sp; /* It really is used, for some ifdef's... */
1088 #endif
1089
1090 if (nargs < TYPE_NFIELDS (ftype))
1091 error ("too few arguments in function call");
1092
1093 for (i = nargs - 1; i >= 0; i--)
1094 {
1095 struct type *param_type;
1096 if (TYPE_NFIELDS (ftype) > i)
1097 param_type = TYPE_FIELD_TYPE (ftype, i);
1098 else
1099 param_type = 0;
1100 args[i] = value_arg_coerce (args[i], param_type);
1101 }
1102
1103 #if defined (REG_STRUCT_HAS_ADDR)
1104 {
1105 /* This is a machine like the sparc, where we may need to pass a pointer
1106 to the structure, not the structure itself. */
1107 for (i = nargs - 1; i >= 0; i--)
1108 if ((TYPE_CODE (VALUE_TYPE (args[i])) == TYPE_CODE_STRUCT
1109 || TYPE_CODE (VALUE_TYPE (args[i])) == TYPE_CODE_UNION
1110 || TYPE_CODE (VALUE_TYPE (args[i])) == TYPE_CODE_ARRAY
1111 || TYPE_CODE (VALUE_TYPE (args[i])) == TYPE_CODE_STRING)
1112 && REG_STRUCT_HAS_ADDR (using_gcc, VALUE_TYPE (args[i])))
1113 {
1114 CORE_ADDR addr;
1115 int len = TYPE_LENGTH (VALUE_TYPE (args[i]));
1116 #ifdef STACK_ALIGN
1117 int aligned_len = STACK_ALIGN (len);
1118 #else
1119 int aligned_len = len;
1120 #endif
1121 #if !(1 INNER_THAN 2)
1122 /* The stack grows up, so the address of the thing we push
1123 is the stack pointer before we push it. */
1124 addr = sp;
1125 #else
1126 sp -= aligned_len;
1127 #endif
1128 /* Push the structure. */
1129 write_memory (sp, VALUE_CONTENTS (args[i]), len);
1130 #if 1 INNER_THAN 2
1131 /* The stack grows down, so the address of the thing we push
1132 is the stack pointer after we push it. */
1133 addr = sp;
1134 #else
1135 sp += aligned_len;
1136 #endif
1137 /* The value we're going to pass is the address of the thing
1138 we just pushed. */
1139 args[i] = value_from_longest (lookup_pointer_type (value_type),
1140 (LONGEST) addr);
1141 }
1142 }
1143 #endif /* REG_STRUCT_HAS_ADDR. */
1144
1145 /* Reserve space for the return structure to be written on the
1146 stack, if necessary */
1147
1148 if (struct_return)
1149 {
1150 int len = TYPE_LENGTH (value_type);
1151 #ifdef STACK_ALIGN
1152 len = STACK_ALIGN (len);
1153 #endif
1154 #if 1 INNER_THAN 2
1155 sp -= len;
1156 struct_addr = sp;
1157 #else
1158 struct_addr = sp;
1159 sp += len;
1160 #endif
1161 }
1162
1163 #ifdef STACK_ALIGN
1164 /* If stack grows down, we must leave a hole at the top. */
1165 {
1166 int len = 0;
1167
1168 for (i = nargs - 1; i >= 0; i--)
1169 len += TYPE_LENGTH (VALUE_TYPE (args[i]));
1170 #ifdef CALL_DUMMY_STACK_ADJUST
1171 len += CALL_DUMMY_STACK_ADJUST;
1172 #endif
1173 #if 1 INNER_THAN 2
1174 sp -= STACK_ALIGN (len) - len;
1175 #else
1176 sp += STACK_ALIGN (len) - len;
1177 #endif
1178 }
1179 #endif /* STACK_ALIGN */
1180
1181 #ifdef PUSH_ARGUMENTS
1182 PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr);
1183 #else /* !PUSH_ARGUMENTS */
1184 for (i = nargs - 1; i >= 0; i--)
1185 sp = value_push (sp, args[i]);
1186 #endif /* !PUSH_ARGUMENTS */
1187
1188 #ifdef CALL_DUMMY_STACK_ADJUST
1189 #if 1 INNER_THAN 2
1190 sp -= CALL_DUMMY_STACK_ADJUST;
1191 #else
1192 sp += CALL_DUMMY_STACK_ADJUST;
1193 #endif
1194 #endif /* CALL_DUMMY_STACK_ADJUST */
1195
1196 /* Store the address at which the structure is supposed to be
1197 written. Note that this (and the code which reserved the space
1198 above) assumes that gcc was used to compile this function. Since
1199 it doesn't cost us anything but space and if the function is pcc
1200 it will ignore this value, we will make that assumption.
1201
1202 Also note that on some machines (like the sparc) pcc uses a
1203 convention like gcc's. */
1204
1205 if (struct_return)
1206 STORE_STRUCT_RETURN (struct_addr, sp);
1207
1208 /* Write the stack pointer. This is here because the statements above
1209 might fool with it. On SPARC, this write also stores the register
1210 window into the right place in the new stack frame, which otherwise
1211 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1212 write_sp (sp);
1213
1214 {
1215 char retbuf[REGISTER_BYTES];
1216 char *name;
1217 struct symbol *symbol;
1218
1219 name = NULL;
1220 symbol = find_pc_function (funaddr);
1221 if (symbol)
1222 {
1223 name = SYMBOL_SOURCE_NAME (symbol);
1224 }
1225 else
1226 {
1227 /* Try the minimal symbols. */
1228 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1229
1230 if (msymbol)
1231 {
1232 name = SYMBOL_SOURCE_NAME (msymbol);
1233 }
1234 }
1235 if (name == NULL)
1236 {
1237 char format[80];
1238 sprintf (format, "at %s", local_hex_format ());
1239 name = alloca (80);
1240 /* FIXME-32x64: assumes funaddr fits in a long. */
1241 sprintf (name, format, (unsigned long) funaddr);
1242 }
1243
1244 /* Execute the stack dummy routine, calling FUNCTION.
1245 When it is done, discard the empty frame
1246 after storing the contents of all regs into retbuf. */
1247 if (run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf))
1248 {
1249 /* We stopped somewhere besides the call dummy. */
1250
1251 /* If we did the cleanups, we would print a spurious error message
1252 (Unable to restore previously selected frame), would write the
1253 registers from the inf_status (which is wrong), and would do other
1254 wrong things (like set stop_bpstat to the wrong thing). */
1255 discard_cleanups (old_chain);
1256 /* Prevent memory leak. */
1257 bpstat_clear (&inf_status.stop_bpstat);
1258
1259 /* The following error message used to say "The expression
1260 which contained the function call has been discarded." It
1261 is a hard concept to explain in a few words. Ideally, GDB
1262 would be able to resume evaluation of the expression when
1263 the function finally is done executing. Perhaps someday
1264 this will be implemented (it would not be easy). */
1265
1266 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1267 a C++ name with arguments and stuff. */
1268 error ("\
1269 The program being debugged stopped while in a function called from GDB.\n\
1270 When the function (%s) is done executing, GDB will silently\n\
1271 stop (instead of continuing to evaluate the expression containing\n\
1272 the function call).", name);
1273 }
1274
1275 do_cleanups (old_chain);
1276
1277 /* Figure out the value returned by the function. */
1278 return value_being_returned (value_type, retbuf, struct_return);
1279 }
1280 }
1281 #else /* no CALL_DUMMY. */
1282 value_ptr
1283 call_function_by_hand (function, nargs, args)
1284 value_ptr function;
1285 int nargs;
1286 value_ptr *args;
1287 {
1288 error ("Cannot invoke functions on this machine.");
1289 }
1290 #endif /* no CALL_DUMMY. */
1291
1292 \f
1293 /* Create a value for an array by allocating space in the inferior, copying
1294 the data into that space, and then setting up an array value.
1295
1296 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1297 populated from the values passed in ELEMVEC.
1298
1299 The element type of the array is inherited from the type of the
1300 first element, and all elements must have the same size (though we
1301 don't currently enforce any restriction on their types). */
1302
1303 value_ptr
1304 value_array (lowbound, highbound, elemvec)
1305 int lowbound;
1306 int highbound;
1307 value_ptr *elemvec;
1308 {
1309 int nelem;
1310 int idx;
1311 int typelength;
1312 value_ptr val;
1313 struct type *rangetype;
1314 struct type *arraytype;
1315 CORE_ADDR addr;
1316
1317 /* Validate that the bounds are reasonable and that each of the elements
1318 have the same size. */
1319
1320 nelem = highbound - lowbound + 1;
1321 if (nelem <= 0)
1322 {
1323 error ("bad array bounds (%d, %d)", lowbound, highbound);
1324 }
1325 typelength = TYPE_LENGTH (VALUE_TYPE (elemvec[0]));
1326 for (idx = 0; idx < nelem; idx++)
1327 {
1328 if (TYPE_LENGTH (VALUE_TYPE (elemvec[idx])) != typelength)
1329 {
1330 error ("array elements must all be the same size");
1331 }
1332 }
1333
1334 /* Allocate space to store the array in the inferior, and then initialize
1335 it by copying in each element. FIXME: Is it worth it to create a
1336 local buffer in which to collect each value and then write all the
1337 bytes in one operation? */
1338
1339 addr = allocate_space_in_inferior (nelem * typelength);
1340 for (idx = 0; idx < nelem; idx++)
1341 {
1342 write_memory (addr + (idx * typelength), VALUE_CONTENTS (elemvec[idx]),
1343 typelength);
1344 }
1345
1346 /* Create the array type and set up an array value to be evaluated lazily. */
1347
1348 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1349 lowbound, highbound);
1350 arraytype = create_array_type ((struct type *) NULL,
1351 VALUE_TYPE (elemvec[0]), rangetype);
1352 val = value_at_lazy (arraytype, addr);
1353 return (val);
1354 }
1355
1356 /* Create a value for a string constant by allocating space in the inferior,
1357 copying the data into that space, and returning the address with type
1358 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1359 of characters.
1360 Note that string types are like array of char types with a lower bound of
1361 zero and an upper bound of LEN - 1. Also note that the string may contain
1362 embedded null bytes. */
1363
1364 value_ptr
1365 value_string (ptr, len)
1366 char *ptr;
1367 int len;
1368 {
1369 value_ptr val;
1370 int lowbound = current_language->string_lower_bound;
1371 struct type *rangetype = create_range_type ((struct type *) NULL,
1372 builtin_type_int,
1373 lowbound, len + lowbound - 1);
1374 struct type *stringtype
1375 = create_string_type ((struct type *) NULL, rangetype);
1376 CORE_ADDR addr;
1377
1378 if (current_language->c_style_arrays == 0)
1379 {
1380 val = allocate_value (stringtype);
1381 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1382 return val;
1383 }
1384
1385
1386 /* Allocate space to store the string in the inferior, and then
1387 copy LEN bytes from PTR in gdb to that address in the inferior. */
1388
1389 addr = allocate_space_in_inferior (len);
1390 write_memory (addr, ptr, len);
1391
1392 val = value_at_lazy (stringtype, addr);
1393 return (val);
1394 }
1395
1396 value_ptr
1397 value_bitstring (ptr, len)
1398 char *ptr;
1399 int len;
1400 {
1401 value_ptr val;
1402 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1403 0, len - 1);
1404 struct type *type = create_set_type ((struct type*) NULL, domain_type);
1405 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1406 val = allocate_value (type);
1407 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type) / TARGET_CHAR_BIT);
1408 return val;
1409 }
1410 \f
1411 /* See if we can pass arguments in T2 to a function which takes arguments
1412 of types T1. Both t1 and t2 are NULL-terminated vectors. If some
1413 arguments need coercion of some sort, then the coerced values are written
1414 into T2. Return value is 0 if the arguments could be matched, or the
1415 position at which they differ if not.
1416
1417 STATICP is nonzero if the T1 argument list came from a
1418 static member function.
1419
1420 For non-static member functions, we ignore the first argument,
1421 which is the type of the instance variable. This is because we want
1422 to handle calls with objects from derived classes. This is not
1423 entirely correct: we should actually check to make sure that a
1424 requested operation is type secure, shouldn't we? FIXME. */
1425
1426 static int
1427 typecmp (staticp, t1, t2)
1428 int staticp;
1429 struct type *t1[];
1430 value_ptr t2[];
1431 {
1432 int i;
1433
1434 if (t2 == 0)
1435 return 1;
1436 if (staticp && t1 == 0)
1437 return t2[1] != 0;
1438 if (t1 == 0)
1439 return 1;
1440 if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID) return 0;
1441 if (t1[!staticp] == 0) return 0;
1442 for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
1443 {
1444 struct type *tt1, *tt2;
1445 if (! t2[i])
1446 return i+1;
1447 tt1 = t1[i];
1448 tt2 = VALUE_TYPE(t2[i]);
1449 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1450 /* We should be doing hairy argument matching, as below. */
1451 && (TYPE_CODE (TYPE_TARGET_TYPE (tt1)) == TYPE_CODE (tt2)))
1452 {
1453 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY || VALUE_REPEATED (t2[i]))
1454 t2[i] = value_coerce_array (t2[i]);
1455 else
1456 t2[i] = value_addr (t2[i]);
1457 continue;
1458 }
1459
1460 while (TYPE_CODE (tt1) == TYPE_CODE_PTR
1461 && (TYPE_CODE(tt2)==TYPE_CODE_ARRAY || TYPE_CODE(tt2)==TYPE_CODE_PTR))
1462 {
1463 tt1 = TYPE_TARGET_TYPE(tt1);
1464 tt2 = TYPE_TARGET_TYPE(tt2);
1465 }
1466 if (TYPE_CODE(tt1) == TYPE_CODE(tt2)) continue;
1467 /* Array to pointer is a `trivial conversion' according to the ARM. */
1468
1469 /* We should be doing much hairier argument matching (see section 13.2
1470 of the ARM), but as a quick kludge, just check for the same type
1471 code. */
1472 if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
1473 return i+1;
1474 }
1475 if (!t1[i]) return 0;
1476 return t2[i] ? i+1 : 0;
1477 }
1478
1479 /* Helper function used by value_struct_elt to recurse through baseclasses.
1480 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1481 and search in it assuming it has (class) type TYPE.
1482 If found, return value, else return NULL.
1483
1484 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
1485 look for a baseclass named NAME. */
1486
1487 static value_ptr
1488 search_struct_field (name, arg1, offset, type, looking_for_baseclass)
1489 char *name;
1490 register value_ptr arg1;
1491 int offset;
1492 register struct type *type;
1493 int looking_for_baseclass;
1494 {
1495 int i;
1496
1497 check_stub_type (type);
1498
1499 if (! looking_for_baseclass)
1500 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1501 {
1502 char *t_field_name = TYPE_FIELD_NAME (type, i);
1503
1504 if (t_field_name && STREQ (t_field_name, name))
1505 {
1506 value_ptr v;
1507 if (TYPE_FIELD_STATIC (type, i))
1508 {
1509 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, i);
1510 struct symbol *sym =
1511 lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
1512 if (sym == NULL)
1513 error ("Internal error: could not find physical static variable named %s",
1514 phys_name);
1515 v = value_at (TYPE_FIELD_TYPE (type, i),
1516 (CORE_ADDR)SYMBOL_BLOCK_VALUE (sym));
1517 }
1518 else
1519 v = value_primitive_field (arg1, offset, i, type);
1520 if (v == 0)
1521 error("there is no field named %s", name);
1522 return v;
1523 }
1524 if (t_field_name && t_field_name[0] == '\0'
1525 && TYPE_CODE (TYPE_FIELD_TYPE (type, i)) == TYPE_CODE_UNION)
1526 {
1527 /* Look for a match through the fields of an anonymous union. */
1528 value_ptr v;
1529 v = search_struct_field (name, arg1, offset,
1530 TYPE_FIELD_TYPE (type, i),
1531 looking_for_baseclass);
1532 if (v)
1533 return v;
1534 }
1535 }
1536
1537 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1538 {
1539 value_ptr v;
1540 /* If we are looking for baseclasses, this is what we get when we
1541 hit them. But it could happen that the base part's member name
1542 is not yet filled in. */
1543 int found_baseclass = (looking_for_baseclass
1544 && TYPE_BASECLASS_NAME (type, i) != NULL
1545 && STREQ (name, TYPE_BASECLASS_NAME (type, i)));
1546
1547 if (BASETYPE_VIA_VIRTUAL (type, i))
1548 {
1549 value_ptr v2;
1550 /* Fix to use baseclass_offset instead. FIXME */
1551 baseclass_addr (type, i, VALUE_CONTENTS (arg1) + offset,
1552 &v2, (int *)NULL);
1553 if (v2 == 0)
1554 error ("virtual baseclass botch");
1555 if (found_baseclass)
1556 return v2;
1557 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
1558 looking_for_baseclass);
1559 }
1560 else if (found_baseclass)
1561 v = value_primitive_field (arg1, offset, i, type);
1562 else
1563 v = search_struct_field (name, arg1,
1564 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
1565 TYPE_BASECLASS (type, i),
1566 looking_for_baseclass);
1567 if (v) return v;
1568 }
1569 return NULL;
1570 }
1571
1572 /* Helper function used by value_struct_elt to recurse through baseclasses.
1573 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1574 and search in it assuming it has (class) type TYPE.
1575 If found, return value, else if name matched and args not return (value)-1,
1576 else return NULL. */
1577
1578 static value_ptr
1579 search_struct_method (name, arg1p, args, offset, static_memfuncp, type)
1580 char *name;
1581 register value_ptr *arg1p, *args;
1582 int offset, *static_memfuncp;
1583 register struct type *type;
1584 {
1585 int i;
1586 value_ptr v;
1587 int name_matched = 0;
1588 char dem_opname[64];
1589
1590 check_stub_type (type);
1591 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1592 {
1593 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1594 if (strncmp(t_field_name, "__", 2)==0 ||
1595 strncmp(t_field_name, "op", 2)==0 ||
1596 strncmp(t_field_name, "type", 4)==0 )
1597 {
1598 if (cplus_demangle_opname(t_field_name, dem_opname, DMGL_ANSI))
1599 t_field_name = dem_opname;
1600 else if (cplus_demangle_opname(t_field_name, dem_opname, 0))
1601 t_field_name = dem_opname;
1602 }
1603 if (t_field_name && STREQ (t_field_name, name))
1604 {
1605 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
1606 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1607 name_matched = 1;
1608
1609 if (j > 0 && args == 0)
1610 error ("cannot resolve overloaded method `%s'", name);
1611 while (j >= 0)
1612 {
1613 if (TYPE_FN_FIELD_STUB (f, j))
1614 check_stub_method (type, i, j);
1615 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
1616 TYPE_FN_FIELD_ARGS (f, j), args))
1617 {
1618 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
1619 return value_virtual_fn_field (arg1p, f, j, type, offset);
1620 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
1621 *static_memfuncp = 1;
1622 v = value_fn_field (arg1p, f, j, type, offset);
1623 if (v != NULL) return v;
1624 }
1625 j--;
1626 }
1627 }
1628 }
1629
1630 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1631 {
1632 int base_offset;
1633
1634 if (BASETYPE_VIA_VIRTUAL (type, i))
1635 {
1636 base_offset = baseclass_offset (type, i, *arg1p, offset);
1637 if (base_offset == -1)
1638 error ("virtual baseclass botch");
1639 }
1640 else
1641 {
1642 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1643 }
1644 v = search_struct_method (name, arg1p, args, base_offset + offset,
1645 static_memfuncp, TYPE_BASECLASS (type, i));
1646 if (v == (value_ptr) -1)
1647 {
1648 name_matched = 1;
1649 }
1650 else if (v)
1651 {
1652 /* FIXME-bothner: Why is this commented out? Why is it here? */
1653 /* *arg1p = arg1_tmp;*/
1654 return v;
1655 }
1656 }
1657 if (name_matched) return (value_ptr) -1;
1658 else return NULL;
1659 }
1660
1661 /* Given *ARGP, a value of type (pointer to a)* structure/union,
1662 extract the component named NAME from the ultimate target structure/union
1663 and return it as a value with its appropriate type.
1664 ERR is used in the error message if *ARGP's type is wrong.
1665
1666 C++: ARGS is a list of argument types to aid in the selection of
1667 an appropriate method. Also, handle derived types.
1668
1669 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
1670 where the truthvalue of whether the function that was resolved was
1671 a static member function or not is stored.
1672
1673 ERR is an error message to be printed in case the field is not found. */
1674
1675 value_ptr
1676 value_struct_elt (argp, args, name, static_memfuncp, err)
1677 register value_ptr *argp, *args;
1678 char *name;
1679 int *static_memfuncp;
1680 char *err;
1681 {
1682 register struct type *t;
1683 value_ptr v;
1684
1685 COERCE_ARRAY (*argp);
1686
1687 t = VALUE_TYPE (*argp);
1688
1689 /* Follow pointers until we get to a non-pointer. */
1690
1691 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1692 {
1693 *argp = value_ind (*argp);
1694 /* Don't coerce fn pointer to fn and then back again! */
1695 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
1696 COERCE_ARRAY (*argp);
1697 t = VALUE_TYPE (*argp);
1698 }
1699
1700 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
1701 error ("not implemented: member type in value_struct_elt");
1702
1703 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
1704 && TYPE_CODE (t) != TYPE_CODE_UNION)
1705 error ("Attempt to extract a component of a value that is not a %s.", err);
1706
1707 /* Assume it's not, unless we see that it is. */
1708 if (static_memfuncp)
1709 *static_memfuncp =0;
1710
1711 if (!args)
1712 {
1713 /* if there are no arguments ...do this... */
1714
1715 /* Try as a field first, because if we succeed, there
1716 is less work to be done. */
1717 v = search_struct_field (name, *argp, 0, t, 0);
1718 if (v)
1719 return v;
1720
1721 /* C++: If it was not found as a data field, then try to
1722 return it as a pointer to a method. */
1723
1724 if (destructor_name_p (name, t))
1725 error ("Cannot get value of destructor");
1726
1727 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
1728
1729 if (v == (value_ptr) -1)
1730 error ("Cannot take address of a method");
1731 else if (v == 0)
1732 {
1733 if (TYPE_NFN_FIELDS (t))
1734 error ("There is no member or method named %s.", name);
1735 else
1736 error ("There is no member named %s.", name);
1737 }
1738 return v;
1739 }
1740
1741 if (destructor_name_p (name, t))
1742 {
1743 if (!args[1])
1744 {
1745 /* destructors are a special case. */
1746 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, 0),
1747 TYPE_FN_FIELDLIST_LENGTH (t, 0), 0, 0);
1748 if (!v) error("could not find destructor function named %s.", name);
1749 else return v;
1750 }
1751 else
1752 {
1753 error ("destructor should not have any argument");
1754 }
1755 }
1756 else
1757 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
1758
1759 if (v == (value_ptr) -1)
1760 {
1761 error("Argument list of %s mismatch with component in the structure.", name);
1762 }
1763 else if (v == 0)
1764 {
1765 /* See if user tried to invoke data as function. If so,
1766 hand it back. If it's not callable (i.e., a pointer to function),
1767 gdb should give an error. */
1768 v = search_struct_field (name, *argp, 0, t, 0);
1769 }
1770
1771 if (!v)
1772 error ("Structure has no component named %s.", name);
1773 return v;
1774 }
1775
1776 /* C++: return 1 is NAME is a legitimate name for the destructor
1777 of type TYPE. If TYPE does not have a destructor, or
1778 if NAME is inappropriate for TYPE, an error is signaled. */
1779 int
1780 destructor_name_p (name, type)
1781 const char *name;
1782 const struct type *type;
1783 {
1784 /* destructors are a special case. */
1785
1786 if (name[0] == '~')
1787 {
1788 char *dname = type_name_no_tag (type);
1789 char *cp = strchr (dname, '<');
1790 int len;
1791
1792 /* Do not compare the template part for template classes. */
1793 if (cp == NULL)
1794 len = strlen (dname);
1795 else
1796 len = cp - dname;
1797 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
1798 error ("name of destructor must equal name of class");
1799 else
1800 return 1;
1801 }
1802 return 0;
1803 }
1804
1805 /* Helper function for check_field: Given TYPE, a structure/union,
1806 return 1 if the component named NAME from the ultimate
1807 target structure/union is defined, otherwise, return 0. */
1808
1809 static int
1810 check_field_in (type, name)
1811 register struct type *type;
1812 const char *name;
1813 {
1814 register int i;
1815
1816 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1817 {
1818 char *t_field_name = TYPE_FIELD_NAME (type, i);
1819 if (t_field_name && STREQ (t_field_name, name))
1820 return 1;
1821 }
1822
1823 /* C++: If it was not found as a data field, then try to
1824 return it as a pointer to a method. */
1825
1826 /* Destructors are a special case. */
1827 if (destructor_name_p (name, type))
1828 return 1;
1829
1830 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1831 {
1832 if (STREQ (TYPE_FN_FIELDLIST_NAME (type, i), name))
1833 return 1;
1834 }
1835
1836 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1837 if (check_field_in (TYPE_BASECLASS (type, i), name))
1838 return 1;
1839
1840 return 0;
1841 }
1842
1843
1844 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
1845 return 1 if the component named NAME from the ultimate
1846 target structure/union is defined, otherwise, return 0. */
1847
1848 int
1849 check_field (arg1, name)
1850 register value_ptr arg1;
1851 const char *name;
1852 {
1853 register struct type *t;
1854
1855 COERCE_ARRAY (arg1);
1856
1857 t = VALUE_TYPE (arg1);
1858
1859 /* Follow pointers until we get to a non-pointer. */
1860
1861 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1862 t = TYPE_TARGET_TYPE (t);
1863
1864 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
1865 error ("not implemented: member type in check_field");
1866
1867 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
1868 && TYPE_CODE (t) != TYPE_CODE_UNION)
1869 error ("Internal error: `this' is not an aggregate");
1870
1871 return check_field_in (t, name);
1872 }
1873
1874 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
1875 return the address of this member as a "pointer to member"
1876 type. If INTYPE is non-null, then it will be the type
1877 of the member we are looking for. This will help us resolve
1878 "pointers to member functions". This function is used
1879 to resolve user expressions of the form "DOMAIN::NAME". */
1880
1881 value_ptr
1882 value_struct_elt_for_reference (domain, offset, curtype, name, intype)
1883 struct type *domain, *curtype, *intype;
1884 int offset;
1885 char *name;
1886 {
1887 register struct type *t = curtype;
1888 register int i;
1889 value_ptr v;
1890
1891 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
1892 && TYPE_CODE (t) != TYPE_CODE_UNION)
1893 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
1894
1895 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
1896 {
1897 char *t_field_name = TYPE_FIELD_NAME (t, i);
1898
1899 if (t_field_name && STREQ (t_field_name, name))
1900 {
1901 if (TYPE_FIELD_STATIC (t, i))
1902 {
1903 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (t, i);
1904 struct symbol *sym =
1905 lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
1906 if (sym == NULL)
1907 error ("Internal error: could not find physical static variable named %s",
1908 phys_name);
1909 return value_at (SYMBOL_TYPE (sym),
1910 (CORE_ADDR)SYMBOL_BLOCK_VALUE (sym));
1911 }
1912 if (TYPE_FIELD_PACKED (t, i))
1913 error ("pointers to bitfield members not allowed");
1914
1915 return value_from_longest
1916 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
1917 domain)),
1918 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
1919 }
1920 }
1921
1922 /* C++: If it was not found as a data field, then try to
1923 return it as a pointer to a method. */
1924
1925 /* Destructors are a special case. */
1926 if (destructor_name_p (name, t))
1927 {
1928 error ("member pointers to destructors not implemented yet");
1929 }
1930
1931 /* Perform all necessary dereferencing. */
1932 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
1933 intype = TYPE_TARGET_TYPE (intype);
1934
1935 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
1936 {
1937 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
1938 char dem_opname[64];
1939
1940 if (strncmp(t_field_name, "__", 2)==0 ||
1941 strncmp(t_field_name, "op", 2)==0 ||
1942 strncmp(t_field_name, "type", 4)==0 )
1943 {
1944 if (cplus_demangle_opname(t_field_name, dem_opname, DMGL_ANSI))
1945 t_field_name = dem_opname;
1946 else if (cplus_demangle_opname(t_field_name, dem_opname, 0))
1947 t_field_name = dem_opname;
1948 }
1949 if (t_field_name && STREQ (t_field_name, name))
1950 {
1951 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
1952 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
1953
1954 if (intype == 0 && j > 1)
1955 error ("non-unique member `%s' requires type instantiation", name);
1956 if (intype)
1957 {
1958 while (j--)
1959 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
1960 break;
1961 if (j < 0)
1962 error ("no member function matches that type instantiation");
1963 }
1964 else
1965 j = 0;
1966
1967 if (TYPE_FN_FIELD_STUB (f, j))
1968 check_stub_method (t, i, j);
1969 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
1970 {
1971 return value_from_longest
1972 (lookup_reference_type
1973 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
1974 domain)),
1975 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
1976 }
1977 else
1978 {
1979 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
1980 0, VAR_NAMESPACE, 0, NULL);
1981 if (s == NULL)
1982 {
1983 v = 0;
1984 }
1985 else
1986 {
1987 v = read_var_value (s, 0);
1988 #if 0
1989 VALUE_TYPE (v) = lookup_reference_type
1990 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
1991 domain));
1992 #endif
1993 }
1994 return v;
1995 }
1996 }
1997 }
1998 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
1999 {
2000 value_ptr v;
2001 int base_offset;
2002
2003 if (BASETYPE_VIA_VIRTUAL (t, i))
2004 base_offset = 0;
2005 else
2006 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
2007 v = value_struct_elt_for_reference (domain,
2008 offset + base_offset,
2009 TYPE_BASECLASS (t, i),
2010 name,
2011 intype);
2012 if (v)
2013 return v;
2014 }
2015 return 0;
2016 }
2017
2018 /* C++: return the value of the class instance variable, if one exists.
2019 Flag COMPLAIN signals an error if the request is made in an
2020 inappropriate context. */
2021
2022 value_ptr
2023 value_of_this (complain)
2024 int complain;
2025 {
2026 struct symbol *func, *sym;
2027 struct block *b;
2028 int i;
2029 static const char funny_this[] = "this";
2030 value_ptr this;
2031
2032 if (selected_frame == 0)
2033 if (complain)
2034 error ("no frame selected");
2035 else return 0;
2036
2037 func = get_frame_function (selected_frame);
2038 if (!func)
2039 {
2040 if (complain)
2041 error ("no `this' in nameless context");
2042 else return 0;
2043 }
2044
2045 b = SYMBOL_BLOCK_VALUE (func);
2046 i = BLOCK_NSYMS (b);
2047 if (i <= 0)
2048 if (complain)
2049 error ("no args, no `this'");
2050 else return 0;
2051
2052 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
2053 symbol instead of the LOC_ARG one (if both exist). */
2054 sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE);
2055 if (sym == NULL)
2056 {
2057 if (complain)
2058 error ("current stack frame not in method");
2059 else
2060 return NULL;
2061 }
2062
2063 this = read_var_value (sym, selected_frame);
2064 if (this == 0 && complain)
2065 error ("`this' argument at unknown address");
2066 return this;
2067 }
2068
2069 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
2070 long, starting at LOWBOUND. The result has the same lower bound as
2071 the original ARRAY. */
2072
2073 value_ptr
2074 value_slice (array, lowbound, length)
2075 value_ptr array;
2076 int lowbound, length;
2077 {
2078 COERCE_VARYING_ARRAY (array);
2079 if (TYPE_CODE (VALUE_TYPE (array)) == TYPE_CODE_BITSTRING)
2080 error ("not implemented - bitstring slice");
2081 if (TYPE_CODE (VALUE_TYPE (array)) != TYPE_CODE_ARRAY
2082 && TYPE_CODE (VALUE_TYPE (array)) != TYPE_CODE_STRING)
2083 error ("cannot take slice of non-array");
2084 else
2085 {
2086 struct type *slice_range_type, *slice_type;
2087 value_ptr slice;
2088 struct type *range_type = TYPE_FIELD_TYPE (VALUE_TYPE (array), 0);
2089 struct type *element_type = TYPE_TARGET_TYPE (VALUE_TYPE (array));
2090 int lowerbound = TYPE_LOW_BOUND (range_type);
2091 int upperbound = TYPE_HIGH_BOUND (range_type);
2092 int offset = (lowbound - lowerbound) * TYPE_LENGTH (element_type);
2093 if (lowbound < lowerbound || length < 0
2094 || lowbound + length - 1 > upperbound)
2095 error ("slice out of range");
2096 /* FIXME-type-allocation: need a way to free this type when we are
2097 done with it. */
2098 slice_range_type = create_range_type ((struct type*) NULL,
2099 TYPE_TARGET_TYPE (range_type),
2100 lowerbound,
2101 lowerbound + length - 1);
2102 slice_type = create_array_type ((struct type*) NULL, element_type,
2103 slice_range_type);
2104 TYPE_CODE (slice_type) = TYPE_CODE (VALUE_TYPE (array));
2105 slice = allocate_value (slice_type);
2106 if (VALUE_LAZY (array))
2107 VALUE_LAZY (slice) = 1;
2108 else
2109 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
2110 TYPE_LENGTH (slice_type));
2111 if (VALUE_LVAL (array) == lval_internalvar)
2112 VALUE_LVAL (slice) = lval_internalvar_component;
2113 else
2114 VALUE_LVAL (slice) = VALUE_LVAL (array);
2115 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
2116 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
2117 return slice;
2118 }
2119 }
2120
2121 /* Assuming chill_varying_type (VARRAY) is true, return an equivalent
2122 value as a fixed-length array. */
2123
2124 value_ptr
2125 varying_to_slice (varray)
2126 value_ptr varray;
2127 {
2128 struct type *vtype = VALUE_TYPE (varray);
2129 LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
2130 VALUE_CONTENTS (varray)
2131 + TYPE_FIELD_BITPOS (vtype, 0) / 8);
2132 return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
2133 }
2134
2135 /* Create a value for a FORTRAN complex number. Currently most of
2136 the time values are coerced to COMPLEX*16 (i.e. a complex number
2137 composed of 2 doubles. This really should be a smarter routine
2138 that figures out precision inteligently as opposed to assuming
2139 doubles. FIXME: fmb */
2140
2141 value_ptr
2142 value_literal_complex (arg1, arg2, type)
2143 value_ptr arg1;
2144 value_ptr arg2;
2145 struct type *type;
2146 {
2147 register value_ptr val;
2148 struct type *real_type = TYPE_TARGET_TYPE (type);
2149
2150 val = allocate_value (type);
2151 arg1 = value_cast (real_type, arg1);
2152 arg2 = value_cast (real_type, arg2);
2153
2154 memcpy (VALUE_CONTENTS_RAW (val),
2155 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
2156 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
2157 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
2158 return val;
2159 }
2160
2161 /* Cast a value into the appropriate complex data type. */
2162
2163 static value_ptr
2164 cast_into_complex (type, val)
2165 struct type *type;
2166 register value_ptr val;
2167 {
2168 struct type *real_type = TYPE_TARGET_TYPE (type);
2169 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
2170 {
2171 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
2172 value_ptr re_val = allocate_value (val_real_type);
2173 value_ptr im_val = allocate_value (val_real_type);
2174
2175 memcpy (VALUE_CONTENTS_RAW (re_val),
2176 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
2177 memcpy (VALUE_CONTENTS_RAW (im_val),
2178 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
2179 TYPE_LENGTH (val_real_type));
2180
2181 return value_literal_complex (re_val, im_val, type);
2182 }
2183 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
2184 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
2185 return value_literal_complex (val, value_zero (real_type, not_lval), type);
2186 else
2187 error ("cannot cast non-number to complex");
2188 }