* blockframe.c (block_innermost_frame): Uncomment.
[binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 1987, 1989, 1991, 1992 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "demangle.h"
29 #include "language.h"
30
31 #include <errno.h>
32
33 /* Local functions. */
34
35 static int
36 typecmp PARAMS ((int staticp, struct type *t1[], value t2[]));
37
38 static CORE_ADDR
39 find_function_addr PARAMS ((value, struct type **));
40
41 static CORE_ADDR
42 value_push PARAMS ((CORE_ADDR, value));
43
44 static CORE_ADDR
45 value_arg_push PARAMS ((CORE_ADDR, value));
46
47 static value
48 search_struct_field PARAMS ((char *, value, int, struct type *, int));
49
50 static value
51 search_struct_method PARAMS ((char *, value *, value *, int, int *,
52 struct type *));
53
54 static int
55 check_field_in PARAMS ((struct type *, const char *));
56
57 static CORE_ADDR
58 allocate_space_in_inferior PARAMS ((int));
59
60 \f
61 /* Allocate NBYTES of space in the inferior using the inferior's malloc
62 and return a value that is a pointer to the allocated space. */
63
64 static CORE_ADDR
65 allocate_space_in_inferior (len)
66 int len;
67 {
68 register value val;
69 register struct symbol *sym;
70 struct minimal_symbol *msymbol;
71 struct type *type;
72 value blocklen;
73 LONGEST maddr;
74
75 /* Find the address of malloc in the inferior. */
76
77 sym = lookup_symbol ("malloc", 0, VAR_NAMESPACE, 0, NULL);
78 if (sym != NULL)
79 {
80 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
81 {
82 error ("\"malloc\" exists in this program but is not a function.");
83 }
84 val = value_of_variable (sym, NULL);
85 }
86 else
87 {
88 msymbol = lookup_minimal_symbol ("malloc", (struct objfile *) NULL);
89 if (msymbol != NULL)
90 {
91 type = lookup_pointer_type (builtin_type_char);
92 type = lookup_function_type (type);
93 type = lookup_pointer_type (type);
94 maddr = (LONGEST) SYMBOL_VALUE_ADDRESS (msymbol);
95 val = value_from_longest (type, maddr);
96 }
97 else
98 {
99 error ("evaluation of this expression requires the program to have a function \"malloc\".");
100 }
101 }
102
103 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
104 val = call_function_by_hand (val, 1, &blocklen);
105 if (value_logical_not (val))
106 {
107 error ("No memory available to program.");
108 }
109 return (value_as_long (val));
110 }
111
112 /* Cast value ARG2 to type TYPE and return as a value.
113 More general than a C cast: accepts any two types of the same length,
114 and if ARG2 is an lvalue it can be cast into anything at all. */
115 /* In C++, casts may change pointer or object representations. */
116
117 value
118 value_cast (type, arg2)
119 struct type *type;
120 register value arg2;
121 {
122 register enum type_code code1;
123 register enum type_code code2;
124 register int scalar;
125
126 /* Coerce arrays but not enums. Enums will work as-is
127 and coercing them would cause an infinite recursion. */
128 if (TYPE_CODE (VALUE_TYPE (arg2)) != TYPE_CODE_ENUM)
129 COERCE_ARRAY (arg2);
130
131 code1 = TYPE_CODE (type);
132 code2 = TYPE_CODE (VALUE_TYPE (arg2));
133 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
134 || code2 == TYPE_CODE_ENUM);
135
136 if ( code1 == TYPE_CODE_STRUCT
137 && code2 == TYPE_CODE_STRUCT
138 && TYPE_NAME (type) != 0)
139 {
140 /* Look in the type of the source to see if it contains the
141 type of the target as a superclass. If so, we'll need to
142 offset the object in addition to changing its type. */
143 value v = search_struct_field (type_name_no_tag (type),
144 arg2, 0, VALUE_TYPE (arg2), 1);
145 if (v)
146 {
147 VALUE_TYPE (v) = type;
148 return v;
149 }
150 }
151 if (code1 == TYPE_CODE_FLT && scalar)
152 return value_from_double (type, value_as_double (arg2));
153 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM)
154 && (scalar || code2 == TYPE_CODE_PTR))
155 return value_from_longest (type, value_as_long (arg2));
156 else if (TYPE_LENGTH (type) == TYPE_LENGTH (VALUE_TYPE (arg2)))
157 {
158 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
159 {
160 /* Look in the type of the source to see if it contains the
161 type of the target as a superclass. If so, we'll need to
162 offset the pointer rather than just change its type. */
163 struct type *t1 = TYPE_TARGET_TYPE (type);
164 struct type *t2 = TYPE_TARGET_TYPE (VALUE_TYPE (arg2));
165 if ( TYPE_CODE (t1) == TYPE_CODE_STRUCT
166 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
167 && TYPE_NAME (t1) != 0) /* if name unknown, can't have supercl */
168 {
169 value v = search_struct_field (type_name_no_tag (t1),
170 value_ind (arg2), 0, t2, 1);
171 if (v)
172 {
173 v = value_addr (v);
174 VALUE_TYPE (v) = type;
175 return v;
176 }
177 }
178 /* No superclass found, just fall through to change ptr type. */
179 }
180 VALUE_TYPE (arg2) = type;
181 return arg2;
182 }
183 else if (VALUE_LVAL (arg2) == lval_memory)
184 {
185 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2));
186 }
187 else if (code1 == TYPE_CODE_VOID)
188 {
189 return value_zero (builtin_type_void, not_lval);
190 }
191 else
192 {
193 error ("Invalid cast.");
194 return 0;
195 }
196 }
197
198 /* Create a value of type TYPE that is zero, and return it. */
199
200 value
201 value_zero (type, lv)
202 struct type *type;
203 enum lval_type lv;
204 {
205 register value val = allocate_value (type);
206
207 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (type));
208 VALUE_LVAL (val) = lv;
209
210 return val;
211 }
212
213 /* Return a value with type TYPE located at ADDR.
214
215 Call value_at only if the data needs to be fetched immediately;
216 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
217 value_at_lazy instead. value_at_lazy simply records the address of
218 the data and sets the lazy-evaluation-required flag. The lazy flag
219 is tested in the VALUE_CONTENTS macro, which is used if and when
220 the contents are actually required. */
221
222 value
223 value_at (type, addr)
224 struct type *type;
225 CORE_ADDR addr;
226 {
227 register value val = allocate_value (type);
228
229 read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (type));
230
231 VALUE_LVAL (val) = lval_memory;
232 VALUE_ADDRESS (val) = addr;
233
234 return val;
235 }
236
237 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
238
239 value
240 value_at_lazy (type, addr)
241 struct type *type;
242 CORE_ADDR addr;
243 {
244 register value val = allocate_value (type);
245
246 VALUE_LVAL (val) = lval_memory;
247 VALUE_ADDRESS (val) = addr;
248 VALUE_LAZY (val) = 1;
249
250 return val;
251 }
252
253 /* Called only from the VALUE_CONTENTS macro, if the current data for
254 a variable needs to be loaded into VALUE_CONTENTS(VAL). Fetches the
255 data from the user's process, and clears the lazy flag to indicate
256 that the data in the buffer is valid.
257
258 If the value is zero-length, we avoid calling read_memory, which would
259 abort. We mark the value as fetched anyway -- all 0 bytes of it.
260
261 This function returns a value because it is used in the VALUE_CONTENTS
262 macro as part of an expression, where a void would not work. The
263 value is ignored. */
264
265 int
266 value_fetch_lazy (val)
267 register value val;
268 {
269 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
270
271 if (TYPE_LENGTH (VALUE_TYPE (val)))
272 read_memory (addr, VALUE_CONTENTS_RAW (val),
273 TYPE_LENGTH (VALUE_TYPE (val)));
274 VALUE_LAZY (val) = 0;
275 return 0;
276 }
277
278
279 /* Store the contents of FROMVAL into the location of TOVAL.
280 Return a new value with the location of TOVAL and contents of FROMVAL. */
281
282 value
283 value_assign (toval, fromval)
284 register value toval, fromval;
285 {
286 register struct type *type = VALUE_TYPE (toval);
287 register value val;
288 char raw_buffer[MAX_REGISTER_RAW_SIZE];
289 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
290 int use_buffer = 0;
291
292 COERCE_ARRAY (fromval);
293 COERCE_REF (toval);
294
295 if (VALUE_LVAL (toval) != lval_internalvar)
296 fromval = value_cast (type, fromval);
297
298 /* If TOVAL is a special machine register requiring conversion
299 of program values to a special raw format,
300 convert FROMVAL's contents now, with result in `raw_buffer',
301 and set USE_BUFFER to the number of bytes to write. */
302
303 if (VALUE_REGNO (toval) >= 0
304 && REGISTER_CONVERTIBLE (VALUE_REGNO (toval)))
305 {
306 int regno = VALUE_REGNO (toval);
307 if (VALUE_TYPE (fromval) != REGISTER_VIRTUAL_TYPE (regno))
308 fromval = value_cast (REGISTER_VIRTUAL_TYPE (regno), fromval);
309 memcpy (virtual_buffer, VALUE_CONTENTS (fromval),
310 REGISTER_VIRTUAL_SIZE (regno));
311 REGISTER_CONVERT_TO_RAW (regno, virtual_buffer, raw_buffer);
312 use_buffer = REGISTER_RAW_SIZE (regno);
313 }
314
315 switch (VALUE_LVAL (toval))
316 {
317 case lval_internalvar:
318 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
319 break;
320
321 case lval_internalvar_component:
322 set_internalvar_component (VALUE_INTERNALVAR (toval),
323 VALUE_OFFSET (toval),
324 VALUE_BITPOS (toval),
325 VALUE_BITSIZE (toval),
326 fromval);
327 break;
328
329 case lval_memory:
330 if (VALUE_BITSIZE (toval))
331 {
332 int v; /* FIXME, this won't work for large bitfields */
333 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
334 (char *) &v, sizeof v);
335 modify_field ((char *) &v, value_as_long (fromval),
336 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
337 write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
338 (char *)&v, sizeof v);
339 }
340 else if (use_buffer)
341 write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
342 raw_buffer, use_buffer);
343 else
344 write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
345 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
346 break;
347
348 case lval_register:
349 if (VALUE_BITSIZE (toval))
350 {
351 int v;
352
353 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
354 (char *) &v, sizeof v);
355 modify_field ((char *) &v, value_as_long (fromval),
356 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
357 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
358 (char *) &v, sizeof v);
359 }
360 else if (use_buffer)
361 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
362 raw_buffer, use_buffer);
363 else
364 {
365 /* Do any conversion necessary when storing this type to more
366 than one register. */
367 #ifdef REGISTER_CONVERT_FROM_TYPE
368 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
369 REGISTER_CONVERT_FROM_TYPE(VALUE_REGNO (toval), type, raw_buffer);
370 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
371 raw_buffer, TYPE_LENGTH (type));
372 #else
373 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
374 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
375 #endif
376 }
377 break;
378
379 case lval_reg_frame_relative:
380 {
381 /* value is stored in a series of registers in the frame
382 specified by the structure. Copy that value out, modify
383 it, and copy it back in. */
384 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
385 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
386 int byte_offset = VALUE_OFFSET (toval) % reg_size;
387 int reg_offset = VALUE_OFFSET (toval) / reg_size;
388 int amount_copied;
389 char *buffer = (char *) alloca (amount_to_copy);
390 int regno;
391 FRAME frame;
392
393 /* Figure out which frame this is in currently. */
394 for (frame = get_current_frame ();
395 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
396 frame = get_prev_frame (frame))
397 ;
398
399 if (!frame)
400 error ("Value being assigned to is no longer active.");
401
402 amount_to_copy += (reg_size - amount_to_copy % reg_size);
403
404 /* Copy it out. */
405 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
406 amount_copied = 0);
407 amount_copied < amount_to_copy;
408 amount_copied += reg_size, regno++)
409 {
410 get_saved_register (buffer + amount_copied,
411 (int *)NULL, (CORE_ADDR *)NULL,
412 frame, regno, (enum lval_type *)NULL);
413 }
414
415 /* Modify what needs to be modified. */
416 if (VALUE_BITSIZE (toval))
417 modify_field (buffer + byte_offset,
418 value_as_long (fromval),
419 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
420 else if (use_buffer)
421 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
422 else
423 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
424 TYPE_LENGTH (type));
425
426 /* Copy it back. */
427 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
428 amount_copied = 0);
429 amount_copied < amount_to_copy;
430 amount_copied += reg_size, regno++)
431 {
432 enum lval_type lval;
433 CORE_ADDR addr;
434 int optim;
435
436 /* Just find out where to put it. */
437 get_saved_register ((char *)NULL,
438 &optim, &addr, frame, regno, &lval);
439
440 if (optim)
441 error ("Attempt to assign to a value that was optimized out.");
442 if (lval == lval_memory)
443 write_memory (addr, buffer + amount_copied, reg_size);
444 else if (lval == lval_register)
445 write_register_bytes (addr, buffer + amount_copied, reg_size);
446 else
447 error ("Attempt to assign to an unmodifiable value.");
448 }
449 }
450 break;
451
452
453 default:
454 error ("Left side of = operation is not an lvalue.");
455 }
456
457 /* Return a value just like TOVAL except with the contents of FROMVAL
458 (except in the case of the type if TOVAL is an internalvar). */
459
460 if (VALUE_LVAL (toval) == lval_internalvar
461 || VALUE_LVAL (toval) == lval_internalvar_component)
462 {
463 type = VALUE_TYPE (fromval);
464 }
465
466 val = allocate_value (type);
467 memcpy (val, toval, VALUE_CONTENTS_RAW (val) - (char *) val);
468 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
469 TYPE_LENGTH (type));
470 VALUE_TYPE (val) = type;
471
472 return val;
473 }
474
475 /* Extend a value VAL to COUNT repetitions of its type. */
476
477 value
478 value_repeat (arg1, count)
479 value arg1;
480 int count;
481 {
482 register value val;
483
484 if (VALUE_LVAL (arg1) != lval_memory)
485 error ("Only values in memory can be extended with '@'.");
486 if (count < 1)
487 error ("Invalid number %d of repetitions.", count);
488
489 val = allocate_repeat_value (VALUE_TYPE (arg1), count);
490
491 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
492 VALUE_CONTENTS_RAW (val),
493 TYPE_LENGTH (VALUE_TYPE (val)) * count);
494 VALUE_LVAL (val) = lval_memory;
495 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
496
497 return val;
498 }
499
500 value
501 value_of_variable (var, b)
502 struct symbol *var;
503 struct block *b;
504 {
505 value val;
506 FRAME fr;
507
508 if (b == NULL)
509 /* Use selected frame. */
510 fr = NULL;
511 else
512 {
513 fr = block_innermost_frame (b);
514 if (fr == NULL)
515 {
516 if (BLOCK_FUNCTION (b) != NULL
517 && SYMBOL_NAME (BLOCK_FUNCTION (b)) != NULL)
518 error ("No frame is currently executing in block %s.",
519 SYMBOL_NAME (BLOCK_FUNCTION (b)));
520 else
521 error ("No frame is currently executing in specified block");
522 }
523 }
524 val = read_var_value (var, fr);
525 if (val == 0)
526 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
527 return val;
528 }
529
530 /* Given a value which is an array, return a value which is a pointer to its
531 first element, regardless of whether or not the array has a nonzero lower
532 bound.
533
534 FIXME: A previous comment here indicated that this routine should be
535 substracting the array's lower bound. It's not clear to me that this
536 is correct. Given an array subscripting operation, it would certainly
537 work to do the adjustment here, essentially computing:
538
539 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
540
541 However I believe a more appropriate and logical place to account for
542 the lower bound is to do so in value_subscript, essentially computing:
543
544 (&array[0] + ((index - lowerbound) * sizeof array[0]))
545
546 As further evidence consider what would happen with operations other
547 than array subscripting, where the caller would get back a value that
548 had an address somewhere before the actual first element of the array,
549 and the information about the lower bound would be lost because of
550 the coercion to pointer type.
551 */
552
553 value
554 value_coerce_array (arg1)
555 value arg1;
556 {
557 register struct type *type;
558
559 if (VALUE_LVAL (arg1) != lval_memory)
560 error ("Attempt to take address of value not located in memory.");
561
562 /* Get type of elements. */
563 if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_ARRAY)
564 type = TYPE_TARGET_TYPE (VALUE_TYPE (arg1));
565 else
566 /* A phony array made by value_repeat.
567 Its type is the type of the elements, not an array type. */
568 type = VALUE_TYPE (arg1);
569
570 return value_from_longest (lookup_pointer_type (type),
571 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
572 }
573
574 /* Given a value which is a function, return a value which is a pointer
575 to it. */
576
577 value
578 value_coerce_function (arg1)
579 value arg1;
580 {
581
582 if (VALUE_LVAL (arg1) != lval_memory)
583 error ("Attempt to take address of value not located in memory.");
584
585 return value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)),
586 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
587 }
588
589 /* Return a pointer value for the object for which ARG1 is the contents. */
590
591 value
592 value_addr (arg1)
593 value arg1;
594 {
595 struct type *type = VALUE_TYPE (arg1);
596 if (TYPE_CODE (type) == TYPE_CODE_REF)
597 {
598 /* Copy the value, but change the type from (T&) to (T*).
599 We keep the same location information, which is efficient,
600 and allows &(&X) to get the location containing the reference. */
601 value arg2 = value_copy (arg1);
602 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
603 return arg2;
604 }
605 if (VALUE_REPEATED (arg1)
606 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
607 return value_coerce_array (arg1);
608 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
609 return value_coerce_function (arg1);
610
611 if (VALUE_LVAL (arg1) != lval_memory)
612 error ("Attempt to take address of value not located in memory.");
613
614 return value_from_longest (lookup_pointer_type (type),
615 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
616 }
617
618 /* Given a value of a pointer type, apply the C unary * operator to it. */
619
620 value
621 value_ind (arg1)
622 value arg1;
623 {
624 COERCE_ARRAY (arg1);
625
626 if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_MEMBER)
627 error ("not implemented: member types in value_ind");
628
629 /* Allow * on an integer so we can cast it to whatever we want.
630 This returns an int, which seems like the most C-like thing
631 to do. "long long" variables are rare enough that
632 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
633 if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_INT)
634 return value_at (builtin_type_int,
635 (CORE_ADDR) value_as_long (arg1));
636 else if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_PTR)
637 return value_at_lazy (TYPE_TARGET_TYPE (VALUE_TYPE (arg1)),
638 value_as_pointer (arg1));
639 error ("Attempt to take contents of a non-pointer value.");
640 return 0; /* For lint -- never reached */
641 }
642 \f
643 /* Pushing small parts of stack frames. */
644
645 /* Push one word (the size of object that a register holds). */
646
647 CORE_ADDR
648 push_word (sp, word)
649 CORE_ADDR sp;
650 REGISTER_TYPE word;
651 {
652 register int len = sizeof (REGISTER_TYPE);
653 char buffer[MAX_REGISTER_RAW_SIZE];
654
655 store_unsigned_integer (buffer, len, word);
656 #if 1 INNER_THAN 2
657 sp -= len;
658 write_memory (sp, buffer, len);
659 #else /* stack grows upward */
660 write_memory (sp, buffer, len);
661 sp += len;
662 #endif /* stack grows upward */
663
664 return sp;
665 }
666
667 /* Push LEN bytes with data at BUFFER. */
668
669 CORE_ADDR
670 push_bytes (sp, buffer, len)
671 CORE_ADDR sp;
672 char *buffer;
673 int len;
674 {
675 #if 1 INNER_THAN 2
676 sp -= len;
677 write_memory (sp, buffer, len);
678 #else /* stack grows upward */
679 write_memory (sp, buffer, len);
680 sp += len;
681 #endif /* stack grows upward */
682
683 return sp;
684 }
685
686 /* Push onto the stack the specified value VALUE. */
687
688 static CORE_ADDR
689 value_push (sp, arg)
690 register CORE_ADDR sp;
691 value arg;
692 {
693 register int len = TYPE_LENGTH (VALUE_TYPE (arg));
694
695 #if 1 INNER_THAN 2
696 sp -= len;
697 write_memory (sp, VALUE_CONTENTS (arg), len);
698 #else /* stack grows upward */
699 write_memory (sp, VALUE_CONTENTS (arg), len);
700 sp += len;
701 #endif /* stack grows upward */
702
703 return sp;
704 }
705
706 /* Perform the standard coercions that are specified
707 for arguments to be passed to C functions. */
708
709 value
710 value_arg_coerce (arg)
711 value arg;
712 {
713 register struct type *type;
714
715 /* FIXME: We should coerce this according to the prototype (if we have
716 one). Right now we do a little bit of this in typecmp(), but that
717 doesn't always get called. For example, if passing a ref to a function
718 without a prototype, we probably should de-reference it. Currently
719 we don't. */
720
721 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_ENUM)
722 arg = value_cast (builtin_type_unsigned_int, arg);
723
724 #if 1 /* FIXME: This is only a temporary patch. -fnf */
725 if (VALUE_REPEATED (arg)
726 || TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_ARRAY)
727 arg = value_coerce_array (arg);
728 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FUNC)
729 arg = value_coerce_function (arg);
730 #endif
731
732 type = VALUE_TYPE (arg);
733
734 if (TYPE_CODE (type) == TYPE_CODE_INT
735 && TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
736 return value_cast (builtin_type_int, arg);
737
738 if (TYPE_CODE (type) == TYPE_CODE_FLT
739 && TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
740 return value_cast (builtin_type_double, arg);
741
742 return arg;
743 }
744
745 /* Push the value ARG, first coercing it as an argument
746 to a C function. */
747
748 static CORE_ADDR
749 value_arg_push (sp, arg)
750 register CORE_ADDR sp;
751 value arg;
752 {
753 return value_push (sp, value_arg_coerce (arg));
754 }
755
756 /* Determine a function's address and its return type from its value.
757 Calls error() if the function is not valid for calling. */
758
759 static CORE_ADDR
760 find_function_addr (function, retval_type)
761 value function;
762 struct type **retval_type;
763 {
764 register struct type *ftype = VALUE_TYPE (function);
765 register enum type_code code = TYPE_CODE (ftype);
766 struct type *value_type;
767 CORE_ADDR funaddr;
768
769 /* If it's a member function, just look at the function
770 part of it. */
771
772 /* Determine address to call. */
773 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
774 {
775 funaddr = VALUE_ADDRESS (function);
776 value_type = TYPE_TARGET_TYPE (ftype);
777 }
778 else if (code == TYPE_CODE_PTR)
779 {
780 funaddr = value_as_pointer (function);
781 if (TYPE_CODE (TYPE_TARGET_TYPE (ftype)) == TYPE_CODE_FUNC
782 || TYPE_CODE (TYPE_TARGET_TYPE (ftype)) == TYPE_CODE_METHOD)
783 value_type = TYPE_TARGET_TYPE (TYPE_TARGET_TYPE (ftype));
784 else
785 value_type = builtin_type_int;
786 }
787 else if (code == TYPE_CODE_INT)
788 {
789 /* Handle the case of functions lacking debugging info.
790 Their values are characters since their addresses are char */
791 if (TYPE_LENGTH (ftype) == 1)
792 funaddr = value_as_pointer (value_addr (function));
793 else
794 /* Handle integer used as address of a function. */
795 funaddr = (CORE_ADDR) value_as_long (function);
796
797 value_type = builtin_type_int;
798 }
799 else
800 error ("Invalid data type for function to be called.");
801
802 *retval_type = value_type;
803 return funaddr;
804 }
805
806 #if defined (CALL_DUMMY)
807 /* All this stuff with a dummy frame may seem unnecessarily complicated
808 (why not just save registers in GDB?). The purpose of pushing a dummy
809 frame which looks just like a real frame is so that if you call a
810 function and then hit a breakpoint (get a signal, etc), "backtrace"
811 will look right. Whether the backtrace needs to actually show the
812 stack at the time the inferior function was called is debatable, but
813 it certainly needs to not display garbage. So if you are contemplating
814 making dummy frames be different from normal frames, consider that. */
815
816 /* Perform a function call in the inferior.
817 ARGS is a vector of values of arguments (NARGS of them).
818 FUNCTION is a value, the function to be called.
819 Returns a value representing what the function returned.
820 May fail to return, if a breakpoint or signal is hit
821 during the execution of the function. */
822
823 value
824 call_function_by_hand (function, nargs, args)
825 value function;
826 int nargs;
827 value *args;
828 {
829 register CORE_ADDR sp;
830 register int i;
831 CORE_ADDR start_sp;
832 /* CALL_DUMMY is an array of words (REGISTER_TYPE), but each word
833 is in host byte order. It is switched to target byte order before calling
834 FIX_CALL_DUMMY. */
835 static REGISTER_TYPE dummy[] = CALL_DUMMY;
836 REGISTER_TYPE dummy1[sizeof dummy / sizeof (REGISTER_TYPE)];
837 CORE_ADDR old_sp;
838 struct type *value_type;
839 unsigned char struct_return;
840 CORE_ADDR struct_addr;
841 struct inferior_status inf_status;
842 struct cleanup *old_chain;
843 CORE_ADDR funaddr;
844 int using_gcc;
845 CORE_ADDR real_pc;
846
847 if (!target_has_execution)
848 noprocess();
849
850 save_inferior_status (&inf_status, 1);
851 old_chain = make_cleanup (restore_inferior_status, &inf_status);
852
853 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
854 (and POP_FRAME for restoring them). (At least on most machines)
855 they are saved on the stack in the inferior. */
856 PUSH_DUMMY_FRAME;
857
858 old_sp = sp = read_sp ();
859
860 #if 1 INNER_THAN 2 /* Stack grows down */
861 sp -= sizeof dummy;
862 start_sp = sp;
863 #else /* Stack grows up */
864 start_sp = sp;
865 sp += sizeof dummy;
866 #endif
867
868 funaddr = find_function_addr (function, &value_type);
869
870 {
871 struct block *b = block_for_pc (funaddr);
872 /* If compiled without -g, assume GCC. */
873 using_gcc = b == NULL || BLOCK_GCC_COMPILED (b);
874 }
875
876 /* Are we returning a value using a structure return or a normal
877 value return? */
878
879 struct_return = using_struct_return (function, funaddr, value_type,
880 using_gcc);
881
882 /* Create a call sequence customized for this function
883 and the number of arguments for it. */
884 for (i = 0; i < sizeof dummy / sizeof (REGISTER_TYPE); i++)
885 store_unsigned_integer (&dummy1[i], sizeof (REGISTER_TYPE),
886 (unsigned LONGEST)dummy[i]);
887
888 #ifdef GDB_TARGET_IS_HPPA
889 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
890 value_type, using_gcc);
891 #else
892 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
893 value_type, using_gcc);
894 real_pc = start_sp;
895 #endif
896
897 #if CALL_DUMMY_LOCATION == ON_STACK
898 write_memory (start_sp, (char *)dummy1, sizeof dummy);
899
900 #else /* Not on stack. */
901 #if CALL_DUMMY_LOCATION == BEFORE_TEXT_END
902 /* Convex Unix prohibits executing in the stack segment. */
903 /* Hope there is empty room at the top of the text segment. */
904 {
905 extern CORE_ADDR text_end;
906 static checked = 0;
907 if (!checked)
908 for (start_sp = text_end - sizeof dummy; start_sp < text_end; ++start_sp)
909 if (read_memory_integer (start_sp, 1) != 0)
910 error ("text segment full -- no place to put call");
911 checked = 1;
912 sp = old_sp;
913 start_sp = text_end - sizeof dummy;
914 write_memory (start_sp, (char *)dummy1, sizeof dummy);
915 }
916 #else /* After text_end. */
917 {
918 extern CORE_ADDR text_end;
919 int errcode;
920 sp = old_sp;
921 start_sp = text_end;
922 errcode = target_write_memory (start_sp, (char *)dummy1, sizeof dummy);
923 if (errcode != 0)
924 error ("Cannot write text segment -- call_function failed");
925 }
926 #endif /* After text_end. */
927 #endif /* Not on stack. */
928
929 #ifdef lint
930 sp = old_sp; /* It really is used, for some ifdef's... */
931 #endif
932
933 #ifdef STACK_ALIGN
934 /* If stack grows down, we must leave a hole at the top. */
935 {
936 int len = 0;
937
938 /* Reserve space for the return structure to be written on the
939 stack, if necessary */
940
941 if (struct_return)
942 len += TYPE_LENGTH (value_type);
943
944 for (i = nargs - 1; i >= 0; i--)
945 len += TYPE_LENGTH (VALUE_TYPE (value_arg_coerce (args[i])));
946 #ifdef CALL_DUMMY_STACK_ADJUST
947 len += CALL_DUMMY_STACK_ADJUST;
948 #endif
949 #if 1 INNER_THAN 2
950 sp -= STACK_ALIGN (len) - len;
951 #else
952 sp += STACK_ALIGN (len) - len;
953 #endif
954 }
955 #endif /* STACK_ALIGN */
956
957 /* Reserve space for the return structure to be written on the
958 stack, if necessary */
959
960 if (struct_return)
961 {
962 #if 1 INNER_THAN 2
963 sp -= TYPE_LENGTH (value_type);
964 struct_addr = sp;
965 #else
966 struct_addr = sp;
967 sp += TYPE_LENGTH (value_type);
968 #endif
969 }
970
971 #if defined (REG_STRUCT_HAS_ADDR)
972 {
973 /* This is a machine like the sparc, where we need to pass a pointer
974 to the structure, not the structure itself. */
975 if (REG_STRUCT_HAS_ADDR (using_gcc))
976 for (i = nargs - 1; i >= 0; i--)
977 if (TYPE_CODE (VALUE_TYPE (args[i])) == TYPE_CODE_STRUCT)
978 {
979 CORE_ADDR addr;
980 #if !(1 INNER_THAN 2)
981 /* The stack grows up, so the address of the thing we push
982 is the stack pointer before we push it. */
983 addr = sp;
984 #endif
985 /* Push the structure. */
986 sp = value_push (sp, args[i]);
987 #if 1 INNER_THAN 2
988 /* The stack grows down, so the address of the thing we push
989 is the stack pointer after we push it. */
990 addr = sp;
991 #endif
992 /* The value we're going to pass is the address of the thing
993 we just pushed. */
994 args[i] = value_from_longest (lookup_pointer_type (value_type),
995 (LONGEST) addr);
996 }
997 }
998 #endif /* REG_STRUCT_HAS_ADDR. */
999
1000 #ifdef PUSH_ARGUMENTS
1001 PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr);
1002 #else /* !PUSH_ARGUMENTS */
1003 for (i = nargs - 1; i >= 0; i--)
1004 sp = value_arg_push (sp, args[i]);
1005 #endif /* !PUSH_ARGUMENTS */
1006
1007 #ifdef CALL_DUMMY_STACK_ADJUST
1008 #if 1 INNER_THAN 2
1009 sp -= CALL_DUMMY_STACK_ADJUST;
1010 #else
1011 sp += CALL_DUMMY_STACK_ADJUST;
1012 #endif
1013 #endif /* CALL_DUMMY_STACK_ADJUST */
1014
1015 /* Store the address at which the structure is supposed to be
1016 written. Note that this (and the code which reserved the space
1017 above) assumes that gcc was used to compile this function. Since
1018 it doesn't cost us anything but space and if the function is pcc
1019 it will ignore this value, we will make that assumption.
1020
1021 Also note that on some machines (like the sparc) pcc uses a
1022 convention like gcc's. */
1023
1024 if (struct_return)
1025 STORE_STRUCT_RETURN (struct_addr, sp);
1026
1027 /* Write the stack pointer. This is here because the statements above
1028 might fool with it. On SPARC, this write also stores the register
1029 window into the right place in the new stack frame, which otherwise
1030 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1031 write_sp (sp);
1032
1033 /* Figure out the value returned by the function. */
1034 {
1035 char retbuf[REGISTER_BYTES];
1036 char *name;
1037 struct symbol *symbol;
1038
1039 name = NULL;
1040 symbol = find_pc_function (funaddr);
1041 if (symbol)
1042 {
1043 name = SYMBOL_SOURCE_NAME (symbol);
1044 }
1045 else
1046 {
1047 /* Try the minimal symbols. */
1048 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1049
1050 if (msymbol)
1051 {
1052 name = SYMBOL_SOURCE_NAME (msymbol);
1053 }
1054 }
1055 if (name == NULL)
1056 {
1057 char format[80];
1058 sprintf (format, "at %s", local_hex_format ());
1059 name = alloca (80);
1060 sprintf (name, format, funaddr);
1061 }
1062
1063 /* Execute the stack dummy routine, calling FUNCTION.
1064 When it is done, discard the empty frame
1065 after storing the contents of all regs into retbuf. */
1066 run_stack_dummy (name, real_pc + CALL_DUMMY_START_OFFSET, retbuf);
1067
1068 do_cleanups (old_chain);
1069
1070 return value_being_returned (value_type, retbuf, struct_return);
1071 }
1072 }
1073 #else /* no CALL_DUMMY. */
1074 value
1075 call_function_by_hand (function, nargs, args)
1076 value function;
1077 int nargs;
1078 value *args;
1079 {
1080 error ("Cannot invoke functions on this machine.");
1081 }
1082 #endif /* no CALL_DUMMY. */
1083
1084 \f
1085 /* Create a value for an array by allocating space in the inferior, copying
1086 the data into that space, and then setting up an array value.
1087
1088 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1089 populated from the values passed in ELEMVEC.
1090
1091 The element type of the array is inherited from the type of the
1092 first element, and all elements must have the same size (though we
1093 don't currently enforce any restriction on their types). */
1094
1095 value
1096 value_array (lowbound, highbound, elemvec)
1097 int lowbound;
1098 int highbound;
1099 value *elemvec;
1100 {
1101 int nelem;
1102 int idx;
1103 int typelength;
1104 value val;
1105 struct type *rangetype;
1106 struct type *arraytype;
1107 CORE_ADDR addr;
1108
1109 /* Validate that the bounds are reasonable and that each of the elements
1110 have the same size. */
1111
1112 nelem = highbound - lowbound + 1;
1113 if (nelem <= 0)
1114 {
1115 error ("bad array bounds (%d, %d)", lowbound, highbound);
1116 }
1117 typelength = TYPE_LENGTH (VALUE_TYPE (elemvec[0]));
1118 for (idx = 0; idx < nelem; idx++)
1119 {
1120 if (TYPE_LENGTH (VALUE_TYPE (elemvec[idx])) != typelength)
1121 {
1122 error ("array elements must all be the same size");
1123 }
1124 }
1125
1126 /* Allocate space to store the array in the inferior, and then initialize
1127 it by copying in each element. FIXME: Is it worth it to create a
1128 local buffer in which to collect each value and then write all the
1129 bytes in one operation? */
1130
1131 addr = allocate_space_in_inferior (nelem * typelength);
1132 for (idx = 0; idx < nelem; idx++)
1133 {
1134 write_memory (addr + (idx * typelength), VALUE_CONTENTS (elemvec[idx]),
1135 typelength);
1136 }
1137
1138 /* Create the array type and set up an array value to be evaluated lazily. */
1139
1140 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1141 lowbound, highbound);
1142 arraytype = create_array_type ((struct type *) NULL,
1143 VALUE_TYPE (elemvec[0]), rangetype);
1144 val = value_at_lazy (arraytype, addr);
1145 return (val);
1146 }
1147
1148 /* Create a value for a string constant by allocating space in the inferior,
1149 copying the data into that space, and returning the address with type
1150 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1151 of characters.
1152 Note that string types are like array of char types with a lower bound of
1153 zero and an upper bound of LEN - 1. Also note that the string may contain
1154 embedded null bytes. */
1155
1156 value
1157 value_string (ptr, len)
1158 char *ptr;
1159 int len;
1160 {
1161 value val;
1162 struct type *rangetype;
1163 struct type *stringtype;
1164 CORE_ADDR addr;
1165
1166 /* Allocate space to store the string in the inferior, and then
1167 copy LEN bytes from PTR in gdb to that address in the inferior. */
1168
1169 addr = allocate_space_in_inferior (len);
1170 write_memory (addr, ptr, len);
1171
1172 /* Create the string type and set up a string value to be evaluated
1173 lazily. */
1174
1175 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1176 0, len - 1);
1177 stringtype = create_string_type ((struct type *) NULL, rangetype);
1178 val = value_at_lazy (stringtype, addr);
1179 return (val);
1180 }
1181 \f
1182 /* See if we can pass arguments in T2 to a function which takes arguments
1183 of types T1. Both t1 and t2 are NULL-terminated vectors. If some
1184 arguments need coercion of some sort, then the coerced values are written
1185 into T2. Return value is 0 if the arguments could be matched, or the
1186 position at which they differ if not.
1187
1188 STATICP is nonzero if the T1 argument list came from a
1189 static member function.
1190
1191 For non-static member functions, we ignore the first argument,
1192 which is the type of the instance variable. This is because we want
1193 to handle calls with objects from derived classes. This is not
1194 entirely correct: we should actually check to make sure that a
1195 requested operation is type secure, shouldn't we? FIXME. */
1196
1197 static int
1198 typecmp (staticp, t1, t2)
1199 int staticp;
1200 struct type *t1[];
1201 value t2[];
1202 {
1203 int i;
1204
1205 if (t2 == 0)
1206 return 1;
1207 if (staticp && t1 == 0)
1208 return t2[1] != 0;
1209 if (t1 == 0)
1210 return 1;
1211 if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID) return 0;
1212 if (t1[!staticp] == 0) return 0;
1213 for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
1214 {
1215 if (! t2[i])
1216 return i+1;
1217 if (TYPE_CODE (t1[i]) == TYPE_CODE_REF
1218 /* We should be doing hairy argument matching, as below. */
1219 && (TYPE_CODE (TYPE_TARGET_TYPE (t1[i]))
1220 == TYPE_CODE (VALUE_TYPE (t2[i]))))
1221 {
1222 t2[i] = value_addr (t2[i]);
1223 continue;
1224 }
1225
1226 if (TYPE_CODE (t1[i]) == TYPE_CODE_PTR
1227 && TYPE_CODE (VALUE_TYPE (t2[i])) == TYPE_CODE_ARRAY)
1228 /* Array to pointer is a `trivial conversion' according to the ARM. */
1229 continue;
1230
1231 /* We should be doing much hairier argument matching (see section 13.2
1232 of the ARM), but as a quick kludge, just check for the same type
1233 code. */
1234 if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
1235 return i+1;
1236 }
1237 if (!t1[i]) return 0;
1238 return t2[i] ? i+1 : 0;
1239 }
1240
1241 /* Helper function used by value_struct_elt to recurse through baseclasses.
1242 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1243 and search in it assuming it has (class) type TYPE.
1244 If found, return value, else return NULL.
1245
1246 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
1247 look for a baseclass named NAME. */
1248
1249 static value
1250 search_struct_field (name, arg1, offset, type, looking_for_baseclass)
1251 char *name;
1252 register value arg1;
1253 int offset;
1254 register struct type *type;
1255 int looking_for_baseclass;
1256 {
1257 int i;
1258
1259 check_stub_type (type);
1260
1261 if (! looking_for_baseclass)
1262 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1263 {
1264 char *t_field_name = TYPE_FIELD_NAME (type, i);
1265
1266 if (t_field_name && STREQ (t_field_name, name))
1267 {
1268 value v;
1269 if (TYPE_FIELD_STATIC (type, i))
1270 {
1271 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, i);
1272 struct symbol *sym =
1273 lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
1274 if (sym == NULL)
1275 error ("Internal error: could not find physical static variable named %s",
1276 phys_name);
1277 v = value_at (TYPE_FIELD_TYPE (type, i),
1278 (CORE_ADDR)SYMBOL_BLOCK_VALUE (sym));
1279 }
1280 else
1281 v = value_primitive_field (arg1, offset, i, type);
1282 if (v == 0)
1283 error("there is no field named %s", name);
1284 return v;
1285 }
1286 }
1287
1288 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1289 {
1290 value v;
1291 /* If we are looking for baseclasses, this is what we get when we
1292 hit them. But it could happen that the base part's member name
1293 is not yet filled in. */
1294 int found_baseclass = (looking_for_baseclass
1295 && TYPE_BASECLASS_NAME (type, i) != NULL
1296 && STREQ (name, TYPE_BASECLASS_NAME (type, i)));
1297
1298 if (BASETYPE_VIA_VIRTUAL (type, i))
1299 {
1300 value v2;
1301 /* Fix to use baseclass_offset instead. FIXME */
1302 baseclass_addr (type, i, VALUE_CONTENTS (arg1) + offset,
1303 &v2, (int *)NULL);
1304 if (v2 == 0)
1305 error ("virtual baseclass botch");
1306 if (found_baseclass)
1307 return v2;
1308 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
1309 looking_for_baseclass);
1310 }
1311 else if (found_baseclass)
1312 v = value_primitive_field (arg1, offset, i, type);
1313 else
1314 v = search_struct_field (name, arg1,
1315 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
1316 TYPE_BASECLASS (type, i),
1317 looking_for_baseclass);
1318 if (v) return v;
1319 }
1320 return NULL;
1321 }
1322
1323 /* Helper function used by value_struct_elt to recurse through baseclasses.
1324 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1325 and search in it assuming it has (class) type TYPE.
1326 If found, return value, else return NULL. */
1327
1328 static value
1329 search_struct_method (name, arg1p, args, offset, static_memfuncp, type)
1330 char *name;
1331 register value *arg1p, *args;
1332 int offset, *static_memfuncp;
1333 register struct type *type;
1334 {
1335 int i;
1336
1337 check_stub_type (type);
1338 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1339 {
1340 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1341 if (t_field_name && STREQ (t_field_name, name))
1342 {
1343 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
1344 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1345
1346 if (j > 0 && args == 0)
1347 error ("cannot resolve overloaded method `%s'", name);
1348 while (j >= 0)
1349 {
1350 if (TYPE_FN_FIELD_STUB (f, j))
1351 check_stub_method (type, i, j);
1352 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
1353 TYPE_FN_FIELD_ARGS (f, j), args))
1354 {
1355 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
1356 return (value)value_virtual_fn_field (arg1p, f, j, type, offset);
1357 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
1358 *static_memfuncp = 1;
1359 return (value)value_fn_field (arg1p, f, j, type, offset);
1360 }
1361 j--;
1362 }
1363 }
1364 }
1365
1366 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1367 {
1368 value v;
1369 int base_offset;
1370
1371 if (BASETYPE_VIA_VIRTUAL (type, i))
1372 {
1373 base_offset = baseclass_offset (type, i, *arg1p, offset);
1374 if (base_offset == -1)
1375 error ("virtual baseclass botch");
1376 }
1377 else
1378 {
1379 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1380 }
1381 v = search_struct_method (name, arg1p, args, base_offset + offset,
1382 static_memfuncp, TYPE_BASECLASS (type, i));
1383 if (v)
1384 {
1385 /* FIXME-bothner: Why is this commented out? Why is it here? */
1386 /* *arg1p = arg1_tmp;*/
1387 return v;
1388 }
1389 }
1390 return NULL;
1391 }
1392
1393 /* Given *ARGP, a value of type (pointer to a)* structure/union,
1394 extract the component named NAME from the ultimate target structure/union
1395 and return it as a value with its appropriate type.
1396 ERR is used in the error message if *ARGP's type is wrong.
1397
1398 C++: ARGS is a list of argument types to aid in the selection of
1399 an appropriate method. Also, handle derived types.
1400
1401 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
1402 where the truthvalue of whether the function that was resolved was
1403 a static member function or not is stored.
1404
1405 ERR is an error message to be printed in case the field is not found. */
1406
1407 value
1408 value_struct_elt (argp, args, name, static_memfuncp, err)
1409 register value *argp, *args;
1410 char *name;
1411 int *static_memfuncp;
1412 char *err;
1413 {
1414 register struct type *t;
1415 value v;
1416
1417 COERCE_ARRAY (*argp);
1418
1419 t = VALUE_TYPE (*argp);
1420
1421 /* Follow pointers until we get to a non-pointer. */
1422
1423 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1424 {
1425 *argp = value_ind (*argp);
1426 /* Don't coerce fn pointer to fn and then back again! */
1427 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
1428 COERCE_ARRAY (*argp);
1429 t = VALUE_TYPE (*argp);
1430 }
1431
1432 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
1433 error ("not implemented: member type in value_struct_elt");
1434
1435 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
1436 && TYPE_CODE (t) != TYPE_CODE_UNION)
1437 error ("Attempt to extract a component of a value that is not a %s.", err);
1438
1439 /* Assume it's not, unless we see that it is. */
1440 if (static_memfuncp)
1441 *static_memfuncp =0;
1442
1443 if (!args)
1444 {
1445 /* if there are no arguments ...do this... */
1446
1447 /* Try as a field first, because if we succeed, there
1448 is less work to be done. */
1449 v = search_struct_field (name, *argp, 0, t, 0);
1450 if (v)
1451 return v;
1452
1453 /* C++: If it was not found as a data field, then try to
1454 return it as a pointer to a method. */
1455
1456 if (destructor_name_p (name, t))
1457 error ("Cannot get value of destructor");
1458
1459 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
1460
1461 if (v == 0)
1462 {
1463 if (TYPE_NFN_FIELDS (t))
1464 error ("There is no member or method named %s.", name);
1465 else
1466 error ("There is no member named %s.", name);
1467 }
1468 return v;
1469 }
1470
1471 if (destructor_name_p (name, t))
1472 {
1473 if (!args[1])
1474 {
1475 /* destructors are a special case. */
1476 return (value)value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, 0),
1477 TYPE_FN_FIELDLIST_LENGTH (t, 0),
1478 0, 0);
1479 }
1480 else
1481 {
1482 error ("destructor should not have any argument");
1483 }
1484 }
1485 else
1486 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
1487
1488 if (v == 0)
1489 {
1490 /* See if user tried to invoke data as function. If so,
1491 hand it back. If it's not callable (i.e., a pointer to function),
1492 gdb should give an error. */
1493 v = search_struct_field (name, *argp, 0, t, 0);
1494 }
1495
1496 if (!v)
1497 error ("Structure has no component named %s.", name);
1498 return v;
1499 }
1500
1501 /* C++: return 1 is NAME is a legitimate name for the destructor
1502 of type TYPE. If TYPE does not have a destructor, or
1503 if NAME is inappropriate for TYPE, an error is signaled. */
1504 int
1505 destructor_name_p (name, type)
1506 const char *name;
1507 const struct type *type;
1508 {
1509 /* destructors are a special case. */
1510
1511 if (name[0] == '~')
1512 {
1513 char *dname = type_name_no_tag (type);
1514 if (!STREQ (dname, name+1))
1515 error ("name of destructor must equal name of class");
1516 else
1517 return 1;
1518 }
1519 return 0;
1520 }
1521
1522 /* Helper function for check_field: Given TYPE, a structure/union,
1523 return 1 if the component named NAME from the ultimate
1524 target structure/union is defined, otherwise, return 0. */
1525
1526 static int
1527 check_field_in (type, name)
1528 register struct type *type;
1529 const char *name;
1530 {
1531 register int i;
1532
1533 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1534 {
1535 char *t_field_name = TYPE_FIELD_NAME (type, i);
1536 if (t_field_name && STREQ (t_field_name, name))
1537 return 1;
1538 }
1539
1540 /* C++: If it was not found as a data field, then try to
1541 return it as a pointer to a method. */
1542
1543 /* Destructors are a special case. */
1544 if (destructor_name_p (name, type))
1545 return 1;
1546
1547 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1548 {
1549 if (STREQ (TYPE_FN_FIELDLIST_NAME (type, i), name))
1550 return 1;
1551 }
1552
1553 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1554 if (check_field_in (TYPE_BASECLASS (type, i), name))
1555 return 1;
1556
1557 return 0;
1558 }
1559
1560
1561 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
1562 return 1 if the component named NAME from the ultimate
1563 target structure/union is defined, otherwise, return 0. */
1564
1565 int
1566 check_field (arg1, name)
1567 register value arg1;
1568 const char *name;
1569 {
1570 register struct type *t;
1571
1572 COERCE_ARRAY (arg1);
1573
1574 t = VALUE_TYPE (arg1);
1575
1576 /* Follow pointers until we get to a non-pointer. */
1577
1578 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1579 t = TYPE_TARGET_TYPE (t);
1580
1581 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
1582 error ("not implemented: member type in check_field");
1583
1584 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
1585 && TYPE_CODE (t) != TYPE_CODE_UNION)
1586 error ("Internal error: `this' is not an aggregate");
1587
1588 return check_field_in (t, name);
1589 }
1590
1591 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
1592 return the address of this member as a "pointer to member"
1593 type. If INTYPE is non-null, then it will be the type
1594 of the member we are looking for. This will help us resolve
1595 "pointers to member functions". This function is used
1596 to resolve user expressions of the form "DOMAIN::NAME". */
1597
1598 value
1599 value_struct_elt_for_reference (domain, offset, curtype, name, intype)
1600 struct type *domain, *curtype, *intype;
1601 int offset;
1602 char *name;
1603 {
1604 register struct type *t = curtype;
1605 register int i;
1606 value v;
1607
1608 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
1609 && TYPE_CODE (t) != TYPE_CODE_UNION)
1610 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
1611
1612 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
1613 {
1614 char *t_field_name = TYPE_FIELD_NAME (t, i);
1615
1616 if (t_field_name && STREQ (t_field_name, name))
1617 {
1618 if (TYPE_FIELD_STATIC (t, i))
1619 {
1620 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (t, i);
1621 struct symbol *sym =
1622 lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
1623 if (sym == NULL)
1624 error ("Internal error: could not find physical static variable named %s",
1625 phys_name);
1626 return value_at (SYMBOL_TYPE (sym),
1627 (CORE_ADDR)SYMBOL_BLOCK_VALUE (sym));
1628 }
1629 if (TYPE_FIELD_PACKED (t, i))
1630 error ("pointers to bitfield members not allowed");
1631
1632 return value_from_longest
1633 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
1634 domain)),
1635 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
1636 }
1637 }
1638
1639 /* C++: If it was not found as a data field, then try to
1640 return it as a pointer to a method. */
1641
1642 /* Destructors are a special case. */
1643 if (destructor_name_p (name, t))
1644 {
1645 error ("member pointers to destructors not implemented yet");
1646 }
1647
1648 /* Perform all necessary dereferencing. */
1649 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
1650 intype = TYPE_TARGET_TYPE (intype);
1651
1652 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
1653 {
1654 if (STREQ (TYPE_FN_FIELDLIST_NAME (t, i), name))
1655 {
1656 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
1657 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
1658
1659 if (intype == 0 && j > 1)
1660 error ("non-unique member `%s' requires type instantiation", name);
1661 if (intype)
1662 {
1663 while (j--)
1664 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
1665 break;
1666 if (j < 0)
1667 error ("no member function matches that type instantiation");
1668 }
1669 else
1670 j = 0;
1671
1672 if (TYPE_FN_FIELD_STUB (f, j))
1673 check_stub_method (t, i, j);
1674 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
1675 {
1676 return value_from_longest
1677 (lookup_reference_type
1678 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
1679 domain)),
1680 (LONGEST) METHOD_PTR_FROM_VOFFSET
1681 (TYPE_FN_FIELD_VOFFSET (f, j)));
1682 }
1683 else
1684 {
1685 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
1686 0, VAR_NAMESPACE, 0, NULL);
1687 if (s == NULL)
1688 {
1689 v = 0;
1690 }
1691 else
1692 {
1693 v = read_var_value (s, 0);
1694 #if 0
1695 VALUE_TYPE (v) = lookup_reference_type
1696 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
1697 domain));
1698 #endif
1699 }
1700 return v;
1701 }
1702 }
1703 }
1704 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
1705 {
1706 value v;
1707 int base_offset;
1708
1709 if (BASETYPE_VIA_VIRTUAL (t, i))
1710 base_offset = 0;
1711 else
1712 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
1713 v = value_struct_elt_for_reference (domain,
1714 offset + base_offset,
1715 TYPE_BASECLASS (t, i),
1716 name,
1717 intype);
1718 if (v)
1719 return v;
1720 }
1721 return 0;
1722 }
1723
1724 /* C++: return the value of the class instance variable, if one exists.
1725 Flag COMPLAIN signals an error if the request is made in an
1726 inappropriate context. */
1727 value
1728 value_of_this (complain)
1729 int complain;
1730 {
1731 extern FRAME selected_frame;
1732 struct symbol *func, *sym;
1733 struct block *b;
1734 int i;
1735 static const char funny_this[] = "this";
1736 value this;
1737
1738 if (selected_frame == 0)
1739 if (complain)
1740 error ("no frame selected");
1741 else return 0;
1742
1743 func = get_frame_function (selected_frame);
1744 if (!func)
1745 {
1746 if (complain)
1747 error ("no `this' in nameless context");
1748 else return 0;
1749 }
1750
1751 b = SYMBOL_BLOCK_VALUE (func);
1752 i = BLOCK_NSYMS (b);
1753 if (i <= 0)
1754 if (complain)
1755 error ("no args, no `this'");
1756 else return 0;
1757
1758 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
1759 symbol instead of the LOC_ARG one (if both exist). */
1760 sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE);
1761 if (sym == NULL)
1762 {
1763 if (complain)
1764 error ("current stack frame not in method");
1765 else
1766 return NULL;
1767 }
1768
1769 this = read_var_value (sym, selected_frame);
1770 if (this == 0 && complain)
1771 error ("`this' argument at unknown address");
1772 return this;
1773 }