Modified Files:
[binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 1987, 1989, 1991, 1992 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "demangle.h"
29 #include "language.h"
30
31 #include <errno.h>
32
33 /* Local functions. */
34
35 static int
36 typecmp PARAMS ((int staticp, struct type *t1[], value t2[]));
37
38 static CORE_ADDR
39 find_function_addr PARAMS ((value, struct type **));
40
41 static CORE_ADDR
42 value_push PARAMS ((CORE_ADDR, value));
43
44 static CORE_ADDR
45 value_arg_push PARAMS ((CORE_ADDR, value));
46
47 static value
48 search_struct_field PARAMS ((char *, value, int, struct type *, int));
49
50 static value
51 search_struct_method PARAMS ((char *, value *, value *, int, int *,
52 struct type *));
53
54 static int
55 check_field_in PARAMS ((struct type *, const char *));
56
57 static CORE_ADDR
58 allocate_space_in_inferior PARAMS ((int));
59
60 \f
61 /* Allocate NBYTES of space in the inferior using the inferior's malloc
62 and return a value that is a pointer to the allocated space. */
63
64 static CORE_ADDR
65 allocate_space_in_inferior (len)
66 int len;
67 {
68 register value val;
69 register struct symbol *sym;
70 struct minimal_symbol *msymbol;
71 struct type *type;
72 value blocklen;
73 LONGEST maddr;
74
75 /* Find the address of malloc in the inferior. */
76
77 sym = lookup_symbol ("malloc", 0, VAR_NAMESPACE, 0, NULL);
78 if (sym != NULL)
79 {
80 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
81 {
82 error ("\"malloc\" exists in this program but is not a function.");
83 }
84 val = value_of_variable (sym, NULL);
85 }
86 else
87 {
88 msymbol = lookup_minimal_symbol ("malloc", (struct objfile *) NULL);
89 if (msymbol != NULL)
90 {
91 type = lookup_pointer_type (builtin_type_char);
92 type = lookup_function_type (type);
93 type = lookup_pointer_type (type);
94 maddr = (LONGEST) SYMBOL_VALUE_ADDRESS (msymbol);
95 val = value_from_longest (type, maddr);
96 }
97 else
98 {
99 error ("evaluation of this expression requires the program to have a function \"malloc\".");
100 }
101 }
102
103 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
104 val = call_function_by_hand (val, 1, &blocklen);
105 if (value_logical_not (val))
106 {
107 error ("No memory available to program.");
108 }
109 return (value_as_long (val));
110 }
111
112 /* Cast value ARG2 to type TYPE and return as a value.
113 More general than a C cast: accepts any two types of the same length,
114 and if ARG2 is an lvalue it can be cast into anything at all. */
115 /* In C++, casts may change pointer or object representations. */
116
117 value
118 value_cast (type, arg2)
119 struct type *type;
120 register value arg2;
121 {
122 register enum type_code code1;
123 register enum type_code code2;
124 register int scalar;
125
126 /* Coerce arrays but not enums. Enums will work as-is
127 and coercing them would cause an infinite recursion. */
128 if (TYPE_CODE (VALUE_TYPE (arg2)) != TYPE_CODE_ENUM)
129 COERCE_ARRAY (arg2);
130
131 code1 = TYPE_CODE (type);
132 code2 = TYPE_CODE (VALUE_TYPE (arg2));
133 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
134 || code2 == TYPE_CODE_ENUM);
135
136 if ( code1 == TYPE_CODE_STRUCT
137 && code2 == TYPE_CODE_STRUCT
138 && TYPE_NAME (type) != 0)
139 {
140 /* Look in the type of the source to see if it contains the
141 type of the target as a superclass. If so, we'll need to
142 offset the object in addition to changing its type. */
143 value v = search_struct_field (type_name_no_tag (type),
144 arg2, 0, VALUE_TYPE (arg2), 1);
145 if (v)
146 {
147 VALUE_TYPE (v) = type;
148 return v;
149 }
150 }
151 if (code1 == TYPE_CODE_FLT && scalar)
152 return value_from_double (type, value_as_double (arg2));
153 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM)
154 && (scalar || code2 == TYPE_CODE_PTR))
155 return value_from_longest (type, value_as_long (arg2));
156 else if (TYPE_LENGTH (type) == TYPE_LENGTH (VALUE_TYPE (arg2)))
157 {
158 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
159 {
160 /* Look in the type of the source to see if it contains the
161 type of the target as a superclass. If so, we'll need to
162 offset the pointer rather than just change its type. */
163 struct type *t1 = TYPE_TARGET_TYPE (type);
164 struct type *t2 = TYPE_TARGET_TYPE (VALUE_TYPE (arg2));
165 if ( TYPE_CODE (t1) == TYPE_CODE_STRUCT
166 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
167 && TYPE_NAME (t1) != 0) /* if name unknown, can't have supercl */
168 {
169 value v = search_struct_field (type_name_no_tag (t1),
170 value_ind (arg2), 0, t2, 1);
171 if (v)
172 {
173 v = value_addr (v);
174 VALUE_TYPE (v) = type;
175 return v;
176 }
177 }
178 /* No superclass found, just fall through to change ptr type. */
179 }
180 VALUE_TYPE (arg2) = type;
181 return arg2;
182 }
183 else if (VALUE_LVAL (arg2) == lval_memory)
184 {
185 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2));
186 }
187 else if (code1 == TYPE_CODE_VOID)
188 {
189 return value_zero (builtin_type_void, not_lval);
190 }
191 else
192 {
193 error ("Invalid cast.");
194 return 0;
195 }
196 }
197
198 /* Create a value of type TYPE that is zero, and return it. */
199
200 value
201 value_zero (type, lv)
202 struct type *type;
203 enum lval_type lv;
204 {
205 register value val = allocate_value (type);
206
207 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (type));
208 VALUE_LVAL (val) = lv;
209
210 return val;
211 }
212
213 /* Return a value with type TYPE located at ADDR.
214
215 Call value_at only if the data needs to be fetched immediately;
216 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
217 value_at_lazy instead. value_at_lazy simply records the address of
218 the data and sets the lazy-evaluation-required flag. The lazy flag
219 is tested in the VALUE_CONTENTS macro, which is used if and when
220 the contents are actually required. */
221
222 value
223 value_at (type, addr)
224 struct type *type;
225 CORE_ADDR addr;
226 {
227 register value val = allocate_value (type);
228
229 read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (type));
230
231 VALUE_LVAL (val) = lval_memory;
232 VALUE_ADDRESS (val) = addr;
233
234 return val;
235 }
236
237 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
238
239 value
240 value_at_lazy (type, addr)
241 struct type *type;
242 CORE_ADDR addr;
243 {
244 register value val = allocate_value (type);
245
246 VALUE_LVAL (val) = lval_memory;
247 VALUE_ADDRESS (val) = addr;
248 VALUE_LAZY (val) = 1;
249
250 return val;
251 }
252
253 /* Called only from the VALUE_CONTENTS macro, if the current data for
254 a variable needs to be loaded into VALUE_CONTENTS(VAL). Fetches the
255 data from the user's process, and clears the lazy flag to indicate
256 that the data in the buffer is valid.
257
258 If the value is zero-length, we avoid calling read_memory, which would
259 abort. We mark the value as fetched anyway -- all 0 bytes of it.
260
261 This function returns a value because it is used in the VALUE_CONTENTS
262 macro as part of an expression, where a void would not work. The
263 value is ignored. */
264
265 int
266 value_fetch_lazy (val)
267 register value val;
268 {
269 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
270
271 if (TYPE_LENGTH (VALUE_TYPE (val)))
272 read_memory (addr, VALUE_CONTENTS_RAW (val),
273 TYPE_LENGTH (VALUE_TYPE (val)));
274 VALUE_LAZY (val) = 0;
275 return 0;
276 }
277
278
279 /* Store the contents of FROMVAL into the location of TOVAL.
280 Return a new value with the location of TOVAL and contents of FROMVAL. */
281
282 value
283 value_assign (toval, fromval)
284 register value toval, fromval;
285 {
286 register struct type *type = VALUE_TYPE (toval);
287 register value val;
288 char raw_buffer[MAX_REGISTER_RAW_SIZE];
289 int use_buffer = 0;
290
291 COERCE_ARRAY (fromval);
292 COERCE_REF (toval);
293
294 if (VALUE_LVAL (toval) != lval_internalvar)
295 fromval = value_cast (type, fromval);
296
297 /* If TOVAL is a special machine register requiring conversion
298 of program values to a special raw format,
299 convert FROMVAL's contents now, with result in `raw_buffer',
300 and set USE_BUFFER to the number of bytes to write. */
301
302 #ifdef REGISTER_CONVERTIBLE
303 if (VALUE_REGNO (toval) >= 0
304 && REGISTER_CONVERTIBLE (VALUE_REGNO (toval)))
305 {
306 int regno = VALUE_REGNO (toval);
307 if (REGISTER_CONVERTIBLE (regno))
308 {
309 REGISTER_CONVERT_TO_RAW (VALUE_TYPE (fromval), regno,
310 VALUE_CONTENTS (fromval), raw_buffer);
311 use_buffer = REGISTER_RAW_SIZE (regno);
312 }
313 }
314 #endif
315
316 switch (VALUE_LVAL (toval))
317 {
318 case lval_internalvar:
319 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
320 break;
321
322 case lval_internalvar_component:
323 set_internalvar_component (VALUE_INTERNALVAR (toval),
324 VALUE_OFFSET (toval),
325 VALUE_BITPOS (toval),
326 VALUE_BITSIZE (toval),
327 fromval);
328 break;
329
330 case lval_memory:
331 if (VALUE_BITSIZE (toval))
332 {
333 char buffer[sizeof (LONGEST)];
334 /* We assume that the argument to read_memory is in units of
335 host chars. FIXME: Is that correct? */
336 int len = (VALUE_BITPOS (toval)
337 + VALUE_BITSIZE (toval)
338 + HOST_CHAR_BIT - 1)
339 / HOST_CHAR_BIT;
340
341 if (len > sizeof (LONGEST))
342 error ("Can't handle bitfields which don't fit in a %d bit word.",
343 sizeof (LONGEST) * HOST_CHAR_BIT);
344
345 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
346 buffer, len);
347 modify_field (buffer, value_as_long (fromval),
348 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
349 write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
350 buffer, len);
351 }
352 else if (use_buffer)
353 write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
354 raw_buffer, use_buffer);
355 else
356 write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
357 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
358 break;
359
360 case lval_register:
361 if (VALUE_BITSIZE (toval))
362 {
363 char buffer[sizeof (LONGEST)];
364 int len = REGISTER_RAW_SIZE (VALUE_REGNO (toval));
365
366 if (len > sizeof (LONGEST))
367 error ("Can't handle bitfields in registers larger than %d bits.",
368 sizeof (LONGEST) * HOST_CHAR_BIT);
369
370 if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
371 > len * HOST_CHAR_BIT)
372 /* Getting this right would involve being very careful about
373 byte order. */
374 error ("\
375 Can't handle bitfield which doesn't fit in a single register.");
376
377 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
378 buffer, len);
379 modify_field (buffer, value_as_long (fromval),
380 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
381 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
382 buffer, len);
383 }
384 else if (use_buffer)
385 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
386 raw_buffer, use_buffer);
387 else
388 {
389 /* Do any conversion necessary when storing this type to more
390 than one register. */
391 #ifdef REGISTER_CONVERT_FROM_TYPE
392 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
393 REGISTER_CONVERT_FROM_TYPE(VALUE_REGNO (toval), type, raw_buffer);
394 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
395 raw_buffer, TYPE_LENGTH (type));
396 #else
397 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
398 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
399 #endif
400 }
401 /* Assigning to the stack pointer, frame pointer, and other
402 (architecture and calling convention specific) registers may
403 cause the frame cache to be out of date. We just do this
404 on all assignments to registers for simplicity; I doubt the slowdown
405 matters. */
406 reinit_frame_cache ();
407 break;
408
409 case lval_reg_frame_relative:
410 {
411 /* value is stored in a series of registers in the frame
412 specified by the structure. Copy that value out, modify
413 it, and copy it back in. */
414 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
415 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
416 int byte_offset = VALUE_OFFSET (toval) % reg_size;
417 int reg_offset = VALUE_OFFSET (toval) / reg_size;
418 int amount_copied;
419
420 /* Make the buffer large enough in all cases. */
421 char *buffer = (char *) alloca (amount_to_copy
422 + sizeof (LONGEST)
423 + MAX_REGISTER_RAW_SIZE);
424
425 int regno;
426 FRAME frame;
427
428 /* Figure out which frame this is in currently. */
429 for (frame = get_current_frame ();
430 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
431 frame = get_prev_frame (frame))
432 ;
433
434 if (!frame)
435 error ("Value being assigned to is no longer active.");
436
437 amount_to_copy += (reg_size - amount_to_copy % reg_size);
438
439 /* Copy it out. */
440 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
441 amount_copied = 0);
442 amount_copied < amount_to_copy;
443 amount_copied += reg_size, regno++)
444 {
445 get_saved_register (buffer + amount_copied,
446 (int *)NULL, (CORE_ADDR *)NULL,
447 frame, regno, (enum lval_type *)NULL);
448 }
449
450 /* Modify what needs to be modified. */
451 if (VALUE_BITSIZE (toval))
452 modify_field (buffer + byte_offset,
453 value_as_long (fromval),
454 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
455 else if (use_buffer)
456 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
457 else
458 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
459 TYPE_LENGTH (type));
460
461 /* Copy it back. */
462 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
463 amount_copied = 0);
464 amount_copied < amount_to_copy;
465 amount_copied += reg_size, regno++)
466 {
467 enum lval_type lval;
468 CORE_ADDR addr;
469 int optim;
470
471 /* Just find out where to put it. */
472 get_saved_register ((char *)NULL,
473 &optim, &addr, frame, regno, &lval);
474
475 if (optim)
476 error ("Attempt to assign to a value that was optimized out.");
477 if (lval == lval_memory)
478 write_memory (addr, buffer + amount_copied, reg_size);
479 else if (lval == lval_register)
480 write_register_bytes (addr, buffer + amount_copied, reg_size);
481 else
482 error ("Attempt to assign to an unmodifiable value.");
483 }
484 }
485 break;
486
487
488 default:
489 error ("Left side of = operation is not an lvalue.");
490 }
491
492 /* Return a value just like TOVAL except with the contents of FROMVAL
493 (except in the case of the type if TOVAL is an internalvar). */
494
495 if (VALUE_LVAL (toval) == lval_internalvar
496 || VALUE_LVAL (toval) == lval_internalvar_component)
497 {
498 type = VALUE_TYPE (fromval);
499 }
500
501 val = allocate_value (type);
502 memcpy (val, toval, VALUE_CONTENTS_RAW (val) - (char *) val);
503 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
504 TYPE_LENGTH (type));
505 VALUE_TYPE (val) = type;
506
507 return val;
508 }
509
510 /* Extend a value VAL to COUNT repetitions of its type. */
511
512 value
513 value_repeat (arg1, count)
514 value arg1;
515 int count;
516 {
517 register value val;
518
519 if (VALUE_LVAL (arg1) != lval_memory)
520 error ("Only values in memory can be extended with '@'.");
521 if (count < 1)
522 error ("Invalid number %d of repetitions.", count);
523
524 val = allocate_repeat_value (VALUE_TYPE (arg1), count);
525
526 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
527 VALUE_CONTENTS_RAW (val),
528 TYPE_LENGTH (VALUE_TYPE (val)) * count);
529 VALUE_LVAL (val) = lval_memory;
530 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
531
532 return val;
533 }
534
535 value
536 value_of_variable (var, b)
537 struct symbol *var;
538 struct block *b;
539 {
540 value val;
541 FRAME fr;
542
543 if (b == NULL)
544 /* Use selected frame. */
545 fr = NULL;
546 else
547 {
548 fr = block_innermost_frame (b);
549 if (fr == NULL && symbol_read_needs_frame (var))
550 {
551 if (BLOCK_FUNCTION (b) != NULL
552 && SYMBOL_NAME (BLOCK_FUNCTION (b)) != NULL)
553 error ("No frame is currently executing in block %s.",
554 SYMBOL_NAME (BLOCK_FUNCTION (b)));
555 else
556 error ("No frame is currently executing in specified block");
557 }
558 }
559 val = read_var_value (var, fr);
560 if (val == 0)
561 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
562 return val;
563 }
564
565 /* Given a value which is an array, return a value which is a pointer to its
566 first element, regardless of whether or not the array has a nonzero lower
567 bound.
568
569 FIXME: A previous comment here indicated that this routine should be
570 substracting the array's lower bound. It's not clear to me that this
571 is correct. Given an array subscripting operation, it would certainly
572 work to do the adjustment here, essentially computing:
573
574 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
575
576 However I believe a more appropriate and logical place to account for
577 the lower bound is to do so in value_subscript, essentially computing:
578
579 (&array[0] + ((index - lowerbound) * sizeof array[0]))
580
581 As further evidence consider what would happen with operations other
582 than array subscripting, where the caller would get back a value that
583 had an address somewhere before the actual first element of the array,
584 and the information about the lower bound would be lost because of
585 the coercion to pointer type.
586 */
587
588 value
589 value_coerce_array (arg1)
590 value arg1;
591 {
592 register struct type *type;
593
594 if (VALUE_LVAL (arg1) != lval_memory)
595 error ("Attempt to take address of value not located in memory.");
596
597 /* Get type of elements. */
598 if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_ARRAY)
599 type = TYPE_TARGET_TYPE (VALUE_TYPE (arg1));
600 else
601 /* A phony array made by value_repeat.
602 Its type is the type of the elements, not an array type. */
603 type = VALUE_TYPE (arg1);
604
605 return value_from_longest (lookup_pointer_type (type),
606 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
607 }
608
609 /* Given a value which is a function, return a value which is a pointer
610 to it. */
611
612 value
613 value_coerce_function (arg1)
614 value arg1;
615 {
616
617 if (VALUE_LVAL (arg1) != lval_memory)
618 error ("Attempt to take address of value not located in memory.");
619
620 return value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)),
621 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
622 }
623
624 /* Return a pointer value for the object for which ARG1 is the contents. */
625
626 value
627 value_addr (arg1)
628 value arg1;
629 {
630 struct type *type = VALUE_TYPE (arg1);
631 if (TYPE_CODE (type) == TYPE_CODE_REF)
632 {
633 /* Copy the value, but change the type from (T&) to (T*).
634 We keep the same location information, which is efficient,
635 and allows &(&X) to get the location containing the reference. */
636 value arg2 = value_copy (arg1);
637 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
638 return arg2;
639 }
640 if (VALUE_REPEATED (arg1)
641 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
642 return value_coerce_array (arg1);
643 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
644 return value_coerce_function (arg1);
645
646 if (VALUE_LVAL (arg1) != lval_memory)
647 error ("Attempt to take address of value not located in memory.");
648
649 return value_from_longest (lookup_pointer_type (type),
650 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
651 }
652
653 /* Given a value of a pointer type, apply the C unary * operator to it. */
654
655 value
656 value_ind (arg1)
657 value arg1;
658 {
659 COERCE_ARRAY (arg1);
660
661 if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_MEMBER)
662 error ("not implemented: member types in value_ind");
663
664 /* Allow * on an integer so we can cast it to whatever we want.
665 This returns an int, which seems like the most C-like thing
666 to do. "long long" variables are rare enough that
667 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
668 if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_INT)
669 return value_at (builtin_type_int,
670 (CORE_ADDR) value_as_long (arg1));
671 else if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_PTR)
672 return value_at_lazy (TYPE_TARGET_TYPE (VALUE_TYPE (arg1)),
673 value_as_pointer (arg1));
674 error ("Attempt to take contents of a non-pointer value.");
675 return 0; /* For lint -- never reached */
676 }
677 \f
678 /* Pushing small parts of stack frames. */
679
680 /* Push one word (the size of object that a register holds). */
681
682 CORE_ADDR
683 push_word (sp, word)
684 CORE_ADDR sp;
685 REGISTER_TYPE word;
686 {
687 register int len = sizeof (REGISTER_TYPE);
688 char buffer[MAX_REGISTER_RAW_SIZE];
689
690 store_unsigned_integer (buffer, len, word);
691 #if 1 INNER_THAN 2
692 sp -= len;
693 write_memory (sp, buffer, len);
694 #else /* stack grows upward */
695 write_memory (sp, buffer, len);
696 sp += len;
697 #endif /* stack grows upward */
698
699 return sp;
700 }
701
702 /* Push LEN bytes with data at BUFFER. */
703
704 CORE_ADDR
705 push_bytes (sp, buffer, len)
706 CORE_ADDR sp;
707 char *buffer;
708 int len;
709 {
710 #if 1 INNER_THAN 2
711 sp -= len;
712 write_memory (sp, buffer, len);
713 #else /* stack grows upward */
714 write_memory (sp, buffer, len);
715 sp += len;
716 #endif /* stack grows upward */
717
718 return sp;
719 }
720
721 /* Push onto the stack the specified value VALUE. */
722
723 static CORE_ADDR
724 value_push (sp, arg)
725 register CORE_ADDR sp;
726 value arg;
727 {
728 register int len = TYPE_LENGTH (VALUE_TYPE (arg));
729
730 #if 1 INNER_THAN 2
731 sp -= len;
732 write_memory (sp, VALUE_CONTENTS (arg), len);
733 #else /* stack grows upward */
734 write_memory (sp, VALUE_CONTENTS (arg), len);
735 sp += len;
736 #endif /* stack grows upward */
737
738 return sp;
739 }
740
741 /* Perform the standard coercions that are specified
742 for arguments to be passed to C functions. */
743
744 value
745 value_arg_coerce (arg)
746 value arg;
747 {
748 register struct type *type;
749
750 /* FIXME: We should coerce this according to the prototype (if we have
751 one). Right now we do a little bit of this in typecmp(), but that
752 doesn't always get called. For example, if passing a ref to a function
753 without a prototype, we probably should de-reference it. Currently
754 we don't. */
755
756 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_ENUM)
757 arg = value_cast (builtin_type_unsigned_int, arg);
758
759 #if 1 /* FIXME: This is only a temporary patch. -fnf */
760 if (VALUE_REPEATED (arg)
761 || TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_ARRAY)
762 arg = value_coerce_array (arg);
763 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FUNC)
764 arg = value_coerce_function (arg);
765 #endif
766
767 type = VALUE_TYPE (arg);
768
769 if (TYPE_CODE (type) == TYPE_CODE_INT
770 && TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
771 return value_cast (builtin_type_int, arg);
772
773 if (TYPE_CODE (type) == TYPE_CODE_FLT
774 && TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
775 return value_cast (builtin_type_double, arg);
776
777 return arg;
778 }
779
780 /* Push the value ARG, first coercing it as an argument
781 to a C function. */
782
783 static CORE_ADDR
784 value_arg_push (sp, arg)
785 register CORE_ADDR sp;
786 value arg;
787 {
788 return value_push (sp, value_arg_coerce (arg));
789 }
790
791 /* Determine a function's address and its return type from its value.
792 Calls error() if the function is not valid for calling. */
793
794 static CORE_ADDR
795 find_function_addr (function, retval_type)
796 value function;
797 struct type **retval_type;
798 {
799 register struct type *ftype = VALUE_TYPE (function);
800 register enum type_code code = TYPE_CODE (ftype);
801 struct type *value_type;
802 CORE_ADDR funaddr;
803
804 /* If it's a member function, just look at the function
805 part of it. */
806
807 /* Determine address to call. */
808 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
809 {
810 funaddr = VALUE_ADDRESS (function);
811 value_type = TYPE_TARGET_TYPE (ftype);
812 }
813 else if (code == TYPE_CODE_PTR)
814 {
815 funaddr = value_as_pointer (function);
816 if (TYPE_CODE (TYPE_TARGET_TYPE (ftype)) == TYPE_CODE_FUNC
817 || TYPE_CODE (TYPE_TARGET_TYPE (ftype)) == TYPE_CODE_METHOD)
818 value_type = TYPE_TARGET_TYPE (TYPE_TARGET_TYPE (ftype));
819 else
820 value_type = builtin_type_int;
821 }
822 else if (code == TYPE_CODE_INT)
823 {
824 /* Handle the case of functions lacking debugging info.
825 Their values are characters since their addresses are char */
826 if (TYPE_LENGTH (ftype) == 1)
827 funaddr = value_as_pointer (value_addr (function));
828 else
829 /* Handle integer used as address of a function. */
830 funaddr = (CORE_ADDR) value_as_long (function);
831
832 value_type = builtin_type_int;
833 }
834 else
835 error ("Invalid data type for function to be called.");
836
837 *retval_type = value_type;
838 return funaddr;
839 }
840
841 #if defined (CALL_DUMMY)
842 /* All this stuff with a dummy frame may seem unnecessarily complicated
843 (why not just save registers in GDB?). The purpose of pushing a dummy
844 frame which looks just like a real frame is so that if you call a
845 function and then hit a breakpoint (get a signal, etc), "backtrace"
846 will look right. Whether the backtrace needs to actually show the
847 stack at the time the inferior function was called is debatable, but
848 it certainly needs to not display garbage. So if you are contemplating
849 making dummy frames be different from normal frames, consider that. */
850
851 /* Perform a function call in the inferior.
852 ARGS is a vector of values of arguments (NARGS of them).
853 FUNCTION is a value, the function to be called.
854 Returns a value representing what the function returned.
855 May fail to return, if a breakpoint or signal is hit
856 during the execution of the function. */
857
858 value
859 call_function_by_hand (function, nargs, args)
860 value function;
861 int nargs;
862 value *args;
863 {
864 register CORE_ADDR sp;
865 register int i;
866 CORE_ADDR start_sp;
867 /* CALL_DUMMY is an array of words (REGISTER_TYPE), but each word
868 is in host byte order. It is switched to target byte order before calling
869 FIX_CALL_DUMMY. */
870 static REGISTER_TYPE dummy[] = CALL_DUMMY;
871 REGISTER_TYPE dummy1[sizeof dummy / sizeof (REGISTER_TYPE)];
872 CORE_ADDR old_sp;
873 struct type *value_type;
874 unsigned char struct_return;
875 CORE_ADDR struct_addr;
876 struct inferior_status inf_status;
877 struct cleanup *old_chain;
878 CORE_ADDR funaddr;
879 int using_gcc;
880 CORE_ADDR real_pc;
881
882 if (!target_has_execution)
883 noprocess();
884
885 save_inferior_status (&inf_status, 1);
886 old_chain = make_cleanup (restore_inferior_status, &inf_status);
887
888 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
889 (and POP_FRAME for restoring them). (At least on most machines)
890 they are saved on the stack in the inferior. */
891 PUSH_DUMMY_FRAME;
892
893 old_sp = sp = read_sp ();
894
895 #if 1 INNER_THAN 2 /* Stack grows down */
896 sp -= sizeof dummy;
897 start_sp = sp;
898 #else /* Stack grows up */
899 start_sp = sp;
900 sp += sizeof dummy;
901 #endif
902
903 funaddr = find_function_addr (function, &value_type);
904
905 {
906 struct block *b = block_for_pc (funaddr);
907 /* If compiled without -g, assume GCC. */
908 using_gcc = b == NULL || BLOCK_GCC_COMPILED (b);
909 }
910
911 /* Are we returning a value using a structure return or a normal
912 value return? */
913
914 struct_return = using_struct_return (function, funaddr, value_type,
915 using_gcc);
916
917 /* Create a call sequence customized for this function
918 and the number of arguments for it. */
919 for (i = 0; i < sizeof dummy / sizeof (REGISTER_TYPE); i++)
920 store_unsigned_integer (&dummy1[i], sizeof (REGISTER_TYPE),
921 (unsigned LONGEST)dummy[i]);
922
923 #ifdef GDB_TARGET_IS_HPPA
924 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
925 value_type, using_gcc);
926 #else
927 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
928 value_type, using_gcc);
929 real_pc = start_sp;
930 #endif
931
932 #if CALL_DUMMY_LOCATION == ON_STACK
933 write_memory (start_sp, (char *)dummy1, sizeof dummy);
934 #endif /* On stack. */
935
936 #if CALL_DUMMY_LOCATION == BEFORE_TEXT_END
937 /* Convex Unix prohibits executing in the stack segment. */
938 /* Hope there is empty room at the top of the text segment. */
939 {
940 extern CORE_ADDR text_end;
941 static checked = 0;
942 if (!checked)
943 for (start_sp = text_end - sizeof dummy; start_sp < text_end; ++start_sp)
944 if (read_memory_integer (start_sp, 1) != 0)
945 error ("text segment full -- no place to put call");
946 checked = 1;
947 sp = old_sp;
948 real_pc = text_end - sizeof dummy;
949 write_memory (real_pc, (char *)dummy1, sizeof dummy);
950 }
951 #endif /* Before text_end. */
952
953 #if CALL_DUMMY_LOCATION == AFTER_TEXT_END
954 {
955 extern CORE_ADDR text_end;
956 int errcode;
957 sp = old_sp;
958 real_pc = text_end;
959 errcode = target_write_memory (real_pc, (char *)dummy1, sizeof dummy);
960 if (errcode != 0)
961 error ("Cannot write text segment -- call_function failed");
962 }
963 #endif /* After text_end. */
964
965 #if CALL_DUMMY_LOCATION == AT_ENTRY_POINT
966 real_pc = funaddr;
967 #endif /* At entry point. */
968
969 #ifdef lint
970 sp = old_sp; /* It really is used, for some ifdef's... */
971 #endif
972
973 #ifdef STACK_ALIGN
974 /* If stack grows down, we must leave a hole at the top. */
975 {
976 int len = 0;
977
978 /* Reserve space for the return structure to be written on the
979 stack, if necessary */
980
981 if (struct_return)
982 len += TYPE_LENGTH (value_type);
983
984 for (i = nargs - 1; i >= 0; i--)
985 len += TYPE_LENGTH (VALUE_TYPE (value_arg_coerce (args[i])));
986 #ifdef CALL_DUMMY_STACK_ADJUST
987 len += CALL_DUMMY_STACK_ADJUST;
988 #endif
989 #if 1 INNER_THAN 2
990 sp -= STACK_ALIGN (len) - len;
991 #else
992 sp += STACK_ALIGN (len) - len;
993 #endif
994 }
995 #endif /* STACK_ALIGN */
996
997 /* Reserve space for the return structure to be written on the
998 stack, if necessary */
999
1000 if (struct_return)
1001 {
1002 #if 1 INNER_THAN 2
1003 sp -= TYPE_LENGTH (value_type);
1004 struct_addr = sp;
1005 #else
1006 struct_addr = sp;
1007 sp += TYPE_LENGTH (value_type);
1008 #endif
1009 }
1010
1011 #if defined (REG_STRUCT_HAS_ADDR)
1012 {
1013 /* This is a machine like the sparc, where we need to pass a pointer
1014 to the structure, not the structure itself. */
1015 if (REG_STRUCT_HAS_ADDR (using_gcc))
1016 for (i = nargs - 1; i >= 0; i--)
1017 if (TYPE_CODE (VALUE_TYPE (args[i])) == TYPE_CODE_STRUCT)
1018 {
1019 CORE_ADDR addr;
1020 #if !(1 INNER_THAN 2)
1021 /* The stack grows up, so the address of the thing we push
1022 is the stack pointer before we push it. */
1023 addr = sp;
1024 #endif
1025 /* Push the structure. */
1026 sp = value_push (sp, args[i]);
1027 #if 1 INNER_THAN 2
1028 /* The stack grows down, so the address of the thing we push
1029 is the stack pointer after we push it. */
1030 addr = sp;
1031 #endif
1032 /* The value we're going to pass is the address of the thing
1033 we just pushed. */
1034 args[i] = value_from_longest (lookup_pointer_type (value_type),
1035 (LONGEST) addr);
1036 }
1037 }
1038 #endif /* REG_STRUCT_HAS_ADDR. */
1039
1040 #ifdef PUSH_ARGUMENTS
1041 PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr);
1042 #else /* !PUSH_ARGUMENTS */
1043 for (i = nargs - 1; i >= 0; i--)
1044 sp = value_arg_push (sp, args[i]);
1045 #endif /* !PUSH_ARGUMENTS */
1046
1047 #ifdef CALL_DUMMY_STACK_ADJUST
1048 #if 1 INNER_THAN 2
1049 sp -= CALL_DUMMY_STACK_ADJUST;
1050 #else
1051 sp += CALL_DUMMY_STACK_ADJUST;
1052 #endif
1053 #endif /* CALL_DUMMY_STACK_ADJUST */
1054
1055 /* Store the address at which the structure is supposed to be
1056 written. Note that this (and the code which reserved the space
1057 above) assumes that gcc was used to compile this function. Since
1058 it doesn't cost us anything but space and if the function is pcc
1059 it will ignore this value, we will make that assumption.
1060
1061 Also note that on some machines (like the sparc) pcc uses a
1062 convention like gcc's. */
1063
1064 if (struct_return)
1065 STORE_STRUCT_RETURN (struct_addr, sp);
1066
1067 /* Write the stack pointer. This is here because the statements above
1068 might fool with it. On SPARC, this write also stores the register
1069 window into the right place in the new stack frame, which otherwise
1070 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1071 write_sp (sp);
1072
1073 {
1074 char retbuf[REGISTER_BYTES];
1075 char *name;
1076 struct symbol *symbol;
1077
1078 name = NULL;
1079 symbol = find_pc_function (funaddr);
1080 if (symbol)
1081 {
1082 name = SYMBOL_SOURCE_NAME (symbol);
1083 }
1084 else
1085 {
1086 /* Try the minimal symbols. */
1087 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1088
1089 if (msymbol)
1090 {
1091 name = SYMBOL_SOURCE_NAME (msymbol);
1092 }
1093 }
1094 if (name == NULL)
1095 {
1096 char format[80];
1097 sprintf (format, "at %s", local_hex_format ());
1098 name = alloca (80);
1099 sprintf (name, format, (unsigned long) funaddr);
1100 }
1101
1102 /* Execute the stack dummy routine, calling FUNCTION.
1103 When it is done, discard the empty frame
1104 after storing the contents of all regs into retbuf. */
1105 if (run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf))
1106 {
1107 /* We stopped somewhere besides the call dummy. */
1108
1109 /* If we did the cleanups, we would print a spurious error message
1110 (Unable to restore previously selected frame), would write the
1111 registers from the inf_status (which is wrong), and would do other
1112 wrong things (like set stop_bpstat to the wrong thing). */
1113 discard_cleanups (old_chain);
1114 /* Prevent memory leak. */
1115 bpstat_clear (&inf_status.stop_bpstat);
1116
1117 /* The following error message used to say "The expression
1118 which contained the function call has been discarded." It
1119 is a hard concept to explain in a few words. Ideally, GDB
1120 would be able to resume evaluation of the expression when
1121 the function finally is done executing. Perhaps someday
1122 this will be implemented (it would not be easy). */
1123
1124 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1125 a C++ name with arguments and stuff. */
1126 error ("\
1127 The program being debugged stopped while in a function called from GDB.\n\
1128 When the function (%s) is done executing, GDB will silently\n\
1129 stop (instead of continuing to evaluate the expression containing\n\
1130 the function call).", name);
1131 }
1132
1133 do_cleanups (old_chain);
1134
1135 /* Figure out the value returned by the function. */
1136 return value_being_returned (value_type, retbuf, struct_return);
1137 }
1138 }
1139 #else /* no CALL_DUMMY. */
1140 value
1141 call_function_by_hand (function, nargs, args)
1142 value function;
1143 int nargs;
1144 value *args;
1145 {
1146 error ("Cannot invoke functions on this machine.");
1147 }
1148 #endif /* no CALL_DUMMY. */
1149
1150 \f
1151 /* Create a value for an array by allocating space in the inferior, copying
1152 the data into that space, and then setting up an array value.
1153
1154 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1155 populated from the values passed in ELEMVEC.
1156
1157 The element type of the array is inherited from the type of the
1158 first element, and all elements must have the same size (though we
1159 don't currently enforce any restriction on their types). */
1160
1161 value
1162 value_array (lowbound, highbound, elemvec)
1163 int lowbound;
1164 int highbound;
1165 value *elemvec;
1166 {
1167 int nelem;
1168 int idx;
1169 int typelength;
1170 value val;
1171 struct type *rangetype;
1172 struct type *arraytype;
1173 CORE_ADDR addr;
1174
1175 /* Validate that the bounds are reasonable and that each of the elements
1176 have the same size. */
1177
1178 nelem = highbound - lowbound + 1;
1179 if (nelem <= 0)
1180 {
1181 error ("bad array bounds (%d, %d)", lowbound, highbound);
1182 }
1183 typelength = TYPE_LENGTH (VALUE_TYPE (elemvec[0]));
1184 for (idx = 0; idx < nelem; idx++)
1185 {
1186 if (TYPE_LENGTH (VALUE_TYPE (elemvec[idx])) != typelength)
1187 {
1188 error ("array elements must all be the same size");
1189 }
1190 }
1191
1192 /* Allocate space to store the array in the inferior, and then initialize
1193 it by copying in each element. FIXME: Is it worth it to create a
1194 local buffer in which to collect each value and then write all the
1195 bytes in one operation? */
1196
1197 addr = allocate_space_in_inferior (nelem * typelength);
1198 for (idx = 0; idx < nelem; idx++)
1199 {
1200 write_memory (addr + (idx * typelength), VALUE_CONTENTS (elemvec[idx]),
1201 typelength);
1202 }
1203
1204 /* Create the array type and set up an array value to be evaluated lazily. */
1205
1206 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1207 lowbound, highbound);
1208 arraytype = create_array_type ((struct type *) NULL,
1209 VALUE_TYPE (elemvec[0]), rangetype);
1210 val = value_at_lazy (arraytype, addr);
1211 return (val);
1212 }
1213
1214 /* Create a value for a string constant by allocating space in the inferior,
1215 copying the data into that space, and returning the address with type
1216 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1217 of characters.
1218 Note that string types are like array of char types with a lower bound of
1219 zero and an upper bound of LEN - 1. Also note that the string may contain
1220 embedded null bytes. */
1221
1222 value
1223 value_string (ptr, len)
1224 char *ptr;
1225 int len;
1226 {
1227 value val;
1228 struct type *rangetype;
1229 struct type *stringtype;
1230 CORE_ADDR addr;
1231
1232 /* Allocate space to store the string in the inferior, and then
1233 copy LEN bytes from PTR in gdb to that address in the inferior. */
1234
1235 addr = allocate_space_in_inferior (len);
1236 write_memory (addr, ptr, len);
1237
1238 /* Create the string type and set up a string value to be evaluated
1239 lazily. */
1240
1241 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1242 0, len - 1);
1243 stringtype = create_string_type ((struct type *) NULL, rangetype);
1244 val = value_at_lazy (stringtype, addr);
1245 return (val);
1246 }
1247 \f
1248 /* See if we can pass arguments in T2 to a function which takes arguments
1249 of types T1. Both t1 and t2 are NULL-terminated vectors. If some
1250 arguments need coercion of some sort, then the coerced values are written
1251 into T2. Return value is 0 if the arguments could be matched, or the
1252 position at which they differ if not.
1253
1254 STATICP is nonzero if the T1 argument list came from a
1255 static member function.
1256
1257 For non-static member functions, we ignore the first argument,
1258 which is the type of the instance variable. This is because we want
1259 to handle calls with objects from derived classes. This is not
1260 entirely correct: we should actually check to make sure that a
1261 requested operation is type secure, shouldn't we? FIXME. */
1262
1263 static int
1264 typecmp (staticp, t1, t2)
1265 int staticp;
1266 struct type *t1[];
1267 value t2[];
1268 {
1269 int i;
1270
1271 if (t2 == 0)
1272 return 1;
1273 if (staticp && t1 == 0)
1274 return t2[1] != 0;
1275 if (t1 == 0)
1276 return 1;
1277 if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID) return 0;
1278 if (t1[!staticp] == 0) return 0;
1279 for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
1280 {
1281 struct type *tt1, *tt2;
1282 if (! t2[i])
1283 return i+1;
1284 tt1 = t1[i];
1285 tt2 = VALUE_TYPE(t2[i]);
1286 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1287 /* We should be doing hairy argument matching, as below. */
1288 && (TYPE_CODE (TYPE_TARGET_TYPE (tt1)) == TYPE_CODE (tt2)))
1289 {
1290 t2[i] = value_addr (t2[i]);
1291 continue;
1292 }
1293
1294 while (TYPE_CODE (tt1) == TYPE_CODE_PTR
1295 && (TYPE_CODE(tt2)==TYPE_CODE_ARRAY || TYPE_CODE(tt2)==TYPE_CODE_PTR))
1296 {
1297 tt1 = TYPE_TARGET_TYPE(tt1);
1298 tt2 = TYPE_TARGET_TYPE(tt2);
1299 }
1300 if (TYPE_CODE(tt1) == TYPE_CODE(tt2)) continue;
1301 /* Array to pointer is a `trivial conversion' according to the ARM. */
1302
1303 /* We should be doing much hairier argument matching (see section 13.2
1304 of the ARM), but as a quick kludge, just check for the same type
1305 code. */
1306 if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
1307 return i+1;
1308 }
1309 if (!t1[i]) return 0;
1310 return t2[i] ? i+1 : 0;
1311 }
1312
1313 /* Helper function used by value_struct_elt to recurse through baseclasses.
1314 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1315 and search in it assuming it has (class) type TYPE.
1316 If found, return value, else return NULL.
1317
1318 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
1319 look for a baseclass named NAME. */
1320
1321 static value
1322 search_struct_field (name, arg1, offset, type, looking_for_baseclass)
1323 char *name;
1324 register value arg1;
1325 int offset;
1326 register struct type *type;
1327 int looking_for_baseclass;
1328 {
1329 int i;
1330
1331 check_stub_type (type);
1332
1333 if (! looking_for_baseclass)
1334 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1335 {
1336 char *t_field_name = TYPE_FIELD_NAME (type, i);
1337
1338 if (t_field_name && STREQ (t_field_name, name))
1339 {
1340 value v;
1341 if (TYPE_FIELD_STATIC (type, i))
1342 {
1343 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, i);
1344 struct symbol *sym =
1345 lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
1346 if (sym == NULL)
1347 error ("Internal error: could not find physical static variable named %s",
1348 phys_name);
1349 v = value_at (TYPE_FIELD_TYPE (type, i),
1350 (CORE_ADDR)SYMBOL_BLOCK_VALUE (sym));
1351 }
1352 else
1353 v = value_primitive_field (arg1, offset, i, type);
1354 if (v == 0)
1355 error("there is no field named %s", name);
1356 return v;
1357 }
1358 }
1359
1360 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1361 {
1362 value v;
1363 /* If we are looking for baseclasses, this is what we get when we
1364 hit them. But it could happen that the base part's member name
1365 is not yet filled in. */
1366 int found_baseclass = (looking_for_baseclass
1367 && TYPE_BASECLASS_NAME (type, i) != NULL
1368 && STREQ (name, TYPE_BASECLASS_NAME (type, i)));
1369
1370 if (BASETYPE_VIA_VIRTUAL (type, i))
1371 {
1372 value v2;
1373 /* Fix to use baseclass_offset instead. FIXME */
1374 baseclass_addr (type, i, VALUE_CONTENTS (arg1) + offset,
1375 &v2, (int *)NULL);
1376 if (v2 == 0)
1377 error ("virtual baseclass botch");
1378 if (found_baseclass)
1379 return v2;
1380 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
1381 looking_for_baseclass);
1382 }
1383 else if (found_baseclass)
1384 v = value_primitive_field (arg1, offset, i, type);
1385 else
1386 v = search_struct_field (name, arg1,
1387 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
1388 TYPE_BASECLASS (type, i),
1389 looking_for_baseclass);
1390 if (v) return v;
1391 }
1392 return NULL;
1393 }
1394
1395 /* Helper function used by value_struct_elt to recurse through baseclasses.
1396 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1397 and search in it assuming it has (class) type TYPE.
1398 If found, return value, else if name matched and args not return (value)-1,
1399 else return NULL. */
1400
1401 static value
1402 search_struct_method (name, arg1p, args, offset, static_memfuncp, type)
1403 char *name;
1404 register value *arg1p, *args;
1405 int offset, *static_memfuncp;
1406 register struct type *type;
1407 {
1408 int i;
1409 value v;
1410 static int name_matched = 0;
1411
1412 check_stub_type (type);
1413 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1414 {
1415 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1416 if (t_field_name && STREQ (t_field_name, name))
1417 {
1418 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
1419 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1420 name_matched = 1;
1421
1422 if (j > 0 && args == 0)
1423 error ("cannot resolve overloaded method `%s'", name);
1424 while (j >= 0)
1425 {
1426 if (TYPE_FN_FIELD_STUB (f, j))
1427 check_stub_method (type, i, j);
1428 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
1429 TYPE_FN_FIELD_ARGS (f, j), args))
1430 {
1431 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
1432 return (value)value_virtual_fn_field (arg1p, f, j, type, offset);
1433 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
1434 *static_memfuncp = 1;
1435 v = (value)value_fn_field (arg1p, f, j, type, offset);
1436 if (v != (value)NULL) return v;
1437 }
1438 j--;
1439 }
1440 }
1441 }
1442
1443 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1444 {
1445 int base_offset;
1446
1447 if (BASETYPE_VIA_VIRTUAL (type, i))
1448 {
1449 base_offset = baseclass_offset (type, i, *arg1p, offset);
1450 if (base_offset == -1)
1451 error ("virtual baseclass botch");
1452 }
1453 else
1454 {
1455 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1456 }
1457 v = search_struct_method (name, arg1p, args, base_offset + offset,
1458 static_memfuncp, TYPE_BASECLASS (type, i));
1459 if (v == (value) -1)
1460 {
1461 name_matched = 1;
1462 }
1463 else if (v)
1464 {
1465 /* FIXME-bothner: Why is this commented out? Why is it here? */
1466 /* *arg1p = arg1_tmp;*/
1467 return v;
1468 }
1469 }
1470 if (name_matched) return (value) -1;
1471 else return NULL;
1472 }
1473
1474 /* Given *ARGP, a value of type (pointer to a)* structure/union,
1475 extract the component named NAME from the ultimate target structure/union
1476 and return it as a value with its appropriate type.
1477 ERR is used in the error message if *ARGP's type is wrong.
1478
1479 C++: ARGS is a list of argument types to aid in the selection of
1480 an appropriate method. Also, handle derived types.
1481
1482 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
1483 where the truthvalue of whether the function that was resolved was
1484 a static member function or not is stored.
1485
1486 ERR is an error message to be printed in case the field is not found. */
1487
1488 value
1489 value_struct_elt (argp, args, name, static_memfuncp, err)
1490 register value *argp, *args;
1491 char *name;
1492 int *static_memfuncp;
1493 char *err;
1494 {
1495 register struct type *t;
1496 value v;
1497
1498 COERCE_ARRAY (*argp);
1499
1500 t = VALUE_TYPE (*argp);
1501
1502 /* Follow pointers until we get to a non-pointer. */
1503
1504 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1505 {
1506 *argp = value_ind (*argp);
1507 /* Don't coerce fn pointer to fn and then back again! */
1508 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
1509 COERCE_ARRAY (*argp);
1510 t = VALUE_TYPE (*argp);
1511 }
1512
1513 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
1514 error ("not implemented: member type in value_struct_elt");
1515
1516 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
1517 && TYPE_CODE (t) != TYPE_CODE_UNION)
1518 error ("Attempt to extract a component of a value that is not a %s.", err);
1519
1520 /* Assume it's not, unless we see that it is. */
1521 if (static_memfuncp)
1522 *static_memfuncp =0;
1523
1524 if (!args)
1525 {
1526 /* if there are no arguments ...do this... */
1527
1528 /* Try as a field first, because if we succeed, there
1529 is less work to be done. */
1530 v = search_struct_field (name, *argp, 0, t, 0);
1531 if (v)
1532 return v;
1533
1534 /* C++: If it was not found as a data field, then try to
1535 return it as a pointer to a method. */
1536
1537 if (destructor_name_p (name, t))
1538 error ("Cannot get value of destructor");
1539
1540 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
1541
1542 if (v == 0)
1543 {
1544 if (TYPE_NFN_FIELDS (t))
1545 error ("There is no member or method named %s.", name);
1546 else
1547 error ("There is no member named %s.", name);
1548 }
1549 return v;
1550 }
1551
1552 if (destructor_name_p (name, t))
1553 {
1554 if (!args[1])
1555 {
1556 /* destructors are a special case. */
1557 v = (value)value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, 0),
1558 TYPE_FN_FIELDLIST_LENGTH (t, 0), 0, 0);
1559 if (!v) error("could not find destructor function named %s.", name);
1560 else return v;
1561 }
1562 else
1563 {
1564 error ("destructor should not have any argument");
1565 }
1566 }
1567 else
1568 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
1569
1570 if (v == (value) -1)
1571 {
1572 error("Argument list of %s mismatch with component in the structure.", name);
1573 }
1574 else if (v == 0)
1575 {
1576 /* See if user tried to invoke data as function. If so,
1577 hand it back. If it's not callable (i.e., a pointer to function),
1578 gdb should give an error. */
1579 v = search_struct_field (name, *argp, 0, t, 0);
1580 }
1581
1582 if (!v)
1583 error ("Structure has no component named %s.", name);
1584 return v;
1585 }
1586
1587 /* C++: return 1 is NAME is a legitimate name for the destructor
1588 of type TYPE. If TYPE does not have a destructor, or
1589 if NAME is inappropriate for TYPE, an error is signaled. */
1590 int
1591 destructor_name_p (name, type)
1592 const char *name;
1593 const struct type *type;
1594 {
1595 /* destructors are a special case. */
1596
1597 if (name[0] == '~')
1598 {
1599 char *dname = type_name_no_tag (type);
1600 if (!STREQ (dname, name+1))
1601 error ("name of destructor must equal name of class");
1602 else
1603 return 1;
1604 }
1605 return 0;
1606 }
1607
1608 /* Helper function for check_field: Given TYPE, a structure/union,
1609 return 1 if the component named NAME from the ultimate
1610 target structure/union is defined, otherwise, return 0. */
1611
1612 static int
1613 check_field_in (type, name)
1614 register struct type *type;
1615 const char *name;
1616 {
1617 register int i;
1618
1619 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1620 {
1621 char *t_field_name = TYPE_FIELD_NAME (type, i);
1622 if (t_field_name && STREQ (t_field_name, name))
1623 return 1;
1624 }
1625
1626 /* C++: If it was not found as a data field, then try to
1627 return it as a pointer to a method. */
1628
1629 /* Destructors are a special case. */
1630 if (destructor_name_p (name, type))
1631 return 1;
1632
1633 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1634 {
1635 if (STREQ (TYPE_FN_FIELDLIST_NAME (type, i), name))
1636 return 1;
1637 }
1638
1639 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1640 if (check_field_in (TYPE_BASECLASS (type, i), name))
1641 return 1;
1642
1643 return 0;
1644 }
1645
1646
1647 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
1648 return 1 if the component named NAME from the ultimate
1649 target structure/union is defined, otherwise, return 0. */
1650
1651 int
1652 check_field (arg1, name)
1653 register value arg1;
1654 const char *name;
1655 {
1656 register struct type *t;
1657
1658 COERCE_ARRAY (arg1);
1659
1660 t = VALUE_TYPE (arg1);
1661
1662 /* Follow pointers until we get to a non-pointer. */
1663
1664 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1665 t = TYPE_TARGET_TYPE (t);
1666
1667 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
1668 error ("not implemented: member type in check_field");
1669
1670 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
1671 && TYPE_CODE (t) != TYPE_CODE_UNION)
1672 error ("Internal error: `this' is not an aggregate");
1673
1674 return check_field_in (t, name);
1675 }
1676
1677 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
1678 return the address of this member as a "pointer to member"
1679 type. If INTYPE is non-null, then it will be the type
1680 of the member we are looking for. This will help us resolve
1681 "pointers to member functions". This function is used
1682 to resolve user expressions of the form "DOMAIN::NAME". */
1683
1684 value
1685 value_struct_elt_for_reference (domain, offset, curtype, name, intype)
1686 struct type *domain, *curtype, *intype;
1687 int offset;
1688 char *name;
1689 {
1690 register struct type *t = curtype;
1691 register int i;
1692 value v;
1693
1694 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
1695 && TYPE_CODE (t) != TYPE_CODE_UNION)
1696 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
1697
1698 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
1699 {
1700 char *t_field_name = TYPE_FIELD_NAME (t, i);
1701
1702 if (t_field_name && STREQ (t_field_name, name))
1703 {
1704 if (TYPE_FIELD_STATIC (t, i))
1705 {
1706 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (t, i);
1707 struct symbol *sym =
1708 lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
1709 if (sym == NULL)
1710 error ("Internal error: could not find physical static variable named %s",
1711 phys_name);
1712 return value_at (SYMBOL_TYPE (sym),
1713 (CORE_ADDR)SYMBOL_BLOCK_VALUE (sym));
1714 }
1715 if (TYPE_FIELD_PACKED (t, i))
1716 error ("pointers to bitfield members not allowed");
1717
1718 return value_from_longest
1719 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
1720 domain)),
1721 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
1722 }
1723 }
1724
1725 /* C++: If it was not found as a data field, then try to
1726 return it as a pointer to a method. */
1727
1728 /* Destructors are a special case. */
1729 if (destructor_name_p (name, t))
1730 {
1731 error ("member pointers to destructors not implemented yet");
1732 }
1733
1734 /* Perform all necessary dereferencing. */
1735 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
1736 intype = TYPE_TARGET_TYPE (intype);
1737
1738 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
1739 {
1740 if (STREQ (TYPE_FN_FIELDLIST_NAME (t, i), name))
1741 {
1742 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
1743 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
1744
1745 if (intype == 0 && j > 1)
1746 error ("non-unique member `%s' requires type instantiation", name);
1747 if (intype)
1748 {
1749 while (j--)
1750 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
1751 break;
1752 if (j < 0)
1753 error ("no member function matches that type instantiation");
1754 }
1755 else
1756 j = 0;
1757
1758 if (TYPE_FN_FIELD_STUB (f, j))
1759 check_stub_method (t, i, j);
1760 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
1761 {
1762 return value_from_longest
1763 (lookup_reference_type
1764 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
1765 domain)),
1766 (LONGEST) METHOD_PTR_FROM_VOFFSET
1767 (TYPE_FN_FIELD_VOFFSET (f, j)));
1768 }
1769 else
1770 {
1771 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
1772 0, VAR_NAMESPACE, 0, NULL);
1773 if (s == NULL)
1774 {
1775 v = 0;
1776 }
1777 else
1778 {
1779 v = read_var_value (s, 0);
1780 #if 0
1781 VALUE_TYPE (v) = lookup_reference_type
1782 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
1783 domain));
1784 #endif
1785 }
1786 return v;
1787 }
1788 }
1789 }
1790 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
1791 {
1792 value v;
1793 int base_offset;
1794
1795 if (BASETYPE_VIA_VIRTUAL (t, i))
1796 base_offset = 0;
1797 else
1798 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
1799 v = value_struct_elt_for_reference (domain,
1800 offset + base_offset,
1801 TYPE_BASECLASS (t, i),
1802 name,
1803 intype);
1804 if (v)
1805 return v;
1806 }
1807 return 0;
1808 }
1809
1810 /* C++: return the value of the class instance variable, if one exists.
1811 Flag COMPLAIN signals an error if the request is made in an
1812 inappropriate context. */
1813 value
1814 value_of_this (complain)
1815 int complain;
1816 {
1817 extern FRAME selected_frame;
1818 struct symbol *func, *sym;
1819 struct block *b;
1820 int i;
1821 static const char funny_this[] = "this";
1822 value this;
1823
1824 if (selected_frame == 0)
1825 if (complain)
1826 error ("no frame selected");
1827 else return 0;
1828
1829 func = get_frame_function (selected_frame);
1830 if (!func)
1831 {
1832 if (complain)
1833 error ("no `this' in nameless context");
1834 else return 0;
1835 }
1836
1837 b = SYMBOL_BLOCK_VALUE (func);
1838 i = BLOCK_NSYMS (b);
1839 if (i <= 0)
1840 if (complain)
1841 error ("no args, no `this'");
1842 else return 0;
1843
1844 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
1845 symbol instead of the LOC_ARG one (if both exist). */
1846 sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE);
1847 if (sym == NULL)
1848 {
1849 if (complain)
1850 error ("current stack frame not in method");
1851 else
1852 return NULL;
1853 }
1854
1855 this = read_var_value (sym, selected_frame);
1856 if (this == 0 && complain)
1857 error ("`this' argument at unknown address");
1858 return this;
1859 }