* valops.c (value_assign): Returned value is never lazy. If a
[binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008, 2009, 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcore.h"
29 #include "target.h"
30 #include "demangle.h"
31 #include "language.h"
32 #include "gdbcmd.h"
33 #include "regcache.h"
34 #include "cp-abi.h"
35 #include "block.h"
36 #include "infcall.h"
37 #include "dictionary.h"
38 #include "cp-support.h"
39 #include "dfp.h"
40 #include "user-regs.h"
41
42 #include <errno.h>
43 #include "gdb_string.h"
44 #include "gdb_assert.h"
45 #include "cp-support.h"
46 #include "observer.h"
47 #include "objfiles.h"
48 #include "symtab.h"
49 #include "exceptions.h"
50
51 extern int overload_debug;
52 /* Local functions. */
53
54 static int typecmp (int staticp, int varargs, int nargs,
55 struct field t1[], struct value *t2[]);
56
57 static struct value *search_struct_field (const char *, struct value *,
58 int, struct type *, int);
59
60 static struct value *search_struct_method (const char *, struct value **,
61 struct value **,
62 int, int *, struct type *);
63
64 static int find_oload_champ_namespace (struct type **, int,
65 const char *, const char *,
66 struct symbol ***,
67 struct badness_vector **,
68 const int no_adl);
69
70 static
71 int find_oload_champ_namespace_loop (struct type **, int,
72 const char *, const char *,
73 int, struct symbol ***,
74 struct badness_vector **, int *,
75 const int no_adl);
76
77 static int find_oload_champ (struct type **, int, int, int,
78 struct fn_field *, struct symbol **,
79 struct badness_vector **);
80
81 static int oload_method_static (int, struct fn_field *, int);
82
83 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
84
85 static enum
86 oload_classification classify_oload_match (struct badness_vector *,
87 int, int);
88
89 static struct value *value_struct_elt_for_reference (struct type *,
90 int, struct type *,
91 char *,
92 struct type *,
93 int, enum noside);
94
95 static struct value *value_namespace_elt (const struct type *,
96 char *, int , enum noside);
97
98 static struct value *value_maybe_namespace_elt (const struct type *,
99 char *, int,
100 enum noside);
101
102 static CORE_ADDR allocate_space_in_inferior (int);
103
104 static struct value *cast_into_complex (struct type *, struct value *);
105
106 static struct fn_field *find_method_list (struct value **, const char *,
107 int, struct type *, int *,
108 struct type **, int *);
109
110 void _initialize_valops (void);
111
112 #if 0
113 /* Flag for whether we want to abandon failed expression evals by
114 default. */
115
116 static int auto_abandon = 0;
117 #endif
118
119 int overload_resolution = 0;
120 static void
121 show_overload_resolution (struct ui_file *file, int from_tty,
122 struct cmd_list_element *c,
123 const char *value)
124 {
125 fprintf_filtered (file, _("\
126 Overload resolution in evaluating C++ functions is %s.\n"),
127 value);
128 }
129
130 /* Find the address of function name NAME in the inferior. If OBJF_P
131 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
132 is defined. */
133
134 struct value *
135 find_function_in_inferior (const char *name, struct objfile **objf_p)
136 {
137 struct symbol *sym;
138
139 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
140 if (sym != NULL)
141 {
142 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
143 {
144 error (_("\"%s\" exists in this program but is not a function."),
145 name);
146 }
147
148 if (objf_p)
149 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
150
151 return value_of_variable (sym, NULL);
152 }
153 else
154 {
155 struct minimal_symbol *msymbol =
156 lookup_minimal_symbol (name, NULL, NULL);
157
158 if (msymbol != NULL)
159 {
160 struct objfile *objfile = msymbol_objfile (msymbol);
161 struct gdbarch *gdbarch = get_objfile_arch (objfile);
162
163 struct type *type;
164 CORE_ADDR maddr;
165 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
166 type = lookup_function_type (type);
167 type = lookup_pointer_type (type);
168 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
169
170 if (objf_p)
171 *objf_p = objfile;
172
173 return value_from_pointer (type, maddr);
174 }
175 else
176 {
177 if (!target_has_execution)
178 error (_("evaluation of this expression requires the target program to be active"));
179 else
180 error (_("evaluation of this expression requires the program to have a function \"%s\"."), name);
181 }
182 }
183 }
184
185 /* Allocate NBYTES of space in the inferior using the inferior's
186 malloc and return a value that is a pointer to the allocated
187 space. */
188
189 struct value *
190 value_allocate_space_in_inferior (int len)
191 {
192 struct objfile *objf;
193 struct value *val = find_function_in_inferior ("malloc", &objf);
194 struct gdbarch *gdbarch = get_objfile_arch (objf);
195 struct value *blocklen;
196
197 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
198 val = call_function_by_hand (val, 1, &blocklen);
199 if (value_logical_not (val))
200 {
201 if (!target_has_execution)
202 error (_("No memory available to program now: you need to start the target first"));
203 else
204 error (_("No memory available to program: call to malloc failed"));
205 }
206 return val;
207 }
208
209 static CORE_ADDR
210 allocate_space_in_inferior (int len)
211 {
212 return value_as_long (value_allocate_space_in_inferior (len));
213 }
214
215 /* Cast struct value VAL to type TYPE and return as a value.
216 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
217 for this to work. Typedef to one of the codes is permitted.
218 Returns NULL if the cast is neither an upcast nor a downcast. */
219
220 static struct value *
221 value_cast_structs (struct type *type, struct value *v2)
222 {
223 struct type *t1;
224 struct type *t2;
225 struct value *v;
226
227 gdb_assert (type != NULL && v2 != NULL);
228
229 t1 = check_typedef (type);
230 t2 = check_typedef (value_type (v2));
231
232 /* Check preconditions. */
233 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
234 || TYPE_CODE (t1) == TYPE_CODE_UNION)
235 && !!"Precondition is that type is of STRUCT or UNION kind.");
236 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
237 || TYPE_CODE (t2) == TYPE_CODE_UNION)
238 && !!"Precondition is that value is of STRUCT or UNION kind");
239
240 if (TYPE_NAME (t1) != NULL
241 && TYPE_NAME (t2) != NULL
242 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
243 return NULL;
244
245 /* Upcasting: look in the type of the source to see if it contains the
246 type of the target as a superclass. If so, we'll need to
247 offset the pointer rather than just change its type. */
248 if (TYPE_NAME (t1) != NULL)
249 {
250 v = search_struct_field (type_name_no_tag (t1),
251 v2, 0, t2, 1);
252 if (v)
253 return v;
254 }
255
256 /* Downcasting: look in the type of the target to see if it contains the
257 type of the source as a superclass. If so, we'll need to
258 offset the pointer rather than just change its type. */
259 if (TYPE_NAME (t2) != NULL)
260 {
261 /* Try downcasting using the run-time type of the value. */
262 int full, top, using_enc;
263 struct type *real_type;
264
265 real_type = value_rtti_type (v2, &full, &top, &using_enc);
266 if (real_type)
267 {
268 v = value_full_object (v2, real_type, full, top, using_enc);
269 v = value_at_lazy (real_type, value_address (v));
270
271 /* We might be trying to cast to the outermost enclosing
272 type, in which case search_struct_field won't work. */
273 if (TYPE_NAME (real_type) != NULL
274 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
275 return v;
276
277 v = search_struct_field (type_name_no_tag (t2), v, 0, real_type, 1);
278 if (v)
279 return v;
280 }
281
282 /* Try downcasting using information from the destination type
283 T2. This wouldn't work properly for classes with virtual
284 bases, but those were handled above. */
285 v = search_struct_field (type_name_no_tag (t2),
286 value_zero (t1, not_lval), 0, t1, 1);
287 if (v)
288 {
289 /* Downcasting is possible (t1 is superclass of v2). */
290 CORE_ADDR addr2 = value_address (v2);
291
292 addr2 -= value_address (v) + value_embedded_offset (v);
293 return value_at (type, addr2);
294 }
295 }
296
297 return NULL;
298 }
299
300 /* Cast one pointer or reference type to another. Both TYPE and
301 the type of ARG2 should be pointer types, or else both should be
302 reference types. Returns the new pointer or reference. */
303
304 struct value *
305 value_cast_pointers (struct type *type, struct value *arg2)
306 {
307 struct type *type1 = check_typedef (type);
308 struct type *type2 = check_typedef (value_type (arg2));
309 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
310 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
311
312 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
313 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
314 && !value_logical_not (arg2))
315 {
316 struct value *v2;
317
318 if (TYPE_CODE (type2) == TYPE_CODE_REF)
319 v2 = coerce_ref (arg2);
320 else
321 v2 = value_ind (arg2);
322 gdb_assert (TYPE_CODE (check_typedef (value_type (v2))) == TYPE_CODE_STRUCT
323 && !!"Why did coercion fail?");
324 v2 = value_cast_structs (t1, v2);
325 /* At this point we have what we can have, un-dereference if needed. */
326 if (v2)
327 {
328 struct value *v = value_addr (v2);
329
330 deprecated_set_value_type (v, type);
331 return v;
332 }
333 }
334
335 /* No superclass found, just change the pointer type. */
336 arg2 = value_copy (arg2);
337 deprecated_set_value_type (arg2, type);
338 set_value_enclosing_type (arg2, type);
339 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
340 return arg2;
341 }
342
343 /* Cast value ARG2 to type TYPE and return as a value.
344 More general than a C cast: accepts any two types of the same length,
345 and if ARG2 is an lvalue it can be cast into anything at all. */
346 /* In C++, casts may change pointer or object representations. */
347
348 struct value *
349 value_cast (struct type *type, struct value *arg2)
350 {
351 enum type_code code1;
352 enum type_code code2;
353 int scalar;
354 struct type *type2;
355
356 int convert_to_boolean = 0;
357
358 if (value_type (arg2) == type)
359 return arg2;
360
361 code1 = TYPE_CODE (check_typedef (type));
362
363 /* Check if we are casting struct reference to struct reference. */
364 if (code1 == TYPE_CODE_REF)
365 {
366 /* We dereference type; then we recurse and finally
367 we generate value of the given reference. Nothing wrong with
368 that. */
369 struct type *t1 = check_typedef (type);
370 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
371 struct value *val = value_cast (dereftype, arg2);
372
373 return value_ref (val);
374 }
375
376 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
377
378 if (code2 == TYPE_CODE_REF)
379 /* We deref the value and then do the cast. */
380 return value_cast (type, coerce_ref (arg2));
381
382 CHECK_TYPEDEF (type);
383 code1 = TYPE_CODE (type);
384 arg2 = coerce_ref (arg2);
385 type2 = check_typedef (value_type (arg2));
386
387 /* You can't cast to a reference type. See value_cast_pointers
388 instead. */
389 gdb_assert (code1 != TYPE_CODE_REF);
390
391 /* A cast to an undetermined-length array_type, such as
392 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
393 where N is sizeof(OBJECT)/sizeof(TYPE). */
394 if (code1 == TYPE_CODE_ARRAY)
395 {
396 struct type *element_type = TYPE_TARGET_TYPE (type);
397 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
398
399 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
400 {
401 struct type *range_type = TYPE_INDEX_TYPE (type);
402 int val_length = TYPE_LENGTH (type2);
403 LONGEST low_bound, high_bound, new_length;
404
405 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
406 low_bound = 0, high_bound = 0;
407 new_length = val_length / element_length;
408 if (val_length % element_length != 0)
409 warning (_("array element type size does not divide object size in cast"));
410 /* FIXME-type-allocation: need a way to free this type when
411 we are done with it. */
412 range_type = create_range_type ((struct type *) NULL,
413 TYPE_TARGET_TYPE (range_type),
414 low_bound,
415 new_length + low_bound - 1);
416 deprecated_set_value_type (arg2,
417 create_array_type ((struct type *) NULL,
418 element_type,
419 range_type));
420 return arg2;
421 }
422 }
423
424 if (current_language->c_style_arrays
425 && TYPE_CODE (type2) == TYPE_CODE_ARRAY
426 && !TYPE_VECTOR (type2))
427 arg2 = value_coerce_array (arg2);
428
429 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
430 arg2 = value_coerce_function (arg2);
431
432 type2 = check_typedef (value_type (arg2));
433 code2 = TYPE_CODE (type2);
434
435 if (code1 == TYPE_CODE_COMPLEX)
436 return cast_into_complex (type, arg2);
437 if (code1 == TYPE_CODE_BOOL)
438 {
439 code1 = TYPE_CODE_INT;
440 convert_to_boolean = 1;
441 }
442 if (code1 == TYPE_CODE_CHAR)
443 code1 = TYPE_CODE_INT;
444 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
445 code2 = TYPE_CODE_INT;
446
447 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
448 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
449 || code2 == TYPE_CODE_RANGE);
450
451 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
452 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
453 && TYPE_NAME (type) != 0)
454 {
455 struct value *v = value_cast_structs (type, arg2);
456
457 if (v)
458 return v;
459 }
460
461 if (code1 == TYPE_CODE_FLT && scalar)
462 return value_from_double (type, value_as_double (arg2));
463 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
464 {
465 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
466 int dec_len = TYPE_LENGTH (type);
467 gdb_byte dec[16];
468
469 if (code2 == TYPE_CODE_FLT)
470 decimal_from_floating (arg2, dec, dec_len, byte_order);
471 else if (code2 == TYPE_CODE_DECFLOAT)
472 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
473 byte_order, dec, dec_len, byte_order);
474 else
475 /* The only option left is an integral type. */
476 decimal_from_integral (arg2, dec, dec_len, byte_order);
477
478 return value_from_decfloat (type, dec);
479 }
480 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
481 || code1 == TYPE_CODE_RANGE)
482 && (scalar || code2 == TYPE_CODE_PTR
483 || code2 == TYPE_CODE_MEMBERPTR))
484 {
485 LONGEST longest;
486
487 /* When we cast pointers to integers, we mustn't use
488 gdbarch_pointer_to_address to find the address the pointer
489 represents, as value_as_long would. GDB should evaluate
490 expressions just as the compiler would --- and the compiler
491 sees a cast as a simple reinterpretation of the pointer's
492 bits. */
493 if (code2 == TYPE_CODE_PTR)
494 longest = extract_unsigned_integer
495 (value_contents (arg2), TYPE_LENGTH (type2),
496 gdbarch_byte_order (get_type_arch (type2)));
497 else
498 longest = value_as_long (arg2);
499 return value_from_longest (type, convert_to_boolean ?
500 (LONGEST) (longest ? 1 : 0) : longest);
501 }
502 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
503 || code2 == TYPE_CODE_ENUM
504 || code2 == TYPE_CODE_RANGE))
505 {
506 /* TYPE_LENGTH (type) is the length of a pointer, but we really
507 want the length of an address! -- we are really dealing with
508 addresses (i.e., gdb representations) not pointers (i.e.,
509 target representations) here.
510
511 This allows things like "print *(int *)0x01000234" to work
512 without printing a misleading message -- which would
513 otherwise occur when dealing with a target having two byte
514 pointers and four byte addresses. */
515
516 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
517 LONGEST longest = value_as_long (arg2);
518
519 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
520 {
521 if (longest >= ((LONGEST) 1 << addr_bit)
522 || longest <= -((LONGEST) 1 << addr_bit))
523 warning (_("value truncated"));
524 }
525 return value_from_longest (type, longest);
526 }
527 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
528 && value_as_long (arg2) == 0)
529 {
530 struct value *result = allocate_value (type);
531
532 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
533 return result;
534 }
535 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
536 && value_as_long (arg2) == 0)
537 {
538 /* The Itanium C++ ABI represents NULL pointers to members as
539 minus one, instead of biasing the normal case. */
540 return value_from_longest (type, -1);
541 }
542 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar)
543 {
544 /* Widen the scalar to a vector. */
545 struct type *eltype;
546 struct value *val;
547 LONGEST low_bound, high_bound;
548 int i;
549
550 if (!get_array_bounds (type, &low_bound, &high_bound))
551 error (_("Could not determine the vector bounds"));
552
553 eltype = check_typedef (TYPE_TARGET_TYPE (type));
554 arg2 = value_cast (eltype, arg2);
555 val = allocate_value (type);
556
557 for (i = 0; i < high_bound - low_bound + 1; i++)
558 {
559 /* Duplicate the contents of arg2 into the destination vector. */
560 memcpy (value_contents_writeable (val) + (i * TYPE_LENGTH (eltype)),
561 value_contents_all (arg2), TYPE_LENGTH (eltype));
562 }
563 return val;
564 }
565 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
566 {
567 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
568 return value_cast_pointers (type, arg2);
569
570 arg2 = value_copy (arg2);
571 deprecated_set_value_type (arg2, type);
572 set_value_enclosing_type (arg2, type);
573 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
574 return arg2;
575 }
576 else if (VALUE_LVAL (arg2) == lval_memory)
577 return value_at_lazy (type, value_address (arg2));
578 else if (code1 == TYPE_CODE_VOID)
579 {
580 return value_zero (type, not_lval);
581 }
582 else
583 {
584 error (_("Invalid cast."));
585 return 0;
586 }
587 }
588
589 /* The C++ reinterpret_cast operator. */
590
591 struct value *
592 value_reinterpret_cast (struct type *type, struct value *arg)
593 {
594 struct value *result;
595 struct type *real_type = check_typedef (type);
596 struct type *arg_type, *dest_type;
597 int is_ref = 0;
598 enum type_code dest_code, arg_code;
599
600 /* Do reference, function, and array conversion. */
601 arg = coerce_array (arg);
602
603 /* Attempt to preserve the type the user asked for. */
604 dest_type = type;
605
606 /* If we are casting to a reference type, transform
607 reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */
608 if (TYPE_CODE (real_type) == TYPE_CODE_REF)
609 {
610 is_ref = 1;
611 arg = value_addr (arg);
612 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
613 real_type = lookup_pointer_type (real_type);
614 }
615
616 arg_type = value_type (arg);
617
618 dest_code = TYPE_CODE (real_type);
619 arg_code = TYPE_CODE (arg_type);
620
621 /* We can convert pointer types, or any pointer type to int, or int
622 type to pointer. */
623 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
624 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
625 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
626 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
627 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
628 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
629 || (dest_code == arg_code
630 && (dest_code == TYPE_CODE_PTR
631 || dest_code == TYPE_CODE_METHODPTR
632 || dest_code == TYPE_CODE_MEMBERPTR)))
633 result = value_cast (dest_type, arg);
634 else
635 error (_("Invalid reinterpret_cast"));
636
637 if (is_ref)
638 result = value_cast (type, value_ref (value_ind (result)));
639
640 return result;
641 }
642
643 /* A helper for value_dynamic_cast. This implements the first of two
644 runtime checks: we iterate over all the base classes of the value's
645 class which are equal to the desired class; if only one of these
646 holds the value, then it is the answer. */
647
648 static int
649 dynamic_cast_check_1 (struct type *desired_type,
650 const bfd_byte *contents,
651 CORE_ADDR address,
652 struct type *search_type,
653 CORE_ADDR arg_addr,
654 struct type *arg_type,
655 struct value **result)
656 {
657 int i, result_count = 0;
658
659 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
660 {
661 int offset = baseclass_offset (search_type, i, contents, address);
662
663 if (offset == -1)
664 error (_("virtual baseclass botch"));
665 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
666 {
667 if (address + offset >= arg_addr
668 && address + offset < arg_addr + TYPE_LENGTH (arg_type))
669 {
670 ++result_count;
671 if (!*result)
672 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
673 address + offset);
674 }
675 }
676 else
677 result_count += dynamic_cast_check_1 (desired_type,
678 contents + offset,
679 address + offset,
680 TYPE_BASECLASS (search_type, i),
681 arg_addr,
682 arg_type,
683 result);
684 }
685
686 return result_count;
687 }
688
689 /* A helper for value_dynamic_cast. This implements the second of two
690 runtime checks: we look for a unique public sibling class of the
691 argument's declared class. */
692
693 static int
694 dynamic_cast_check_2 (struct type *desired_type,
695 const bfd_byte *contents,
696 CORE_ADDR address,
697 struct type *search_type,
698 struct value **result)
699 {
700 int i, result_count = 0;
701
702 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
703 {
704 int offset;
705
706 if (! BASETYPE_VIA_PUBLIC (search_type, i))
707 continue;
708
709 offset = baseclass_offset (search_type, i, contents, address);
710 if (offset == -1)
711 error (_("virtual baseclass botch"));
712 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
713 {
714 ++result_count;
715 if (*result == NULL)
716 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
717 address + offset);
718 }
719 else
720 result_count += dynamic_cast_check_2 (desired_type,
721 contents + offset,
722 address + offset,
723 TYPE_BASECLASS (search_type, i),
724 result);
725 }
726
727 return result_count;
728 }
729
730 /* The C++ dynamic_cast operator. */
731
732 struct value *
733 value_dynamic_cast (struct type *type, struct value *arg)
734 {
735 int full, top, using_enc;
736 struct type *resolved_type = check_typedef (type);
737 struct type *arg_type = check_typedef (value_type (arg));
738 struct type *class_type, *rtti_type;
739 struct value *result, *tem, *original_arg = arg;
740 CORE_ADDR addr;
741 int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF;
742
743 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
744 && TYPE_CODE (resolved_type) != TYPE_CODE_REF)
745 error (_("Argument to dynamic_cast must be a pointer or reference type"));
746 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
747 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_CLASS)
748 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
749
750 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
751 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
752 {
753 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
754 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
755 && value_as_long (arg) == 0))
756 error (_("Argument to dynamic_cast does not have pointer type"));
757 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
758 {
759 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
760 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
761 error (_("Argument to dynamic_cast does not have pointer to class type"));
762 }
763
764 /* Handle NULL pointers. */
765 if (value_as_long (arg) == 0)
766 return value_zero (type, not_lval);
767
768 arg = value_ind (arg);
769 }
770 else
771 {
772 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
773 error (_("Argument to dynamic_cast does not have class type"));
774 }
775
776 /* If the classes are the same, just return the argument. */
777 if (class_types_same_p (class_type, arg_type))
778 return value_cast (type, arg);
779
780 /* If the target type is a unique base class of the argument's
781 declared type, just cast it. */
782 if (is_ancestor (class_type, arg_type))
783 {
784 if (is_unique_ancestor (class_type, arg))
785 return value_cast (type, original_arg);
786 error (_("Ambiguous dynamic_cast"));
787 }
788
789 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
790 if (! rtti_type)
791 error (_("Couldn't determine value's most derived type for dynamic_cast"));
792
793 /* Compute the most derived object's address. */
794 addr = value_address (arg);
795 if (full)
796 {
797 /* Done. */
798 }
799 else if (using_enc)
800 addr += top;
801 else
802 addr += top + value_embedded_offset (arg);
803
804 /* dynamic_cast<void *> means to return a pointer to the
805 most-derived object. */
806 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
807 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
808 return value_at_lazy (type, addr);
809
810 tem = value_at (type, addr);
811
812 /* The first dynamic check specified in 5.2.7. */
813 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
814 {
815 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
816 return tem;
817 result = NULL;
818 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
819 value_contents (tem), value_address (tem),
820 rtti_type, addr,
821 arg_type,
822 &result) == 1)
823 return value_cast (type,
824 is_ref ? value_ref (result) : value_addr (result));
825 }
826
827 /* The second dynamic check specified in 5.2.7. */
828 result = NULL;
829 if (is_public_ancestor (arg_type, rtti_type)
830 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
831 value_contents (tem), value_address (tem),
832 rtti_type, &result) == 1)
833 return value_cast (type,
834 is_ref ? value_ref (result) : value_addr (result));
835
836 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
837 return value_zero (type, not_lval);
838
839 error (_("dynamic_cast failed"));
840 }
841
842 /* Create a value of type TYPE that is zero, and return it. */
843
844 struct value *
845 value_zero (struct type *type, enum lval_type lv)
846 {
847 struct value *val = allocate_value (type);
848
849 VALUE_LVAL (val) = lv;
850 return val;
851 }
852
853 /* Create a value of numeric type TYPE that is one, and return it. */
854
855 struct value *
856 value_one (struct type *type, enum lval_type lv)
857 {
858 struct type *type1 = check_typedef (type);
859 struct value *val;
860
861 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
862 {
863 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
864 gdb_byte v[16];
865
866 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
867 val = value_from_decfloat (type, v);
868 }
869 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
870 {
871 val = value_from_double (type, (DOUBLEST) 1);
872 }
873 else if (is_integral_type (type1))
874 {
875 val = value_from_longest (type, (LONGEST) 1);
876 }
877 else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
878 {
879 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
880 int i, n = TYPE_LENGTH (type1) / TYPE_LENGTH (eltype);
881 struct value *tmp;
882
883 val = allocate_value (type);
884 for (i = 0; i < n; i++)
885 {
886 tmp = value_one (eltype, lv);
887 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
888 value_contents_all (tmp), TYPE_LENGTH (eltype));
889 }
890 }
891 else
892 {
893 error (_("Not a numeric type."));
894 }
895
896 VALUE_LVAL (val) = lv;
897 return val;
898 }
899
900 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack. */
901
902 static struct value *
903 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
904 {
905 struct value *val;
906
907 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
908 error (_("Attempt to dereference a generic pointer."));
909
910 if (lazy)
911 {
912 val = allocate_value_lazy (type);
913 }
914 else
915 {
916 val = allocate_value (type);
917 read_memory (addr, value_contents_all_raw (val), TYPE_LENGTH (type));
918 }
919
920 VALUE_LVAL (val) = lval_memory;
921 set_value_address (val, addr);
922
923 return val;
924 }
925
926 /* Return a value with type TYPE located at ADDR.
927
928 Call value_at only if the data needs to be fetched immediately;
929 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
930 value_at_lazy instead. value_at_lazy simply records the address of
931 the data and sets the lazy-evaluation-required flag. The lazy flag
932 is tested in the value_contents macro, which is used if and when
933 the contents are actually required.
934
935 Note: value_at does *NOT* handle embedded offsets; perform such
936 adjustments before or after calling it. */
937
938 struct value *
939 value_at (struct type *type, CORE_ADDR addr)
940 {
941 return get_value_at (type, addr, 0);
942 }
943
944 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
945
946 struct value *
947 value_at_lazy (struct type *type, CORE_ADDR addr)
948 {
949 return get_value_at (type, addr, 1);
950 }
951
952 /* Called only from the value_contents and value_contents_all()
953 macros, if the current data for a variable needs to be loaded into
954 value_contents(VAL). Fetches the data from the user's process, and
955 clears the lazy flag to indicate that the data in the buffer is
956 valid.
957
958 If the value is zero-length, we avoid calling read_memory, which
959 would abort. We mark the value as fetched anyway -- all 0 bytes of
960 it.
961
962 This function returns a value because it is used in the
963 value_contents macro as part of an expression, where a void would
964 not work. The value is ignored. */
965
966 int
967 value_fetch_lazy (struct value *val)
968 {
969 gdb_assert (value_lazy (val));
970 allocate_value_contents (val);
971 if (value_bitsize (val))
972 {
973 /* To read a lazy bitfield, read the entire enclosing value. This
974 prevents reading the same block of (possibly volatile) memory once
975 per bitfield. It would be even better to read only the containing
976 word, but we have no way to record that just specific bits of a
977 value have been fetched. */
978 struct type *type = check_typedef (value_type (val));
979 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
980 struct value *parent = value_parent (val);
981 LONGEST offset = value_offset (val);
982 LONGEST num = unpack_bits_as_long (value_type (val),
983 (value_contents_for_printing (parent)
984 + offset),
985 value_bitpos (val),
986 value_bitsize (val));
987 int length = TYPE_LENGTH (type);
988
989 if (!value_bits_valid (val,
990 TARGET_CHAR_BIT * offset + value_bitpos (val),
991 value_bitsize (val)))
992 error (_("value has been optimized out"));
993
994 store_signed_integer (value_contents_raw (val), length, byte_order, num);
995 }
996 else if (VALUE_LVAL (val) == lval_memory)
997 {
998 CORE_ADDR addr = value_address (val);
999 int length = TYPE_LENGTH (check_typedef (value_enclosing_type (val)));
1000
1001 if (length)
1002 {
1003 if (value_stack (val))
1004 read_stack (addr, value_contents_all_raw (val), length);
1005 else
1006 read_memory (addr, value_contents_all_raw (val), length);
1007 }
1008 }
1009 else if (VALUE_LVAL (val) == lval_register)
1010 {
1011 struct frame_info *frame;
1012 int regnum;
1013 struct type *type = check_typedef (value_type (val));
1014 struct value *new_val = val, *mark = value_mark ();
1015
1016 /* Offsets are not supported here; lazy register values must
1017 refer to the entire register. */
1018 gdb_assert (value_offset (val) == 0);
1019
1020 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
1021 {
1022 frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
1023 regnum = VALUE_REGNUM (new_val);
1024
1025 gdb_assert (frame != NULL);
1026
1027 /* Convertible register routines are used for multi-register
1028 values and for interpretation in different types
1029 (e.g. float or int from a double register). Lazy
1030 register values should have the register's natural type,
1031 so they do not apply. */
1032 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
1033 regnum, type));
1034
1035 new_val = get_frame_register_value (frame, regnum);
1036 }
1037
1038 /* If it's still lazy (for instance, a saved register on the
1039 stack), fetch it. */
1040 if (value_lazy (new_val))
1041 value_fetch_lazy (new_val);
1042
1043 /* If the register was not saved, mark it unavailable. */
1044 if (value_optimized_out (new_val))
1045 set_value_optimized_out (val, 1);
1046 else
1047 memcpy (value_contents_raw (val), value_contents (new_val),
1048 TYPE_LENGTH (type));
1049
1050 if (frame_debug)
1051 {
1052 struct gdbarch *gdbarch;
1053 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1054 regnum = VALUE_REGNUM (val);
1055 gdbarch = get_frame_arch (frame);
1056
1057 fprintf_unfiltered (gdb_stdlog, "\
1058 { value_fetch_lazy (frame=%d,regnum=%d(%s),...) ",
1059 frame_relative_level (frame), regnum,
1060 user_reg_map_regnum_to_name (gdbarch, regnum));
1061
1062 fprintf_unfiltered (gdb_stdlog, "->");
1063 if (value_optimized_out (new_val))
1064 fprintf_unfiltered (gdb_stdlog, " optimized out");
1065 else
1066 {
1067 int i;
1068 const gdb_byte *buf = value_contents (new_val);
1069
1070 if (VALUE_LVAL (new_val) == lval_register)
1071 fprintf_unfiltered (gdb_stdlog, " register=%d",
1072 VALUE_REGNUM (new_val));
1073 else if (VALUE_LVAL (new_val) == lval_memory)
1074 fprintf_unfiltered (gdb_stdlog, " address=%s",
1075 paddress (gdbarch,
1076 value_address (new_val)));
1077 else
1078 fprintf_unfiltered (gdb_stdlog, " computed");
1079
1080 fprintf_unfiltered (gdb_stdlog, " bytes=");
1081 fprintf_unfiltered (gdb_stdlog, "[");
1082 for (i = 0; i < register_size (gdbarch, regnum); i++)
1083 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1084 fprintf_unfiltered (gdb_stdlog, "]");
1085 }
1086
1087 fprintf_unfiltered (gdb_stdlog, " }\n");
1088 }
1089
1090 /* Dispose of the intermediate values. This prevents
1091 watchpoints from trying to watch the saved frame pointer. */
1092 value_free_to_mark (mark);
1093 }
1094 else if (VALUE_LVAL (val) == lval_computed)
1095 value_computed_funcs (val)->read (val);
1096 else
1097 internal_error (__FILE__, __LINE__, "Unexpected lazy value type.");
1098
1099 set_value_lazy (val, 0);
1100 return 0;
1101 }
1102
1103
1104 /* Store the contents of FROMVAL into the location of TOVAL.
1105 Return a new value with the location of TOVAL and contents of FROMVAL. */
1106
1107 struct value *
1108 value_assign (struct value *toval, struct value *fromval)
1109 {
1110 struct type *type;
1111 struct value *val;
1112 struct frame_id old_frame;
1113
1114 if (!deprecated_value_modifiable (toval))
1115 error (_("Left operand of assignment is not a modifiable lvalue."));
1116
1117 toval = coerce_ref (toval);
1118
1119 type = value_type (toval);
1120 if (VALUE_LVAL (toval) != lval_internalvar)
1121 fromval = value_cast (type, fromval);
1122 else
1123 {
1124 /* Coerce arrays and functions to pointers, except for arrays
1125 which only live in GDB's storage. */
1126 if (!value_must_coerce_to_target (fromval))
1127 fromval = coerce_array (fromval);
1128 }
1129
1130 CHECK_TYPEDEF (type);
1131
1132 /* Since modifying a register can trash the frame chain, and
1133 modifying memory can trash the frame cache, we save the old frame
1134 and then restore the new frame afterwards. */
1135 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1136
1137 switch (VALUE_LVAL (toval))
1138 {
1139 case lval_internalvar:
1140 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1141 return value_of_internalvar (get_type_arch (type),
1142 VALUE_INTERNALVAR (toval));
1143
1144 case lval_internalvar_component:
1145 set_internalvar_component (VALUE_INTERNALVAR (toval),
1146 value_offset (toval),
1147 value_bitpos (toval),
1148 value_bitsize (toval),
1149 fromval);
1150 break;
1151
1152 case lval_memory:
1153 {
1154 const gdb_byte *dest_buffer;
1155 CORE_ADDR changed_addr;
1156 int changed_len;
1157 gdb_byte buffer[sizeof (LONGEST)];
1158
1159 if (value_bitsize (toval))
1160 {
1161 struct value *parent = value_parent (toval);
1162
1163 changed_addr = value_address (parent) + value_offset (toval);
1164 changed_len = (value_bitpos (toval)
1165 + value_bitsize (toval)
1166 + HOST_CHAR_BIT - 1)
1167 / HOST_CHAR_BIT;
1168
1169 /* If we can read-modify-write exactly the size of the
1170 containing type (e.g. short or int) then do so. This
1171 is safer for volatile bitfields mapped to hardware
1172 registers. */
1173 if (changed_len < TYPE_LENGTH (type)
1174 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1175 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1176 changed_len = TYPE_LENGTH (type);
1177
1178 if (changed_len > (int) sizeof (LONGEST))
1179 error (_("Can't handle bitfields which don't fit in a %d bit word."),
1180 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1181
1182 read_memory (changed_addr, buffer, changed_len);
1183 modify_field (type, buffer, value_as_long (fromval),
1184 value_bitpos (toval), value_bitsize (toval));
1185 dest_buffer = buffer;
1186 }
1187 else
1188 {
1189 changed_addr = value_address (toval);
1190 changed_len = TYPE_LENGTH (type);
1191 dest_buffer = value_contents (fromval);
1192 }
1193
1194 write_memory (changed_addr, dest_buffer, changed_len);
1195 observer_notify_memory_changed (changed_addr, changed_len,
1196 dest_buffer);
1197 }
1198 break;
1199
1200 case lval_register:
1201 {
1202 struct frame_info *frame;
1203 struct gdbarch *gdbarch;
1204 int value_reg;
1205
1206 /* Figure out which frame this is in currently. */
1207 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1208 value_reg = VALUE_REGNUM (toval);
1209
1210 if (!frame)
1211 error (_("Value being assigned to is no longer active."));
1212
1213 gdbarch = get_frame_arch (frame);
1214 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
1215 {
1216 /* If TOVAL is a special machine register requiring
1217 conversion of program values to a special raw
1218 format. */
1219 gdbarch_value_to_register (gdbarch, frame,
1220 VALUE_REGNUM (toval), type,
1221 value_contents (fromval));
1222 }
1223 else
1224 {
1225 if (value_bitsize (toval))
1226 {
1227 struct value *parent = value_parent (toval);
1228 int offset = value_offset (parent) + value_offset (toval);
1229 int changed_len;
1230 gdb_byte buffer[sizeof (LONGEST)];
1231
1232 changed_len = (value_bitpos (toval)
1233 + value_bitsize (toval)
1234 + HOST_CHAR_BIT - 1)
1235 / HOST_CHAR_BIT;
1236
1237 if (changed_len > (int) sizeof (LONGEST))
1238 error (_("Can't handle bitfields which don't fit in a %d bit word."),
1239 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1240
1241 get_frame_register_bytes (frame, value_reg, offset,
1242 changed_len, buffer);
1243
1244 modify_field (type, buffer, value_as_long (fromval),
1245 value_bitpos (toval), value_bitsize (toval));
1246
1247 put_frame_register_bytes (frame, value_reg, offset,
1248 changed_len, buffer);
1249 }
1250 else
1251 {
1252 put_frame_register_bytes (frame, value_reg,
1253 value_offset (toval),
1254 TYPE_LENGTH (type),
1255 value_contents (fromval));
1256 }
1257 }
1258
1259 if (deprecated_register_changed_hook)
1260 deprecated_register_changed_hook (-1);
1261 observer_notify_target_changed (&current_target);
1262 break;
1263 }
1264
1265 case lval_computed:
1266 {
1267 struct lval_funcs *funcs = value_computed_funcs (toval);
1268
1269 funcs->write (toval, fromval);
1270 }
1271 break;
1272
1273 default:
1274 error (_("Left operand of assignment is not an lvalue."));
1275 }
1276
1277 /* Assigning to the stack pointer, frame pointer, and other
1278 (architecture and calling convention specific) registers may
1279 cause the frame cache to be out of date. Assigning to memory
1280 also can. We just do this on all assignments to registers or
1281 memory, for simplicity's sake; I doubt the slowdown matters. */
1282 switch (VALUE_LVAL (toval))
1283 {
1284 case lval_memory:
1285 case lval_register:
1286 case lval_computed:
1287
1288 reinit_frame_cache ();
1289
1290 /* Having destroyed the frame cache, restore the selected
1291 frame. */
1292
1293 /* FIXME: cagney/2002-11-02: There has to be a better way of
1294 doing this. Instead of constantly saving/restoring the
1295 frame. Why not create a get_selected_frame() function that,
1296 having saved the selected frame's ID can automatically
1297 re-find the previously selected frame automatically. */
1298
1299 {
1300 struct frame_info *fi = frame_find_by_id (old_frame);
1301
1302 if (fi != NULL)
1303 select_frame (fi);
1304 }
1305
1306 break;
1307 default:
1308 break;
1309 }
1310
1311 /* If the field does not entirely fill a LONGEST, then zero the sign
1312 bits. If the field is signed, and is negative, then sign
1313 extend. */
1314 if ((value_bitsize (toval) > 0)
1315 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1316 {
1317 LONGEST fieldval = value_as_long (fromval);
1318 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1319
1320 fieldval &= valmask;
1321 if (!TYPE_UNSIGNED (type)
1322 && (fieldval & (valmask ^ (valmask >> 1))))
1323 fieldval |= ~valmask;
1324
1325 fromval = value_from_longest (type, fieldval);
1326 }
1327
1328 /* The return value is a copy of TOVAL so it shares its location
1329 information, but its contents are updated from FROMVAL. This
1330 implies the returned value is not lazy, even if TOVAL was. */
1331 val = value_copy (toval);
1332 set_value_lazy (val, 0);
1333 memcpy (value_contents_raw (val), value_contents (fromval),
1334 TYPE_LENGTH (type));
1335
1336 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1337 in the case of pointer types. For object types, the enclosing type
1338 and embedded offset must *not* be copied: the target object refered
1339 to by TOVAL retains its original dynamic type after assignment. */
1340 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1341 {
1342 set_value_enclosing_type (val, value_enclosing_type (fromval));
1343 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1344 }
1345
1346 return val;
1347 }
1348
1349 /* Extend a value VAL to COUNT repetitions of its type. */
1350
1351 struct value *
1352 value_repeat (struct value *arg1, int count)
1353 {
1354 struct value *val;
1355
1356 if (VALUE_LVAL (arg1) != lval_memory)
1357 error (_("Only values in memory can be extended with '@'."));
1358 if (count < 1)
1359 error (_("Invalid number %d of repetitions."), count);
1360
1361 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1362
1363 read_memory (value_address (arg1),
1364 value_contents_all_raw (val),
1365 TYPE_LENGTH (value_enclosing_type (val)));
1366 VALUE_LVAL (val) = lval_memory;
1367 set_value_address (val, value_address (arg1));
1368
1369 return val;
1370 }
1371
1372 struct value *
1373 value_of_variable (struct symbol *var, struct block *b)
1374 {
1375 struct value *val;
1376 struct frame_info *frame;
1377
1378 if (!symbol_read_needs_frame (var))
1379 frame = NULL;
1380 else if (!b)
1381 frame = get_selected_frame (_("No frame selected."));
1382 else
1383 {
1384 frame = block_innermost_frame (b);
1385 if (!frame)
1386 {
1387 if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
1388 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1389 error (_("No frame is currently executing in block %s."),
1390 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1391 else
1392 error (_("No frame is currently executing in specified block"));
1393 }
1394 }
1395
1396 val = read_var_value (var, frame);
1397 if (!val)
1398 error (_("Address of symbol \"%s\" is unknown."), SYMBOL_PRINT_NAME (var));
1399
1400 return val;
1401 }
1402
1403 struct value *
1404 address_of_variable (struct symbol *var, struct block *b)
1405 {
1406 struct type *type = SYMBOL_TYPE (var);
1407 struct value *val;
1408
1409 /* Evaluate it first; if the result is a memory address, we're fine.
1410 Lazy evaluation pays off here. */
1411
1412 val = value_of_variable (var, b);
1413
1414 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1415 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1416 {
1417 CORE_ADDR addr = value_address (val);
1418
1419 return value_from_pointer (lookup_pointer_type (type), addr);
1420 }
1421
1422 /* Not a memory address; check what the problem was. */
1423 switch (VALUE_LVAL (val))
1424 {
1425 case lval_register:
1426 {
1427 struct frame_info *frame;
1428 const char *regname;
1429
1430 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1431 gdb_assert (frame);
1432
1433 regname = gdbarch_register_name (get_frame_arch (frame),
1434 VALUE_REGNUM (val));
1435 gdb_assert (regname && *regname);
1436
1437 error (_("Address requested for identifier "
1438 "\"%s\" which is in register $%s"),
1439 SYMBOL_PRINT_NAME (var), regname);
1440 break;
1441 }
1442
1443 default:
1444 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1445 SYMBOL_PRINT_NAME (var));
1446 break;
1447 }
1448
1449 return val;
1450 }
1451
1452 /* Return one if VAL does not live in target memory, but should in order
1453 to operate on it. Otherwise return zero. */
1454
1455 int
1456 value_must_coerce_to_target (struct value *val)
1457 {
1458 struct type *valtype;
1459
1460 /* The only lval kinds which do not live in target memory. */
1461 if (VALUE_LVAL (val) != not_lval
1462 && VALUE_LVAL (val) != lval_internalvar)
1463 return 0;
1464
1465 valtype = check_typedef (value_type (val));
1466
1467 switch (TYPE_CODE (valtype))
1468 {
1469 case TYPE_CODE_ARRAY:
1470 return TYPE_VECTOR (valtype) ? 0 : 1;
1471 case TYPE_CODE_STRING:
1472 return 1;
1473 default:
1474 return 0;
1475 }
1476 }
1477
1478 /* Make sure that VAL lives in target memory if it's supposed to. For instance,
1479 strings are constructed as character arrays in GDB's storage, and this
1480 function copies them to the target. */
1481
1482 struct value *
1483 value_coerce_to_target (struct value *val)
1484 {
1485 LONGEST length;
1486 CORE_ADDR addr;
1487
1488 if (!value_must_coerce_to_target (val))
1489 return val;
1490
1491 length = TYPE_LENGTH (check_typedef (value_type (val)));
1492 addr = allocate_space_in_inferior (length);
1493 write_memory (addr, value_contents (val), length);
1494 return value_at_lazy (value_type (val), addr);
1495 }
1496
1497 /* Given a value which is an array, return a value which is a pointer
1498 to its first element, regardless of whether or not the array has a
1499 nonzero lower bound.
1500
1501 FIXME: A previous comment here indicated that this routine should
1502 be substracting the array's lower bound. It's not clear to me that
1503 this is correct. Given an array subscripting operation, it would
1504 certainly work to do the adjustment here, essentially computing:
1505
1506 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1507
1508 However I believe a more appropriate and logical place to account
1509 for the lower bound is to do so in value_subscript, essentially
1510 computing:
1511
1512 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1513
1514 As further evidence consider what would happen with operations
1515 other than array subscripting, where the caller would get back a
1516 value that had an address somewhere before the actual first element
1517 of the array, and the information about the lower bound would be
1518 lost because of the coercion to pointer type.
1519 */
1520
1521 struct value *
1522 value_coerce_array (struct value *arg1)
1523 {
1524 struct type *type = check_typedef (value_type (arg1));
1525
1526 /* If the user tries to do something requiring a pointer with an
1527 array that has not yet been pushed to the target, then this would
1528 be a good time to do so. */
1529 arg1 = value_coerce_to_target (arg1);
1530
1531 if (VALUE_LVAL (arg1) != lval_memory)
1532 error (_("Attempt to take address of value not located in memory."));
1533
1534 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1535 value_address (arg1));
1536 }
1537
1538 /* Given a value which is a function, return a value which is a pointer
1539 to it. */
1540
1541 struct value *
1542 value_coerce_function (struct value *arg1)
1543 {
1544 struct value *retval;
1545
1546 if (VALUE_LVAL (arg1) != lval_memory)
1547 error (_("Attempt to take address of value not located in memory."));
1548
1549 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1550 value_address (arg1));
1551 return retval;
1552 }
1553
1554 /* Return a pointer value for the object for which ARG1 is the
1555 contents. */
1556
1557 struct value *
1558 value_addr (struct value *arg1)
1559 {
1560 struct value *arg2;
1561 struct type *type = check_typedef (value_type (arg1));
1562
1563 if (TYPE_CODE (type) == TYPE_CODE_REF)
1564 {
1565 /* Copy the value, but change the type from (T&) to (T*). We
1566 keep the same location information, which is efficient, and
1567 allows &(&X) to get the location containing the reference. */
1568 arg2 = value_copy (arg1);
1569 deprecated_set_value_type (arg2,
1570 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1571 return arg2;
1572 }
1573 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1574 return value_coerce_function (arg1);
1575
1576 /* If this is an array that has not yet been pushed to the target,
1577 then this would be a good time to force it to memory. */
1578 arg1 = value_coerce_to_target (arg1);
1579
1580 if (VALUE_LVAL (arg1) != lval_memory)
1581 error (_("Attempt to take address of value not located in memory."));
1582
1583 /* Get target memory address */
1584 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1585 (value_address (arg1)
1586 + value_embedded_offset (arg1)));
1587
1588 /* This may be a pointer to a base subobject; so remember the
1589 full derived object's type ... */
1590 set_value_enclosing_type (arg2,
1591 lookup_pointer_type (value_enclosing_type (arg1)));
1592 /* ... and also the relative position of the subobject in the full
1593 object. */
1594 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1595 return arg2;
1596 }
1597
1598 /* Return a reference value for the object for which ARG1 is the
1599 contents. */
1600
1601 struct value *
1602 value_ref (struct value *arg1)
1603 {
1604 struct value *arg2;
1605 struct type *type = check_typedef (value_type (arg1));
1606
1607 if (TYPE_CODE (type) == TYPE_CODE_REF)
1608 return arg1;
1609
1610 arg2 = value_addr (arg1);
1611 deprecated_set_value_type (arg2, lookup_reference_type (type));
1612 return arg2;
1613 }
1614
1615 /* Given a value of a pointer type, apply the C unary * operator to
1616 it. */
1617
1618 struct value *
1619 value_ind (struct value *arg1)
1620 {
1621 struct type *base_type;
1622 struct value *arg2;
1623
1624 arg1 = coerce_array (arg1);
1625
1626 base_type = check_typedef (value_type (arg1));
1627
1628 if (VALUE_LVAL (arg1) == lval_computed)
1629 {
1630 struct lval_funcs *funcs = value_computed_funcs (arg1);
1631
1632 if (funcs->indirect)
1633 {
1634 struct value *result = funcs->indirect (arg1);
1635
1636 if (result)
1637 return result;
1638 }
1639 }
1640
1641 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1642 {
1643 struct type *enc_type;
1644
1645 /* We may be pointing to something embedded in a larger object.
1646 Get the real type of the enclosing object. */
1647 enc_type = check_typedef (value_enclosing_type (arg1));
1648 enc_type = TYPE_TARGET_TYPE (enc_type);
1649
1650 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1651 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1652 /* For functions, go through find_function_addr, which knows
1653 how to handle function descriptors. */
1654 arg2 = value_at_lazy (enc_type,
1655 find_function_addr (arg1, NULL));
1656 else
1657 /* Retrieve the enclosing object pointed to */
1658 arg2 = value_at_lazy (enc_type,
1659 (value_as_address (arg1)
1660 - value_pointed_to_offset (arg1)));
1661
1662 /* Re-adjust type. */
1663 deprecated_set_value_type (arg2, TYPE_TARGET_TYPE (base_type));
1664 /* Add embedding info. */
1665 set_value_enclosing_type (arg2, enc_type);
1666 set_value_embedded_offset (arg2, value_pointed_to_offset (arg1));
1667
1668 /* We may be pointing to an object of some derived type. */
1669 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1670 return arg2;
1671 }
1672
1673 error (_("Attempt to take contents of a non-pointer value."));
1674 return 0; /* For lint -- never reached. */
1675 }
1676 \f
1677 /* Create a value for an array by allocating space in GDB, copying
1678 copying the data into that space, and then setting up an array
1679 value.
1680
1681 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1682 is populated from the values passed in ELEMVEC.
1683
1684 The element type of the array is inherited from the type of the
1685 first element, and all elements must have the same size (though we
1686 don't currently enforce any restriction on their types). */
1687
1688 struct value *
1689 value_array (int lowbound, int highbound, struct value **elemvec)
1690 {
1691 int nelem;
1692 int idx;
1693 unsigned int typelength;
1694 struct value *val;
1695 struct type *arraytype;
1696
1697 /* Validate that the bounds are reasonable and that each of the
1698 elements have the same size. */
1699
1700 nelem = highbound - lowbound + 1;
1701 if (nelem <= 0)
1702 {
1703 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1704 }
1705 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1706 for (idx = 1; idx < nelem; idx++)
1707 {
1708 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1709 {
1710 error (_("array elements must all be the same size"));
1711 }
1712 }
1713
1714 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1715 lowbound, highbound);
1716
1717 if (!current_language->c_style_arrays)
1718 {
1719 val = allocate_value (arraytype);
1720 for (idx = 0; idx < nelem; idx++)
1721 {
1722 memcpy (value_contents_all_raw (val) + (idx * typelength),
1723 value_contents_all (elemvec[idx]),
1724 typelength);
1725 }
1726 return val;
1727 }
1728
1729 /* Allocate space to store the array, and then initialize it by
1730 copying in each element. */
1731
1732 val = allocate_value (arraytype);
1733 for (idx = 0; idx < nelem; idx++)
1734 memcpy (value_contents_writeable (val) + (idx * typelength),
1735 value_contents_all (elemvec[idx]),
1736 typelength);
1737 return val;
1738 }
1739
1740 struct value *
1741 value_cstring (char *ptr, int len, struct type *char_type)
1742 {
1743 struct value *val;
1744 int lowbound = current_language->string_lower_bound;
1745 int highbound = len / TYPE_LENGTH (char_type);
1746 struct type *stringtype
1747 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1748
1749 val = allocate_value (stringtype);
1750 memcpy (value_contents_raw (val), ptr, len);
1751 return val;
1752 }
1753
1754 /* Create a value for a string constant by allocating space in the
1755 inferior, copying the data into that space, and returning the
1756 address with type TYPE_CODE_STRING. PTR points to the string
1757 constant data; LEN is number of characters.
1758
1759 Note that string types are like array of char types with a lower
1760 bound of zero and an upper bound of LEN - 1. Also note that the
1761 string may contain embedded null bytes. */
1762
1763 struct value *
1764 value_string (char *ptr, int len, struct type *char_type)
1765 {
1766 struct value *val;
1767 int lowbound = current_language->string_lower_bound;
1768 int highbound = len / TYPE_LENGTH (char_type);
1769 struct type *stringtype
1770 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1771
1772 val = allocate_value (stringtype);
1773 memcpy (value_contents_raw (val), ptr, len);
1774 return val;
1775 }
1776
1777 struct value *
1778 value_bitstring (char *ptr, int len, struct type *index_type)
1779 {
1780 struct value *val;
1781 struct type *domain_type
1782 = create_range_type (NULL, index_type, 0, len - 1);
1783 struct type *type = create_set_type (NULL, domain_type);
1784
1785 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1786 val = allocate_value (type);
1787 memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type));
1788 return val;
1789 }
1790 \f
1791 /* See if we can pass arguments in T2 to a function which takes
1792 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1793 a NULL-terminated vector. If some arguments need coercion of some
1794 sort, then the coerced values are written into T2. Return value is
1795 0 if the arguments could be matched, or the position at which they
1796 differ if not.
1797
1798 STATICP is nonzero if the T1 argument list came from a static
1799 member function. T2 will still include the ``this'' pointer, but
1800 it will be skipped.
1801
1802 For non-static member functions, we ignore the first argument,
1803 which is the type of the instance variable. This is because we
1804 want to handle calls with objects from derived classes. This is
1805 not entirely correct: we should actually check to make sure that a
1806 requested operation is type secure, shouldn't we? FIXME. */
1807
1808 static int
1809 typecmp (int staticp, int varargs, int nargs,
1810 struct field t1[], struct value *t2[])
1811 {
1812 int i;
1813
1814 if (t2 == 0)
1815 internal_error (__FILE__, __LINE__,
1816 _("typecmp: no argument list"));
1817
1818 /* Skip ``this'' argument if applicable. T2 will always include
1819 THIS. */
1820 if (staticp)
1821 t2 ++;
1822
1823 for (i = 0;
1824 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1825 i++)
1826 {
1827 struct type *tt1, *tt2;
1828
1829 if (!t2[i])
1830 return i + 1;
1831
1832 tt1 = check_typedef (t1[i].type);
1833 tt2 = check_typedef (value_type (t2[i]));
1834
1835 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1836 /* We should be doing hairy argument matching, as below. */
1837 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1838 {
1839 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1840 t2[i] = value_coerce_array (t2[i]);
1841 else
1842 t2[i] = value_ref (t2[i]);
1843 continue;
1844 }
1845
1846 /* djb - 20000715 - Until the new type structure is in the
1847 place, and we can attempt things like implicit conversions,
1848 we need to do this so you can take something like a map<const
1849 char *>, and properly access map["hello"], because the
1850 argument to [] will be a reference to a pointer to a char,
1851 and the argument will be a pointer to a char. */
1852 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1853 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1854 {
1855 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1856 }
1857 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1858 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1859 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1860 {
1861 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1862 }
1863 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1864 continue;
1865 /* Array to pointer is a `trivial conversion' according to the
1866 ARM. */
1867
1868 /* We should be doing much hairier argument matching (see
1869 section 13.2 of the ARM), but as a quick kludge, just check
1870 for the same type code. */
1871 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1872 return i + 1;
1873 }
1874 if (varargs || t2[i] == NULL)
1875 return 0;
1876 return i + 1;
1877 }
1878
1879 /* Helper function used by value_struct_elt to recurse through
1880 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1881 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1882 TYPE. If found, return value, else return NULL.
1883
1884 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1885 fields, look for a baseclass named NAME. */
1886
1887 static struct value *
1888 search_struct_field (const char *name, struct value *arg1, int offset,
1889 struct type *type, int looking_for_baseclass)
1890 {
1891 int i;
1892 int nbases;
1893
1894 CHECK_TYPEDEF (type);
1895 nbases = TYPE_N_BASECLASSES (type);
1896
1897 if (!looking_for_baseclass)
1898 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1899 {
1900 char *t_field_name = TYPE_FIELD_NAME (type, i);
1901
1902 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1903 {
1904 struct value *v;
1905
1906 if (field_is_static (&TYPE_FIELD (type, i)))
1907 {
1908 v = value_static_field (type, i);
1909 if (v == 0)
1910 error (_("field %s is nonexistent or has been optimized out"),
1911 name);
1912 }
1913 else
1914 {
1915 v = value_primitive_field (arg1, offset, i, type);
1916 if (v == 0)
1917 error (_("there is no field named %s"), name);
1918 }
1919 return v;
1920 }
1921
1922 if (t_field_name
1923 && (t_field_name[0] == '\0'
1924 || (TYPE_CODE (type) == TYPE_CODE_UNION
1925 && (strcmp_iw (t_field_name, "else") == 0))))
1926 {
1927 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1928
1929 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1930 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1931 {
1932 /* Look for a match through the fields of an anonymous
1933 union, or anonymous struct. C++ provides anonymous
1934 unions.
1935
1936 In the GNU Chill (now deleted from GDB)
1937 implementation of variant record types, each
1938 <alternative field> has an (anonymous) union type,
1939 each member of the union represents a <variant
1940 alternative>. Each <variant alternative> is
1941 represented as a struct, with a member for each
1942 <variant field>. */
1943
1944 struct value *v;
1945 int new_offset = offset;
1946
1947 /* This is pretty gross. In G++, the offset in an
1948 anonymous union is relative to the beginning of the
1949 enclosing struct. In the GNU Chill (now deleted
1950 from GDB) implementation of variant records, the
1951 bitpos is zero in an anonymous union field, so we
1952 have to add the offset of the union here. */
1953 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1954 || (TYPE_NFIELDS (field_type) > 0
1955 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1956 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1957
1958 v = search_struct_field (name, arg1, new_offset,
1959 field_type,
1960 looking_for_baseclass);
1961 if (v)
1962 return v;
1963 }
1964 }
1965 }
1966
1967 for (i = 0; i < nbases; i++)
1968 {
1969 struct value *v;
1970 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1971 /* If we are looking for baseclasses, this is what we get when
1972 we hit them. But it could happen that the base part's member
1973 name is not yet filled in. */
1974 int found_baseclass = (looking_for_baseclass
1975 && TYPE_BASECLASS_NAME (type, i) != NULL
1976 && (strcmp_iw (name,
1977 TYPE_BASECLASS_NAME (type,
1978 i)) == 0));
1979
1980 if (BASETYPE_VIA_VIRTUAL (type, i))
1981 {
1982 int boffset;
1983 struct value *v2;
1984
1985 boffset = baseclass_offset (type, i,
1986 value_contents (arg1) + offset,
1987 value_address (arg1)
1988 + value_embedded_offset (arg1)
1989 + offset);
1990 if (boffset == -1)
1991 error (_("virtual baseclass botch"));
1992
1993 /* The virtual base class pointer might have been clobbered
1994 by the user program. Make sure that it still points to a
1995 valid memory location. */
1996
1997 boffset += value_embedded_offset (arg1) + offset;
1998 if (boffset < 0
1999 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
2000 {
2001 CORE_ADDR base_addr;
2002
2003 v2 = allocate_value (basetype);
2004 base_addr = value_address (arg1) + boffset;
2005 if (target_read_memory (base_addr,
2006 value_contents_raw (v2),
2007 TYPE_LENGTH (basetype)) != 0)
2008 error (_("virtual baseclass botch"));
2009 VALUE_LVAL (v2) = lval_memory;
2010 set_value_address (v2, base_addr);
2011 }
2012 else
2013 {
2014 v2 = value_copy (arg1);
2015 deprecated_set_value_type (v2, basetype);
2016 set_value_embedded_offset (v2, boffset);
2017 }
2018
2019 if (found_baseclass)
2020 return v2;
2021 v = search_struct_field (name, v2, 0,
2022 TYPE_BASECLASS (type, i),
2023 looking_for_baseclass);
2024 }
2025 else if (found_baseclass)
2026 v = value_primitive_field (arg1, offset, i, type);
2027 else
2028 v = search_struct_field (name, arg1,
2029 offset + TYPE_BASECLASS_BITPOS (type,
2030 i) / 8,
2031 basetype, looking_for_baseclass);
2032 if (v)
2033 return v;
2034 }
2035 return NULL;
2036 }
2037
2038 /* Helper function used by value_struct_elt to recurse through
2039 baseclasses. Look for a field NAME in ARG1. Adjust the address of
2040 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2041 TYPE.
2042
2043 If found, return value, else if name matched and args not return
2044 (value) -1, else return NULL. */
2045
2046 static struct value *
2047 search_struct_method (const char *name, struct value **arg1p,
2048 struct value **args, int offset,
2049 int *static_memfuncp, struct type *type)
2050 {
2051 int i;
2052 struct value *v;
2053 int name_matched = 0;
2054 char dem_opname[64];
2055
2056 CHECK_TYPEDEF (type);
2057 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2058 {
2059 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2060
2061 /* FIXME! May need to check for ARM demangling here */
2062 if (strncmp (t_field_name, "__", 2) == 0 ||
2063 strncmp (t_field_name, "op", 2) == 0 ||
2064 strncmp (t_field_name, "type", 4) == 0)
2065 {
2066 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2067 t_field_name = dem_opname;
2068 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2069 t_field_name = dem_opname;
2070 }
2071 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2072 {
2073 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2074 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2075
2076 name_matched = 1;
2077 check_stub_method_group (type, i);
2078 if (j > 0 && args == 0)
2079 error (_("cannot resolve overloaded method `%s': no arguments supplied"), name);
2080 else if (j == 0 && args == 0)
2081 {
2082 v = value_fn_field (arg1p, f, j, type, offset);
2083 if (v != NULL)
2084 return v;
2085 }
2086 else
2087 while (j >= 0)
2088 {
2089 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2090 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2091 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2092 TYPE_FN_FIELD_ARGS (f, j), args))
2093 {
2094 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2095 return value_virtual_fn_field (arg1p, f, j,
2096 type, offset);
2097 if (TYPE_FN_FIELD_STATIC_P (f, j)
2098 && static_memfuncp)
2099 *static_memfuncp = 1;
2100 v = value_fn_field (arg1p, f, j, type, offset);
2101 if (v != NULL)
2102 return v;
2103 }
2104 j--;
2105 }
2106 }
2107 }
2108
2109 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2110 {
2111 int base_offset;
2112
2113 if (BASETYPE_VIA_VIRTUAL (type, i))
2114 {
2115 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2116 const gdb_byte *base_valaddr;
2117
2118 /* The virtual base class pointer might have been
2119 clobbered by the user program. Make sure that it
2120 still points to a valid memory location. */
2121
2122 if (offset < 0 || offset >= TYPE_LENGTH (type))
2123 {
2124 gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass));
2125
2126 if (target_read_memory (value_address (*arg1p) + offset,
2127 tmp, TYPE_LENGTH (baseclass)) != 0)
2128 error (_("virtual baseclass botch"));
2129 base_valaddr = tmp;
2130 }
2131 else
2132 base_valaddr = value_contents (*arg1p) + offset;
2133
2134 base_offset = baseclass_offset (type, i, base_valaddr,
2135 value_address (*arg1p) + offset);
2136 if (base_offset == -1)
2137 error (_("virtual baseclass botch"));
2138 }
2139 else
2140 {
2141 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2142 }
2143 v = search_struct_method (name, arg1p, args, base_offset + offset,
2144 static_memfuncp, TYPE_BASECLASS (type, i));
2145 if (v == (struct value *) - 1)
2146 {
2147 name_matched = 1;
2148 }
2149 else if (v)
2150 {
2151 /* FIXME-bothner: Why is this commented out? Why is it here? */
2152 /* *arg1p = arg1_tmp; */
2153 return v;
2154 }
2155 }
2156 if (name_matched)
2157 return (struct value *) - 1;
2158 else
2159 return NULL;
2160 }
2161
2162 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2163 extract the component named NAME from the ultimate target
2164 structure/union and return it as a value with its appropriate type.
2165 ERR is used in the error message if *ARGP's type is wrong.
2166
2167 C++: ARGS is a list of argument types to aid in the selection of
2168 an appropriate method. Also, handle derived types.
2169
2170 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2171 where the truthvalue of whether the function that was resolved was
2172 a static member function or not is stored.
2173
2174 ERR is an error message to be printed in case the field is not
2175 found. */
2176
2177 struct value *
2178 value_struct_elt (struct value **argp, struct value **args,
2179 const char *name, int *static_memfuncp, const char *err)
2180 {
2181 struct type *t;
2182 struct value *v;
2183
2184 *argp = coerce_array (*argp);
2185
2186 t = check_typedef (value_type (*argp));
2187
2188 /* Follow pointers until we get to a non-pointer. */
2189
2190 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2191 {
2192 *argp = value_ind (*argp);
2193 /* Don't coerce fn pointer to fn and then back again! */
2194 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2195 *argp = coerce_array (*argp);
2196 t = check_typedef (value_type (*argp));
2197 }
2198
2199 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2200 && TYPE_CODE (t) != TYPE_CODE_UNION)
2201 error (_("Attempt to extract a component of a value that is not a %s."), err);
2202
2203 /* Assume it's not, unless we see that it is. */
2204 if (static_memfuncp)
2205 *static_memfuncp = 0;
2206
2207 if (!args)
2208 {
2209 /* if there are no arguments ...do this... */
2210
2211 /* Try as a field first, because if we succeed, there is less
2212 work to be done. */
2213 v = search_struct_field (name, *argp, 0, t, 0);
2214 if (v)
2215 return v;
2216
2217 /* C++: If it was not found as a data field, then try to
2218 return it as a pointer to a method. */
2219 v = search_struct_method (name, argp, args, 0,
2220 static_memfuncp, t);
2221
2222 if (v == (struct value *) - 1)
2223 error (_("Cannot take address of method %s."), name);
2224 else if (v == 0)
2225 {
2226 if (TYPE_NFN_FIELDS (t))
2227 error (_("There is no member or method named %s."), name);
2228 else
2229 error (_("There is no member named %s."), name);
2230 }
2231 return v;
2232 }
2233
2234 v = search_struct_method (name, argp, args, 0,
2235 static_memfuncp, t);
2236
2237 if (v == (struct value *) - 1)
2238 {
2239 error (_("One of the arguments you tried to pass to %s could not be converted to what the function wants."), name);
2240 }
2241 else if (v == 0)
2242 {
2243 /* See if user tried to invoke data as function. If so, hand it
2244 back. If it's not callable (i.e., a pointer to function),
2245 gdb should give an error. */
2246 v = search_struct_field (name, *argp, 0, t, 0);
2247 /* If we found an ordinary field, then it is not a method call.
2248 So, treat it as if it were a static member function. */
2249 if (v && static_memfuncp)
2250 *static_memfuncp = 1;
2251 }
2252
2253 if (!v)
2254 throw_error (NOT_FOUND_ERROR,
2255 _("Structure has no component named %s."), name);
2256 return v;
2257 }
2258
2259 /* Search through the methods of an object (and its bases) to find a
2260 specified method. Return the pointer to the fn_field list of
2261 overloaded instances.
2262
2263 Helper function for value_find_oload_list.
2264 ARGP is a pointer to a pointer to a value (the object).
2265 METHOD is a string containing the method name.
2266 OFFSET is the offset within the value.
2267 TYPE is the assumed type of the object.
2268 NUM_FNS is the number of overloaded instances.
2269 BASETYPE is set to the actual type of the subobject where the
2270 method is found.
2271 BOFFSET is the offset of the base subobject where the method is found.
2272 */
2273
2274 static struct fn_field *
2275 find_method_list (struct value **argp, const char *method,
2276 int offset, struct type *type, int *num_fns,
2277 struct type **basetype, int *boffset)
2278 {
2279 int i;
2280 struct fn_field *f;
2281 CHECK_TYPEDEF (type);
2282
2283 *num_fns = 0;
2284
2285 /* First check in object itself. */
2286 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2287 {
2288 /* pai: FIXME What about operators and type conversions? */
2289 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2290
2291 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2292 {
2293 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2294 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2295
2296 *num_fns = len;
2297 *basetype = type;
2298 *boffset = offset;
2299
2300 /* Resolve any stub methods. */
2301 check_stub_method_group (type, i);
2302
2303 return f;
2304 }
2305 }
2306
2307 /* Not found in object, check in base subobjects. */
2308 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2309 {
2310 int base_offset;
2311
2312 if (BASETYPE_VIA_VIRTUAL (type, i))
2313 {
2314 base_offset = value_offset (*argp) + offset;
2315 base_offset = baseclass_offset (type, i,
2316 value_contents (*argp) + base_offset,
2317 value_address (*argp) + base_offset);
2318 if (base_offset == -1)
2319 error (_("virtual baseclass botch"));
2320 }
2321 else /* Non-virtual base, simply use bit position from debug
2322 info. */
2323 {
2324 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2325 }
2326 f = find_method_list (argp, method, base_offset + offset,
2327 TYPE_BASECLASS (type, i), num_fns,
2328 basetype, boffset);
2329 if (f)
2330 return f;
2331 }
2332 return NULL;
2333 }
2334
2335 /* Return the list of overloaded methods of a specified name.
2336
2337 ARGP is a pointer to a pointer to a value (the object).
2338 METHOD is the method name.
2339 OFFSET is the offset within the value contents.
2340 NUM_FNS is the number of overloaded instances.
2341 BASETYPE is set to the type of the base subobject that defines the
2342 method.
2343 BOFFSET is the offset of the base subobject which defines the method.
2344 */
2345
2346 struct fn_field *
2347 value_find_oload_method_list (struct value **argp, const char *method,
2348 int offset, int *num_fns,
2349 struct type **basetype, int *boffset)
2350 {
2351 struct type *t;
2352
2353 t = check_typedef (value_type (*argp));
2354
2355 /* Code snarfed from value_struct_elt. */
2356 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2357 {
2358 *argp = value_ind (*argp);
2359 /* Don't coerce fn pointer to fn and then back again! */
2360 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2361 *argp = coerce_array (*argp);
2362 t = check_typedef (value_type (*argp));
2363 }
2364
2365 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2366 && TYPE_CODE (t) != TYPE_CODE_UNION)
2367 error (_("Attempt to extract a component of a value that is not a struct or union"));
2368
2369 return find_method_list (argp, method, 0, t, num_fns,
2370 basetype, boffset);
2371 }
2372
2373 /* Given an array of argument types (ARGTYPES) (which includes an
2374 entry for "this" in the case of C++ methods), the number of
2375 arguments NARGS, the NAME of a function whether it's a method or
2376 not (METHOD), and the degree of laxness (LAX) in conforming to
2377 overload resolution rules in ANSI C++, find the best function that
2378 matches on the argument types according to the overload resolution
2379 rules.
2380
2381 METHOD can be one of three values:
2382 NON_METHOD for non-member functions.
2383 METHOD: for member functions.
2384 BOTH: used for overload resolution of operators where the
2385 candidates are expected to be either member or non member
2386 functions. In this case the first argument ARGTYPES
2387 (representing 'this') is expected to be a reference to the
2388 target object, and will be dereferenced when attempting the
2389 non-member search.
2390
2391 In the case of class methods, the parameter OBJ is an object value
2392 in which to search for overloaded methods.
2393
2394 In the case of non-method functions, the parameter FSYM is a symbol
2395 corresponding to one of the overloaded functions.
2396
2397 Return value is an integer: 0 -> good match, 10 -> debugger applied
2398 non-standard coercions, 100 -> incompatible.
2399
2400 If a method is being searched for, VALP will hold the value.
2401 If a non-method is being searched for, SYMP will hold the symbol
2402 for it.
2403
2404 If a method is being searched for, and it is a static method,
2405 then STATICP will point to a non-zero value.
2406
2407 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2408 ADL overload candidates when performing overload resolution for a fully
2409 qualified name.
2410
2411 Note: This function does *not* check the value of
2412 overload_resolution. Caller must check it to see whether overload
2413 resolution is permitted.
2414 */
2415
2416 int
2417 find_overload_match (struct type **arg_types, int nargs,
2418 const char *name, enum oload_search_type method,
2419 int lax, struct value **objp, struct symbol *fsym,
2420 struct value **valp, struct symbol **symp,
2421 int *staticp, const int no_adl)
2422 {
2423 struct value *obj = (objp ? *objp : NULL);
2424 /* Index of best overloaded function. */
2425 int func_oload_champ = -1;
2426 int method_oload_champ = -1;
2427
2428 /* The measure for the current best match. */
2429 struct badness_vector *method_badness = NULL;
2430 struct badness_vector *func_badness = NULL;
2431
2432 struct value *temp = obj;
2433 /* For methods, the list of overloaded methods. */
2434 struct fn_field *fns_ptr = NULL;
2435 /* For non-methods, the list of overloaded function symbols. */
2436 struct symbol **oload_syms = NULL;
2437 /* Number of overloaded instances being considered. */
2438 int num_fns = 0;
2439 struct type *basetype = NULL;
2440 int boffset;
2441
2442 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2443
2444 const char *obj_type_name = NULL;
2445 const char *func_name = NULL;
2446 enum oload_classification match_quality;
2447 enum oload_classification method_match_quality = INCOMPATIBLE;
2448 enum oload_classification func_match_quality = INCOMPATIBLE;
2449
2450 /* Get the list of overloaded methods or functions. */
2451 if (method == METHOD || method == BOTH)
2452 {
2453 gdb_assert (obj);
2454
2455 /* OBJ may be a pointer value rather than the object itself. */
2456 obj = coerce_ref (obj);
2457 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2458 obj = coerce_ref (value_ind (obj));
2459 obj_type_name = TYPE_NAME (value_type (obj));
2460
2461 /* First check whether this is a data member, e.g. a pointer to
2462 a function. */
2463 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2464 {
2465 *valp = search_struct_field (name, obj, 0,
2466 check_typedef (value_type (obj)), 0);
2467 if (*valp)
2468 {
2469 *staticp = 1;
2470 return 0;
2471 }
2472 }
2473
2474 /* Retrieve the list of methods with the name NAME. */
2475 fns_ptr = value_find_oload_method_list (&temp, name,
2476 0, &num_fns,
2477 &basetype, &boffset);
2478 /* If this is a method only search, and no methods were found
2479 the search has faild. */
2480 if (method == METHOD && (!fns_ptr || !num_fns))
2481 error (_("Couldn't find method %s%s%s"),
2482 obj_type_name,
2483 (obj_type_name && *obj_type_name) ? "::" : "",
2484 name);
2485 /* If we are dealing with stub method types, they should have
2486 been resolved by find_method_list via
2487 value_find_oload_method_list above. */
2488 if (fns_ptr)
2489 {
2490 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2491 method_oload_champ = find_oload_champ (arg_types, nargs, method,
2492 num_fns, fns_ptr,
2493 oload_syms, &method_badness);
2494
2495 method_match_quality =
2496 classify_oload_match (method_badness, nargs,
2497 oload_method_static (method, fns_ptr,
2498 method_oload_champ));
2499
2500 make_cleanup (xfree, method_badness);
2501 }
2502
2503 }
2504
2505 if (method == NON_METHOD || method == BOTH)
2506 {
2507 const char *qualified_name = NULL;
2508
2509 /* If the the overload match is being search for both
2510 as a method and non member function, the first argument
2511 must now be dereferenced. */
2512 if (method == BOTH)
2513 arg_types[0] = TYPE_TARGET_TYPE (arg_types[0]);
2514
2515 if (fsym)
2516 {
2517 qualified_name = SYMBOL_NATURAL_NAME (fsym);
2518
2519 /* If we have a function with a C++ name, try to extract just
2520 the function part. Do not try this for non-functions (e.g.
2521 function pointers). */
2522 if (qualified_name
2523 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym))) == TYPE_CODE_FUNC)
2524 {
2525 char *temp;
2526
2527 temp = cp_func_name (qualified_name);
2528
2529 /* If cp_func_name did not remove anything, the name of the
2530 symbol did not include scope or argument types - it was
2531 probably a C-style function. */
2532 if (temp)
2533 {
2534 make_cleanup (xfree, temp);
2535 if (strcmp (temp, qualified_name) == 0)
2536 func_name = NULL;
2537 else
2538 func_name = temp;
2539 }
2540 }
2541 }
2542 else
2543 {
2544 func_name = name;
2545 qualified_name = name;
2546 }
2547
2548 /* If there was no C++ name, this must be a C-style function or
2549 not a function at all. Just return the same symbol. Do the
2550 same if cp_func_name fails for some reason. */
2551 if (func_name == NULL)
2552 {
2553 *symp = fsym;
2554 return 0;
2555 }
2556
2557 func_oload_champ = find_oload_champ_namespace (arg_types, nargs,
2558 func_name,
2559 qualified_name,
2560 &oload_syms,
2561 &func_badness,
2562 no_adl);
2563
2564 if (func_oload_champ >= 0)
2565 func_match_quality = classify_oload_match (func_badness, nargs, 0);
2566
2567 make_cleanup (xfree, oload_syms);
2568 make_cleanup (xfree, func_badness);
2569 }
2570
2571 /* Did we find a match ? */
2572 if (method_oload_champ == -1 && func_oload_champ == -1)
2573 throw_error (NOT_FOUND_ERROR,
2574 _("No symbol \"%s\" in current context."),
2575 name);
2576
2577 /* If we have found both a method match and a function
2578 match, find out which one is better, and calculate match
2579 quality. */
2580 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2581 {
2582 switch (compare_badness (func_badness, method_badness))
2583 {
2584 case 0: /* Top two contenders are equally good. */
2585 /* FIXME: GDB does not support the general ambiguous
2586 case. All candidates should be collected and presented
2587 the the user. */
2588 error (_("Ambiguous overload resolution"));
2589 break;
2590 case 1: /* Incomparable top contenders. */
2591 /* This is an error incompatible candidates
2592 should not have been proposed. */
2593 error (_("Internal error: incompatible overload candidates proposed"));
2594 break;
2595 case 2: /* Function champion. */
2596 method_oload_champ = -1;
2597 match_quality = func_match_quality;
2598 break;
2599 case 3: /* Method champion. */
2600 func_oload_champ = -1;
2601 match_quality = method_match_quality;
2602 break;
2603 default:
2604 error (_("Internal error: unexpected overload comparison result"));
2605 break;
2606 }
2607 }
2608 else
2609 {
2610 /* We have either a method match or a function match. */
2611 if (method_oload_champ >= 0)
2612 match_quality = method_match_quality;
2613 else
2614 match_quality = func_match_quality;
2615 }
2616
2617 if (match_quality == INCOMPATIBLE)
2618 {
2619 if (method == METHOD)
2620 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2621 obj_type_name,
2622 (obj_type_name && *obj_type_name) ? "::" : "",
2623 name);
2624 else
2625 error (_("Cannot resolve function %s to any overloaded instance"),
2626 func_name);
2627 }
2628 else if (match_quality == NON_STANDARD)
2629 {
2630 if (method == METHOD)
2631 warning (_("Using non-standard conversion to match method %s%s%s to supplied arguments"),
2632 obj_type_name,
2633 (obj_type_name && *obj_type_name) ? "::" : "",
2634 name);
2635 else
2636 warning (_("Using non-standard conversion to match function %s to supplied arguments"),
2637 func_name);
2638 }
2639
2640 if (staticp != NULL)
2641 *staticp = oload_method_static (method, fns_ptr, method_oload_champ);
2642
2643 if (method_oload_champ >= 0)
2644 {
2645 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ))
2646 *valp = value_virtual_fn_field (&temp, fns_ptr, method_oload_champ,
2647 basetype, boffset);
2648 else
2649 *valp = value_fn_field (&temp, fns_ptr, method_oload_champ,
2650 basetype, boffset);
2651 }
2652 else
2653 *symp = oload_syms[func_oload_champ];
2654
2655 if (objp)
2656 {
2657 struct type *temp_type = check_typedef (value_type (temp));
2658 struct type *obj_type = check_typedef (value_type (*objp));
2659
2660 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2661 && (TYPE_CODE (obj_type) == TYPE_CODE_PTR
2662 || TYPE_CODE (obj_type) == TYPE_CODE_REF))
2663 {
2664 temp = value_addr (temp);
2665 }
2666 *objp = temp;
2667 }
2668
2669 do_cleanups (all_cleanups);
2670
2671 switch (match_quality)
2672 {
2673 case INCOMPATIBLE:
2674 return 100;
2675 case NON_STANDARD:
2676 return 10;
2677 default: /* STANDARD */
2678 return 0;
2679 }
2680 }
2681
2682 /* Find the best overload match, searching for FUNC_NAME in namespaces
2683 contained in QUALIFIED_NAME until it either finds a good match or
2684 runs out of namespaces. It stores the overloaded functions in
2685 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2686 calling function is responsible for freeing *OLOAD_SYMS and
2687 *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not
2688 performned. */
2689
2690 static int
2691 find_oload_champ_namespace (struct type **arg_types, int nargs,
2692 const char *func_name,
2693 const char *qualified_name,
2694 struct symbol ***oload_syms,
2695 struct badness_vector **oload_champ_bv,
2696 const int no_adl)
2697 {
2698 int oload_champ;
2699
2700 find_oload_champ_namespace_loop (arg_types, nargs,
2701 func_name,
2702 qualified_name, 0,
2703 oload_syms, oload_champ_bv,
2704 &oload_champ,
2705 no_adl);
2706
2707 return oload_champ;
2708 }
2709
2710 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2711 how deep we've looked for namespaces, and the champ is stored in
2712 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2713 if it isn't. Other arguments are the same as in
2714 find_oload_champ_namespace
2715
2716 It is the caller's responsibility to free *OLOAD_SYMS and
2717 *OLOAD_CHAMP_BV. */
2718
2719 static int
2720 find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
2721 const char *func_name,
2722 const char *qualified_name,
2723 int namespace_len,
2724 struct symbol ***oload_syms,
2725 struct badness_vector **oload_champ_bv,
2726 int *oload_champ,
2727 const int no_adl)
2728 {
2729 int next_namespace_len = namespace_len;
2730 int searched_deeper = 0;
2731 int num_fns = 0;
2732 struct cleanup *old_cleanups;
2733 int new_oload_champ;
2734 struct symbol **new_oload_syms;
2735 struct badness_vector *new_oload_champ_bv;
2736 char *new_namespace;
2737
2738 if (next_namespace_len != 0)
2739 {
2740 gdb_assert (qualified_name[next_namespace_len] == ':');
2741 next_namespace_len += 2;
2742 }
2743 next_namespace_len +=
2744 cp_find_first_component (qualified_name + next_namespace_len);
2745
2746 /* Initialize these to values that can safely be xfree'd. */
2747 *oload_syms = NULL;
2748 *oload_champ_bv = NULL;
2749
2750 /* First, see if we have a deeper namespace we can search in.
2751 If we get a good match there, use it. */
2752
2753 if (qualified_name[next_namespace_len] == ':')
2754 {
2755 searched_deeper = 1;
2756
2757 if (find_oload_champ_namespace_loop (arg_types, nargs,
2758 func_name, qualified_name,
2759 next_namespace_len,
2760 oload_syms, oload_champ_bv,
2761 oload_champ, no_adl))
2762 {
2763 return 1;
2764 }
2765 };
2766
2767 /* If we reach here, either we're in the deepest namespace or we
2768 didn't find a good match in a deeper namespace. But, in the
2769 latter case, we still have a bad match in a deeper namespace;
2770 note that we might not find any match at all in the current
2771 namespace. (There's always a match in the deepest namespace,
2772 because this overload mechanism only gets called if there's a
2773 function symbol to start off with.) */
2774
2775 old_cleanups = make_cleanup (xfree, *oload_syms);
2776 make_cleanup (xfree, *oload_champ_bv);
2777 new_namespace = alloca (namespace_len + 1);
2778 strncpy (new_namespace, qualified_name, namespace_len);
2779 new_namespace[namespace_len] = '\0';
2780 new_oload_syms = make_symbol_overload_list (func_name,
2781 new_namespace);
2782
2783 /* If we have reached the deepest level perform argument
2784 determined lookup. */
2785 if (!searched_deeper && !no_adl)
2786 make_symbol_overload_list_adl (arg_types, nargs, func_name);
2787
2788 while (new_oload_syms[num_fns])
2789 ++num_fns;
2790
2791 new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns,
2792 NULL, new_oload_syms,
2793 &new_oload_champ_bv);
2794
2795 /* Case 1: We found a good match. Free earlier matches (if any),
2796 and return it. Case 2: We didn't find a good match, but we're
2797 not the deepest function. Then go with the bad match that the
2798 deeper function found. Case 3: We found a bad match, and we're
2799 the deepest function. Then return what we found, even though
2800 it's a bad match. */
2801
2802 if (new_oload_champ != -1
2803 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2804 {
2805 *oload_syms = new_oload_syms;
2806 *oload_champ = new_oload_champ;
2807 *oload_champ_bv = new_oload_champ_bv;
2808 do_cleanups (old_cleanups);
2809 return 1;
2810 }
2811 else if (searched_deeper)
2812 {
2813 xfree (new_oload_syms);
2814 xfree (new_oload_champ_bv);
2815 discard_cleanups (old_cleanups);
2816 return 0;
2817 }
2818 else
2819 {
2820 *oload_syms = new_oload_syms;
2821 *oload_champ = new_oload_champ;
2822 *oload_champ_bv = new_oload_champ_bv;
2823 do_cleanups (old_cleanups);
2824 return 0;
2825 }
2826 }
2827
2828 /* Look for a function to take NARGS args of types ARG_TYPES. Find
2829 the best match from among the overloaded methods or functions
2830 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2831 The number of methods/functions in the list is given by NUM_FNS.
2832 Return the index of the best match; store an indication of the
2833 quality of the match in OLOAD_CHAMP_BV.
2834
2835 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2836
2837 static int
2838 find_oload_champ (struct type **arg_types, int nargs, int method,
2839 int num_fns, struct fn_field *fns_ptr,
2840 struct symbol **oload_syms,
2841 struct badness_vector **oload_champ_bv)
2842 {
2843 int ix;
2844 /* A measure of how good an overloaded instance is. */
2845 struct badness_vector *bv;
2846 /* Index of best overloaded function. */
2847 int oload_champ = -1;
2848 /* Current ambiguity state for overload resolution. */
2849 int oload_ambiguous = 0;
2850 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
2851
2852 *oload_champ_bv = NULL;
2853
2854 /* Consider each candidate in turn. */
2855 for (ix = 0; ix < num_fns; ix++)
2856 {
2857 int jj;
2858 int static_offset = oload_method_static (method, fns_ptr, ix);
2859 int nparms;
2860 struct type **parm_types;
2861
2862 if (method)
2863 {
2864 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2865 }
2866 else
2867 {
2868 /* If it's not a method, this is the proper place. */
2869 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
2870 }
2871
2872 /* Prepare array of parameter types. */
2873 parm_types = (struct type **)
2874 xmalloc (nparms * (sizeof (struct type *)));
2875 for (jj = 0; jj < nparms; jj++)
2876 parm_types[jj] = (method
2877 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2878 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
2879 jj));
2880
2881 /* Compare parameter types to supplied argument types. Skip
2882 THIS for static methods. */
2883 bv = rank_function (parm_types, nparms,
2884 arg_types + static_offset,
2885 nargs - static_offset);
2886
2887 if (!*oload_champ_bv)
2888 {
2889 *oload_champ_bv = bv;
2890 oload_champ = 0;
2891 }
2892 else /* See whether current candidate is better or worse than
2893 previous best. */
2894 switch (compare_badness (bv, *oload_champ_bv))
2895 {
2896 case 0: /* Top two contenders are equally good. */
2897 oload_ambiguous = 1;
2898 break;
2899 case 1: /* Incomparable top contenders. */
2900 oload_ambiguous = 2;
2901 break;
2902 case 2: /* New champion, record details. */
2903 *oload_champ_bv = bv;
2904 oload_ambiguous = 0;
2905 oload_champ = ix;
2906 break;
2907 case 3:
2908 default:
2909 break;
2910 }
2911 xfree (parm_types);
2912 if (overload_debug)
2913 {
2914 if (method)
2915 fprintf_filtered (gdb_stderr,
2916 "Overloaded method instance %s, # of parms %d\n",
2917 fns_ptr[ix].physname, nparms);
2918 else
2919 fprintf_filtered (gdb_stderr,
2920 "Overloaded function instance %s # of parms %d\n",
2921 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
2922 nparms);
2923 for (jj = 0; jj < nargs - static_offset; jj++)
2924 fprintf_filtered (gdb_stderr,
2925 "...Badness @ %d : %d\n",
2926 jj, bv->rank[jj].rank);
2927 fprintf_filtered (gdb_stderr,
2928 "Overload resolution champion is %d, ambiguous? %d\n",
2929 oload_champ, oload_ambiguous);
2930 }
2931 }
2932
2933 return oload_champ;
2934 }
2935
2936 /* Return 1 if we're looking at a static method, 0 if we're looking at
2937 a non-static method or a function that isn't a method. */
2938
2939 static int
2940 oload_method_static (int method, struct fn_field *fns_ptr, int index)
2941 {
2942 if (method && fns_ptr && index >= 0
2943 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
2944 return 1;
2945 else
2946 return 0;
2947 }
2948
2949 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
2950
2951 static enum oload_classification
2952 classify_oload_match (struct badness_vector *oload_champ_bv,
2953 int nargs,
2954 int static_offset)
2955 {
2956 int ix;
2957
2958 for (ix = 1; ix <= nargs - static_offset; ix++)
2959 {
2960 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
2961 or worse return INCOMPATIBLE. */
2962 if (compare_ranks (oload_champ_bv->rank[ix],
2963 INCOMPATIBLE_TYPE_BADNESS) <= 0)
2964 return INCOMPATIBLE; /* Truly mismatched types. */
2965 /* Otherwise If this conversion is as bad as
2966 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
2967 else if (compare_ranks (oload_champ_bv->rank[ix],
2968 NS_POINTER_CONVERSION_BADNESS) <= 0)
2969 return NON_STANDARD; /* Non-standard type conversions
2970 needed. */
2971 }
2972
2973 return STANDARD; /* Only standard conversions needed. */
2974 }
2975
2976 /* C++: return 1 is NAME is a legitimate name for the destructor of
2977 type TYPE. If TYPE does not have a destructor, or if NAME is
2978 inappropriate for TYPE, an error is signaled. */
2979 int
2980 destructor_name_p (const char *name, const struct type *type)
2981 {
2982 if (name[0] == '~')
2983 {
2984 char *dname = type_name_no_tag (type);
2985 char *cp = strchr (dname, '<');
2986 unsigned int len;
2987
2988 /* Do not compare the template part for template classes. */
2989 if (cp == NULL)
2990 len = strlen (dname);
2991 else
2992 len = cp - dname;
2993 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
2994 error (_("name of destructor must equal name of class"));
2995 else
2996 return 1;
2997 }
2998 return 0;
2999 }
3000
3001 /* Given TYPE, a structure/union,
3002 return 1 if the component named NAME from the ultimate target
3003 structure/union is defined, otherwise, return 0. */
3004
3005 int
3006 check_field (struct type *type, const char *name)
3007 {
3008 int i;
3009
3010 /* The type may be a stub. */
3011 CHECK_TYPEDEF (type);
3012
3013 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
3014 {
3015 char *t_field_name = TYPE_FIELD_NAME (type, i);
3016
3017 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
3018 return 1;
3019 }
3020
3021 /* C++: If it was not found as a data field, then try to return it
3022 as a pointer to a method. */
3023
3024 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
3025 {
3026 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
3027 return 1;
3028 }
3029
3030 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
3031 if (check_field (TYPE_BASECLASS (type, i), name))
3032 return 1;
3033
3034 return 0;
3035 }
3036
3037 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3038 return the appropriate member (or the address of the member, if
3039 WANT_ADDRESS). This function is used to resolve user expressions
3040 of the form "DOMAIN::NAME". For more details on what happens, see
3041 the comment before value_struct_elt_for_reference. */
3042
3043 struct value *
3044 value_aggregate_elt (struct type *curtype, char *name,
3045 struct type *expect_type, int want_address,
3046 enum noside noside)
3047 {
3048 switch (TYPE_CODE (curtype))
3049 {
3050 case TYPE_CODE_STRUCT:
3051 case TYPE_CODE_UNION:
3052 return value_struct_elt_for_reference (curtype, 0, curtype,
3053 name, expect_type,
3054 want_address, noside);
3055 case TYPE_CODE_NAMESPACE:
3056 return value_namespace_elt (curtype, name,
3057 want_address, noside);
3058 default:
3059 internal_error (__FILE__, __LINE__,
3060 _("non-aggregate type in value_aggregate_elt"));
3061 }
3062 }
3063
3064 /* Compares the two method/function types T1 and T2 for "equality"
3065 with respect to the the methods' parameters. If the types of the
3066 two parameter lists are the same, returns 1; 0 otherwise. This
3067 comparison may ignore any artificial parameters in T1 if
3068 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3069 the first artificial parameter in T1, assumed to be a 'this' pointer.
3070
3071 The type T2 is expected to have come from make_params (in eval.c). */
3072
3073 static int
3074 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3075 {
3076 int start = 0;
3077
3078 if (TYPE_FIELD_ARTIFICIAL (t1, 0))
3079 ++start;
3080
3081 /* If skipping artificial fields, find the first real field
3082 in T1. */
3083 if (skip_artificial)
3084 {
3085 while (start < TYPE_NFIELDS (t1)
3086 && TYPE_FIELD_ARTIFICIAL (t1, start))
3087 ++start;
3088 }
3089
3090 /* Now compare parameters */
3091
3092 /* Special case: a method taking void. T1 will contain no
3093 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3094 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
3095 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
3096 return 1;
3097
3098 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
3099 {
3100 int i;
3101
3102 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
3103 {
3104 if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3105 TYPE_FIELD_TYPE (t2, i)),
3106 EXACT_MATCH_BADNESS) != 0)
3107 return 0;
3108 }
3109
3110 return 1;
3111 }
3112
3113 return 0;
3114 }
3115
3116 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3117 return the address of this member as a "pointer to member" type.
3118 If INTYPE is non-null, then it will be the type of the member we
3119 are looking for. This will help us resolve "pointers to member
3120 functions". This function is used to resolve user expressions of
3121 the form "DOMAIN::NAME". */
3122
3123 static struct value *
3124 value_struct_elt_for_reference (struct type *domain, int offset,
3125 struct type *curtype, char *name,
3126 struct type *intype,
3127 int want_address,
3128 enum noside noside)
3129 {
3130 struct type *t = curtype;
3131 int i;
3132 struct value *v, *result;
3133
3134 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3135 && TYPE_CODE (t) != TYPE_CODE_UNION)
3136 error (_("Internal error: non-aggregate type to value_struct_elt_for_reference"));
3137
3138 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3139 {
3140 char *t_field_name = TYPE_FIELD_NAME (t, i);
3141
3142 if (t_field_name && strcmp (t_field_name, name) == 0)
3143 {
3144 if (field_is_static (&TYPE_FIELD (t, i)))
3145 {
3146 v = value_static_field (t, i);
3147 if (v == NULL)
3148 error (_("static field %s has been optimized out"),
3149 name);
3150 if (want_address)
3151 v = value_addr (v);
3152 return v;
3153 }
3154 if (TYPE_FIELD_PACKED (t, i))
3155 error (_("pointers to bitfield members not allowed"));
3156
3157 if (want_address)
3158 return value_from_longest
3159 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3160 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3161 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3162 return allocate_value (TYPE_FIELD_TYPE (t, i));
3163 else
3164 error (_("Cannot reference non-static field \"%s\""), name);
3165 }
3166 }
3167
3168 /* C++: If it was not found as a data field, then try to return it
3169 as a pointer to a method. */
3170
3171 /* Perform all necessary dereferencing. */
3172 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3173 intype = TYPE_TARGET_TYPE (intype);
3174
3175 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3176 {
3177 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3178 char dem_opname[64];
3179
3180 if (strncmp (t_field_name, "__", 2) == 0
3181 || strncmp (t_field_name, "op", 2) == 0
3182 || strncmp (t_field_name, "type", 4) == 0)
3183 {
3184 if (cplus_demangle_opname (t_field_name,
3185 dem_opname, DMGL_ANSI))
3186 t_field_name = dem_opname;
3187 else if (cplus_demangle_opname (t_field_name,
3188 dem_opname, 0))
3189 t_field_name = dem_opname;
3190 }
3191 if (t_field_name && strcmp (t_field_name, name) == 0)
3192 {
3193 int j;
3194 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3195 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3196
3197 check_stub_method_group (t, i);
3198
3199 if (intype)
3200 {
3201 for (j = 0; j < len; ++j)
3202 {
3203 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3204 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 1))
3205 break;
3206 }
3207
3208 if (j == len)
3209 error (_("no member function matches that type instantiation"));
3210 }
3211 else
3212 {
3213 int ii;
3214
3215 j = -1;
3216 for (ii = 0; ii < TYPE_FN_FIELDLIST_LENGTH (t, i);
3217 ++ii)
3218 {
3219 /* Skip artificial methods. This is necessary if,
3220 for example, the user wants to "print
3221 subclass::subclass" with only one user-defined
3222 constructor. There is no ambiguity in this
3223 case. */
3224 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3225 continue;
3226
3227 /* Desired method is ambiguous if more than one
3228 method is defined. */
3229 if (j != -1)
3230 error (_("non-unique member `%s' requires type instantiation"), name);
3231
3232 j = ii;
3233 }
3234 }
3235
3236 if (TYPE_FN_FIELD_STATIC_P (f, j))
3237 {
3238 struct symbol *s =
3239 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3240 0, VAR_DOMAIN, 0);
3241
3242 if (s == NULL)
3243 return NULL;
3244
3245 if (want_address)
3246 return value_addr (read_var_value (s, 0));
3247 else
3248 return read_var_value (s, 0);
3249 }
3250
3251 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3252 {
3253 if (want_address)
3254 {
3255 result = allocate_value
3256 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3257 cplus_make_method_ptr (value_type (result),
3258 value_contents_writeable (result),
3259 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3260 }
3261 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3262 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3263 else
3264 error (_("Cannot reference virtual member function \"%s\""),
3265 name);
3266 }
3267 else
3268 {
3269 struct symbol *s =
3270 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3271 0, VAR_DOMAIN, 0);
3272
3273 if (s == NULL)
3274 return NULL;
3275
3276 v = read_var_value (s, 0);
3277 if (!want_address)
3278 result = v;
3279 else
3280 {
3281 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3282 cplus_make_method_ptr (value_type (result),
3283 value_contents_writeable (result),
3284 value_address (v), 0);
3285 }
3286 }
3287 return result;
3288 }
3289 }
3290 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3291 {
3292 struct value *v;
3293 int base_offset;
3294
3295 if (BASETYPE_VIA_VIRTUAL (t, i))
3296 base_offset = 0;
3297 else
3298 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3299 v = value_struct_elt_for_reference (domain,
3300 offset + base_offset,
3301 TYPE_BASECLASS (t, i),
3302 name, intype,
3303 want_address, noside);
3304 if (v)
3305 return v;
3306 }
3307
3308 /* As a last chance, pretend that CURTYPE is a namespace, and look
3309 it up that way; this (frequently) works for types nested inside
3310 classes. */
3311
3312 return value_maybe_namespace_elt (curtype, name,
3313 want_address, noside);
3314 }
3315
3316 /* C++: Return the member NAME of the namespace given by the type
3317 CURTYPE. */
3318
3319 static struct value *
3320 value_namespace_elt (const struct type *curtype,
3321 char *name, int want_address,
3322 enum noside noside)
3323 {
3324 struct value *retval = value_maybe_namespace_elt (curtype, name,
3325 want_address,
3326 noside);
3327
3328 if (retval == NULL)
3329 error (_("No symbol \"%s\" in namespace \"%s\"."),
3330 name, TYPE_TAG_NAME (curtype));
3331
3332 return retval;
3333 }
3334
3335 /* A helper function used by value_namespace_elt and
3336 value_struct_elt_for_reference. It looks up NAME inside the
3337 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3338 is a class and NAME refers to a type in CURTYPE itself (as opposed
3339 to, say, some base class of CURTYPE). */
3340
3341 static struct value *
3342 value_maybe_namespace_elt (const struct type *curtype,
3343 char *name, int want_address,
3344 enum noside noside)
3345 {
3346 const char *namespace_name = TYPE_TAG_NAME (curtype);
3347 struct symbol *sym;
3348 struct value *result;
3349
3350 sym = cp_lookup_symbol_namespace (namespace_name, name,
3351 get_selected_block (0), VAR_DOMAIN);
3352
3353 if (sym == NULL)
3354 {
3355 char *concatenated_name = alloca (strlen (namespace_name) + 2
3356 + strlen (name) + 1);
3357
3358 sprintf (concatenated_name, "%s::%s", namespace_name, name);
3359 sym = lookup_static_symbol_aux (concatenated_name, VAR_DOMAIN);
3360 }
3361
3362 if (sym == NULL)
3363 return NULL;
3364 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3365 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
3366 result = allocate_value (SYMBOL_TYPE (sym));
3367 else
3368 result = value_of_variable (sym, get_selected_block (0));
3369
3370 if (result && want_address)
3371 result = value_addr (result);
3372
3373 return result;
3374 }
3375
3376 /* Given a pointer value V, find the real (RTTI) type of the object it
3377 points to.
3378
3379 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3380 and refer to the values computed for the object pointed to. */
3381
3382 struct type *
3383 value_rtti_target_type (struct value *v, int *full,
3384 int *top, int *using_enc)
3385 {
3386 struct value *target;
3387
3388 target = value_ind (v);
3389
3390 return value_rtti_type (target, full, top, using_enc);
3391 }
3392
3393 /* Given a value pointed to by ARGP, check its real run-time type, and
3394 if that is different from the enclosing type, create a new value
3395 using the real run-time type as the enclosing type (and of the same
3396 type as ARGP) and return it, with the embedded offset adjusted to
3397 be the correct offset to the enclosed object. RTYPE is the type,
3398 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3399 by value_rtti_type(). If these are available, they can be supplied
3400 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3401 NULL if they're not available. */
3402
3403 struct value *
3404 value_full_object (struct value *argp,
3405 struct type *rtype,
3406 int xfull, int xtop,
3407 int xusing_enc)
3408 {
3409 struct type *real_type;
3410 int full = 0;
3411 int top = -1;
3412 int using_enc = 0;
3413 struct value *new_val;
3414
3415 if (rtype)
3416 {
3417 real_type = rtype;
3418 full = xfull;
3419 top = xtop;
3420 using_enc = xusing_enc;
3421 }
3422 else
3423 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3424
3425 /* If no RTTI data, or if object is already complete, do nothing. */
3426 if (!real_type || real_type == value_enclosing_type (argp))
3427 return argp;
3428
3429 /* If we have the full object, but for some reason the enclosing
3430 type is wrong, set it. */
3431 /* pai: FIXME -- sounds iffy */
3432 if (full)
3433 {
3434 argp = value_copy (argp);
3435 set_value_enclosing_type (argp, real_type);
3436 return argp;
3437 }
3438
3439 /* Check if object is in memory */
3440 if (VALUE_LVAL (argp) != lval_memory)
3441 {
3442 warning (_("Couldn't retrieve complete object of RTTI type %s; object may be in register(s)."),
3443 TYPE_NAME (real_type));
3444
3445 return argp;
3446 }
3447
3448 /* All other cases -- retrieve the complete object. */
3449 /* Go back by the computed top_offset from the beginning of the
3450 object, adjusting for the embedded offset of argp if that's what
3451 value_rtti_type used for its computation. */
3452 new_val = value_at_lazy (real_type, value_address (argp) - top +
3453 (using_enc ? 0 : value_embedded_offset (argp)));
3454 deprecated_set_value_type (new_val, value_type (argp));
3455 set_value_embedded_offset (new_val, (using_enc
3456 ? top + value_embedded_offset (argp)
3457 : top));
3458 return new_val;
3459 }
3460
3461
3462 /* Return the value of the local variable, if one exists.
3463 Flag COMPLAIN signals an error if the request is made in an
3464 inappropriate context. */
3465
3466 struct value *
3467 value_of_local (const char *name, int complain)
3468 {
3469 struct symbol *func, *sym;
3470 struct block *b;
3471 struct value * ret;
3472 struct frame_info *frame;
3473
3474 if (complain)
3475 frame = get_selected_frame (_("no frame selected"));
3476 else
3477 {
3478 frame = deprecated_safe_get_selected_frame ();
3479 if (frame == 0)
3480 return 0;
3481 }
3482
3483 func = get_frame_function (frame);
3484 if (!func)
3485 {
3486 if (complain)
3487 error (_("no `%s' in nameless context"), name);
3488 else
3489 return 0;
3490 }
3491
3492 b = SYMBOL_BLOCK_VALUE (func);
3493 if (dict_empty (BLOCK_DICT (b)))
3494 {
3495 if (complain)
3496 error (_("no args, no `%s'"), name);
3497 else
3498 return 0;
3499 }
3500
3501 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3502 symbol instead of the LOC_ARG one (if both exist). */
3503 sym = lookup_block_symbol (b, name, VAR_DOMAIN);
3504 if (sym == NULL)
3505 {
3506 if (complain)
3507 error (_("current stack frame does not contain a variable named `%s'"),
3508 name);
3509 else
3510 return NULL;
3511 }
3512
3513 ret = read_var_value (sym, frame);
3514 if (ret == 0 && complain)
3515 error (_("`%s' argument unreadable"), name);
3516 return ret;
3517 }
3518
3519 /* C++/Objective-C: return the value of the class instance variable,
3520 if one exists. Flag COMPLAIN signals an error if the request is
3521 made in an inappropriate context. */
3522
3523 struct value *
3524 value_of_this (int complain)
3525 {
3526 if (!current_language->la_name_of_this)
3527 return 0;
3528 return value_of_local (current_language->la_name_of_this, complain);
3529 }
3530
3531 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3532 elements long, starting at LOWBOUND. The result has the same lower
3533 bound as the original ARRAY. */
3534
3535 struct value *
3536 value_slice (struct value *array, int lowbound, int length)
3537 {
3538 struct type *slice_range_type, *slice_type, *range_type;
3539 LONGEST lowerbound, upperbound;
3540 struct value *slice;
3541 struct type *array_type;
3542
3543 array_type = check_typedef (value_type (array));
3544 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3545 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3546 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3547 error (_("cannot take slice of non-array"));
3548
3549 range_type = TYPE_INDEX_TYPE (array_type);
3550 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3551 error (_("slice from bad array or bitstring"));
3552
3553 if (lowbound < lowerbound || length < 0
3554 || lowbound + length - 1 > upperbound)
3555 error (_("slice out of range"));
3556
3557 /* FIXME-type-allocation: need a way to free this type when we are
3558 done with it. */
3559 slice_range_type = create_range_type ((struct type *) NULL,
3560 TYPE_TARGET_TYPE (range_type),
3561 lowbound,
3562 lowbound + length - 1);
3563 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3564 {
3565 int i;
3566
3567 slice_type = create_set_type ((struct type *) NULL,
3568 slice_range_type);
3569 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3570 slice = value_zero (slice_type, not_lval);
3571
3572 for (i = 0; i < length; i++)
3573 {
3574 int element = value_bit_index (array_type,
3575 value_contents (array),
3576 lowbound + i);
3577
3578 if (element < 0)
3579 error (_("internal error accessing bitstring"));
3580 else if (element > 0)
3581 {
3582 int j = i % TARGET_CHAR_BIT;
3583
3584 if (gdbarch_bits_big_endian (get_type_arch (array_type)))
3585 j = TARGET_CHAR_BIT - 1 - j;
3586 value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3587 }
3588 }
3589 /* We should set the address, bitssize, and bitspos, so the
3590 slice can be used on the LHS, but that may require extensions
3591 to value_assign. For now, just leave as a non_lval.
3592 FIXME. */
3593 }
3594 else
3595 {
3596 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3597 LONGEST offset =
3598 (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3599
3600 slice_type = create_array_type ((struct type *) NULL,
3601 element_type,
3602 slice_range_type);
3603 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3604
3605 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3606 slice = allocate_value_lazy (slice_type);
3607 else
3608 {
3609 slice = allocate_value (slice_type);
3610 memcpy (value_contents_writeable (slice),
3611 value_contents (array) + offset,
3612 TYPE_LENGTH (slice_type));
3613 }
3614
3615 set_value_component_location (slice, array);
3616 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3617 set_value_offset (slice, value_offset (array) + offset);
3618 }
3619 return slice;
3620 }
3621
3622 /* Create a value for a FORTRAN complex number. Currently most of the
3623 time values are coerced to COMPLEX*16 (i.e. a complex number
3624 composed of 2 doubles. This really should be a smarter routine
3625 that figures out precision inteligently as opposed to assuming
3626 doubles. FIXME: fmb */
3627
3628 struct value *
3629 value_literal_complex (struct value *arg1,
3630 struct value *arg2,
3631 struct type *type)
3632 {
3633 struct value *val;
3634 struct type *real_type = TYPE_TARGET_TYPE (type);
3635
3636 val = allocate_value (type);
3637 arg1 = value_cast (real_type, arg1);
3638 arg2 = value_cast (real_type, arg2);
3639
3640 memcpy (value_contents_raw (val),
3641 value_contents (arg1), TYPE_LENGTH (real_type));
3642 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3643 value_contents (arg2), TYPE_LENGTH (real_type));
3644 return val;
3645 }
3646
3647 /* Cast a value into the appropriate complex data type. */
3648
3649 static struct value *
3650 cast_into_complex (struct type *type, struct value *val)
3651 {
3652 struct type *real_type = TYPE_TARGET_TYPE (type);
3653
3654 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3655 {
3656 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3657 struct value *re_val = allocate_value (val_real_type);
3658 struct value *im_val = allocate_value (val_real_type);
3659
3660 memcpy (value_contents_raw (re_val),
3661 value_contents (val), TYPE_LENGTH (val_real_type));
3662 memcpy (value_contents_raw (im_val),
3663 value_contents (val) + TYPE_LENGTH (val_real_type),
3664 TYPE_LENGTH (val_real_type));
3665
3666 return value_literal_complex (re_val, im_val, type);
3667 }
3668 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3669 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3670 return value_literal_complex (val,
3671 value_zero (real_type, not_lval),
3672 type);
3673 else
3674 error (_("cannot cast non-number to complex"));
3675 }
3676
3677 void
3678 _initialize_valops (void)
3679 {
3680 add_setshow_boolean_cmd ("overload-resolution", class_support,
3681 &overload_resolution, _("\
3682 Set overload resolution in evaluating C++ functions."), _("\
3683 Show overload resolution in evaluating C++ functions."),
3684 NULL, NULL,
3685 show_overload_resolution,
3686 &setlist, &showlist);
3687 overload_resolution = 1;
3688 }