gdb/
[binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcore.h"
29 #include "target.h"
30 #include "demangle.h"
31 #include "language.h"
32 #include "gdbcmd.h"
33 #include "regcache.h"
34 #include "cp-abi.h"
35 #include "block.h"
36 #include "infcall.h"
37 #include "dictionary.h"
38 #include "cp-support.h"
39 #include "dfp.h"
40 #include "user-regs.h"
41 #include "tracepoint.h"
42 #include <errno.h>
43 #include "gdb_string.h"
44 #include "gdb_assert.h"
45 #include "cp-support.h"
46 #include "observer.h"
47 #include "objfiles.h"
48 #include "symtab.h"
49 #include "exceptions.h"
50
51 extern int overload_debug;
52 /* Local functions. */
53
54 static int typecmp (int staticp, int varargs, int nargs,
55 struct field t1[], struct value *t2[]);
56
57 static struct value *search_struct_field (const char *, struct value *,
58 int, struct type *, int);
59
60 static struct value *search_struct_method (const char *, struct value **,
61 struct value **,
62 int, int *, struct type *);
63
64 static int find_oload_champ_namespace (struct type **, int,
65 const char *, const char *,
66 struct symbol ***,
67 struct badness_vector **,
68 const int no_adl);
69
70 static
71 int find_oload_champ_namespace_loop (struct type **, int,
72 const char *, const char *,
73 int, struct symbol ***,
74 struct badness_vector **, int *,
75 const int no_adl);
76
77 static int find_oload_champ (struct type **, int, int, int,
78 struct fn_field *, struct symbol **,
79 struct badness_vector **);
80
81 static int oload_method_static (int, struct fn_field *, int);
82
83 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
84
85 static enum
86 oload_classification classify_oload_match (struct badness_vector *,
87 int, int);
88
89 static struct value *value_struct_elt_for_reference (struct type *,
90 int, struct type *,
91 char *,
92 struct type *,
93 int, enum noside);
94
95 static struct value *value_namespace_elt (const struct type *,
96 char *, int , enum noside);
97
98 static struct value *value_maybe_namespace_elt (const struct type *,
99 char *, int,
100 enum noside);
101
102 static CORE_ADDR allocate_space_in_inferior (int);
103
104 static struct value *cast_into_complex (struct type *, struct value *);
105
106 static struct fn_field *find_method_list (struct value **, const char *,
107 int, struct type *, int *,
108 struct type **, int *);
109
110 void _initialize_valops (void);
111
112 #if 0
113 /* Flag for whether we want to abandon failed expression evals by
114 default. */
115
116 static int auto_abandon = 0;
117 #endif
118
119 int overload_resolution = 0;
120 static void
121 show_overload_resolution (struct ui_file *file, int from_tty,
122 struct cmd_list_element *c,
123 const char *value)
124 {
125 fprintf_filtered (file, _("Overload resolution in evaluating "
126 "C++ functions is %s.\n"),
127 value);
128 }
129
130 /* Find the address of function name NAME in the inferior. If OBJF_P
131 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
132 is defined. */
133
134 struct value *
135 find_function_in_inferior (const char *name, struct objfile **objf_p)
136 {
137 struct symbol *sym;
138
139 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
140 if (sym != NULL)
141 {
142 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
143 {
144 error (_("\"%s\" exists in this program but is not a function."),
145 name);
146 }
147
148 if (objf_p)
149 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
150
151 return value_of_variable (sym, NULL);
152 }
153 else
154 {
155 struct minimal_symbol *msymbol =
156 lookup_minimal_symbol (name, NULL, NULL);
157
158 if (msymbol != NULL)
159 {
160 struct objfile *objfile = msymbol_objfile (msymbol);
161 struct gdbarch *gdbarch = get_objfile_arch (objfile);
162
163 struct type *type;
164 CORE_ADDR maddr;
165 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
166 type = lookup_function_type (type);
167 type = lookup_pointer_type (type);
168 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
169
170 if (objf_p)
171 *objf_p = objfile;
172
173 return value_from_pointer (type, maddr);
174 }
175 else
176 {
177 if (!target_has_execution)
178 error (_("evaluation of this expression "
179 "requires the target program to be active"));
180 else
181 error (_("evaluation of this expression requires the "
182 "program to have a function \"%s\"."),
183 name);
184 }
185 }
186 }
187
188 /* Allocate NBYTES of space in the inferior using the inferior's
189 malloc and return a value that is a pointer to the allocated
190 space. */
191
192 struct value *
193 value_allocate_space_in_inferior (int len)
194 {
195 struct objfile *objf;
196 struct value *val = find_function_in_inferior ("malloc", &objf);
197 struct gdbarch *gdbarch = get_objfile_arch (objf);
198 struct value *blocklen;
199
200 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
201 val = call_function_by_hand (val, 1, &blocklen);
202 if (value_logical_not (val))
203 {
204 if (!target_has_execution)
205 error (_("No memory available to program now: "
206 "you need to start the target first"));
207 else
208 error (_("No memory available to program: call to malloc failed"));
209 }
210 return val;
211 }
212
213 static CORE_ADDR
214 allocate_space_in_inferior (int len)
215 {
216 return value_as_long (value_allocate_space_in_inferior (len));
217 }
218
219 /* Cast struct value VAL to type TYPE and return as a value.
220 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
221 for this to work. Typedef to one of the codes is permitted.
222 Returns NULL if the cast is neither an upcast nor a downcast. */
223
224 static struct value *
225 value_cast_structs (struct type *type, struct value *v2)
226 {
227 struct type *t1;
228 struct type *t2;
229 struct value *v;
230
231 gdb_assert (type != NULL && v2 != NULL);
232
233 t1 = check_typedef (type);
234 t2 = check_typedef (value_type (v2));
235
236 /* Check preconditions. */
237 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
238 || TYPE_CODE (t1) == TYPE_CODE_UNION)
239 && !!"Precondition is that type is of STRUCT or UNION kind.");
240 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
241 || TYPE_CODE (t2) == TYPE_CODE_UNION)
242 && !!"Precondition is that value is of STRUCT or UNION kind");
243
244 if (TYPE_NAME (t1) != NULL
245 && TYPE_NAME (t2) != NULL
246 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
247 return NULL;
248
249 /* Upcasting: look in the type of the source to see if it contains the
250 type of the target as a superclass. If so, we'll need to
251 offset the pointer rather than just change its type. */
252 if (TYPE_NAME (t1) != NULL)
253 {
254 v = search_struct_field (type_name_no_tag (t1),
255 v2, 0, t2, 1);
256 if (v)
257 return v;
258 }
259
260 /* Downcasting: look in the type of the target to see if it contains the
261 type of the source as a superclass. If so, we'll need to
262 offset the pointer rather than just change its type. */
263 if (TYPE_NAME (t2) != NULL)
264 {
265 /* Try downcasting using the run-time type of the value. */
266 int full, top, using_enc;
267 struct type *real_type;
268
269 real_type = value_rtti_type (v2, &full, &top, &using_enc);
270 if (real_type)
271 {
272 v = value_full_object (v2, real_type, full, top, using_enc);
273 v = value_at_lazy (real_type, value_address (v));
274
275 /* We might be trying to cast to the outermost enclosing
276 type, in which case search_struct_field won't work. */
277 if (TYPE_NAME (real_type) != NULL
278 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
279 return v;
280
281 v = search_struct_field (type_name_no_tag (t2), v, 0, real_type, 1);
282 if (v)
283 return v;
284 }
285
286 /* Try downcasting using information from the destination type
287 T2. This wouldn't work properly for classes with virtual
288 bases, but those were handled above. */
289 v = search_struct_field (type_name_no_tag (t2),
290 value_zero (t1, not_lval), 0, t1, 1);
291 if (v)
292 {
293 /* Downcasting is possible (t1 is superclass of v2). */
294 CORE_ADDR addr2 = value_address (v2);
295
296 addr2 -= value_address (v) + value_embedded_offset (v);
297 return value_at (type, addr2);
298 }
299 }
300
301 return NULL;
302 }
303
304 /* Cast one pointer or reference type to another. Both TYPE and
305 the type of ARG2 should be pointer types, or else both should be
306 reference types. Returns the new pointer or reference. */
307
308 struct value *
309 value_cast_pointers (struct type *type, struct value *arg2)
310 {
311 struct type *type1 = check_typedef (type);
312 struct type *type2 = check_typedef (value_type (arg2));
313 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
314 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
315
316 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
317 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
318 && !value_logical_not (arg2))
319 {
320 struct value *v2;
321
322 if (TYPE_CODE (type2) == TYPE_CODE_REF)
323 v2 = coerce_ref (arg2);
324 else
325 v2 = value_ind (arg2);
326 gdb_assert (TYPE_CODE (check_typedef (value_type (v2)))
327 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
328 v2 = value_cast_structs (t1, v2);
329 /* At this point we have what we can have, un-dereference if needed. */
330 if (v2)
331 {
332 struct value *v = value_addr (v2);
333
334 deprecated_set_value_type (v, type);
335 return v;
336 }
337 }
338
339 /* No superclass found, just change the pointer type. */
340 arg2 = value_copy (arg2);
341 deprecated_set_value_type (arg2, type);
342 set_value_enclosing_type (arg2, type);
343 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
344 return arg2;
345 }
346
347 /* Cast value ARG2 to type TYPE and return as a value.
348 More general than a C cast: accepts any two types of the same length,
349 and if ARG2 is an lvalue it can be cast into anything at all. */
350 /* In C++, casts may change pointer or object representations. */
351
352 struct value *
353 value_cast (struct type *type, struct value *arg2)
354 {
355 enum type_code code1;
356 enum type_code code2;
357 int scalar;
358 struct type *type2;
359
360 int convert_to_boolean = 0;
361
362 if (value_type (arg2) == type)
363 return arg2;
364
365 code1 = TYPE_CODE (check_typedef (type));
366
367 /* Check if we are casting struct reference to struct reference. */
368 if (code1 == TYPE_CODE_REF)
369 {
370 /* We dereference type; then we recurse and finally
371 we generate value of the given reference. Nothing wrong with
372 that. */
373 struct type *t1 = check_typedef (type);
374 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
375 struct value *val = value_cast (dereftype, arg2);
376
377 return value_ref (val);
378 }
379
380 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
381
382 if (code2 == TYPE_CODE_REF)
383 /* We deref the value and then do the cast. */
384 return value_cast (type, coerce_ref (arg2));
385
386 CHECK_TYPEDEF (type);
387 code1 = TYPE_CODE (type);
388 arg2 = coerce_ref (arg2);
389 type2 = check_typedef (value_type (arg2));
390
391 /* You can't cast to a reference type. See value_cast_pointers
392 instead. */
393 gdb_assert (code1 != TYPE_CODE_REF);
394
395 /* A cast to an undetermined-length array_type, such as
396 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
397 where N is sizeof(OBJECT)/sizeof(TYPE). */
398 if (code1 == TYPE_CODE_ARRAY)
399 {
400 struct type *element_type = TYPE_TARGET_TYPE (type);
401 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
402
403 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
404 {
405 struct type *range_type = TYPE_INDEX_TYPE (type);
406 int val_length = TYPE_LENGTH (type2);
407 LONGEST low_bound, high_bound, new_length;
408
409 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
410 low_bound = 0, high_bound = 0;
411 new_length = val_length / element_length;
412 if (val_length % element_length != 0)
413 warning (_("array element type size does not "
414 "divide object size in cast"));
415 /* FIXME-type-allocation: need a way to free this type when
416 we are done with it. */
417 range_type = create_range_type ((struct type *) NULL,
418 TYPE_TARGET_TYPE (range_type),
419 low_bound,
420 new_length + low_bound - 1);
421 deprecated_set_value_type (arg2,
422 create_array_type ((struct type *) NULL,
423 element_type,
424 range_type));
425 return arg2;
426 }
427 }
428
429 if (current_language->c_style_arrays
430 && TYPE_CODE (type2) == TYPE_CODE_ARRAY
431 && !TYPE_VECTOR (type2))
432 arg2 = value_coerce_array (arg2);
433
434 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
435 arg2 = value_coerce_function (arg2);
436
437 type2 = check_typedef (value_type (arg2));
438 code2 = TYPE_CODE (type2);
439
440 if (code1 == TYPE_CODE_COMPLEX)
441 return cast_into_complex (type, arg2);
442 if (code1 == TYPE_CODE_BOOL)
443 {
444 code1 = TYPE_CODE_INT;
445 convert_to_boolean = 1;
446 }
447 if (code1 == TYPE_CODE_CHAR)
448 code1 = TYPE_CODE_INT;
449 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
450 code2 = TYPE_CODE_INT;
451
452 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
453 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
454 || code2 == TYPE_CODE_RANGE);
455
456 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
457 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
458 && TYPE_NAME (type) != 0)
459 {
460 struct value *v = value_cast_structs (type, arg2);
461
462 if (v)
463 return v;
464 }
465
466 if (code1 == TYPE_CODE_FLT && scalar)
467 return value_from_double (type, value_as_double (arg2));
468 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
469 {
470 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
471 int dec_len = TYPE_LENGTH (type);
472 gdb_byte dec[16];
473
474 if (code2 == TYPE_CODE_FLT)
475 decimal_from_floating (arg2, dec, dec_len, byte_order);
476 else if (code2 == TYPE_CODE_DECFLOAT)
477 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
478 byte_order, dec, dec_len, byte_order);
479 else
480 /* The only option left is an integral type. */
481 decimal_from_integral (arg2, dec, dec_len, byte_order);
482
483 return value_from_decfloat (type, dec);
484 }
485 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
486 || code1 == TYPE_CODE_RANGE)
487 && (scalar || code2 == TYPE_CODE_PTR
488 || code2 == TYPE_CODE_MEMBERPTR))
489 {
490 LONGEST longest;
491
492 /* When we cast pointers to integers, we mustn't use
493 gdbarch_pointer_to_address to find the address the pointer
494 represents, as value_as_long would. GDB should evaluate
495 expressions just as the compiler would --- and the compiler
496 sees a cast as a simple reinterpretation of the pointer's
497 bits. */
498 if (code2 == TYPE_CODE_PTR)
499 longest = extract_unsigned_integer
500 (value_contents (arg2), TYPE_LENGTH (type2),
501 gdbarch_byte_order (get_type_arch (type2)));
502 else
503 longest = value_as_long (arg2);
504 return value_from_longest (type, convert_to_boolean ?
505 (LONGEST) (longest ? 1 : 0) : longest);
506 }
507 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
508 || code2 == TYPE_CODE_ENUM
509 || code2 == TYPE_CODE_RANGE))
510 {
511 /* TYPE_LENGTH (type) is the length of a pointer, but we really
512 want the length of an address! -- we are really dealing with
513 addresses (i.e., gdb representations) not pointers (i.e.,
514 target representations) here.
515
516 This allows things like "print *(int *)0x01000234" to work
517 without printing a misleading message -- which would
518 otherwise occur when dealing with a target having two byte
519 pointers and four byte addresses. */
520
521 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
522 LONGEST longest = value_as_long (arg2);
523
524 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
525 {
526 if (longest >= ((LONGEST) 1 << addr_bit)
527 || longest <= -((LONGEST) 1 << addr_bit))
528 warning (_("value truncated"));
529 }
530 return value_from_longest (type, longest);
531 }
532 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
533 && value_as_long (arg2) == 0)
534 {
535 struct value *result = allocate_value (type);
536
537 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
538 return result;
539 }
540 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
541 && value_as_long (arg2) == 0)
542 {
543 /* The Itanium C++ ABI represents NULL pointers to members as
544 minus one, instead of biasing the normal case. */
545 return value_from_longest (type, -1);
546 }
547 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar)
548 {
549 /* Widen the scalar to a vector. */
550 struct type *eltype;
551 struct value *val;
552 LONGEST low_bound, high_bound;
553 int i;
554
555 if (!get_array_bounds (type, &low_bound, &high_bound))
556 error (_("Could not determine the vector bounds"));
557
558 eltype = check_typedef (TYPE_TARGET_TYPE (type));
559 arg2 = value_cast (eltype, arg2);
560 val = allocate_value (type);
561
562 for (i = 0; i < high_bound - low_bound + 1; i++)
563 {
564 /* Duplicate the contents of arg2 into the destination vector. */
565 memcpy (value_contents_writeable (val) + (i * TYPE_LENGTH (eltype)),
566 value_contents_all (arg2), TYPE_LENGTH (eltype));
567 }
568 return val;
569 }
570 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
571 {
572 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
573 return value_cast_pointers (type, arg2);
574
575 arg2 = value_copy (arg2);
576 deprecated_set_value_type (arg2, type);
577 set_value_enclosing_type (arg2, type);
578 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
579 return arg2;
580 }
581 else if (VALUE_LVAL (arg2) == lval_memory)
582 return value_at_lazy (type, value_address (arg2));
583 else if (code1 == TYPE_CODE_VOID)
584 {
585 return value_zero (type, not_lval);
586 }
587 else
588 {
589 error (_("Invalid cast."));
590 return 0;
591 }
592 }
593
594 /* The C++ reinterpret_cast operator. */
595
596 struct value *
597 value_reinterpret_cast (struct type *type, struct value *arg)
598 {
599 struct value *result;
600 struct type *real_type = check_typedef (type);
601 struct type *arg_type, *dest_type;
602 int is_ref = 0;
603 enum type_code dest_code, arg_code;
604
605 /* Do reference, function, and array conversion. */
606 arg = coerce_array (arg);
607
608 /* Attempt to preserve the type the user asked for. */
609 dest_type = type;
610
611 /* If we are casting to a reference type, transform
612 reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */
613 if (TYPE_CODE (real_type) == TYPE_CODE_REF)
614 {
615 is_ref = 1;
616 arg = value_addr (arg);
617 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
618 real_type = lookup_pointer_type (real_type);
619 }
620
621 arg_type = value_type (arg);
622
623 dest_code = TYPE_CODE (real_type);
624 arg_code = TYPE_CODE (arg_type);
625
626 /* We can convert pointer types, or any pointer type to int, or int
627 type to pointer. */
628 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
629 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
630 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
631 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
632 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
633 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
634 || (dest_code == arg_code
635 && (dest_code == TYPE_CODE_PTR
636 || dest_code == TYPE_CODE_METHODPTR
637 || dest_code == TYPE_CODE_MEMBERPTR)))
638 result = value_cast (dest_type, arg);
639 else
640 error (_("Invalid reinterpret_cast"));
641
642 if (is_ref)
643 result = value_cast (type, value_ref (value_ind (result)));
644
645 return result;
646 }
647
648 /* A helper for value_dynamic_cast. This implements the first of two
649 runtime checks: we iterate over all the base classes of the value's
650 class which are equal to the desired class; if only one of these
651 holds the value, then it is the answer. */
652
653 static int
654 dynamic_cast_check_1 (struct type *desired_type,
655 const bfd_byte *contents,
656 CORE_ADDR address,
657 struct type *search_type,
658 CORE_ADDR arg_addr,
659 struct type *arg_type,
660 struct value **result)
661 {
662 int i, result_count = 0;
663
664 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
665 {
666 int offset = baseclass_offset (search_type, i, contents, address);
667
668 if (offset == -1)
669 error (_("virtual baseclass botch"));
670 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
671 {
672 if (address + offset >= arg_addr
673 && address + offset < arg_addr + TYPE_LENGTH (arg_type))
674 {
675 ++result_count;
676 if (!*result)
677 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
678 address + offset);
679 }
680 }
681 else
682 result_count += dynamic_cast_check_1 (desired_type,
683 contents + offset,
684 address + offset,
685 TYPE_BASECLASS (search_type, i),
686 arg_addr,
687 arg_type,
688 result);
689 }
690
691 return result_count;
692 }
693
694 /* A helper for value_dynamic_cast. This implements the second of two
695 runtime checks: we look for a unique public sibling class of the
696 argument's declared class. */
697
698 static int
699 dynamic_cast_check_2 (struct type *desired_type,
700 const bfd_byte *contents,
701 CORE_ADDR address,
702 struct type *search_type,
703 struct value **result)
704 {
705 int i, result_count = 0;
706
707 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
708 {
709 int offset;
710
711 if (! BASETYPE_VIA_PUBLIC (search_type, i))
712 continue;
713
714 offset = baseclass_offset (search_type, i, contents, address);
715 if (offset == -1)
716 error (_("virtual baseclass botch"));
717 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
718 {
719 ++result_count;
720 if (*result == NULL)
721 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
722 address + offset);
723 }
724 else
725 result_count += dynamic_cast_check_2 (desired_type,
726 contents + offset,
727 address + offset,
728 TYPE_BASECLASS (search_type, i),
729 result);
730 }
731
732 return result_count;
733 }
734
735 /* The C++ dynamic_cast operator. */
736
737 struct value *
738 value_dynamic_cast (struct type *type, struct value *arg)
739 {
740 int full, top, using_enc;
741 struct type *resolved_type = check_typedef (type);
742 struct type *arg_type = check_typedef (value_type (arg));
743 struct type *class_type, *rtti_type;
744 struct value *result, *tem, *original_arg = arg;
745 CORE_ADDR addr;
746 int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF;
747
748 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
749 && TYPE_CODE (resolved_type) != TYPE_CODE_REF)
750 error (_("Argument to dynamic_cast must be a pointer or reference type"));
751 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
752 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_CLASS)
753 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
754
755 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
756 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
757 {
758 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
759 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
760 && value_as_long (arg) == 0))
761 error (_("Argument to dynamic_cast does not have pointer type"));
762 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
763 {
764 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
765 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
766 error (_("Argument to dynamic_cast does "
767 "not have pointer to class type"));
768 }
769
770 /* Handle NULL pointers. */
771 if (value_as_long (arg) == 0)
772 return value_zero (type, not_lval);
773
774 arg = value_ind (arg);
775 }
776 else
777 {
778 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
779 error (_("Argument to dynamic_cast does not have class type"));
780 }
781
782 /* If the classes are the same, just return the argument. */
783 if (class_types_same_p (class_type, arg_type))
784 return value_cast (type, arg);
785
786 /* If the target type is a unique base class of the argument's
787 declared type, just cast it. */
788 if (is_ancestor (class_type, arg_type))
789 {
790 if (is_unique_ancestor (class_type, arg))
791 return value_cast (type, original_arg);
792 error (_("Ambiguous dynamic_cast"));
793 }
794
795 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
796 if (! rtti_type)
797 error (_("Couldn't determine value's most derived type for dynamic_cast"));
798
799 /* Compute the most derived object's address. */
800 addr = value_address (arg);
801 if (full)
802 {
803 /* Done. */
804 }
805 else if (using_enc)
806 addr += top;
807 else
808 addr += top + value_embedded_offset (arg);
809
810 /* dynamic_cast<void *> means to return a pointer to the
811 most-derived object. */
812 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
813 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
814 return value_at_lazy (type, addr);
815
816 tem = value_at (type, addr);
817
818 /* The first dynamic check specified in 5.2.7. */
819 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
820 {
821 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
822 return tem;
823 result = NULL;
824 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
825 value_contents (tem), value_address (tem),
826 rtti_type, addr,
827 arg_type,
828 &result) == 1)
829 return value_cast (type,
830 is_ref ? value_ref (result) : value_addr (result));
831 }
832
833 /* The second dynamic check specified in 5.2.7. */
834 result = NULL;
835 if (is_public_ancestor (arg_type, rtti_type)
836 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
837 value_contents (tem), value_address (tem),
838 rtti_type, &result) == 1)
839 return value_cast (type,
840 is_ref ? value_ref (result) : value_addr (result));
841
842 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
843 return value_zero (type, not_lval);
844
845 error (_("dynamic_cast failed"));
846 }
847
848 /* Create a value of type TYPE that is zero, and return it. */
849
850 struct value *
851 value_zero (struct type *type, enum lval_type lv)
852 {
853 struct value *val = allocate_value (type);
854
855 VALUE_LVAL (val) = lv;
856 return val;
857 }
858
859 /* Create a value of numeric type TYPE that is one, and return it. */
860
861 struct value *
862 value_one (struct type *type, enum lval_type lv)
863 {
864 struct type *type1 = check_typedef (type);
865 struct value *val;
866
867 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
868 {
869 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
870 gdb_byte v[16];
871
872 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
873 val = value_from_decfloat (type, v);
874 }
875 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
876 {
877 val = value_from_double (type, (DOUBLEST) 1);
878 }
879 else if (is_integral_type (type1))
880 {
881 val = value_from_longest (type, (LONGEST) 1);
882 }
883 else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
884 {
885 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
886 int i;
887 LONGEST low_bound, high_bound;
888 struct value *tmp;
889
890 if (!get_array_bounds (type1, &low_bound, &high_bound))
891 error (_("Could not determine the vector bounds"));
892
893 val = allocate_value (type);
894 for (i = 0; i < high_bound - low_bound + 1; i++)
895 {
896 tmp = value_one (eltype, lv);
897 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
898 value_contents_all (tmp), TYPE_LENGTH (eltype));
899 }
900 }
901 else
902 {
903 error (_("Not a numeric type."));
904 }
905
906 VALUE_LVAL (val) = lv;
907 return val;
908 }
909
910 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack. */
911
912 static struct value *
913 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
914 {
915 struct value *val;
916
917 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
918 error (_("Attempt to dereference a generic pointer."));
919
920 if (lazy)
921 {
922 val = allocate_value_lazy (type);
923 }
924 else
925 {
926 val = allocate_value (type);
927 read_memory (addr, value_contents_all_raw (val), TYPE_LENGTH (type));
928 }
929
930 VALUE_LVAL (val) = lval_memory;
931 set_value_address (val, addr);
932
933 return val;
934 }
935
936 /* Return a value with type TYPE located at ADDR.
937
938 Call value_at only if the data needs to be fetched immediately;
939 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
940 value_at_lazy instead. value_at_lazy simply records the address of
941 the data and sets the lazy-evaluation-required flag. The lazy flag
942 is tested in the value_contents macro, which is used if and when
943 the contents are actually required.
944
945 Note: value_at does *NOT* handle embedded offsets; perform such
946 adjustments before or after calling it. */
947
948 struct value *
949 value_at (struct type *type, CORE_ADDR addr)
950 {
951 return get_value_at (type, addr, 0);
952 }
953
954 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
955
956 struct value *
957 value_at_lazy (struct type *type, CORE_ADDR addr)
958 {
959 return get_value_at (type, addr, 1);
960 }
961
962 /* Called only from the value_contents and value_contents_all()
963 macros, if the current data for a variable needs to be loaded into
964 value_contents(VAL). Fetches the data from the user's process, and
965 clears the lazy flag to indicate that the data in the buffer is
966 valid.
967
968 If the value is zero-length, we avoid calling read_memory, which
969 would abort. We mark the value as fetched anyway -- all 0 bytes of
970 it.
971
972 This function returns a value because it is used in the
973 value_contents macro as part of an expression, where a void would
974 not work. The value is ignored. */
975
976 int
977 value_fetch_lazy (struct value *val)
978 {
979 gdb_assert (value_lazy (val));
980 allocate_value_contents (val);
981 if (value_bitsize (val))
982 {
983 /* To read a lazy bitfield, read the entire enclosing value. This
984 prevents reading the same block of (possibly volatile) memory once
985 per bitfield. It would be even better to read only the containing
986 word, but we have no way to record that just specific bits of a
987 value have been fetched. */
988 struct type *type = check_typedef (value_type (val));
989 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
990 struct value *parent = value_parent (val);
991 LONGEST offset = value_offset (val);
992 LONGEST num;
993 int length = TYPE_LENGTH (type);
994
995 if (!value_bits_valid (val,
996 TARGET_CHAR_BIT * offset + value_bitpos (val),
997 value_bitsize (val)))
998 error (_("value has been optimized out"));
999
1000 if (!unpack_value_bits_as_long (value_type (val),
1001 value_contents_for_printing (parent),
1002 offset,
1003 value_bitpos (val),
1004 value_bitsize (val), parent, &num))
1005 mark_value_bytes_unavailable (val,
1006 value_embedded_offset (val),
1007 length);
1008 else
1009 store_signed_integer (value_contents_raw (val), length,
1010 byte_order, num);
1011 }
1012 else if (VALUE_LVAL (val) == lval_memory)
1013 {
1014 CORE_ADDR addr = value_address (val);
1015 int length = TYPE_LENGTH (check_typedef (value_enclosing_type (val)));
1016
1017 if (length)
1018 read_value_memory (val, 0, value_stack (val),
1019 addr, value_contents_all_raw (val), length);
1020 }
1021 else if (VALUE_LVAL (val) == lval_register)
1022 {
1023 struct frame_info *frame;
1024 int regnum;
1025 struct type *type = check_typedef (value_type (val));
1026 struct value *new_val = val, *mark = value_mark ();
1027
1028 /* Offsets are not supported here; lazy register values must
1029 refer to the entire register. */
1030 gdb_assert (value_offset (val) == 0);
1031
1032 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
1033 {
1034 frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
1035 regnum = VALUE_REGNUM (new_val);
1036
1037 gdb_assert (frame != NULL);
1038
1039 /* Convertible register routines are used for multi-register
1040 values and for interpretation in different types
1041 (e.g. float or int from a double register). Lazy
1042 register values should have the register's natural type,
1043 so they do not apply. */
1044 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
1045 regnum, type));
1046
1047 new_val = get_frame_register_value (frame, regnum);
1048 }
1049
1050 /* If it's still lazy (for instance, a saved register on the
1051 stack), fetch it. */
1052 if (value_lazy (new_val))
1053 value_fetch_lazy (new_val);
1054
1055 /* If the register was not saved, mark it unavailable. */
1056 if (value_optimized_out (new_val))
1057 set_value_optimized_out (val, 1);
1058 else
1059 memcpy (value_contents_raw (val), value_contents (new_val),
1060 TYPE_LENGTH (type));
1061
1062 if (frame_debug)
1063 {
1064 struct gdbarch *gdbarch;
1065 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1066 regnum = VALUE_REGNUM (val);
1067 gdbarch = get_frame_arch (frame);
1068
1069 fprintf_unfiltered (gdb_stdlog,
1070 "{ value_fetch_lazy "
1071 "(frame=%d,regnum=%d(%s),...) ",
1072 frame_relative_level (frame), regnum,
1073 user_reg_map_regnum_to_name (gdbarch, regnum));
1074
1075 fprintf_unfiltered (gdb_stdlog, "->");
1076 if (value_optimized_out (new_val))
1077 fprintf_unfiltered (gdb_stdlog, " optimized out");
1078 else
1079 {
1080 int i;
1081 const gdb_byte *buf = value_contents (new_val);
1082
1083 if (VALUE_LVAL (new_val) == lval_register)
1084 fprintf_unfiltered (gdb_stdlog, " register=%d",
1085 VALUE_REGNUM (new_val));
1086 else if (VALUE_LVAL (new_val) == lval_memory)
1087 fprintf_unfiltered (gdb_stdlog, " address=%s",
1088 paddress (gdbarch,
1089 value_address (new_val)));
1090 else
1091 fprintf_unfiltered (gdb_stdlog, " computed");
1092
1093 fprintf_unfiltered (gdb_stdlog, " bytes=");
1094 fprintf_unfiltered (gdb_stdlog, "[");
1095 for (i = 0; i < register_size (gdbarch, regnum); i++)
1096 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1097 fprintf_unfiltered (gdb_stdlog, "]");
1098 }
1099
1100 fprintf_unfiltered (gdb_stdlog, " }\n");
1101 }
1102
1103 /* Dispose of the intermediate values. This prevents
1104 watchpoints from trying to watch the saved frame pointer. */
1105 value_free_to_mark (mark);
1106 }
1107 else if (VALUE_LVAL (val) == lval_computed)
1108 value_computed_funcs (val)->read (val);
1109 else if (value_optimized_out (val))
1110 /* Keep it optimized out. */;
1111 else
1112 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
1113
1114 set_value_lazy (val, 0);
1115 return 0;
1116 }
1117
1118 void
1119 read_value_memory (struct value *val, int embedded_offset,
1120 int stack, CORE_ADDR memaddr,
1121 gdb_byte *buffer, size_t length)
1122 {
1123 if (length)
1124 {
1125 VEC(mem_range_s) *available_memory;
1126
1127 if (get_traceframe_number () < 0
1128 || !traceframe_available_memory (&available_memory, memaddr, length))
1129 {
1130 if (stack)
1131 read_stack (memaddr, buffer, length);
1132 else
1133 read_memory (memaddr, buffer, length);
1134 }
1135 else
1136 {
1137 struct target_section_table *table;
1138 struct cleanup *old_chain;
1139 CORE_ADDR unavail;
1140 mem_range_s *r;
1141 int i;
1142
1143 /* Fallback to reading from read-only sections. */
1144 table = target_get_section_table (&exec_ops);
1145 available_memory =
1146 section_table_available_memory (available_memory,
1147 memaddr, length,
1148 table->sections,
1149 table->sections_end);
1150
1151 old_chain = make_cleanup (VEC_cleanup(mem_range_s),
1152 &available_memory);
1153
1154 normalize_mem_ranges (available_memory);
1155
1156 /* Mark which bytes are unavailable, and read those which
1157 are available. */
1158
1159 unavail = memaddr;
1160
1161 for (i = 0;
1162 VEC_iterate (mem_range_s, available_memory, i, r);
1163 i++)
1164 {
1165 if (mem_ranges_overlap (r->start, r->length,
1166 memaddr, length))
1167 {
1168 CORE_ADDR lo1, hi1, lo2, hi2;
1169 CORE_ADDR start, end;
1170
1171 /* Get the intersection window. */
1172 lo1 = memaddr;
1173 hi1 = memaddr + length;
1174 lo2 = r->start;
1175 hi2 = r->start + r->length;
1176 start = max (lo1, lo2);
1177 end = min (hi1, hi2);
1178
1179 gdb_assert (end - memaddr <= length);
1180
1181 if (start > unavail)
1182 mark_value_bytes_unavailable (val,
1183 (embedded_offset
1184 + unavail - memaddr),
1185 start - unavail);
1186 unavail = end;
1187
1188 read_memory (start, buffer + start - memaddr, end - start);
1189 }
1190 }
1191
1192 if (unavail != memaddr + length)
1193 mark_value_bytes_unavailable (val,
1194 embedded_offset + unavail - memaddr,
1195 (memaddr + length) - unavail);
1196
1197 do_cleanups (old_chain);
1198 }
1199 }
1200 }
1201
1202 /* Store the contents of FROMVAL into the location of TOVAL.
1203 Return a new value with the location of TOVAL and contents of FROMVAL. */
1204
1205 struct value *
1206 value_assign (struct value *toval, struct value *fromval)
1207 {
1208 struct type *type;
1209 struct value *val;
1210 struct frame_id old_frame;
1211
1212 if (!deprecated_value_modifiable (toval))
1213 error (_("Left operand of assignment is not a modifiable lvalue."));
1214
1215 toval = coerce_ref (toval);
1216
1217 type = value_type (toval);
1218 if (VALUE_LVAL (toval) != lval_internalvar)
1219 fromval = value_cast (type, fromval);
1220 else
1221 {
1222 /* Coerce arrays and functions to pointers, except for arrays
1223 which only live in GDB's storage. */
1224 if (!value_must_coerce_to_target (fromval))
1225 fromval = coerce_array (fromval);
1226 }
1227
1228 CHECK_TYPEDEF (type);
1229
1230 /* Since modifying a register can trash the frame chain, and
1231 modifying memory can trash the frame cache, we save the old frame
1232 and then restore the new frame afterwards. */
1233 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1234
1235 switch (VALUE_LVAL (toval))
1236 {
1237 case lval_internalvar:
1238 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1239 return value_of_internalvar (get_type_arch (type),
1240 VALUE_INTERNALVAR (toval));
1241
1242 case lval_internalvar_component:
1243 set_internalvar_component (VALUE_INTERNALVAR (toval),
1244 value_offset (toval),
1245 value_bitpos (toval),
1246 value_bitsize (toval),
1247 fromval);
1248 break;
1249
1250 case lval_memory:
1251 {
1252 const gdb_byte *dest_buffer;
1253 CORE_ADDR changed_addr;
1254 int changed_len;
1255 gdb_byte buffer[sizeof (LONGEST)];
1256
1257 if (value_bitsize (toval))
1258 {
1259 struct value *parent = value_parent (toval);
1260
1261 changed_addr = value_address (parent) + value_offset (toval);
1262 changed_len = (value_bitpos (toval)
1263 + value_bitsize (toval)
1264 + HOST_CHAR_BIT - 1)
1265 / HOST_CHAR_BIT;
1266
1267 /* If we can read-modify-write exactly the size of the
1268 containing type (e.g. short or int) then do so. This
1269 is safer for volatile bitfields mapped to hardware
1270 registers. */
1271 if (changed_len < TYPE_LENGTH (type)
1272 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1273 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1274 changed_len = TYPE_LENGTH (type);
1275
1276 if (changed_len > (int) sizeof (LONGEST))
1277 error (_("Can't handle bitfields which "
1278 "don't fit in a %d bit word."),
1279 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1280
1281 read_memory (changed_addr, buffer, changed_len);
1282 modify_field (type, buffer, value_as_long (fromval),
1283 value_bitpos (toval), value_bitsize (toval));
1284 dest_buffer = buffer;
1285 }
1286 else
1287 {
1288 changed_addr = value_address (toval);
1289 changed_len = TYPE_LENGTH (type);
1290 dest_buffer = value_contents (fromval);
1291 }
1292
1293 write_memory (changed_addr, dest_buffer, changed_len);
1294 observer_notify_memory_changed (changed_addr, changed_len,
1295 dest_buffer);
1296 }
1297 break;
1298
1299 case lval_register:
1300 {
1301 struct frame_info *frame;
1302 struct gdbarch *gdbarch;
1303 int value_reg;
1304
1305 /* Figure out which frame this is in currently. */
1306 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1307 value_reg = VALUE_REGNUM (toval);
1308
1309 if (!frame)
1310 error (_("Value being assigned to is no longer active."));
1311
1312 gdbarch = get_frame_arch (frame);
1313 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
1314 {
1315 /* If TOVAL is a special machine register requiring
1316 conversion of program values to a special raw
1317 format. */
1318 gdbarch_value_to_register (gdbarch, frame,
1319 VALUE_REGNUM (toval), type,
1320 value_contents (fromval));
1321 }
1322 else
1323 {
1324 if (value_bitsize (toval))
1325 {
1326 struct value *parent = value_parent (toval);
1327 int offset = value_offset (parent) + value_offset (toval);
1328 int changed_len;
1329 gdb_byte buffer[sizeof (LONGEST)];
1330
1331 changed_len = (value_bitpos (toval)
1332 + value_bitsize (toval)
1333 + HOST_CHAR_BIT - 1)
1334 / HOST_CHAR_BIT;
1335
1336 if (changed_len > (int) sizeof (LONGEST))
1337 error (_("Can't handle bitfields which "
1338 "don't fit in a %d bit word."),
1339 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1340
1341 get_frame_register_bytes (frame, value_reg, offset,
1342 changed_len, buffer);
1343
1344 modify_field (type, buffer, value_as_long (fromval),
1345 value_bitpos (toval), value_bitsize (toval));
1346
1347 put_frame_register_bytes (frame, value_reg, offset,
1348 changed_len, buffer);
1349 }
1350 else
1351 {
1352 put_frame_register_bytes (frame, value_reg,
1353 value_offset (toval),
1354 TYPE_LENGTH (type),
1355 value_contents (fromval));
1356 }
1357 }
1358
1359 if (deprecated_register_changed_hook)
1360 deprecated_register_changed_hook (-1);
1361 observer_notify_target_changed (&current_target);
1362 break;
1363 }
1364
1365 case lval_computed:
1366 {
1367 struct lval_funcs *funcs = value_computed_funcs (toval);
1368
1369 funcs->write (toval, fromval);
1370 }
1371 break;
1372
1373 default:
1374 error (_("Left operand of assignment is not an lvalue."));
1375 }
1376
1377 /* Assigning to the stack pointer, frame pointer, and other
1378 (architecture and calling convention specific) registers may
1379 cause the frame cache to be out of date. Assigning to memory
1380 also can. We just do this on all assignments to registers or
1381 memory, for simplicity's sake; I doubt the slowdown matters. */
1382 switch (VALUE_LVAL (toval))
1383 {
1384 case lval_memory:
1385 case lval_register:
1386 case lval_computed:
1387
1388 reinit_frame_cache ();
1389
1390 /* Having destroyed the frame cache, restore the selected
1391 frame. */
1392
1393 /* FIXME: cagney/2002-11-02: There has to be a better way of
1394 doing this. Instead of constantly saving/restoring the
1395 frame. Why not create a get_selected_frame() function that,
1396 having saved the selected frame's ID can automatically
1397 re-find the previously selected frame automatically. */
1398
1399 {
1400 struct frame_info *fi = frame_find_by_id (old_frame);
1401
1402 if (fi != NULL)
1403 select_frame (fi);
1404 }
1405
1406 break;
1407 default:
1408 break;
1409 }
1410
1411 /* If the field does not entirely fill a LONGEST, then zero the sign
1412 bits. If the field is signed, and is negative, then sign
1413 extend. */
1414 if ((value_bitsize (toval) > 0)
1415 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1416 {
1417 LONGEST fieldval = value_as_long (fromval);
1418 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1419
1420 fieldval &= valmask;
1421 if (!TYPE_UNSIGNED (type)
1422 && (fieldval & (valmask ^ (valmask >> 1))))
1423 fieldval |= ~valmask;
1424
1425 fromval = value_from_longest (type, fieldval);
1426 }
1427
1428 /* The return value is a copy of TOVAL so it shares its location
1429 information, but its contents are updated from FROMVAL. This
1430 implies the returned value is not lazy, even if TOVAL was. */
1431 val = value_copy (toval);
1432 set_value_lazy (val, 0);
1433 memcpy (value_contents_raw (val), value_contents (fromval),
1434 TYPE_LENGTH (type));
1435
1436 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1437 in the case of pointer types. For object types, the enclosing type
1438 and embedded offset must *not* be copied: the target object refered
1439 to by TOVAL retains its original dynamic type after assignment. */
1440 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1441 {
1442 set_value_enclosing_type (val, value_enclosing_type (fromval));
1443 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1444 }
1445
1446 return val;
1447 }
1448
1449 /* Extend a value VAL to COUNT repetitions of its type. */
1450
1451 struct value *
1452 value_repeat (struct value *arg1, int count)
1453 {
1454 struct value *val;
1455
1456 if (VALUE_LVAL (arg1) != lval_memory)
1457 error (_("Only values in memory can be extended with '@'."));
1458 if (count < 1)
1459 error (_("Invalid number %d of repetitions."), count);
1460
1461 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1462
1463 read_memory (value_address (arg1),
1464 value_contents_all_raw (val),
1465 TYPE_LENGTH (value_enclosing_type (val)));
1466 VALUE_LVAL (val) = lval_memory;
1467 set_value_address (val, value_address (arg1));
1468
1469 return val;
1470 }
1471
1472 struct value *
1473 value_of_variable (struct symbol *var, struct block *b)
1474 {
1475 struct value *val;
1476 struct frame_info *frame;
1477
1478 if (!symbol_read_needs_frame (var))
1479 frame = NULL;
1480 else if (!b)
1481 frame = get_selected_frame (_("No frame selected."));
1482 else
1483 {
1484 frame = block_innermost_frame (b);
1485 if (!frame)
1486 {
1487 if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
1488 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1489 error (_("No frame is currently executing in block %s."),
1490 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1491 else
1492 error (_("No frame is currently executing in specified block"));
1493 }
1494 }
1495
1496 val = read_var_value (var, frame);
1497 if (!val)
1498 error (_("Address of symbol \"%s\" is unknown."), SYMBOL_PRINT_NAME (var));
1499
1500 return val;
1501 }
1502
1503 struct value *
1504 address_of_variable (struct symbol *var, struct block *b)
1505 {
1506 struct type *type = SYMBOL_TYPE (var);
1507 struct value *val;
1508
1509 /* Evaluate it first; if the result is a memory address, we're fine.
1510 Lazy evaluation pays off here. */
1511
1512 val = value_of_variable (var, b);
1513
1514 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1515 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1516 {
1517 CORE_ADDR addr = value_address (val);
1518
1519 return value_from_pointer (lookup_pointer_type (type), addr);
1520 }
1521
1522 /* Not a memory address; check what the problem was. */
1523 switch (VALUE_LVAL (val))
1524 {
1525 case lval_register:
1526 {
1527 struct frame_info *frame;
1528 const char *regname;
1529
1530 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1531 gdb_assert (frame);
1532
1533 regname = gdbarch_register_name (get_frame_arch (frame),
1534 VALUE_REGNUM (val));
1535 gdb_assert (regname && *regname);
1536
1537 error (_("Address requested for identifier "
1538 "\"%s\" which is in register $%s"),
1539 SYMBOL_PRINT_NAME (var), regname);
1540 break;
1541 }
1542
1543 default:
1544 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1545 SYMBOL_PRINT_NAME (var));
1546 break;
1547 }
1548
1549 return val;
1550 }
1551
1552 /* Return one if VAL does not live in target memory, but should in order
1553 to operate on it. Otherwise return zero. */
1554
1555 int
1556 value_must_coerce_to_target (struct value *val)
1557 {
1558 struct type *valtype;
1559
1560 /* The only lval kinds which do not live in target memory. */
1561 if (VALUE_LVAL (val) != not_lval
1562 && VALUE_LVAL (val) != lval_internalvar)
1563 return 0;
1564
1565 valtype = check_typedef (value_type (val));
1566
1567 switch (TYPE_CODE (valtype))
1568 {
1569 case TYPE_CODE_ARRAY:
1570 return TYPE_VECTOR (valtype) ? 0 : 1;
1571 case TYPE_CODE_STRING:
1572 return 1;
1573 default:
1574 return 0;
1575 }
1576 }
1577
1578 /* Make sure that VAL lives in target memory if it's supposed to. For
1579 instance, strings are constructed as character arrays in GDB's
1580 storage, and this function copies them to the target. */
1581
1582 struct value *
1583 value_coerce_to_target (struct value *val)
1584 {
1585 LONGEST length;
1586 CORE_ADDR addr;
1587
1588 if (!value_must_coerce_to_target (val))
1589 return val;
1590
1591 length = TYPE_LENGTH (check_typedef (value_type (val)));
1592 addr = allocate_space_in_inferior (length);
1593 write_memory (addr, value_contents (val), length);
1594 return value_at_lazy (value_type (val), addr);
1595 }
1596
1597 /* Given a value which is an array, return a value which is a pointer
1598 to its first element, regardless of whether or not the array has a
1599 nonzero lower bound.
1600
1601 FIXME: A previous comment here indicated that this routine should
1602 be substracting the array's lower bound. It's not clear to me that
1603 this is correct. Given an array subscripting operation, it would
1604 certainly work to do the adjustment here, essentially computing:
1605
1606 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1607
1608 However I believe a more appropriate and logical place to account
1609 for the lower bound is to do so in value_subscript, essentially
1610 computing:
1611
1612 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1613
1614 As further evidence consider what would happen with operations
1615 other than array subscripting, where the caller would get back a
1616 value that had an address somewhere before the actual first element
1617 of the array, and the information about the lower bound would be
1618 lost because of the coercion to pointer type. */
1619
1620 struct value *
1621 value_coerce_array (struct value *arg1)
1622 {
1623 struct type *type = check_typedef (value_type (arg1));
1624
1625 /* If the user tries to do something requiring a pointer with an
1626 array that has not yet been pushed to the target, then this would
1627 be a good time to do so. */
1628 arg1 = value_coerce_to_target (arg1);
1629
1630 if (VALUE_LVAL (arg1) != lval_memory)
1631 error (_("Attempt to take address of value not located in memory."));
1632
1633 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1634 value_address (arg1));
1635 }
1636
1637 /* Given a value which is a function, return a value which is a pointer
1638 to it. */
1639
1640 struct value *
1641 value_coerce_function (struct value *arg1)
1642 {
1643 struct value *retval;
1644
1645 if (VALUE_LVAL (arg1) != lval_memory)
1646 error (_("Attempt to take address of value not located in memory."));
1647
1648 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1649 value_address (arg1));
1650 return retval;
1651 }
1652
1653 /* Return a pointer value for the object for which ARG1 is the
1654 contents. */
1655
1656 struct value *
1657 value_addr (struct value *arg1)
1658 {
1659 struct value *arg2;
1660 struct type *type = check_typedef (value_type (arg1));
1661
1662 if (TYPE_CODE (type) == TYPE_CODE_REF)
1663 {
1664 /* Copy the value, but change the type from (T&) to (T*). We
1665 keep the same location information, which is efficient, and
1666 allows &(&X) to get the location containing the reference. */
1667 arg2 = value_copy (arg1);
1668 deprecated_set_value_type (arg2,
1669 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1670 return arg2;
1671 }
1672 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1673 return value_coerce_function (arg1);
1674
1675 /* If this is an array that has not yet been pushed to the target,
1676 then this would be a good time to force it to memory. */
1677 arg1 = value_coerce_to_target (arg1);
1678
1679 if (VALUE_LVAL (arg1) != lval_memory)
1680 error (_("Attempt to take address of value not located in memory."));
1681
1682 /* Get target memory address. */
1683 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1684 (value_address (arg1)
1685 + value_embedded_offset (arg1)));
1686
1687 /* This may be a pointer to a base subobject; so remember the
1688 full derived object's type ... */
1689 set_value_enclosing_type (arg2,
1690 lookup_pointer_type (value_enclosing_type (arg1)));
1691 /* ... and also the relative position of the subobject in the full
1692 object. */
1693 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1694 return arg2;
1695 }
1696
1697 /* Return a reference value for the object for which ARG1 is the
1698 contents. */
1699
1700 struct value *
1701 value_ref (struct value *arg1)
1702 {
1703 struct value *arg2;
1704 struct type *type = check_typedef (value_type (arg1));
1705
1706 if (TYPE_CODE (type) == TYPE_CODE_REF)
1707 return arg1;
1708
1709 arg2 = value_addr (arg1);
1710 deprecated_set_value_type (arg2, lookup_reference_type (type));
1711 return arg2;
1712 }
1713
1714 /* Given a value of a pointer type, apply the C unary * operator to
1715 it. */
1716
1717 struct value *
1718 value_ind (struct value *arg1)
1719 {
1720 struct type *base_type;
1721 struct value *arg2;
1722
1723 arg1 = coerce_array (arg1);
1724
1725 base_type = check_typedef (value_type (arg1));
1726
1727 if (VALUE_LVAL (arg1) == lval_computed)
1728 {
1729 struct lval_funcs *funcs = value_computed_funcs (arg1);
1730
1731 if (funcs->indirect)
1732 {
1733 struct value *result = funcs->indirect (arg1);
1734
1735 if (result)
1736 return result;
1737 }
1738 }
1739
1740 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1741 {
1742 struct type *enc_type;
1743
1744 /* We may be pointing to something embedded in a larger object.
1745 Get the real type of the enclosing object. */
1746 enc_type = check_typedef (value_enclosing_type (arg1));
1747 enc_type = TYPE_TARGET_TYPE (enc_type);
1748
1749 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1750 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1751 /* For functions, go through find_function_addr, which knows
1752 how to handle function descriptors. */
1753 arg2 = value_at_lazy (enc_type,
1754 find_function_addr (arg1, NULL));
1755 else
1756 /* Retrieve the enclosing object pointed to. */
1757 arg2 = value_at_lazy (enc_type,
1758 (value_as_address (arg1)
1759 - value_pointed_to_offset (arg1)));
1760
1761 /* Re-adjust type. */
1762 deprecated_set_value_type (arg2, TYPE_TARGET_TYPE (base_type));
1763 /* Add embedding info. */
1764 set_value_enclosing_type (arg2, enc_type);
1765 set_value_embedded_offset (arg2, value_pointed_to_offset (arg1));
1766
1767 /* We may be pointing to an object of some derived type. */
1768 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1769 return arg2;
1770 }
1771
1772 error (_("Attempt to take contents of a non-pointer value."));
1773 return 0; /* For lint -- never reached. */
1774 }
1775 \f
1776 /* Create a value for an array by allocating space in GDB, copying
1777 copying the data into that space, and then setting up an array
1778 value.
1779
1780 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1781 is populated from the values passed in ELEMVEC.
1782
1783 The element type of the array is inherited from the type of the
1784 first element, and all elements must have the same size (though we
1785 don't currently enforce any restriction on their types). */
1786
1787 struct value *
1788 value_array (int lowbound, int highbound, struct value **elemvec)
1789 {
1790 int nelem;
1791 int idx;
1792 unsigned int typelength;
1793 struct value *val;
1794 struct type *arraytype;
1795
1796 /* Validate that the bounds are reasonable and that each of the
1797 elements have the same size. */
1798
1799 nelem = highbound - lowbound + 1;
1800 if (nelem <= 0)
1801 {
1802 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1803 }
1804 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1805 for (idx = 1; idx < nelem; idx++)
1806 {
1807 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1808 {
1809 error (_("array elements must all be the same size"));
1810 }
1811 }
1812
1813 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1814 lowbound, highbound);
1815
1816 if (!current_language->c_style_arrays)
1817 {
1818 val = allocate_value (arraytype);
1819 for (idx = 0; idx < nelem; idx++)
1820 {
1821 memcpy (value_contents_all_raw (val) + (idx * typelength),
1822 value_contents_all (elemvec[idx]),
1823 typelength);
1824 }
1825 return val;
1826 }
1827
1828 /* Allocate space to store the array, and then initialize it by
1829 copying in each element. */
1830
1831 val = allocate_value (arraytype);
1832 for (idx = 0; idx < nelem; idx++)
1833 memcpy (value_contents_writeable (val) + (idx * typelength),
1834 value_contents_all (elemvec[idx]),
1835 typelength);
1836 return val;
1837 }
1838
1839 struct value *
1840 value_cstring (char *ptr, int len, struct type *char_type)
1841 {
1842 struct value *val;
1843 int lowbound = current_language->string_lower_bound;
1844 int highbound = len / TYPE_LENGTH (char_type);
1845 struct type *stringtype
1846 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1847
1848 val = allocate_value (stringtype);
1849 memcpy (value_contents_raw (val), ptr, len);
1850 return val;
1851 }
1852
1853 /* Create a value for a string constant by allocating space in the
1854 inferior, copying the data into that space, and returning the
1855 address with type TYPE_CODE_STRING. PTR points to the string
1856 constant data; LEN is number of characters.
1857
1858 Note that string types are like array of char types with a lower
1859 bound of zero and an upper bound of LEN - 1. Also note that the
1860 string may contain embedded null bytes. */
1861
1862 struct value *
1863 value_string (char *ptr, int len, struct type *char_type)
1864 {
1865 struct value *val;
1866 int lowbound = current_language->string_lower_bound;
1867 int highbound = len / TYPE_LENGTH (char_type);
1868 struct type *stringtype
1869 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1870
1871 val = allocate_value (stringtype);
1872 memcpy (value_contents_raw (val), ptr, len);
1873 return val;
1874 }
1875
1876 struct value *
1877 value_bitstring (char *ptr, int len, struct type *index_type)
1878 {
1879 struct value *val;
1880 struct type *domain_type
1881 = create_range_type (NULL, index_type, 0, len - 1);
1882 struct type *type = create_set_type (NULL, domain_type);
1883
1884 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1885 val = allocate_value (type);
1886 memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type));
1887 return val;
1888 }
1889 \f
1890 /* See if we can pass arguments in T2 to a function which takes
1891 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1892 a NULL-terminated vector. If some arguments need coercion of some
1893 sort, then the coerced values are written into T2. Return value is
1894 0 if the arguments could be matched, or the position at which they
1895 differ if not.
1896
1897 STATICP is nonzero if the T1 argument list came from a static
1898 member function. T2 will still include the ``this'' pointer, but
1899 it will be skipped.
1900
1901 For non-static member functions, we ignore the first argument,
1902 which is the type of the instance variable. This is because we
1903 want to handle calls with objects from derived classes. This is
1904 not entirely correct: we should actually check to make sure that a
1905 requested operation is type secure, shouldn't we? FIXME. */
1906
1907 static int
1908 typecmp (int staticp, int varargs, int nargs,
1909 struct field t1[], struct value *t2[])
1910 {
1911 int i;
1912
1913 if (t2 == 0)
1914 internal_error (__FILE__, __LINE__,
1915 _("typecmp: no argument list"));
1916
1917 /* Skip ``this'' argument if applicable. T2 will always include
1918 THIS. */
1919 if (staticp)
1920 t2 ++;
1921
1922 for (i = 0;
1923 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1924 i++)
1925 {
1926 struct type *tt1, *tt2;
1927
1928 if (!t2[i])
1929 return i + 1;
1930
1931 tt1 = check_typedef (t1[i].type);
1932 tt2 = check_typedef (value_type (t2[i]));
1933
1934 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1935 /* We should be doing hairy argument matching, as below. */
1936 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1)))
1937 == TYPE_CODE (tt2)))
1938 {
1939 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1940 t2[i] = value_coerce_array (t2[i]);
1941 else
1942 t2[i] = value_ref (t2[i]);
1943 continue;
1944 }
1945
1946 /* djb - 20000715 - Until the new type structure is in the
1947 place, and we can attempt things like implicit conversions,
1948 we need to do this so you can take something like a map<const
1949 char *>, and properly access map["hello"], because the
1950 argument to [] will be a reference to a pointer to a char,
1951 and the argument will be a pointer to a char. */
1952 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1953 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1954 {
1955 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1956 }
1957 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1958 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1959 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1960 {
1961 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1962 }
1963 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1964 continue;
1965 /* Array to pointer is a `trivial conversion' according to the
1966 ARM. */
1967
1968 /* We should be doing much hairier argument matching (see
1969 section 13.2 of the ARM), but as a quick kludge, just check
1970 for the same type code. */
1971 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1972 return i + 1;
1973 }
1974 if (varargs || t2[i] == NULL)
1975 return 0;
1976 return i + 1;
1977 }
1978
1979 /* Helper function used by value_struct_elt to recurse through
1980 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1981 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1982 TYPE. If found, return value, else return NULL.
1983
1984 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1985 fields, look for a baseclass named NAME. */
1986
1987 static struct value *
1988 search_struct_field (const char *name, struct value *arg1, int offset,
1989 struct type *type, int looking_for_baseclass)
1990 {
1991 int i;
1992 int nbases;
1993
1994 CHECK_TYPEDEF (type);
1995 nbases = TYPE_N_BASECLASSES (type);
1996
1997 if (!looking_for_baseclass)
1998 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1999 {
2000 char *t_field_name = TYPE_FIELD_NAME (type, i);
2001
2002 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2003 {
2004 struct value *v;
2005
2006 if (field_is_static (&TYPE_FIELD (type, i)))
2007 {
2008 v = value_static_field (type, i);
2009 if (v == 0)
2010 error (_("field %s is nonexistent or "
2011 "has been optimized out"),
2012 name);
2013 }
2014 else
2015 {
2016 v = value_primitive_field (arg1, offset, i, type);
2017 if (v == 0)
2018 error (_("there is no field named %s"), name);
2019 }
2020 return v;
2021 }
2022
2023 if (t_field_name
2024 && (t_field_name[0] == '\0'
2025 || (TYPE_CODE (type) == TYPE_CODE_UNION
2026 && (strcmp_iw (t_field_name, "else") == 0))))
2027 {
2028 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2029
2030 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2031 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2032 {
2033 /* Look for a match through the fields of an anonymous
2034 union, or anonymous struct. C++ provides anonymous
2035 unions.
2036
2037 In the GNU Chill (now deleted from GDB)
2038 implementation of variant record types, each
2039 <alternative field> has an (anonymous) union type,
2040 each member of the union represents a <variant
2041 alternative>. Each <variant alternative> is
2042 represented as a struct, with a member for each
2043 <variant field>. */
2044
2045 struct value *v;
2046 int new_offset = offset;
2047
2048 /* This is pretty gross. In G++, the offset in an
2049 anonymous union is relative to the beginning of the
2050 enclosing struct. In the GNU Chill (now deleted
2051 from GDB) implementation of variant records, the
2052 bitpos is zero in an anonymous union field, so we
2053 have to add the offset of the union here. */
2054 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2055 || (TYPE_NFIELDS (field_type) > 0
2056 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2057 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2058
2059 v = search_struct_field (name, arg1, new_offset,
2060 field_type,
2061 looking_for_baseclass);
2062 if (v)
2063 return v;
2064 }
2065 }
2066 }
2067
2068 for (i = 0; i < nbases; i++)
2069 {
2070 struct value *v;
2071 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2072 /* If we are looking for baseclasses, this is what we get when
2073 we hit them. But it could happen that the base part's member
2074 name is not yet filled in. */
2075 int found_baseclass = (looking_for_baseclass
2076 && TYPE_BASECLASS_NAME (type, i) != NULL
2077 && (strcmp_iw (name,
2078 TYPE_BASECLASS_NAME (type,
2079 i)) == 0));
2080
2081 if (BASETYPE_VIA_VIRTUAL (type, i))
2082 {
2083 int boffset;
2084 struct value *v2;
2085
2086 boffset = baseclass_offset (type, i,
2087 value_contents (arg1) + offset,
2088 value_address (arg1)
2089 + value_embedded_offset (arg1)
2090 + offset);
2091 if (boffset == -1)
2092 error (_("virtual baseclass botch"));
2093
2094 /* The virtual base class pointer might have been clobbered
2095 by the user program. Make sure that it still points to a
2096 valid memory location. */
2097
2098 boffset += value_embedded_offset (arg1) + offset;
2099 if (boffset < 0
2100 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
2101 {
2102 CORE_ADDR base_addr;
2103
2104 v2 = allocate_value (basetype);
2105 base_addr = value_address (arg1) + boffset;
2106 if (target_read_memory (base_addr,
2107 value_contents_raw (v2),
2108 TYPE_LENGTH (basetype)) != 0)
2109 error (_("virtual baseclass botch"));
2110 VALUE_LVAL (v2) = lval_memory;
2111 set_value_address (v2, base_addr);
2112 }
2113 else
2114 {
2115 v2 = value_copy (arg1);
2116 deprecated_set_value_type (v2, basetype);
2117 set_value_embedded_offset (v2, boffset);
2118 }
2119
2120 if (found_baseclass)
2121 return v2;
2122 v = search_struct_field (name, v2, 0,
2123 TYPE_BASECLASS (type, i),
2124 looking_for_baseclass);
2125 }
2126 else if (found_baseclass)
2127 v = value_primitive_field (arg1, offset, i, type);
2128 else
2129 v = search_struct_field (name, arg1,
2130 offset + TYPE_BASECLASS_BITPOS (type,
2131 i) / 8,
2132 basetype, looking_for_baseclass);
2133 if (v)
2134 return v;
2135 }
2136 return NULL;
2137 }
2138
2139 /* Helper function used by value_struct_elt to recurse through
2140 baseclasses. Look for a field NAME in ARG1. Adjust the address of
2141 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2142 TYPE.
2143
2144 If found, return value, else if name matched and args not return
2145 (value) -1, else return NULL. */
2146
2147 static struct value *
2148 search_struct_method (const char *name, struct value **arg1p,
2149 struct value **args, int offset,
2150 int *static_memfuncp, struct type *type)
2151 {
2152 int i;
2153 struct value *v;
2154 int name_matched = 0;
2155 char dem_opname[64];
2156
2157 CHECK_TYPEDEF (type);
2158 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2159 {
2160 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2161
2162 /* FIXME! May need to check for ARM demangling here. */
2163 if (strncmp (t_field_name, "__", 2) == 0 ||
2164 strncmp (t_field_name, "op", 2) == 0 ||
2165 strncmp (t_field_name, "type", 4) == 0)
2166 {
2167 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2168 t_field_name = dem_opname;
2169 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2170 t_field_name = dem_opname;
2171 }
2172 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2173 {
2174 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2175 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2176
2177 name_matched = 1;
2178 check_stub_method_group (type, i);
2179 if (j > 0 && args == 0)
2180 error (_("cannot resolve overloaded method "
2181 "`%s': no arguments supplied"), name);
2182 else if (j == 0 && args == 0)
2183 {
2184 v = value_fn_field (arg1p, f, j, type, offset);
2185 if (v != NULL)
2186 return v;
2187 }
2188 else
2189 while (j >= 0)
2190 {
2191 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2192 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2193 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2194 TYPE_FN_FIELD_ARGS (f, j), args))
2195 {
2196 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2197 return value_virtual_fn_field (arg1p, f, j,
2198 type, offset);
2199 if (TYPE_FN_FIELD_STATIC_P (f, j)
2200 && static_memfuncp)
2201 *static_memfuncp = 1;
2202 v = value_fn_field (arg1p, f, j, type, offset);
2203 if (v != NULL)
2204 return v;
2205 }
2206 j--;
2207 }
2208 }
2209 }
2210
2211 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2212 {
2213 int base_offset;
2214
2215 if (BASETYPE_VIA_VIRTUAL (type, i))
2216 {
2217 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2218 const gdb_byte *base_valaddr;
2219
2220 /* The virtual base class pointer might have been
2221 clobbered by the user program. Make sure that it
2222 still points to a valid memory location. */
2223
2224 if (offset < 0 || offset >= TYPE_LENGTH (type))
2225 {
2226 gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass));
2227
2228 if (target_read_memory (value_address (*arg1p) + offset,
2229 tmp, TYPE_LENGTH (baseclass)) != 0)
2230 error (_("virtual baseclass botch"));
2231 base_valaddr = tmp;
2232 }
2233 else
2234 base_valaddr = value_contents (*arg1p) + offset;
2235
2236 base_offset = baseclass_offset (type, i, base_valaddr,
2237 value_address (*arg1p) + offset);
2238 if (base_offset == -1)
2239 error (_("virtual baseclass botch"));
2240 }
2241 else
2242 {
2243 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2244 }
2245 v = search_struct_method (name, arg1p, args, base_offset + offset,
2246 static_memfuncp, TYPE_BASECLASS (type, i));
2247 if (v == (struct value *) - 1)
2248 {
2249 name_matched = 1;
2250 }
2251 else if (v)
2252 {
2253 /* FIXME-bothner: Why is this commented out? Why is it here? */
2254 /* *arg1p = arg1_tmp; */
2255 return v;
2256 }
2257 }
2258 if (name_matched)
2259 return (struct value *) - 1;
2260 else
2261 return NULL;
2262 }
2263
2264 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2265 extract the component named NAME from the ultimate target
2266 structure/union and return it as a value with its appropriate type.
2267 ERR is used in the error message if *ARGP's type is wrong.
2268
2269 C++: ARGS is a list of argument types to aid in the selection of
2270 an appropriate method. Also, handle derived types.
2271
2272 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2273 where the truthvalue of whether the function that was resolved was
2274 a static member function or not is stored.
2275
2276 ERR is an error message to be printed in case the field is not
2277 found. */
2278
2279 struct value *
2280 value_struct_elt (struct value **argp, struct value **args,
2281 const char *name, int *static_memfuncp, const char *err)
2282 {
2283 struct type *t;
2284 struct value *v;
2285
2286 *argp = coerce_array (*argp);
2287
2288 t = check_typedef (value_type (*argp));
2289
2290 /* Follow pointers until we get to a non-pointer. */
2291
2292 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2293 {
2294 *argp = value_ind (*argp);
2295 /* Don't coerce fn pointer to fn and then back again! */
2296 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2297 *argp = coerce_array (*argp);
2298 t = check_typedef (value_type (*argp));
2299 }
2300
2301 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2302 && TYPE_CODE (t) != TYPE_CODE_UNION)
2303 error (_("Attempt to extract a component of a value that is not a %s."),
2304 err);
2305
2306 /* Assume it's not, unless we see that it is. */
2307 if (static_memfuncp)
2308 *static_memfuncp = 0;
2309
2310 if (!args)
2311 {
2312 /* if there are no arguments ...do this... */
2313
2314 /* Try as a field first, because if we succeed, there is less
2315 work to be done. */
2316 v = search_struct_field (name, *argp, 0, t, 0);
2317 if (v)
2318 return v;
2319
2320 /* C++: If it was not found as a data field, then try to
2321 return it as a pointer to a method. */
2322 v = search_struct_method (name, argp, args, 0,
2323 static_memfuncp, t);
2324
2325 if (v == (struct value *) - 1)
2326 error (_("Cannot take address of method %s."), name);
2327 else if (v == 0)
2328 {
2329 if (TYPE_NFN_FIELDS (t))
2330 error (_("There is no member or method named %s."), name);
2331 else
2332 error (_("There is no member named %s."), name);
2333 }
2334 return v;
2335 }
2336
2337 v = search_struct_method (name, argp, args, 0,
2338 static_memfuncp, t);
2339
2340 if (v == (struct value *) - 1)
2341 {
2342 error (_("One of the arguments you tried to pass to %s could not "
2343 "be converted to what the function wants."), name);
2344 }
2345 else if (v == 0)
2346 {
2347 /* See if user tried to invoke data as function. If so, hand it
2348 back. If it's not callable (i.e., a pointer to function),
2349 gdb should give an error. */
2350 v = search_struct_field (name, *argp, 0, t, 0);
2351 /* If we found an ordinary field, then it is not a method call.
2352 So, treat it as if it were a static member function. */
2353 if (v && static_memfuncp)
2354 *static_memfuncp = 1;
2355 }
2356
2357 if (!v)
2358 throw_error (NOT_FOUND_ERROR,
2359 _("Structure has no component named %s."), name);
2360 return v;
2361 }
2362
2363 /* Search through the methods of an object (and its bases) to find a
2364 specified method. Return the pointer to the fn_field list of
2365 overloaded instances.
2366
2367 Helper function for value_find_oload_list.
2368 ARGP is a pointer to a pointer to a value (the object).
2369 METHOD is a string containing the method name.
2370 OFFSET is the offset within the value.
2371 TYPE is the assumed type of the object.
2372 NUM_FNS is the number of overloaded instances.
2373 BASETYPE is set to the actual type of the subobject where the
2374 method is found.
2375 BOFFSET is the offset of the base subobject where the method is found. */
2376
2377 static struct fn_field *
2378 find_method_list (struct value **argp, const char *method,
2379 int offset, struct type *type, int *num_fns,
2380 struct type **basetype, int *boffset)
2381 {
2382 int i;
2383 struct fn_field *f;
2384 CHECK_TYPEDEF (type);
2385
2386 *num_fns = 0;
2387
2388 /* First check in object itself. */
2389 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2390 {
2391 /* pai: FIXME What about operators and type conversions? */
2392 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2393
2394 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2395 {
2396 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2397 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2398
2399 *num_fns = len;
2400 *basetype = type;
2401 *boffset = offset;
2402
2403 /* Resolve any stub methods. */
2404 check_stub_method_group (type, i);
2405
2406 return f;
2407 }
2408 }
2409
2410 /* Not found in object, check in base subobjects. */
2411 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2412 {
2413 int base_offset;
2414
2415 if (BASETYPE_VIA_VIRTUAL (type, i))
2416 {
2417 base_offset = value_offset (*argp) + offset;
2418 base_offset = baseclass_offset (type, i,
2419 value_contents (*argp) + base_offset,
2420 value_address (*argp) + base_offset);
2421 if (base_offset == -1)
2422 error (_("virtual baseclass botch"));
2423 }
2424 else /* Non-virtual base, simply use bit position from debug
2425 info. */
2426 {
2427 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2428 }
2429 f = find_method_list (argp, method, base_offset + offset,
2430 TYPE_BASECLASS (type, i), num_fns,
2431 basetype, boffset);
2432 if (f)
2433 return f;
2434 }
2435 return NULL;
2436 }
2437
2438 /* Return the list of overloaded methods of a specified name.
2439
2440 ARGP is a pointer to a pointer to a value (the object).
2441 METHOD is the method name.
2442 OFFSET is the offset within the value contents.
2443 NUM_FNS is the number of overloaded instances.
2444 BASETYPE is set to the type of the base subobject that defines the
2445 method.
2446 BOFFSET is the offset of the base subobject which defines the method. */
2447
2448 struct fn_field *
2449 value_find_oload_method_list (struct value **argp, const char *method,
2450 int offset, int *num_fns,
2451 struct type **basetype, int *boffset)
2452 {
2453 struct type *t;
2454
2455 t = check_typedef (value_type (*argp));
2456
2457 /* Code snarfed from value_struct_elt. */
2458 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2459 {
2460 *argp = value_ind (*argp);
2461 /* Don't coerce fn pointer to fn and then back again! */
2462 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2463 *argp = coerce_array (*argp);
2464 t = check_typedef (value_type (*argp));
2465 }
2466
2467 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2468 && TYPE_CODE (t) != TYPE_CODE_UNION)
2469 error (_("Attempt to extract a component of a "
2470 "value that is not a struct or union"));
2471
2472 return find_method_list (argp, method, 0, t, num_fns,
2473 basetype, boffset);
2474 }
2475
2476 /* Given an array of argument types (ARGTYPES) (which includes an
2477 entry for "this" in the case of C++ methods), the number of
2478 arguments NARGS, the NAME of a function whether it's a method or
2479 not (METHOD), and the degree of laxness (LAX) in conforming to
2480 overload resolution rules in ANSI C++, find the best function that
2481 matches on the argument types according to the overload resolution
2482 rules.
2483
2484 METHOD can be one of three values:
2485 NON_METHOD for non-member functions.
2486 METHOD: for member functions.
2487 BOTH: used for overload resolution of operators where the
2488 candidates are expected to be either member or non member
2489 functions. In this case the first argument ARGTYPES
2490 (representing 'this') is expected to be a reference to the
2491 target object, and will be dereferenced when attempting the
2492 non-member search.
2493
2494 In the case of class methods, the parameter OBJ is an object value
2495 in which to search for overloaded methods.
2496
2497 In the case of non-method functions, the parameter FSYM is a symbol
2498 corresponding to one of the overloaded functions.
2499
2500 Return value is an integer: 0 -> good match, 10 -> debugger applied
2501 non-standard coercions, 100 -> incompatible.
2502
2503 If a method is being searched for, VALP will hold the value.
2504 If a non-method is being searched for, SYMP will hold the symbol
2505 for it.
2506
2507 If a method is being searched for, and it is a static method,
2508 then STATICP will point to a non-zero value.
2509
2510 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2511 ADL overload candidates when performing overload resolution for a fully
2512 qualified name.
2513
2514 Note: This function does *not* check the value of
2515 overload_resolution. Caller must check it to see whether overload
2516 resolution is permitted. */
2517
2518 int
2519 find_overload_match (struct type **arg_types, int nargs,
2520 const char *name, enum oload_search_type method,
2521 int lax, struct value **objp, struct symbol *fsym,
2522 struct value **valp, struct symbol **symp,
2523 int *staticp, const int no_adl)
2524 {
2525 struct value *obj = (objp ? *objp : NULL);
2526 /* Index of best overloaded function. */
2527 int func_oload_champ = -1;
2528 int method_oload_champ = -1;
2529
2530 /* The measure for the current best match. */
2531 struct badness_vector *method_badness = NULL;
2532 struct badness_vector *func_badness = NULL;
2533
2534 struct value *temp = obj;
2535 /* For methods, the list of overloaded methods. */
2536 struct fn_field *fns_ptr = NULL;
2537 /* For non-methods, the list of overloaded function symbols. */
2538 struct symbol **oload_syms = NULL;
2539 /* Number of overloaded instances being considered. */
2540 int num_fns = 0;
2541 struct type *basetype = NULL;
2542 int boffset;
2543
2544 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2545
2546 const char *obj_type_name = NULL;
2547 const char *func_name = NULL;
2548 enum oload_classification match_quality;
2549 enum oload_classification method_match_quality = INCOMPATIBLE;
2550 enum oload_classification func_match_quality = INCOMPATIBLE;
2551
2552 /* Get the list of overloaded methods or functions. */
2553 if (method == METHOD || method == BOTH)
2554 {
2555 gdb_assert (obj);
2556
2557 /* OBJ may be a pointer value rather than the object itself. */
2558 obj = coerce_ref (obj);
2559 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2560 obj = coerce_ref (value_ind (obj));
2561 obj_type_name = TYPE_NAME (value_type (obj));
2562
2563 /* First check whether this is a data member, e.g. a pointer to
2564 a function. */
2565 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2566 {
2567 *valp = search_struct_field (name, obj, 0,
2568 check_typedef (value_type (obj)), 0);
2569 if (*valp)
2570 {
2571 *staticp = 1;
2572 return 0;
2573 }
2574 }
2575
2576 /* Retrieve the list of methods with the name NAME. */
2577 fns_ptr = value_find_oload_method_list (&temp, name,
2578 0, &num_fns,
2579 &basetype, &boffset);
2580 /* If this is a method only search, and no methods were found
2581 the search has faild. */
2582 if (method == METHOD && (!fns_ptr || !num_fns))
2583 error (_("Couldn't find method %s%s%s"),
2584 obj_type_name,
2585 (obj_type_name && *obj_type_name) ? "::" : "",
2586 name);
2587 /* If we are dealing with stub method types, they should have
2588 been resolved by find_method_list via
2589 value_find_oload_method_list above. */
2590 if (fns_ptr)
2591 {
2592 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2593 method_oload_champ = find_oload_champ (arg_types, nargs, method,
2594 num_fns, fns_ptr,
2595 oload_syms, &method_badness);
2596
2597 method_match_quality =
2598 classify_oload_match (method_badness, nargs,
2599 oload_method_static (method, fns_ptr,
2600 method_oload_champ));
2601
2602 make_cleanup (xfree, method_badness);
2603 }
2604
2605 }
2606
2607 if (method == NON_METHOD || method == BOTH)
2608 {
2609 const char *qualified_name = NULL;
2610
2611 /* If the the overload match is being search for both
2612 as a method and non member function, the first argument
2613 must now be dereferenced. */
2614 if (method == BOTH)
2615 arg_types[0] = TYPE_TARGET_TYPE (arg_types[0]);
2616
2617 if (fsym)
2618 {
2619 qualified_name = SYMBOL_NATURAL_NAME (fsym);
2620
2621 /* If we have a function with a C++ name, try to extract just
2622 the function part. Do not try this for non-functions (e.g.
2623 function pointers). */
2624 if (qualified_name
2625 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym)))
2626 == TYPE_CODE_FUNC)
2627 {
2628 char *temp;
2629
2630 temp = cp_func_name (qualified_name);
2631
2632 /* If cp_func_name did not remove anything, the name of the
2633 symbol did not include scope or argument types - it was
2634 probably a C-style function. */
2635 if (temp)
2636 {
2637 make_cleanup (xfree, temp);
2638 if (strcmp (temp, qualified_name) == 0)
2639 func_name = NULL;
2640 else
2641 func_name = temp;
2642 }
2643 }
2644 }
2645 else
2646 {
2647 func_name = name;
2648 qualified_name = name;
2649 }
2650
2651 /* If there was no C++ name, this must be a C-style function or
2652 not a function at all. Just return the same symbol. Do the
2653 same if cp_func_name fails for some reason. */
2654 if (func_name == NULL)
2655 {
2656 *symp = fsym;
2657 return 0;
2658 }
2659
2660 func_oload_champ = find_oload_champ_namespace (arg_types, nargs,
2661 func_name,
2662 qualified_name,
2663 &oload_syms,
2664 &func_badness,
2665 no_adl);
2666
2667 if (func_oload_champ >= 0)
2668 func_match_quality = classify_oload_match (func_badness, nargs, 0);
2669
2670 make_cleanup (xfree, oload_syms);
2671 make_cleanup (xfree, func_badness);
2672 }
2673
2674 /* Did we find a match ? */
2675 if (method_oload_champ == -1 && func_oload_champ == -1)
2676 throw_error (NOT_FOUND_ERROR,
2677 _("No symbol \"%s\" in current context."),
2678 name);
2679
2680 /* If we have found both a method match and a function
2681 match, find out which one is better, and calculate match
2682 quality. */
2683 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2684 {
2685 switch (compare_badness (func_badness, method_badness))
2686 {
2687 case 0: /* Top two contenders are equally good. */
2688 /* FIXME: GDB does not support the general ambiguous
2689 case. All candidates should be collected and presented
2690 the the user. */
2691 error (_("Ambiguous overload resolution"));
2692 break;
2693 case 1: /* Incomparable top contenders. */
2694 /* This is an error incompatible candidates
2695 should not have been proposed. */
2696 error (_("Internal error: incompatible "
2697 "overload candidates proposed"));
2698 break;
2699 case 2: /* Function champion. */
2700 method_oload_champ = -1;
2701 match_quality = func_match_quality;
2702 break;
2703 case 3: /* Method champion. */
2704 func_oload_champ = -1;
2705 match_quality = method_match_quality;
2706 break;
2707 default:
2708 error (_("Internal error: unexpected overload comparison result"));
2709 break;
2710 }
2711 }
2712 else
2713 {
2714 /* We have either a method match or a function match. */
2715 if (method_oload_champ >= 0)
2716 match_quality = method_match_quality;
2717 else
2718 match_quality = func_match_quality;
2719 }
2720
2721 if (match_quality == INCOMPATIBLE)
2722 {
2723 if (method == METHOD)
2724 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2725 obj_type_name,
2726 (obj_type_name && *obj_type_name) ? "::" : "",
2727 name);
2728 else
2729 error (_("Cannot resolve function %s to any overloaded instance"),
2730 func_name);
2731 }
2732 else if (match_quality == NON_STANDARD)
2733 {
2734 if (method == METHOD)
2735 warning (_("Using non-standard conversion to match "
2736 "method %s%s%s to supplied arguments"),
2737 obj_type_name,
2738 (obj_type_name && *obj_type_name) ? "::" : "",
2739 name);
2740 else
2741 warning (_("Using non-standard conversion to match "
2742 "function %s to supplied arguments"),
2743 func_name);
2744 }
2745
2746 if (staticp != NULL)
2747 *staticp = oload_method_static (method, fns_ptr, method_oload_champ);
2748
2749 if (method_oload_champ >= 0)
2750 {
2751 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ))
2752 *valp = value_virtual_fn_field (&temp, fns_ptr, method_oload_champ,
2753 basetype, boffset);
2754 else
2755 *valp = value_fn_field (&temp, fns_ptr, method_oload_champ,
2756 basetype, boffset);
2757 }
2758 else
2759 *symp = oload_syms[func_oload_champ];
2760
2761 if (objp)
2762 {
2763 struct type *temp_type = check_typedef (value_type (temp));
2764 struct type *obj_type = check_typedef (value_type (*objp));
2765
2766 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2767 && (TYPE_CODE (obj_type) == TYPE_CODE_PTR
2768 || TYPE_CODE (obj_type) == TYPE_CODE_REF))
2769 {
2770 temp = value_addr (temp);
2771 }
2772 *objp = temp;
2773 }
2774
2775 do_cleanups (all_cleanups);
2776
2777 switch (match_quality)
2778 {
2779 case INCOMPATIBLE:
2780 return 100;
2781 case NON_STANDARD:
2782 return 10;
2783 default: /* STANDARD */
2784 return 0;
2785 }
2786 }
2787
2788 /* Find the best overload match, searching for FUNC_NAME in namespaces
2789 contained in QUALIFIED_NAME until it either finds a good match or
2790 runs out of namespaces. It stores the overloaded functions in
2791 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2792 calling function is responsible for freeing *OLOAD_SYMS and
2793 *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not
2794 performned. */
2795
2796 static int
2797 find_oload_champ_namespace (struct type **arg_types, int nargs,
2798 const char *func_name,
2799 const char *qualified_name,
2800 struct symbol ***oload_syms,
2801 struct badness_vector **oload_champ_bv,
2802 const int no_adl)
2803 {
2804 int oload_champ;
2805
2806 find_oload_champ_namespace_loop (arg_types, nargs,
2807 func_name,
2808 qualified_name, 0,
2809 oload_syms, oload_champ_bv,
2810 &oload_champ,
2811 no_adl);
2812
2813 return oload_champ;
2814 }
2815
2816 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2817 how deep we've looked for namespaces, and the champ is stored in
2818 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2819 if it isn't. Other arguments are the same as in
2820 find_oload_champ_namespace
2821
2822 It is the caller's responsibility to free *OLOAD_SYMS and
2823 *OLOAD_CHAMP_BV. */
2824
2825 static int
2826 find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
2827 const char *func_name,
2828 const char *qualified_name,
2829 int namespace_len,
2830 struct symbol ***oload_syms,
2831 struct badness_vector **oload_champ_bv,
2832 int *oload_champ,
2833 const int no_adl)
2834 {
2835 int next_namespace_len = namespace_len;
2836 int searched_deeper = 0;
2837 int num_fns = 0;
2838 struct cleanup *old_cleanups;
2839 int new_oload_champ;
2840 struct symbol **new_oload_syms;
2841 struct badness_vector *new_oload_champ_bv;
2842 char *new_namespace;
2843
2844 if (next_namespace_len != 0)
2845 {
2846 gdb_assert (qualified_name[next_namespace_len] == ':');
2847 next_namespace_len += 2;
2848 }
2849 next_namespace_len +=
2850 cp_find_first_component (qualified_name + next_namespace_len);
2851
2852 /* Initialize these to values that can safely be xfree'd. */
2853 *oload_syms = NULL;
2854 *oload_champ_bv = NULL;
2855
2856 /* First, see if we have a deeper namespace we can search in.
2857 If we get a good match there, use it. */
2858
2859 if (qualified_name[next_namespace_len] == ':')
2860 {
2861 searched_deeper = 1;
2862
2863 if (find_oload_champ_namespace_loop (arg_types, nargs,
2864 func_name, qualified_name,
2865 next_namespace_len,
2866 oload_syms, oload_champ_bv,
2867 oload_champ, no_adl))
2868 {
2869 return 1;
2870 }
2871 };
2872
2873 /* If we reach here, either we're in the deepest namespace or we
2874 didn't find a good match in a deeper namespace. But, in the
2875 latter case, we still have a bad match in a deeper namespace;
2876 note that we might not find any match at all in the current
2877 namespace. (There's always a match in the deepest namespace,
2878 because this overload mechanism only gets called if there's a
2879 function symbol to start off with.) */
2880
2881 old_cleanups = make_cleanup (xfree, *oload_syms);
2882 make_cleanup (xfree, *oload_champ_bv);
2883 new_namespace = alloca (namespace_len + 1);
2884 strncpy (new_namespace, qualified_name, namespace_len);
2885 new_namespace[namespace_len] = '\0';
2886 new_oload_syms = make_symbol_overload_list (func_name,
2887 new_namespace);
2888
2889 /* If we have reached the deepest level perform argument
2890 determined lookup. */
2891 if (!searched_deeper && !no_adl)
2892 make_symbol_overload_list_adl (arg_types, nargs, func_name);
2893
2894 while (new_oload_syms[num_fns])
2895 ++num_fns;
2896
2897 new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns,
2898 NULL, new_oload_syms,
2899 &new_oload_champ_bv);
2900
2901 /* Case 1: We found a good match. Free earlier matches (if any),
2902 and return it. Case 2: We didn't find a good match, but we're
2903 not the deepest function. Then go with the bad match that the
2904 deeper function found. Case 3: We found a bad match, and we're
2905 the deepest function. Then return what we found, even though
2906 it's a bad match. */
2907
2908 if (new_oload_champ != -1
2909 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2910 {
2911 *oload_syms = new_oload_syms;
2912 *oload_champ = new_oload_champ;
2913 *oload_champ_bv = new_oload_champ_bv;
2914 do_cleanups (old_cleanups);
2915 return 1;
2916 }
2917 else if (searched_deeper)
2918 {
2919 xfree (new_oload_syms);
2920 xfree (new_oload_champ_bv);
2921 discard_cleanups (old_cleanups);
2922 return 0;
2923 }
2924 else
2925 {
2926 *oload_syms = new_oload_syms;
2927 *oload_champ = new_oload_champ;
2928 *oload_champ_bv = new_oload_champ_bv;
2929 do_cleanups (old_cleanups);
2930 return 0;
2931 }
2932 }
2933
2934 /* Look for a function to take NARGS args of types ARG_TYPES. Find
2935 the best match from among the overloaded methods or functions
2936 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2937 The number of methods/functions in the list is given by NUM_FNS.
2938 Return the index of the best match; store an indication of the
2939 quality of the match in OLOAD_CHAMP_BV.
2940
2941 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2942
2943 static int
2944 find_oload_champ (struct type **arg_types, int nargs, int method,
2945 int num_fns, struct fn_field *fns_ptr,
2946 struct symbol **oload_syms,
2947 struct badness_vector **oload_champ_bv)
2948 {
2949 int ix;
2950 /* A measure of how good an overloaded instance is. */
2951 struct badness_vector *bv;
2952 /* Index of best overloaded function. */
2953 int oload_champ = -1;
2954 /* Current ambiguity state for overload resolution. */
2955 int oload_ambiguous = 0;
2956 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
2957
2958 *oload_champ_bv = NULL;
2959
2960 /* Consider each candidate in turn. */
2961 for (ix = 0; ix < num_fns; ix++)
2962 {
2963 int jj;
2964 int static_offset = oload_method_static (method, fns_ptr, ix);
2965 int nparms;
2966 struct type **parm_types;
2967
2968 if (method)
2969 {
2970 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2971 }
2972 else
2973 {
2974 /* If it's not a method, this is the proper place. */
2975 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
2976 }
2977
2978 /* Prepare array of parameter types. */
2979 parm_types = (struct type **)
2980 xmalloc (nparms * (sizeof (struct type *)));
2981 for (jj = 0; jj < nparms; jj++)
2982 parm_types[jj] = (method
2983 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2984 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
2985 jj));
2986
2987 /* Compare parameter types to supplied argument types. Skip
2988 THIS for static methods. */
2989 bv = rank_function (parm_types, nparms,
2990 arg_types + static_offset,
2991 nargs - static_offset);
2992
2993 if (!*oload_champ_bv)
2994 {
2995 *oload_champ_bv = bv;
2996 oload_champ = 0;
2997 }
2998 else /* See whether current candidate is better or worse than
2999 previous best. */
3000 switch (compare_badness (bv, *oload_champ_bv))
3001 {
3002 case 0: /* Top two contenders are equally good. */
3003 oload_ambiguous = 1;
3004 break;
3005 case 1: /* Incomparable top contenders. */
3006 oload_ambiguous = 2;
3007 break;
3008 case 2: /* New champion, record details. */
3009 *oload_champ_bv = bv;
3010 oload_ambiguous = 0;
3011 oload_champ = ix;
3012 break;
3013 case 3:
3014 default:
3015 break;
3016 }
3017 xfree (parm_types);
3018 if (overload_debug)
3019 {
3020 if (method)
3021 fprintf_filtered (gdb_stderr,
3022 "Overloaded method instance %s, # of parms %d\n",
3023 fns_ptr[ix].physname, nparms);
3024 else
3025 fprintf_filtered (gdb_stderr,
3026 "Overloaded function instance "
3027 "%s # of parms %d\n",
3028 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
3029 nparms);
3030 for (jj = 0; jj < nargs - static_offset; jj++)
3031 fprintf_filtered (gdb_stderr,
3032 "...Badness @ %d : %d\n",
3033 jj, bv->rank[jj].rank);
3034 fprintf_filtered (gdb_stderr, "Overload resolution "
3035 "champion is %d, ambiguous? %d\n",
3036 oload_champ, oload_ambiguous);
3037 }
3038 }
3039
3040 return oload_champ;
3041 }
3042
3043 /* Return 1 if we're looking at a static method, 0 if we're looking at
3044 a non-static method or a function that isn't a method. */
3045
3046 static int
3047 oload_method_static (int method, struct fn_field *fns_ptr, int index)
3048 {
3049 if (method && fns_ptr && index >= 0
3050 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
3051 return 1;
3052 else
3053 return 0;
3054 }
3055
3056 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
3057
3058 static enum oload_classification
3059 classify_oload_match (struct badness_vector *oload_champ_bv,
3060 int nargs,
3061 int static_offset)
3062 {
3063 int ix;
3064
3065 for (ix = 1; ix <= nargs - static_offset; ix++)
3066 {
3067 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
3068 or worse return INCOMPATIBLE. */
3069 if (compare_ranks (oload_champ_bv->rank[ix],
3070 INCOMPATIBLE_TYPE_BADNESS) <= 0)
3071 return INCOMPATIBLE; /* Truly mismatched types. */
3072 /* Otherwise If this conversion is as bad as
3073 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
3074 else if (compare_ranks (oload_champ_bv->rank[ix],
3075 NS_POINTER_CONVERSION_BADNESS) <= 0)
3076 return NON_STANDARD; /* Non-standard type conversions
3077 needed. */
3078 }
3079
3080 return STANDARD; /* Only standard conversions needed. */
3081 }
3082
3083 /* C++: return 1 is NAME is a legitimate name for the destructor of
3084 type TYPE. If TYPE does not have a destructor, or if NAME is
3085 inappropriate for TYPE, an error is signaled. */
3086 int
3087 destructor_name_p (const char *name, const struct type *type)
3088 {
3089 if (name[0] == '~')
3090 {
3091 char *dname = type_name_no_tag (type);
3092 char *cp = strchr (dname, '<');
3093 unsigned int len;
3094
3095 /* Do not compare the template part for template classes. */
3096 if (cp == NULL)
3097 len = strlen (dname);
3098 else
3099 len = cp - dname;
3100 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3101 error (_("name of destructor must equal name of class"));
3102 else
3103 return 1;
3104 }
3105 return 0;
3106 }
3107
3108 /* Given TYPE, a structure/union,
3109 return 1 if the component named NAME from the ultimate target
3110 structure/union is defined, otherwise, return 0. */
3111
3112 int
3113 check_field (struct type *type, const char *name)
3114 {
3115 int i;
3116
3117 /* The type may be a stub. */
3118 CHECK_TYPEDEF (type);
3119
3120 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
3121 {
3122 char *t_field_name = TYPE_FIELD_NAME (type, i);
3123
3124 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
3125 return 1;
3126 }
3127
3128 /* C++: If it was not found as a data field, then try to return it
3129 as a pointer to a method. */
3130
3131 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
3132 {
3133 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
3134 return 1;
3135 }
3136
3137 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
3138 if (check_field (TYPE_BASECLASS (type, i), name))
3139 return 1;
3140
3141 return 0;
3142 }
3143
3144 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3145 return the appropriate member (or the address of the member, if
3146 WANT_ADDRESS). This function is used to resolve user expressions
3147 of the form "DOMAIN::NAME". For more details on what happens, see
3148 the comment before value_struct_elt_for_reference. */
3149
3150 struct value *
3151 value_aggregate_elt (struct type *curtype, char *name,
3152 struct type *expect_type, int want_address,
3153 enum noside noside)
3154 {
3155 switch (TYPE_CODE (curtype))
3156 {
3157 case TYPE_CODE_STRUCT:
3158 case TYPE_CODE_UNION:
3159 return value_struct_elt_for_reference (curtype, 0, curtype,
3160 name, expect_type,
3161 want_address, noside);
3162 case TYPE_CODE_NAMESPACE:
3163 return value_namespace_elt (curtype, name,
3164 want_address, noside);
3165 default:
3166 internal_error (__FILE__, __LINE__,
3167 _("non-aggregate type in value_aggregate_elt"));
3168 }
3169 }
3170
3171 /* Compares the two method/function types T1 and T2 for "equality"
3172 with respect to the the methods' parameters. If the types of the
3173 two parameter lists are the same, returns 1; 0 otherwise. This
3174 comparison may ignore any artificial parameters in T1 if
3175 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3176 the first artificial parameter in T1, assumed to be a 'this' pointer.
3177
3178 The type T2 is expected to have come from make_params (in eval.c). */
3179
3180 static int
3181 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3182 {
3183 int start = 0;
3184
3185 if (TYPE_NFIELDS (t1) > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3186 ++start;
3187
3188 /* If skipping artificial fields, find the first real field
3189 in T1. */
3190 if (skip_artificial)
3191 {
3192 while (start < TYPE_NFIELDS (t1)
3193 && TYPE_FIELD_ARTIFICIAL (t1, start))
3194 ++start;
3195 }
3196
3197 /* Now compare parameters. */
3198
3199 /* Special case: a method taking void. T1 will contain no
3200 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3201 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
3202 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
3203 return 1;
3204
3205 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
3206 {
3207 int i;
3208
3209 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
3210 {
3211 if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3212 TYPE_FIELD_TYPE (t2, i)),
3213 EXACT_MATCH_BADNESS) != 0)
3214 return 0;
3215 }
3216
3217 return 1;
3218 }
3219
3220 return 0;
3221 }
3222
3223 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3224 return the address of this member as a "pointer to member" type.
3225 If INTYPE is non-null, then it will be the type of the member we
3226 are looking for. This will help us resolve "pointers to member
3227 functions". This function is used to resolve user expressions of
3228 the form "DOMAIN::NAME". */
3229
3230 static struct value *
3231 value_struct_elt_for_reference (struct type *domain, int offset,
3232 struct type *curtype, char *name,
3233 struct type *intype,
3234 int want_address,
3235 enum noside noside)
3236 {
3237 struct type *t = curtype;
3238 int i;
3239 struct value *v, *result;
3240
3241 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3242 && TYPE_CODE (t) != TYPE_CODE_UNION)
3243 error (_("Internal error: non-aggregate type "
3244 "to value_struct_elt_for_reference"));
3245
3246 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3247 {
3248 char *t_field_name = TYPE_FIELD_NAME (t, i);
3249
3250 if (t_field_name && strcmp (t_field_name, name) == 0)
3251 {
3252 if (field_is_static (&TYPE_FIELD (t, i)))
3253 {
3254 v = value_static_field (t, i);
3255 if (v == NULL)
3256 error (_("static field %s has been optimized out"),
3257 name);
3258 if (want_address)
3259 v = value_addr (v);
3260 return v;
3261 }
3262 if (TYPE_FIELD_PACKED (t, i))
3263 error (_("pointers to bitfield members not allowed"));
3264
3265 if (want_address)
3266 return value_from_longest
3267 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3268 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3269 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3270 return allocate_value (TYPE_FIELD_TYPE (t, i));
3271 else
3272 error (_("Cannot reference non-static field \"%s\""), name);
3273 }
3274 }
3275
3276 /* C++: If it was not found as a data field, then try to return it
3277 as a pointer to a method. */
3278
3279 /* Perform all necessary dereferencing. */
3280 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3281 intype = TYPE_TARGET_TYPE (intype);
3282
3283 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3284 {
3285 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3286 char dem_opname[64];
3287
3288 if (strncmp (t_field_name, "__", 2) == 0
3289 || strncmp (t_field_name, "op", 2) == 0
3290 || strncmp (t_field_name, "type", 4) == 0)
3291 {
3292 if (cplus_demangle_opname (t_field_name,
3293 dem_opname, DMGL_ANSI))
3294 t_field_name = dem_opname;
3295 else if (cplus_demangle_opname (t_field_name,
3296 dem_opname, 0))
3297 t_field_name = dem_opname;
3298 }
3299 if (t_field_name && strcmp (t_field_name, name) == 0)
3300 {
3301 int j;
3302 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3303 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3304
3305 check_stub_method_group (t, i);
3306
3307 if (intype)
3308 {
3309 for (j = 0; j < len; ++j)
3310 {
3311 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3312 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3313 intype, 1))
3314 break;
3315 }
3316
3317 if (j == len)
3318 error (_("no member function matches "
3319 "that type instantiation"));
3320 }
3321 else
3322 {
3323 int ii;
3324
3325 j = -1;
3326 for (ii = 0; ii < TYPE_FN_FIELDLIST_LENGTH (t, i);
3327 ++ii)
3328 {
3329 /* Skip artificial methods. This is necessary if,
3330 for example, the user wants to "print
3331 subclass::subclass" with only one user-defined
3332 constructor. There is no ambiguity in this
3333 case. */
3334 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3335 continue;
3336
3337 /* Desired method is ambiguous if more than one
3338 method is defined. */
3339 if (j != -1)
3340 error (_("non-unique member `%s' requires "
3341 "type instantiation"), name);
3342
3343 j = ii;
3344 }
3345 }
3346
3347 if (TYPE_FN_FIELD_STATIC_P (f, j))
3348 {
3349 struct symbol *s =
3350 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3351 0, VAR_DOMAIN, 0);
3352
3353 if (s == NULL)
3354 return NULL;
3355
3356 if (want_address)
3357 return value_addr (read_var_value (s, 0));
3358 else
3359 return read_var_value (s, 0);
3360 }
3361
3362 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3363 {
3364 if (want_address)
3365 {
3366 result = allocate_value
3367 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3368 cplus_make_method_ptr (value_type (result),
3369 value_contents_writeable (result),
3370 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3371 }
3372 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3373 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3374 else
3375 error (_("Cannot reference virtual member function \"%s\""),
3376 name);
3377 }
3378 else
3379 {
3380 struct symbol *s =
3381 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3382 0, VAR_DOMAIN, 0);
3383
3384 if (s == NULL)
3385 return NULL;
3386
3387 v = read_var_value (s, 0);
3388 if (!want_address)
3389 result = v;
3390 else
3391 {
3392 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3393 cplus_make_method_ptr (value_type (result),
3394 value_contents_writeable (result),
3395 value_address (v), 0);
3396 }
3397 }
3398 return result;
3399 }
3400 }
3401 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3402 {
3403 struct value *v;
3404 int base_offset;
3405
3406 if (BASETYPE_VIA_VIRTUAL (t, i))
3407 base_offset = 0;
3408 else
3409 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3410 v = value_struct_elt_for_reference (domain,
3411 offset + base_offset,
3412 TYPE_BASECLASS (t, i),
3413 name, intype,
3414 want_address, noside);
3415 if (v)
3416 return v;
3417 }
3418
3419 /* As a last chance, pretend that CURTYPE is a namespace, and look
3420 it up that way; this (frequently) works for types nested inside
3421 classes. */
3422
3423 return value_maybe_namespace_elt (curtype, name,
3424 want_address, noside);
3425 }
3426
3427 /* C++: Return the member NAME of the namespace given by the type
3428 CURTYPE. */
3429
3430 static struct value *
3431 value_namespace_elt (const struct type *curtype,
3432 char *name, int want_address,
3433 enum noside noside)
3434 {
3435 struct value *retval = value_maybe_namespace_elt (curtype, name,
3436 want_address,
3437 noside);
3438
3439 if (retval == NULL)
3440 error (_("No symbol \"%s\" in namespace \"%s\"."),
3441 name, TYPE_TAG_NAME (curtype));
3442
3443 return retval;
3444 }
3445
3446 /* A helper function used by value_namespace_elt and
3447 value_struct_elt_for_reference. It looks up NAME inside the
3448 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3449 is a class and NAME refers to a type in CURTYPE itself (as opposed
3450 to, say, some base class of CURTYPE). */
3451
3452 static struct value *
3453 value_maybe_namespace_elt (const struct type *curtype,
3454 char *name, int want_address,
3455 enum noside noside)
3456 {
3457 const char *namespace_name = TYPE_TAG_NAME (curtype);
3458 struct symbol *sym;
3459 struct value *result;
3460
3461 sym = cp_lookup_symbol_namespace (namespace_name, name,
3462 get_selected_block (0), VAR_DOMAIN);
3463
3464 if (sym == NULL)
3465 {
3466 char *concatenated_name = alloca (strlen (namespace_name) + 2
3467 + strlen (name) + 1);
3468
3469 sprintf (concatenated_name, "%s::%s", namespace_name, name);
3470 sym = lookup_static_symbol_aux (concatenated_name, VAR_DOMAIN);
3471 }
3472
3473 if (sym == NULL)
3474 return NULL;
3475 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3476 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
3477 result = allocate_value (SYMBOL_TYPE (sym));
3478 else
3479 result = value_of_variable (sym, get_selected_block (0));
3480
3481 if (result && want_address)
3482 result = value_addr (result);
3483
3484 return result;
3485 }
3486
3487 /* Given a pointer value V, find the real (RTTI) type of the object it
3488 points to.
3489
3490 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3491 and refer to the values computed for the object pointed to. */
3492
3493 struct type *
3494 value_rtti_target_type (struct value *v, int *full,
3495 int *top, int *using_enc)
3496 {
3497 struct value *target;
3498
3499 target = value_ind (v);
3500
3501 return value_rtti_type (target, full, top, using_enc);
3502 }
3503
3504 /* Given a value pointed to by ARGP, check its real run-time type, and
3505 if that is different from the enclosing type, create a new value
3506 using the real run-time type as the enclosing type (and of the same
3507 type as ARGP) and return it, with the embedded offset adjusted to
3508 be the correct offset to the enclosed object. RTYPE is the type,
3509 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3510 by value_rtti_type(). If these are available, they can be supplied
3511 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3512 NULL if they're not available. */
3513
3514 struct value *
3515 value_full_object (struct value *argp,
3516 struct type *rtype,
3517 int xfull, int xtop,
3518 int xusing_enc)
3519 {
3520 struct type *real_type;
3521 int full = 0;
3522 int top = -1;
3523 int using_enc = 0;
3524 struct value *new_val;
3525
3526 if (rtype)
3527 {
3528 real_type = rtype;
3529 full = xfull;
3530 top = xtop;
3531 using_enc = xusing_enc;
3532 }
3533 else
3534 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3535
3536 /* If no RTTI data, or if object is already complete, do nothing. */
3537 if (!real_type || real_type == value_enclosing_type (argp))
3538 return argp;
3539
3540 /* If we have the full object, but for some reason the enclosing
3541 type is wrong, set it. */
3542 /* pai: FIXME -- sounds iffy */
3543 if (full)
3544 {
3545 argp = value_copy (argp);
3546 set_value_enclosing_type (argp, real_type);
3547 return argp;
3548 }
3549
3550 /* Check if object is in memory. */
3551 if (VALUE_LVAL (argp) != lval_memory)
3552 {
3553 warning (_("Couldn't retrieve complete object of RTTI "
3554 "type %s; object may be in register(s)."),
3555 TYPE_NAME (real_type));
3556
3557 return argp;
3558 }
3559
3560 /* All other cases -- retrieve the complete object. */
3561 /* Go back by the computed top_offset from the beginning of the
3562 object, adjusting for the embedded offset of argp if that's what
3563 value_rtti_type used for its computation. */
3564 new_val = value_at_lazy (real_type, value_address (argp) - top +
3565 (using_enc ? 0 : value_embedded_offset (argp)));
3566 deprecated_set_value_type (new_val, value_type (argp));
3567 set_value_embedded_offset (new_val, (using_enc
3568 ? top + value_embedded_offset (argp)
3569 : top));
3570 return new_val;
3571 }
3572
3573
3574 /* Return the value of the local variable, if one exists.
3575 Flag COMPLAIN signals an error if the request is made in an
3576 inappropriate context. */
3577
3578 struct value *
3579 value_of_local (const char *name, int complain)
3580 {
3581 struct symbol *func, *sym;
3582 struct block *b;
3583 struct value * ret;
3584 struct frame_info *frame;
3585
3586 if (complain)
3587 frame = get_selected_frame (_("no frame selected"));
3588 else
3589 {
3590 frame = deprecated_safe_get_selected_frame ();
3591 if (frame == 0)
3592 return 0;
3593 }
3594
3595 func = get_frame_function (frame);
3596 if (!func)
3597 {
3598 if (complain)
3599 error (_("no `%s' in nameless context"), name);
3600 else
3601 return 0;
3602 }
3603
3604 b = SYMBOL_BLOCK_VALUE (func);
3605 if (dict_empty (BLOCK_DICT (b)))
3606 {
3607 if (complain)
3608 error (_("no args, no `%s'"), name);
3609 else
3610 return 0;
3611 }
3612
3613 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3614 symbol instead of the LOC_ARG one (if both exist). */
3615 sym = lookup_block_symbol (b, name, VAR_DOMAIN);
3616 if (sym == NULL)
3617 {
3618 if (complain)
3619 error (_("current stack frame does not contain a variable named `%s'"),
3620 name);
3621 else
3622 return NULL;
3623 }
3624
3625 ret = read_var_value (sym, frame);
3626 if (ret == 0 && complain)
3627 error (_("`%s' argument unreadable"), name);
3628 return ret;
3629 }
3630
3631 /* C++/Objective-C: return the value of the class instance variable,
3632 if one exists. Flag COMPLAIN signals an error if the request is
3633 made in an inappropriate context. */
3634
3635 struct value *
3636 value_of_this (int complain)
3637 {
3638 if (!current_language->la_name_of_this)
3639 return 0;
3640 return value_of_local (current_language->la_name_of_this, complain);
3641 }
3642
3643 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3644 elements long, starting at LOWBOUND. The result has the same lower
3645 bound as the original ARRAY. */
3646
3647 struct value *
3648 value_slice (struct value *array, int lowbound, int length)
3649 {
3650 struct type *slice_range_type, *slice_type, *range_type;
3651 LONGEST lowerbound, upperbound;
3652 struct value *slice;
3653 struct type *array_type;
3654
3655 array_type = check_typedef (value_type (array));
3656 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3657 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3658 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3659 error (_("cannot take slice of non-array"));
3660
3661 range_type = TYPE_INDEX_TYPE (array_type);
3662 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3663 error (_("slice from bad array or bitstring"));
3664
3665 if (lowbound < lowerbound || length < 0
3666 || lowbound + length - 1 > upperbound)
3667 error (_("slice out of range"));
3668
3669 /* FIXME-type-allocation: need a way to free this type when we are
3670 done with it. */
3671 slice_range_type = create_range_type ((struct type *) NULL,
3672 TYPE_TARGET_TYPE (range_type),
3673 lowbound,
3674 lowbound + length - 1);
3675 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3676 {
3677 int i;
3678
3679 slice_type = create_set_type ((struct type *) NULL,
3680 slice_range_type);
3681 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3682 slice = value_zero (slice_type, not_lval);
3683
3684 for (i = 0; i < length; i++)
3685 {
3686 int element = value_bit_index (array_type,
3687 value_contents (array),
3688 lowbound + i);
3689
3690 if (element < 0)
3691 error (_("internal error accessing bitstring"));
3692 else if (element > 0)
3693 {
3694 int j = i % TARGET_CHAR_BIT;
3695
3696 if (gdbarch_bits_big_endian (get_type_arch (array_type)))
3697 j = TARGET_CHAR_BIT - 1 - j;
3698 value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3699 }
3700 }
3701 /* We should set the address, bitssize, and bitspos, so the
3702 slice can be used on the LHS, but that may require extensions
3703 to value_assign. For now, just leave as a non_lval.
3704 FIXME. */
3705 }
3706 else
3707 {
3708 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3709 LONGEST offset =
3710 (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3711
3712 slice_type = create_array_type ((struct type *) NULL,
3713 element_type,
3714 slice_range_type);
3715 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3716
3717 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3718 slice = allocate_value_lazy (slice_type);
3719 else
3720 {
3721 slice = allocate_value (slice_type);
3722 memcpy (value_contents_writeable (slice),
3723 value_contents (array) + offset,
3724 TYPE_LENGTH (slice_type));
3725 }
3726
3727 set_value_component_location (slice, array);
3728 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3729 set_value_offset (slice, value_offset (array) + offset);
3730 }
3731 return slice;
3732 }
3733
3734 /* Create a value for a FORTRAN complex number. Currently most of the
3735 time values are coerced to COMPLEX*16 (i.e. a complex number
3736 composed of 2 doubles. This really should be a smarter routine
3737 that figures out precision inteligently as opposed to assuming
3738 doubles. FIXME: fmb */
3739
3740 struct value *
3741 value_literal_complex (struct value *arg1,
3742 struct value *arg2,
3743 struct type *type)
3744 {
3745 struct value *val;
3746 struct type *real_type = TYPE_TARGET_TYPE (type);
3747
3748 val = allocate_value (type);
3749 arg1 = value_cast (real_type, arg1);
3750 arg2 = value_cast (real_type, arg2);
3751
3752 memcpy (value_contents_raw (val),
3753 value_contents (arg1), TYPE_LENGTH (real_type));
3754 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3755 value_contents (arg2), TYPE_LENGTH (real_type));
3756 return val;
3757 }
3758
3759 /* Cast a value into the appropriate complex data type. */
3760
3761 static struct value *
3762 cast_into_complex (struct type *type, struct value *val)
3763 {
3764 struct type *real_type = TYPE_TARGET_TYPE (type);
3765
3766 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3767 {
3768 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3769 struct value *re_val = allocate_value (val_real_type);
3770 struct value *im_val = allocate_value (val_real_type);
3771
3772 memcpy (value_contents_raw (re_val),
3773 value_contents (val), TYPE_LENGTH (val_real_type));
3774 memcpy (value_contents_raw (im_val),
3775 value_contents (val) + TYPE_LENGTH (val_real_type),
3776 TYPE_LENGTH (val_real_type));
3777
3778 return value_literal_complex (re_val, im_val, type);
3779 }
3780 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3781 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3782 return value_literal_complex (val,
3783 value_zero (real_type, not_lval),
3784 type);
3785 else
3786 error (_("cannot cast non-number to complex"));
3787 }
3788
3789 void
3790 _initialize_valops (void)
3791 {
3792 add_setshow_boolean_cmd ("overload-resolution", class_support,
3793 &overload_resolution, _("\
3794 Set overload resolution in evaluating C++ functions."), _("\
3795 Show overload resolution in evaluating C++ functions."),
3796 NULL, NULL,
3797 show_overload_resolution,
3798 &setlist, &showlist);
3799 overload_resolution = 1;
3800 }