* valops.c (value_find_oload_method_list): Now static.
[binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "demangle.h"
29 #include "language.h"
30 #include "gdbcmd.h"
31 #include "regcache.h"
32 #include "cp-abi.h"
33 #include "block.h"
34 #include "infcall.h"
35 #include "dictionary.h"
36 #include "cp-support.h"
37 #include "dfp.h"
38 #include "user-regs.h"
39 #include "tracepoint.h"
40 #include <errno.h>
41 #include "gdb_string.h"
42 #include "gdb_assert.h"
43 #include "cp-support.h"
44 #include "observer.h"
45 #include "objfiles.h"
46 #include "symtab.h"
47 #include "exceptions.h"
48
49 extern int overload_debug;
50 /* Local functions. */
51
52 static int typecmp (int staticp, int varargs, int nargs,
53 struct field t1[], struct value *t2[]);
54
55 static struct value *search_struct_field (const char *, struct value *,
56 int, struct type *, int);
57
58 static struct value *search_struct_method (const char *, struct value **,
59 struct value **,
60 int, int *, struct type *);
61
62 static int find_oload_champ_namespace (struct value **, int,
63 const char *, const char *,
64 struct symbol ***,
65 struct badness_vector **,
66 const int no_adl);
67
68 static
69 int find_oload_champ_namespace_loop (struct value **, int,
70 const char *, const char *,
71 int, struct symbol ***,
72 struct badness_vector **, int *,
73 const int no_adl);
74
75 static int find_oload_champ (struct value **, int, int, int,
76 struct fn_field *, struct symbol **,
77 struct badness_vector **);
78
79 static int oload_method_static (int, struct fn_field *, int);
80
81 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
82
83 static enum
84 oload_classification classify_oload_match (struct badness_vector *,
85 int, int);
86
87 static struct value *value_struct_elt_for_reference (struct type *,
88 int, struct type *,
89 char *,
90 struct type *,
91 int, enum noside);
92
93 static struct value *value_namespace_elt (const struct type *,
94 char *, int , enum noside);
95
96 static struct value *value_maybe_namespace_elt (const struct type *,
97 char *, int,
98 enum noside);
99
100 static CORE_ADDR allocate_space_in_inferior (int);
101
102 static struct value *cast_into_complex (struct type *, struct value *);
103
104 static struct fn_field *find_method_list (struct value **, const char *,
105 int, struct type *, int *,
106 struct type **, int *);
107
108 void _initialize_valops (void);
109
110 #if 0
111 /* Flag for whether we want to abandon failed expression evals by
112 default. */
113
114 static int auto_abandon = 0;
115 #endif
116
117 int overload_resolution = 0;
118 static void
119 show_overload_resolution (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c,
121 const char *value)
122 {
123 fprintf_filtered (file, _("Overload resolution in evaluating "
124 "C++ functions is %s.\n"),
125 value);
126 }
127
128 /* Find the address of function name NAME in the inferior. If OBJF_P
129 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
130 is defined. */
131
132 struct value *
133 find_function_in_inferior (const char *name, struct objfile **objf_p)
134 {
135 struct symbol *sym;
136
137 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
138 if (sym != NULL)
139 {
140 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
141 {
142 error (_("\"%s\" exists in this program but is not a function."),
143 name);
144 }
145
146 if (objf_p)
147 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
148
149 return value_of_variable (sym, NULL);
150 }
151 else
152 {
153 struct minimal_symbol *msymbol =
154 lookup_minimal_symbol (name, NULL, NULL);
155
156 if (msymbol != NULL)
157 {
158 struct objfile *objfile = msymbol_objfile (msymbol);
159 struct gdbarch *gdbarch = get_objfile_arch (objfile);
160
161 struct type *type;
162 CORE_ADDR maddr;
163 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
164 type = lookup_function_type (type);
165 type = lookup_pointer_type (type);
166 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
167
168 if (objf_p)
169 *objf_p = objfile;
170
171 return value_from_pointer (type, maddr);
172 }
173 else
174 {
175 if (!target_has_execution)
176 error (_("evaluation of this expression "
177 "requires the target program to be active"));
178 else
179 error (_("evaluation of this expression requires the "
180 "program to have a function \"%s\"."),
181 name);
182 }
183 }
184 }
185
186 /* Allocate NBYTES of space in the inferior using the inferior's
187 malloc and return a value that is a pointer to the allocated
188 space. */
189
190 struct value *
191 value_allocate_space_in_inferior (int len)
192 {
193 struct objfile *objf;
194 struct value *val = find_function_in_inferior ("malloc", &objf);
195 struct gdbarch *gdbarch = get_objfile_arch (objf);
196 struct value *blocklen;
197
198 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
199 val = call_function_by_hand (val, 1, &blocklen);
200 if (value_logical_not (val))
201 {
202 if (!target_has_execution)
203 error (_("No memory available to program now: "
204 "you need to start the target first"));
205 else
206 error (_("No memory available to program: call to malloc failed"));
207 }
208 return val;
209 }
210
211 static CORE_ADDR
212 allocate_space_in_inferior (int len)
213 {
214 return value_as_long (value_allocate_space_in_inferior (len));
215 }
216
217 /* Cast struct value VAL to type TYPE and return as a value.
218 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
219 for this to work. Typedef to one of the codes is permitted.
220 Returns NULL if the cast is neither an upcast nor a downcast. */
221
222 static struct value *
223 value_cast_structs (struct type *type, struct value *v2)
224 {
225 struct type *t1;
226 struct type *t2;
227 struct value *v;
228
229 gdb_assert (type != NULL && v2 != NULL);
230
231 t1 = check_typedef (type);
232 t2 = check_typedef (value_type (v2));
233
234 /* Check preconditions. */
235 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
236 || TYPE_CODE (t1) == TYPE_CODE_UNION)
237 && !!"Precondition is that type is of STRUCT or UNION kind.");
238 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
239 || TYPE_CODE (t2) == TYPE_CODE_UNION)
240 && !!"Precondition is that value is of STRUCT or UNION kind");
241
242 if (TYPE_NAME (t1) != NULL
243 && TYPE_NAME (t2) != NULL
244 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
245 return NULL;
246
247 /* Upcasting: look in the type of the source to see if it contains the
248 type of the target as a superclass. If so, we'll need to
249 offset the pointer rather than just change its type. */
250 if (TYPE_NAME (t1) != NULL)
251 {
252 v = search_struct_field (type_name_no_tag (t1),
253 v2, 0, t2, 1);
254 if (v)
255 return v;
256 }
257
258 /* Downcasting: look in the type of the target to see if it contains the
259 type of the source as a superclass. If so, we'll need to
260 offset the pointer rather than just change its type. */
261 if (TYPE_NAME (t2) != NULL)
262 {
263 /* Try downcasting using the run-time type of the value. */
264 int full, top, using_enc;
265 struct type *real_type;
266
267 real_type = value_rtti_type (v2, &full, &top, &using_enc);
268 if (real_type)
269 {
270 v = value_full_object (v2, real_type, full, top, using_enc);
271 v = value_at_lazy (real_type, value_address (v));
272
273 /* We might be trying to cast to the outermost enclosing
274 type, in which case search_struct_field won't work. */
275 if (TYPE_NAME (real_type) != NULL
276 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
277 return v;
278
279 v = search_struct_field (type_name_no_tag (t2), v, 0, real_type, 1);
280 if (v)
281 return v;
282 }
283
284 /* Try downcasting using information from the destination type
285 T2. This wouldn't work properly for classes with virtual
286 bases, but those were handled above. */
287 v = search_struct_field (type_name_no_tag (t2),
288 value_zero (t1, not_lval), 0, t1, 1);
289 if (v)
290 {
291 /* Downcasting is possible (t1 is superclass of v2). */
292 CORE_ADDR addr2 = value_address (v2);
293
294 addr2 -= value_address (v) + value_embedded_offset (v);
295 return value_at (type, addr2);
296 }
297 }
298
299 return NULL;
300 }
301
302 /* Cast one pointer or reference type to another. Both TYPE and
303 the type of ARG2 should be pointer types, or else both should be
304 reference types. If SUBCLASS_CHECK is non-zero, this will force a
305 check to see whether TYPE is a superclass of ARG2's type. If
306 SUBCLASS_CHECK is zero, then the subclass check is done only when
307 ARG2 is itself non-zero. Returns the new pointer or reference. */
308
309 struct value *
310 value_cast_pointers (struct type *type, struct value *arg2,
311 int subclass_check)
312 {
313 struct type *type1 = check_typedef (type);
314 struct type *type2 = check_typedef (value_type (arg2));
315 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
316 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
317
318 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
319 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
320 && (subclass_check || !value_logical_not (arg2)))
321 {
322 struct value *v2;
323
324 if (TYPE_CODE (type2) == TYPE_CODE_REF)
325 v2 = coerce_ref (arg2);
326 else
327 v2 = value_ind (arg2);
328 gdb_assert (TYPE_CODE (check_typedef (value_type (v2)))
329 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
330 v2 = value_cast_structs (t1, v2);
331 /* At this point we have what we can have, un-dereference if needed. */
332 if (v2)
333 {
334 struct value *v = value_addr (v2);
335
336 deprecated_set_value_type (v, type);
337 return v;
338 }
339 }
340
341 /* No superclass found, just change the pointer type. */
342 arg2 = value_copy (arg2);
343 deprecated_set_value_type (arg2, type);
344 set_value_enclosing_type (arg2, type);
345 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
346 return arg2;
347 }
348
349 /* Cast value ARG2 to type TYPE and return as a value.
350 More general than a C cast: accepts any two types of the same length,
351 and if ARG2 is an lvalue it can be cast into anything at all. */
352 /* In C++, casts may change pointer or object representations. */
353
354 struct value *
355 value_cast (struct type *type, struct value *arg2)
356 {
357 enum type_code code1;
358 enum type_code code2;
359 int scalar;
360 struct type *type2;
361
362 int convert_to_boolean = 0;
363
364 if (value_type (arg2) == type)
365 return arg2;
366
367 code1 = TYPE_CODE (check_typedef (type));
368
369 /* Check if we are casting struct reference to struct reference. */
370 if (code1 == TYPE_CODE_REF)
371 {
372 /* We dereference type; then we recurse and finally
373 we generate value of the given reference. Nothing wrong with
374 that. */
375 struct type *t1 = check_typedef (type);
376 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
377 struct value *val = value_cast (dereftype, arg2);
378
379 return value_ref (val);
380 }
381
382 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
383
384 if (code2 == TYPE_CODE_REF)
385 /* We deref the value and then do the cast. */
386 return value_cast (type, coerce_ref (arg2));
387
388 CHECK_TYPEDEF (type);
389 code1 = TYPE_CODE (type);
390 arg2 = coerce_ref (arg2);
391 type2 = check_typedef (value_type (arg2));
392
393 /* You can't cast to a reference type. See value_cast_pointers
394 instead. */
395 gdb_assert (code1 != TYPE_CODE_REF);
396
397 /* A cast to an undetermined-length array_type, such as
398 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
399 where N is sizeof(OBJECT)/sizeof(TYPE). */
400 if (code1 == TYPE_CODE_ARRAY)
401 {
402 struct type *element_type = TYPE_TARGET_TYPE (type);
403 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
404
405 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
406 {
407 struct type *range_type = TYPE_INDEX_TYPE (type);
408 int val_length = TYPE_LENGTH (type2);
409 LONGEST low_bound, high_bound, new_length;
410
411 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
412 low_bound = 0, high_bound = 0;
413 new_length = val_length / element_length;
414 if (val_length % element_length != 0)
415 warning (_("array element type size does not "
416 "divide object size in cast"));
417 /* FIXME-type-allocation: need a way to free this type when
418 we are done with it. */
419 range_type = create_range_type ((struct type *) NULL,
420 TYPE_TARGET_TYPE (range_type),
421 low_bound,
422 new_length + low_bound - 1);
423 deprecated_set_value_type (arg2,
424 create_array_type ((struct type *) NULL,
425 element_type,
426 range_type));
427 return arg2;
428 }
429 }
430
431 if (current_language->c_style_arrays
432 && TYPE_CODE (type2) == TYPE_CODE_ARRAY
433 && !TYPE_VECTOR (type2))
434 arg2 = value_coerce_array (arg2);
435
436 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
437 arg2 = value_coerce_function (arg2);
438
439 type2 = check_typedef (value_type (arg2));
440 code2 = TYPE_CODE (type2);
441
442 if (code1 == TYPE_CODE_COMPLEX)
443 return cast_into_complex (type, arg2);
444 if (code1 == TYPE_CODE_BOOL)
445 {
446 code1 = TYPE_CODE_INT;
447 convert_to_boolean = 1;
448 }
449 if (code1 == TYPE_CODE_CHAR)
450 code1 = TYPE_CODE_INT;
451 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
452 code2 = TYPE_CODE_INT;
453
454 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
455 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
456 || code2 == TYPE_CODE_RANGE);
457
458 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
459 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
460 && TYPE_NAME (type) != 0)
461 {
462 struct value *v = value_cast_structs (type, arg2);
463
464 if (v)
465 return v;
466 }
467
468 if (code1 == TYPE_CODE_FLT && scalar)
469 return value_from_double (type, value_as_double (arg2));
470 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
471 {
472 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
473 int dec_len = TYPE_LENGTH (type);
474 gdb_byte dec[16];
475
476 if (code2 == TYPE_CODE_FLT)
477 decimal_from_floating (arg2, dec, dec_len, byte_order);
478 else if (code2 == TYPE_CODE_DECFLOAT)
479 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
480 byte_order, dec, dec_len, byte_order);
481 else
482 /* The only option left is an integral type. */
483 decimal_from_integral (arg2, dec, dec_len, byte_order);
484
485 return value_from_decfloat (type, dec);
486 }
487 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
488 || code1 == TYPE_CODE_RANGE)
489 && (scalar || code2 == TYPE_CODE_PTR
490 || code2 == TYPE_CODE_MEMBERPTR))
491 {
492 LONGEST longest;
493
494 /* When we cast pointers to integers, we mustn't use
495 gdbarch_pointer_to_address to find the address the pointer
496 represents, as value_as_long would. GDB should evaluate
497 expressions just as the compiler would --- and the compiler
498 sees a cast as a simple reinterpretation of the pointer's
499 bits. */
500 if (code2 == TYPE_CODE_PTR)
501 longest = extract_unsigned_integer
502 (value_contents (arg2), TYPE_LENGTH (type2),
503 gdbarch_byte_order (get_type_arch (type2)));
504 else
505 longest = value_as_long (arg2);
506 return value_from_longest (type, convert_to_boolean ?
507 (LONGEST) (longest ? 1 : 0) : longest);
508 }
509 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
510 || code2 == TYPE_CODE_ENUM
511 || code2 == TYPE_CODE_RANGE))
512 {
513 /* TYPE_LENGTH (type) is the length of a pointer, but we really
514 want the length of an address! -- we are really dealing with
515 addresses (i.e., gdb representations) not pointers (i.e.,
516 target representations) here.
517
518 This allows things like "print *(int *)0x01000234" to work
519 without printing a misleading message -- which would
520 otherwise occur when dealing with a target having two byte
521 pointers and four byte addresses. */
522
523 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
524 LONGEST longest = value_as_long (arg2);
525
526 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
527 {
528 if (longest >= ((LONGEST) 1 << addr_bit)
529 || longest <= -((LONGEST) 1 << addr_bit))
530 warning (_("value truncated"));
531 }
532 return value_from_longest (type, longest);
533 }
534 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
535 && value_as_long (arg2) == 0)
536 {
537 struct value *result = allocate_value (type);
538
539 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
540 return result;
541 }
542 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
543 && value_as_long (arg2) == 0)
544 {
545 /* The Itanium C++ ABI represents NULL pointers to members as
546 minus one, instead of biasing the normal case. */
547 return value_from_longest (type, -1);
548 }
549 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar)
550 {
551 /* Widen the scalar to a vector. */
552 struct type *eltype;
553 struct value *val;
554 LONGEST low_bound, high_bound;
555 int i;
556
557 if (!get_array_bounds (type, &low_bound, &high_bound))
558 error (_("Could not determine the vector bounds"));
559
560 eltype = check_typedef (TYPE_TARGET_TYPE (type));
561 arg2 = value_cast (eltype, arg2);
562 val = allocate_value (type);
563
564 for (i = 0; i < high_bound - low_bound + 1; i++)
565 {
566 /* Duplicate the contents of arg2 into the destination vector. */
567 memcpy (value_contents_writeable (val) + (i * TYPE_LENGTH (eltype)),
568 value_contents_all (arg2), TYPE_LENGTH (eltype));
569 }
570 return val;
571 }
572 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
573 {
574 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
575 return value_cast_pointers (type, arg2, 0);
576
577 arg2 = value_copy (arg2);
578 deprecated_set_value_type (arg2, type);
579 set_value_enclosing_type (arg2, type);
580 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
581 return arg2;
582 }
583 else if (VALUE_LVAL (arg2) == lval_memory)
584 return value_at_lazy (type, value_address (arg2));
585 else if (code1 == TYPE_CODE_VOID)
586 {
587 return value_zero (type, not_lval);
588 }
589 else
590 {
591 error (_("Invalid cast."));
592 return 0;
593 }
594 }
595
596 /* The C++ reinterpret_cast operator. */
597
598 struct value *
599 value_reinterpret_cast (struct type *type, struct value *arg)
600 {
601 struct value *result;
602 struct type *real_type = check_typedef (type);
603 struct type *arg_type, *dest_type;
604 int is_ref = 0;
605 enum type_code dest_code, arg_code;
606
607 /* Do reference, function, and array conversion. */
608 arg = coerce_array (arg);
609
610 /* Attempt to preserve the type the user asked for. */
611 dest_type = type;
612
613 /* If we are casting to a reference type, transform
614 reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */
615 if (TYPE_CODE (real_type) == TYPE_CODE_REF)
616 {
617 is_ref = 1;
618 arg = value_addr (arg);
619 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
620 real_type = lookup_pointer_type (real_type);
621 }
622
623 arg_type = value_type (arg);
624
625 dest_code = TYPE_CODE (real_type);
626 arg_code = TYPE_CODE (arg_type);
627
628 /* We can convert pointer types, or any pointer type to int, or int
629 type to pointer. */
630 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
631 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
632 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
633 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
634 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
635 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
636 || (dest_code == arg_code
637 && (dest_code == TYPE_CODE_PTR
638 || dest_code == TYPE_CODE_METHODPTR
639 || dest_code == TYPE_CODE_MEMBERPTR)))
640 result = value_cast (dest_type, arg);
641 else
642 error (_("Invalid reinterpret_cast"));
643
644 if (is_ref)
645 result = value_cast (type, value_ref (value_ind (result)));
646
647 return result;
648 }
649
650 /* A helper for value_dynamic_cast. This implements the first of two
651 runtime checks: we iterate over all the base classes of the value's
652 class which are equal to the desired class; if only one of these
653 holds the value, then it is the answer. */
654
655 static int
656 dynamic_cast_check_1 (struct type *desired_type,
657 const gdb_byte *valaddr,
658 int embedded_offset,
659 CORE_ADDR address,
660 struct value *val,
661 struct type *search_type,
662 CORE_ADDR arg_addr,
663 struct type *arg_type,
664 struct value **result)
665 {
666 int i, result_count = 0;
667
668 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
669 {
670 int offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
671 address, val);
672
673 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
674 {
675 if (address + embedded_offset + offset >= arg_addr
676 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
677 {
678 ++result_count;
679 if (!*result)
680 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
681 address + embedded_offset + offset);
682 }
683 }
684 else
685 result_count += dynamic_cast_check_1 (desired_type,
686 valaddr,
687 embedded_offset + offset,
688 address, val,
689 TYPE_BASECLASS (search_type, i),
690 arg_addr,
691 arg_type,
692 result);
693 }
694
695 return result_count;
696 }
697
698 /* A helper for value_dynamic_cast. This implements the second of two
699 runtime checks: we look for a unique public sibling class of the
700 argument's declared class. */
701
702 static int
703 dynamic_cast_check_2 (struct type *desired_type,
704 const gdb_byte *valaddr,
705 int embedded_offset,
706 CORE_ADDR address,
707 struct value *val,
708 struct type *search_type,
709 struct value **result)
710 {
711 int i, result_count = 0;
712
713 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
714 {
715 int offset;
716
717 if (! BASETYPE_VIA_PUBLIC (search_type, i))
718 continue;
719
720 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
721 address, val);
722 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
723 {
724 ++result_count;
725 if (*result == NULL)
726 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
727 address + embedded_offset + offset);
728 }
729 else
730 result_count += dynamic_cast_check_2 (desired_type,
731 valaddr,
732 embedded_offset + offset,
733 address, val,
734 TYPE_BASECLASS (search_type, i),
735 result);
736 }
737
738 return result_count;
739 }
740
741 /* The C++ dynamic_cast operator. */
742
743 struct value *
744 value_dynamic_cast (struct type *type, struct value *arg)
745 {
746 int full, top, using_enc;
747 struct type *resolved_type = check_typedef (type);
748 struct type *arg_type = check_typedef (value_type (arg));
749 struct type *class_type, *rtti_type;
750 struct value *result, *tem, *original_arg = arg;
751 CORE_ADDR addr;
752 int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF;
753
754 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
755 && TYPE_CODE (resolved_type) != TYPE_CODE_REF)
756 error (_("Argument to dynamic_cast must be a pointer or reference type"));
757 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
758 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_CLASS)
759 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
760
761 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
762 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
763 {
764 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
765 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
766 && value_as_long (arg) == 0))
767 error (_("Argument to dynamic_cast does not have pointer type"));
768 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
769 {
770 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
771 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
772 error (_("Argument to dynamic_cast does "
773 "not have pointer to class type"));
774 }
775
776 /* Handle NULL pointers. */
777 if (value_as_long (arg) == 0)
778 return value_zero (type, not_lval);
779
780 arg = value_ind (arg);
781 }
782 else
783 {
784 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
785 error (_("Argument to dynamic_cast does not have class type"));
786 }
787
788 /* If the classes are the same, just return the argument. */
789 if (class_types_same_p (class_type, arg_type))
790 return value_cast (type, arg);
791
792 /* If the target type is a unique base class of the argument's
793 declared type, just cast it. */
794 if (is_ancestor (class_type, arg_type))
795 {
796 if (is_unique_ancestor (class_type, arg))
797 return value_cast (type, original_arg);
798 error (_("Ambiguous dynamic_cast"));
799 }
800
801 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
802 if (! rtti_type)
803 error (_("Couldn't determine value's most derived type for dynamic_cast"));
804
805 /* Compute the most derived object's address. */
806 addr = value_address (arg);
807 if (full)
808 {
809 /* Done. */
810 }
811 else if (using_enc)
812 addr += top;
813 else
814 addr += top + value_embedded_offset (arg);
815
816 /* dynamic_cast<void *> means to return a pointer to the
817 most-derived object. */
818 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
819 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
820 return value_at_lazy (type, addr);
821
822 tem = value_at (type, addr);
823
824 /* The first dynamic check specified in 5.2.7. */
825 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
826 {
827 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
828 return tem;
829 result = NULL;
830 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
831 value_contents_for_printing (tem),
832 value_embedded_offset (tem),
833 value_address (tem), tem,
834 rtti_type, addr,
835 arg_type,
836 &result) == 1)
837 return value_cast (type,
838 is_ref ? value_ref (result) : value_addr (result));
839 }
840
841 /* The second dynamic check specified in 5.2.7. */
842 result = NULL;
843 if (is_public_ancestor (arg_type, rtti_type)
844 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
845 value_contents_for_printing (tem),
846 value_embedded_offset (tem),
847 value_address (tem), tem,
848 rtti_type, &result) == 1)
849 return value_cast (type,
850 is_ref ? value_ref (result) : value_addr (result));
851
852 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
853 return value_zero (type, not_lval);
854
855 error (_("dynamic_cast failed"));
856 }
857
858 /* Create a value of type TYPE that is zero, and return it. */
859
860 struct value *
861 value_zero (struct type *type, enum lval_type lv)
862 {
863 struct value *val = allocate_value (type);
864
865 VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv);
866 return val;
867 }
868
869 /* Create a not_lval value of numeric type TYPE that is one, and return it. */
870
871 struct value *
872 value_one (struct type *type)
873 {
874 struct type *type1 = check_typedef (type);
875 struct value *val;
876
877 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
878 {
879 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
880 gdb_byte v[16];
881
882 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
883 val = value_from_decfloat (type, v);
884 }
885 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
886 {
887 val = value_from_double (type, (DOUBLEST) 1);
888 }
889 else if (is_integral_type (type1))
890 {
891 val = value_from_longest (type, (LONGEST) 1);
892 }
893 else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
894 {
895 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
896 int i;
897 LONGEST low_bound, high_bound;
898 struct value *tmp;
899
900 if (!get_array_bounds (type1, &low_bound, &high_bound))
901 error (_("Could not determine the vector bounds"));
902
903 val = allocate_value (type);
904 for (i = 0; i < high_bound - low_bound + 1; i++)
905 {
906 tmp = value_one (eltype);
907 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
908 value_contents_all (tmp), TYPE_LENGTH (eltype));
909 }
910 }
911 else
912 {
913 error (_("Not a numeric type."));
914 }
915
916 /* value_one result is never used for assignments to. */
917 gdb_assert (VALUE_LVAL (val) == not_lval);
918
919 return val;
920 }
921
922 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack. */
923
924 static struct value *
925 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
926 {
927 struct value *val;
928
929 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
930 error (_("Attempt to dereference a generic pointer."));
931
932 val = value_from_contents_and_address (type, NULL, addr);
933
934 if (!lazy)
935 value_fetch_lazy (val);
936
937 return val;
938 }
939
940 /* Return a value with type TYPE located at ADDR.
941
942 Call value_at only if the data needs to be fetched immediately;
943 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
944 value_at_lazy instead. value_at_lazy simply records the address of
945 the data and sets the lazy-evaluation-required flag. The lazy flag
946 is tested in the value_contents macro, which is used if and when
947 the contents are actually required.
948
949 Note: value_at does *NOT* handle embedded offsets; perform such
950 adjustments before or after calling it. */
951
952 struct value *
953 value_at (struct type *type, CORE_ADDR addr)
954 {
955 return get_value_at (type, addr, 0);
956 }
957
958 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
959
960 struct value *
961 value_at_lazy (struct type *type, CORE_ADDR addr)
962 {
963 return get_value_at (type, addr, 1);
964 }
965
966 /* Called only from the value_contents and value_contents_all()
967 macros, if the current data for a variable needs to be loaded into
968 value_contents(VAL). Fetches the data from the user's process, and
969 clears the lazy flag to indicate that the data in the buffer is
970 valid.
971
972 If the value is zero-length, we avoid calling read_memory, which
973 would abort. We mark the value as fetched anyway -- all 0 bytes of
974 it.
975
976 This function returns a value because it is used in the
977 value_contents macro as part of an expression, where a void would
978 not work. The value is ignored. */
979
980 int
981 value_fetch_lazy (struct value *val)
982 {
983 gdb_assert (value_lazy (val));
984 allocate_value_contents (val);
985 if (value_bitsize (val))
986 {
987 /* To read a lazy bitfield, read the entire enclosing value. This
988 prevents reading the same block of (possibly volatile) memory once
989 per bitfield. It would be even better to read only the containing
990 word, but we have no way to record that just specific bits of a
991 value have been fetched. */
992 struct type *type = check_typedef (value_type (val));
993 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
994 struct value *parent = value_parent (val);
995 LONGEST offset = value_offset (val);
996 LONGEST num;
997 int length = TYPE_LENGTH (type);
998
999 if (!value_bits_valid (val,
1000 TARGET_CHAR_BIT * offset + value_bitpos (val),
1001 value_bitsize (val)))
1002 error (_("value has been optimized out"));
1003
1004 if (!unpack_value_bits_as_long (value_type (val),
1005 value_contents_for_printing (parent),
1006 offset,
1007 value_bitpos (val),
1008 value_bitsize (val), parent, &num))
1009 mark_value_bytes_unavailable (val,
1010 value_embedded_offset (val),
1011 length);
1012 else
1013 store_signed_integer (value_contents_raw (val), length,
1014 byte_order, num);
1015 }
1016 else if (VALUE_LVAL (val) == lval_memory)
1017 {
1018 CORE_ADDR addr = value_address (val);
1019 int length = TYPE_LENGTH (check_typedef (value_enclosing_type (val)));
1020
1021 if (length)
1022 read_value_memory (val, 0, value_stack (val),
1023 addr, value_contents_all_raw (val), length);
1024 }
1025 else if (VALUE_LVAL (val) == lval_register)
1026 {
1027 struct frame_info *frame;
1028 int regnum;
1029 struct type *type = check_typedef (value_type (val));
1030 struct value *new_val = val, *mark = value_mark ();
1031
1032 /* Offsets are not supported here; lazy register values must
1033 refer to the entire register. */
1034 gdb_assert (value_offset (val) == 0);
1035
1036 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
1037 {
1038 frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
1039 regnum = VALUE_REGNUM (new_val);
1040
1041 gdb_assert (frame != NULL);
1042
1043 /* Convertible register routines are used for multi-register
1044 values and for interpretation in different types
1045 (e.g. float or int from a double register). Lazy
1046 register values should have the register's natural type,
1047 so they do not apply. */
1048 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
1049 regnum, type));
1050
1051 new_val = get_frame_register_value (frame, regnum);
1052 }
1053
1054 /* If it's still lazy (for instance, a saved register on the
1055 stack), fetch it. */
1056 if (value_lazy (new_val))
1057 value_fetch_lazy (new_val);
1058
1059 /* If the register was not saved, mark it optimized out. */
1060 if (value_optimized_out (new_val))
1061 set_value_optimized_out (val, 1);
1062 else
1063 {
1064 set_value_lazy (val, 0);
1065 value_contents_copy (val, value_embedded_offset (val),
1066 new_val, value_embedded_offset (new_val),
1067 TYPE_LENGTH (type));
1068 }
1069
1070 if (frame_debug)
1071 {
1072 struct gdbarch *gdbarch;
1073 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1074 regnum = VALUE_REGNUM (val);
1075 gdbarch = get_frame_arch (frame);
1076
1077 fprintf_unfiltered (gdb_stdlog,
1078 "{ value_fetch_lazy "
1079 "(frame=%d,regnum=%d(%s),...) ",
1080 frame_relative_level (frame), regnum,
1081 user_reg_map_regnum_to_name (gdbarch, regnum));
1082
1083 fprintf_unfiltered (gdb_stdlog, "->");
1084 if (value_optimized_out (new_val))
1085 fprintf_unfiltered (gdb_stdlog, " optimized out");
1086 else
1087 {
1088 int i;
1089 const gdb_byte *buf = value_contents (new_val);
1090
1091 if (VALUE_LVAL (new_val) == lval_register)
1092 fprintf_unfiltered (gdb_stdlog, " register=%d",
1093 VALUE_REGNUM (new_val));
1094 else if (VALUE_LVAL (new_val) == lval_memory)
1095 fprintf_unfiltered (gdb_stdlog, " address=%s",
1096 paddress (gdbarch,
1097 value_address (new_val)));
1098 else
1099 fprintf_unfiltered (gdb_stdlog, " computed");
1100
1101 fprintf_unfiltered (gdb_stdlog, " bytes=");
1102 fprintf_unfiltered (gdb_stdlog, "[");
1103 for (i = 0; i < register_size (gdbarch, regnum); i++)
1104 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1105 fprintf_unfiltered (gdb_stdlog, "]");
1106 }
1107
1108 fprintf_unfiltered (gdb_stdlog, " }\n");
1109 }
1110
1111 /* Dispose of the intermediate values. This prevents
1112 watchpoints from trying to watch the saved frame pointer. */
1113 value_free_to_mark (mark);
1114 }
1115 else if (VALUE_LVAL (val) == lval_computed
1116 && value_computed_funcs (val)->read != NULL)
1117 value_computed_funcs (val)->read (val);
1118 else if (value_optimized_out (val))
1119 /* Keep it optimized out. */;
1120 else
1121 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
1122
1123 set_value_lazy (val, 0);
1124 return 0;
1125 }
1126
1127 void
1128 read_value_memory (struct value *val, int embedded_offset,
1129 int stack, CORE_ADDR memaddr,
1130 gdb_byte *buffer, size_t length)
1131 {
1132 if (length)
1133 {
1134 VEC(mem_range_s) *available_memory;
1135
1136 if (get_traceframe_number () < 0
1137 || !traceframe_available_memory (&available_memory, memaddr, length))
1138 {
1139 if (stack)
1140 read_stack (memaddr, buffer, length);
1141 else
1142 read_memory (memaddr, buffer, length);
1143 }
1144 else
1145 {
1146 struct target_section_table *table;
1147 struct cleanup *old_chain;
1148 CORE_ADDR unavail;
1149 mem_range_s *r;
1150 int i;
1151
1152 /* Fallback to reading from read-only sections. */
1153 table = target_get_section_table (&exec_ops);
1154 available_memory =
1155 section_table_available_memory (available_memory,
1156 memaddr, length,
1157 table->sections,
1158 table->sections_end);
1159
1160 old_chain = make_cleanup (VEC_cleanup(mem_range_s),
1161 &available_memory);
1162
1163 normalize_mem_ranges (available_memory);
1164
1165 /* Mark which bytes are unavailable, and read those which
1166 are available. */
1167
1168 unavail = memaddr;
1169
1170 for (i = 0;
1171 VEC_iterate (mem_range_s, available_memory, i, r);
1172 i++)
1173 {
1174 if (mem_ranges_overlap (r->start, r->length,
1175 memaddr, length))
1176 {
1177 CORE_ADDR lo1, hi1, lo2, hi2;
1178 CORE_ADDR start, end;
1179
1180 /* Get the intersection window. */
1181 lo1 = memaddr;
1182 hi1 = memaddr + length;
1183 lo2 = r->start;
1184 hi2 = r->start + r->length;
1185 start = max (lo1, lo2);
1186 end = min (hi1, hi2);
1187
1188 gdb_assert (end - memaddr <= length);
1189
1190 if (start > unavail)
1191 mark_value_bytes_unavailable (val,
1192 (embedded_offset
1193 + unavail - memaddr),
1194 start - unavail);
1195 unavail = end;
1196
1197 read_memory (start, buffer + start - memaddr, end - start);
1198 }
1199 }
1200
1201 if (unavail != memaddr + length)
1202 mark_value_bytes_unavailable (val,
1203 embedded_offset + unavail - memaddr,
1204 (memaddr + length) - unavail);
1205
1206 do_cleanups (old_chain);
1207 }
1208 }
1209 }
1210
1211 /* Store the contents of FROMVAL into the location of TOVAL.
1212 Return a new value with the location of TOVAL and contents of FROMVAL. */
1213
1214 struct value *
1215 value_assign (struct value *toval, struct value *fromval)
1216 {
1217 struct type *type;
1218 struct value *val;
1219 struct frame_id old_frame;
1220
1221 if (!deprecated_value_modifiable (toval))
1222 error (_("Left operand of assignment is not a modifiable lvalue."));
1223
1224 toval = coerce_ref (toval);
1225
1226 type = value_type (toval);
1227 if (VALUE_LVAL (toval) != lval_internalvar)
1228 fromval = value_cast (type, fromval);
1229 else
1230 {
1231 /* Coerce arrays and functions to pointers, except for arrays
1232 which only live in GDB's storage. */
1233 if (!value_must_coerce_to_target (fromval))
1234 fromval = coerce_array (fromval);
1235 }
1236
1237 CHECK_TYPEDEF (type);
1238
1239 /* Since modifying a register can trash the frame chain, and
1240 modifying memory can trash the frame cache, we save the old frame
1241 and then restore the new frame afterwards. */
1242 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1243
1244 switch (VALUE_LVAL (toval))
1245 {
1246 case lval_internalvar:
1247 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1248 return value_of_internalvar (get_type_arch (type),
1249 VALUE_INTERNALVAR (toval));
1250
1251 case lval_internalvar_component:
1252 set_internalvar_component (VALUE_INTERNALVAR (toval),
1253 value_offset (toval),
1254 value_bitpos (toval),
1255 value_bitsize (toval),
1256 fromval);
1257 break;
1258
1259 case lval_memory:
1260 {
1261 const gdb_byte *dest_buffer;
1262 CORE_ADDR changed_addr;
1263 int changed_len;
1264 gdb_byte buffer[sizeof (LONGEST)];
1265
1266 if (value_bitsize (toval))
1267 {
1268 struct value *parent = value_parent (toval);
1269
1270 changed_addr = value_address (parent) + value_offset (toval);
1271 changed_len = (value_bitpos (toval)
1272 + value_bitsize (toval)
1273 + HOST_CHAR_BIT - 1)
1274 / HOST_CHAR_BIT;
1275
1276 /* If we can read-modify-write exactly the size of the
1277 containing type (e.g. short or int) then do so. This
1278 is safer for volatile bitfields mapped to hardware
1279 registers. */
1280 if (changed_len < TYPE_LENGTH (type)
1281 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1282 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1283 changed_len = TYPE_LENGTH (type);
1284
1285 if (changed_len > (int) sizeof (LONGEST))
1286 error (_("Can't handle bitfields which "
1287 "don't fit in a %d bit word."),
1288 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1289
1290 read_memory (changed_addr, buffer, changed_len);
1291 modify_field (type, buffer, value_as_long (fromval),
1292 value_bitpos (toval), value_bitsize (toval));
1293 dest_buffer = buffer;
1294 }
1295 else
1296 {
1297 changed_addr = value_address (toval);
1298 changed_len = TYPE_LENGTH (type);
1299 dest_buffer = value_contents (fromval);
1300 }
1301
1302 write_memory (changed_addr, dest_buffer, changed_len);
1303 observer_notify_memory_changed (changed_addr, changed_len,
1304 dest_buffer);
1305 }
1306 break;
1307
1308 case lval_register:
1309 {
1310 struct frame_info *frame;
1311 struct gdbarch *gdbarch;
1312 int value_reg;
1313
1314 /* Figure out which frame this is in currently. */
1315 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1316 value_reg = VALUE_REGNUM (toval);
1317
1318 if (!frame)
1319 error (_("Value being assigned to is no longer active."));
1320
1321 gdbarch = get_frame_arch (frame);
1322 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
1323 {
1324 /* If TOVAL is a special machine register requiring
1325 conversion of program values to a special raw
1326 format. */
1327 gdbarch_value_to_register (gdbarch, frame,
1328 VALUE_REGNUM (toval), type,
1329 value_contents (fromval));
1330 }
1331 else
1332 {
1333 if (value_bitsize (toval))
1334 {
1335 struct value *parent = value_parent (toval);
1336 int offset = value_offset (parent) + value_offset (toval);
1337 int changed_len;
1338 gdb_byte buffer[sizeof (LONGEST)];
1339 int optim, unavail;
1340
1341 changed_len = (value_bitpos (toval)
1342 + value_bitsize (toval)
1343 + HOST_CHAR_BIT - 1)
1344 / HOST_CHAR_BIT;
1345
1346 if (changed_len > (int) sizeof (LONGEST))
1347 error (_("Can't handle bitfields which "
1348 "don't fit in a %d bit word."),
1349 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1350
1351 if (!get_frame_register_bytes (frame, value_reg, offset,
1352 changed_len, buffer,
1353 &optim, &unavail))
1354 {
1355 if (optim)
1356 error (_("value has been optimized out"));
1357 if (unavail)
1358 throw_error (NOT_AVAILABLE_ERROR,
1359 _("value is not available"));
1360 }
1361
1362 modify_field (type, buffer, value_as_long (fromval),
1363 value_bitpos (toval), value_bitsize (toval));
1364
1365 put_frame_register_bytes (frame, value_reg, offset,
1366 changed_len, buffer);
1367 }
1368 else
1369 {
1370 put_frame_register_bytes (frame, value_reg,
1371 value_offset (toval),
1372 TYPE_LENGTH (type),
1373 value_contents (fromval));
1374 }
1375 }
1376
1377 if (deprecated_register_changed_hook)
1378 deprecated_register_changed_hook (-1);
1379 observer_notify_target_changed (&current_target);
1380 break;
1381 }
1382
1383 case lval_computed:
1384 {
1385 const struct lval_funcs *funcs = value_computed_funcs (toval);
1386
1387 if (funcs->write != NULL)
1388 {
1389 funcs->write (toval, fromval);
1390 break;
1391 }
1392 }
1393 /* Fall through. */
1394
1395 default:
1396 error (_("Left operand of assignment is not an lvalue."));
1397 }
1398
1399 /* Assigning to the stack pointer, frame pointer, and other
1400 (architecture and calling convention specific) registers may
1401 cause the frame cache to be out of date. Assigning to memory
1402 also can. We just do this on all assignments to registers or
1403 memory, for simplicity's sake; I doubt the slowdown matters. */
1404 switch (VALUE_LVAL (toval))
1405 {
1406 case lval_memory:
1407 case lval_register:
1408 case lval_computed:
1409
1410 reinit_frame_cache ();
1411
1412 /* Having destroyed the frame cache, restore the selected
1413 frame. */
1414
1415 /* FIXME: cagney/2002-11-02: There has to be a better way of
1416 doing this. Instead of constantly saving/restoring the
1417 frame. Why not create a get_selected_frame() function that,
1418 having saved the selected frame's ID can automatically
1419 re-find the previously selected frame automatically. */
1420
1421 {
1422 struct frame_info *fi = frame_find_by_id (old_frame);
1423
1424 if (fi != NULL)
1425 select_frame (fi);
1426 }
1427
1428 break;
1429 default:
1430 break;
1431 }
1432
1433 /* If the field does not entirely fill a LONGEST, then zero the sign
1434 bits. If the field is signed, and is negative, then sign
1435 extend. */
1436 if ((value_bitsize (toval) > 0)
1437 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1438 {
1439 LONGEST fieldval = value_as_long (fromval);
1440 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1441
1442 fieldval &= valmask;
1443 if (!TYPE_UNSIGNED (type)
1444 && (fieldval & (valmask ^ (valmask >> 1))))
1445 fieldval |= ~valmask;
1446
1447 fromval = value_from_longest (type, fieldval);
1448 }
1449
1450 /* The return value is a copy of TOVAL so it shares its location
1451 information, but its contents are updated from FROMVAL. This
1452 implies the returned value is not lazy, even if TOVAL was. */
1453 val = value_copy (toval);
1454 set_value_lazy (val, 0);
1455 memcpy (value_contents_raw (val), value_contents (fromval),
1456 TYPE_LENGTH (type));
1457
1458 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1459 in the case of pointer types. For object types, the enclosing type
1460 and embedded offset must *not* be copied: the target object refered
1461 to by TOVAL retains its original dynamic type after assignment. */
1462 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1463 {
1464 set_value_enclosing_type (val, value_enclosing_type (fromval));
1465 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1466 }
1467
1468 return val;
1469 }
1470
1471 /* Extend a value VAL to COUNT repetitions of its type. */
1472
1473 struct value *
1474 value_repeat (struct value *arg1, int count)
1475 {
1476 struct value *val;
1477
1478 if (VALUE_LVAL (arg1) != lval_memory)
1479 error (_("Only values in memory can be extended with '@'."));
1480 if (count < 1)
1481 error (_("Invalid number %d of repetitions."), count);
1482
1483 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1484
1485 VALUE_LVAL (val) = lval_memory;
1486 set_value_address (val, value_address (arg1));
1487
1488 read_value_memory (val, 0, value_stack (val), value_address (val),
1489 value_contents_all_raw (val),
1490 TYPE_LENGTH (value_enclosing_type (val)));
1491
1492 return val;
1493 }
1494
1495 struct value *
1496 value_of_variable (struct symbol *var, const struct block *b)
1497 {
1498 struct frame_info *frame;
1499
1500 if (!symbol_read_needs_frame (var))
1501 frame = NULL;
1502 else if (!b)
1503 frame = get_selected_frame (_("No frame selected."));
1504 else
1505 {
1506 frame = block_innermost_frame (b);
1507 if (!frame)
1508 {
1509 if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
1510 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1511 error (_("No frame is currently executing in block %s."),
1512 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1513 else
1514 error (_("No frame is currently executing in specified block"));
1515 }
1516 }
1517
1518 return read_var_value (var, frame);
1519 }
1520
1521 struct value *
1522 address_of_variable (struct symbol *var, struct block *b)
1523 {
1524 struct type *type = SYMBOL_TYPE (var);
1525 struct value *val;
1526
1527 /* Evaluate it first; if the result is a memory address, we're fine.
1528 Lazy evaluation pays off here. */
1529
1530 val = value_of_variable (var, b);
1531
1532 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1533 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1534 {
1535 CORE_ADDR addr = value_address (val);
1536
1537 return value_from_pointer (lookup_pointer_type (type), addr);
1538 }
1539
1540 /* Not a memory address; check what the problem was. */
1541 switch (VALUE_LVAL (val))
1542 {
1543 case lval_register:
1544 {
1545 struct frame_info *frame;
1546 const char *regname;
1547
1548 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1549 gdb_assert (frame);
1550
1551 regname = gdbarch_register_name (get_frame_arch (frame),
1552 VALUE_REGNUM (val));
1553 gdb_assert (regname && *regname);
1554
1555 error (_("Address requested for identifier "
1556 "\"%s\" which is in register $%s"),
1557 SYMBOL_PRINT_NAME (var), regname);
1558 break;
1559 }
1560
1561 default:
1562 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1563 SYMBOL_PRINT_NAME (var));
1564 break;
1565 }
1566
1567 return val;
1568 }
1569
1570 /* Return one if VAL does not live in target memory, but should in order
1571 to operate on it. Otherwise return zero. */
1572
1573 int
1574 value_must_coerce_to_target (struct value *val)
1575 {
1576 struct type *valtype;
1577
1578 /* The only lval kinds which do not live in target memory. */
1579 if (VALUE_LVAL (val) != not_lval
1580 && VALUE_LVAL (val) != lval_internalvar)
1581 return 0;
1582
1583 valtype = check_typedef (value_type (val));
1584
1585 switch (TYPE_CODE (valtype))
1586 {
1587 case TYPE_CODE_ARRAY:
1588 return TYPE_VECTOR (valtype) ? 0 : 1;
1589 case TYPE_CODE_STRING:
1590 return 1;
1591 default:
1592 return 0;
1593 }
1594 }
1595
1596 /* Make sure that VAL lives in target memory if it's supposed to. For
1597 instance, strings are constructed as character arrays in GDB's
1598 storage, and this function copies them to the target. */
1599
1600 struct value *
1601 value_coerce_to_target (struct value *val)
1602 {
1603 LONGEST length;
1604 CORE_ADDR addr;
1605
1606 if (!value_must_coerce_to_target (val))
1607 return val;
1608
1609 length = TYPE_LENGTH (check_typedef (value_type (val)));
1610 addr = allocate_space_in_inferior (length);
1611 write_memory (addr, value_contents (val), length);
1612 return value_at_lazy (value_type (val), addr);
1613 }
1614
1615 /* Given a value which is an array, return a value which is a pointer
1616 to its first element, regardless of whether or not the array has a
1617 nonzero lower bound.
1618
1619 FIXME: A previous comment here indicated that this routine should
1620 be substracting the array's lower bound. It's not clear to me that
1621 this is correct. Given an array subscripting operation, it would
1622 certainly work to do the adjustment here, essentially computing:
1623
1624 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1625
1626 However I believe a more appropriate and logical place to account
1627 for the lower bound is to do so in value_subscript, essentially
1628 computing:
1629
1630 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1631
1632 As further evidence consider what would happen with operations
1633 other than array subscripting, where the caller would get back a
1634 value that had an address somewhere before the actual first element
1635 of the array, and the information about the lower bound would be
1636 lost because of the coercion to pointer type. */
1637
1638 struct value *
1639 value_coerce_array (struct value *arg1)
1640 {
1641 struct type *type = check_typedef (value_type (arg1));
1642
1643 /* If the user tries to do something requiring a pointer with an
1644 array that has not yet been pushed to the target, then this would
1645 be a good time to do so. */
1646 arg1 = value_coerce_to_target (arg1);
1647
1648 if (VALUE_LVAL (arg1) != lval_memory)
1649 error (_("Attempt to take address of value not located in memory."));
1650
1651 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1652 value_address (arg1));
1653 }
1654
1655 /* Given a value which is a function, return a value which is a pointer
1656 to it. */
1657
1658 struct value *
1659 value_coerce_function (struct value *arg1)
1660 {
1661 struct value *retval;
1662
1663 if (VALUE_LVAL (arg1) != lval_memory)
1664 error (_("Attempt to take address of value not located in memory."));
1665
1666 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1667 value_address (arg1));
1668 return retval;
1669 }
1670
1671 /* Return a pointer value for the object for which ARG1 is the
1672 contents. */
1673
1674 struct value *
1675 value_addr (struct value *arg1)
1676 {
1677 struct value *arg2;
1678 struct type *type = check_typedef (value_type (arg1));
1679
1680 if (TYPE_CODE (type) == TYPE_CODE_REF)
1681 {
1682 /* Copy the value, but change the type from (T&) to (T*). We
1683 keep the same location information, which is efficient, and
1684 allows &(&X) to get the location containing the reference. */
1685 arg2 = value_copy (arg1);
1686 deprecated_set_value_type (arg2,
1687 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1688 return arg2;
1689 }
1690 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1691 return value_coerce_function (arg1);
1692
1693 /* If this is an array that has not yet been pushed to the target,
1694 then this would be a good time to force it to memory. */
1695 arg1 = value_coerce_to_target (arg1);
1696
1697 if (VALUE_LVAL (arg1) != lval_memory)
1698 error (_("Attempt to take address of value not located in memory."));
1699
1700 /* Get target memory address. */
1701 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1702 (value_address (arg1)
1703 + value_embedded_offset (arg1)));
1704
1705 /* This may be a pointer to a base subobject; so remember the
1706 full derived object's type ... */
1707 set_value_enclosing_type (arg2,
1708 lookup_pointer_type (value_enclosing_type (arg1)));
1709 /* ... and also the relative position of the subobject in the full
1710 object. */
1711 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1712 return arg2;
1713 }
1714
1715 /* Return a reference value for the object for which ARG1 is the
1716 contents. */
1717
1718 struct value *
1719 value_ref (struct value *arg1)
1720 {
1721 struct value *arg2;
1722 struct type *type = check_typedef (value_type (arg1));
1723
1724 if (TYPE_CODE (type) == TYPE_CODE_REF)
1725 return arg1;
1726
1727 arg2 = value_addr (arg1);
1728 deprecated_set_value_type (arg2, lookup_reference_type (type));
1729 return arg2;
1730 }
1731
1732 /* Given a value of a pointer type, apply the C unary * operator to
1733 it. */
1734
1735 struct value *
1736 value_ind (struct value *arg1)
1737 {
1738 struct type *base_type;
1739 struct value *arg2;
1740
1741 arg1 = coerce_array (arg1);
1742
1743 base_type = check_typedef (value_type (arg1));
1744
1745 if (VALUE_LVAL (arg1) == lval_computed)
1746 {
1747 const struct lval_funcs *funcs = value_computed_funcs (arg1);
1748
1749 if (funcs->indirect)
1750 {
1751 struct value *result = funcs->indirect (arg1);
1752
1753 if (result)
1754 return result;
1755 }
1756 }
1757
1758 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1759 {
1760 struct type *enc_type;
1761
1762 /* We may be pointing to something embedded in a larger object.
1763 Get the real type of the enclosing object. */
1764 enc_type = check_typedef (value_enclosing_type (arg1));
1765 enc_type = TYPE_TARGET_TYPE (enc_type);
1766
1767 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1768 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1769 /* For functions, go through find_function_addr, which knows
1770 how to handle function descriptors. */
1771 arg2 = value_at_lazy (enc_type,
1772 find_function_addr (arg1, NULL));
1773 else
1774 /* Retrieve the enclosing object pointed to. */
1775 arg2 = value_at_lazy (enc_type,
1776 (value_as_address (arg1)
1777 - value_pointed_to_offset (arg1)));
1778
1779 return readjust_indirect_value_type (arg2, enc_type, base_type, arg1);
1780 }
1781
1782 error (_("Attempt to take contents of a non-pointer value."));
1783 return 0; /* For lint -- never reached. */
1784 }
1785 \f
1786 /* Create a value for an array by allocating space in GDB, copying the
1787 data into that space, and then setting up an array value.
1788
1789 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1790 is populated from the values passed in ELEMVEC.
1791
1792 The element type of the array is inherited from the type of the
1793 first element, and all elements must have the same size (though we
1794 don't currently enforce any restriction on their types). */
1795
1796 struct value *
1797 value_array (int lowbound, int highbound, struct value **elemvec)
1798 {
1799 int nelem;
1800 int idx;
1801 unsigned int typelength;
1802 struct value *val;
1803 struct type *arraytype;
1804
1805 /* Validate that the bounds are reasonable and that each of the
1806 elements have the same size. */
1807
1808 nelem = highbound - lowbound + 1;
1809 if (nelem <= 0)
1810 {
1811 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1812 }
1813 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1814 for (idx = 1; idx < nelem; idx++)
1815 {
1816 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1817 {
1818 error (_("array elements must all be the same size"));
1819 }
1820 }
1821
1822 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1823 lowbound, highbound);
1824
1825 if (!current_language->c_style_arrays)
1826 {
1827 val = allocate_value (arraytype);
1828 for (idx = 0; idx < nelem; idx++)
1829 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1830 typelength);
1831 return val;
1832 }
1833
1834 /* Allocate space to store the array, and then initialize it by
1835 copying in each element. */
1836
1837 val = allocate_value (arraytype);
1838 for (idx = 0; idx < nelem; idx++)
1839 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1840 return val;
1841 }
1842
1843 struct value *
1844 value_cstring (char *ptr, int len, struct type *char_type)
1845 {
1846 struct value *val;
1847 int lowbound = current_language->string_lower_bound;
1848 int highbound = len / TYPE_LENGTH (char_type);
1849 struct type *stringtype
1850 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1851
1852 val = allocate_value (stringtype);
1853 memcpy (value_contents_raw (val), ptr, len);
1854 return val;
1855 }
1856
1857 /* Create a value for a string constant by allocating space in the
1858 inferior, copying the data into that space, and returning the
1859 address with type TYPE_CODE_STRING. PTR points to the string
1860 constant data; LEN is number of characters.
1861
1862 Note that string types are like array of char types with a lower
1863 bound of zero and an upper bound of LEN - 1. Also note that the
1864 string may contain embedded null bytes. */
1865
1866 struct value *
1867 value_string (char *ptr, int len, struct type *char_type)
1868 {
1869 struct value *val;
1870 int lowbound = current_language->string_lower_bound;
1871 int highbound = len / TYPE_LENGTH (char_type);
1872 struct type *stringtype
1873 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1874
1875 val = allocate_value (stringtype);
1876 memcpy (value_contents_raw (val), ptr, len);
1877 return val;
1878 }
1879
1880 struct value *
1881 value_bitstring (char *ptr, int len, struct type *index_type)
1882 {
1883 struct value *val;
1884 struct type *domain_type
1885 = create_range_type (NULL, index_type, 0, len - 1);
1886 struct type *type = create_set_type (NULL, domain_type);
1887
1888 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1889 val = allocate_value (type);
1890 memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type));
1891 return val;
1892 }
1893 \f
1894 /* See if we can pass arguments in T2 to a function which takes
1895 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1896 a NULL-terminated vector. If some arguments need coercion of some
1897 sort, then the coerced values are written into T2. Return value is
1898 0 if the arguments could be matched, or the position at which they
1899 differ if not.
1900
1901 STATICP is nonzero if the T1 argument list came from a static
1902 member function. T2 will still include the ``this'' pointer, but
1903 it will be skipped.
1904
1905 For non-static member functions, we ignore the first argument,
1906 which is the type of the instance variable. This is because we
1907 want to handle calls with objects from derived classes. This is
1908 not entirely correct: we should actually check to make sure that a
1909 requested operation is type secure, shouldn't we? FIXME. */
1910
1911 static int
1912 typecmp (int staticp, int varargs, int nargs,
1913 struct field t1[], struct value *t2[])
1914 {
1915 int i;
1916
1917 if (t2 == 0)
1918 internal_error (__FILE__, __LINE__,
1919 _("typecmp: no argument list"));
1920
1921 /* Skip ``this'' argument if applicable. T2 will always include
1922 THIS. */
1923 if (staticp)
1924 t2 ++;
1925
1926 for (i = 0;
1927 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1928 i++)
1929 {
1930 struct type *tt1, *tt2;
1931
1932 if (!t2[i])
1933 return i + 1;
1934
1935 tt1 = check_typedef (t1[i].type);
1936 tt2 = check_typedef (value_type (t2[i]));
1937
1938 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1939 /* We should be doing hairy argument matching, as below. */
1940 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1)))
1941 == TYPE_CODE (tt2)))
1942 {
1943 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1944 t2[i] = value_coerce_array (t2[i]);
1945 else
1946 t2[i] = value_ref (t2[i]);
1947 continue;
1948 }
1949
1950 /* djb - 20000715 - Until the new type structure is in the
1951 place, and we can attempt things like implicit conversions,
1952 we need to do this so you can take something like a map<const
1953 char *>, and properly access map["hello"], because the
1954 argument to [] will be a reference to a pointer to a char,
1955 and the argument will be a pointer to a char. */
1956 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1957 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1958 {
1959 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1960 }
1961 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1962 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1963 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1964 {
1965 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1966 }
1967 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1968 continue;
1969 /* Array to pointer is a `trivial conversion' according to the
1970 ARM. */
1971
1972 /* We should be doing much hairier argument matching (see
1973 section 13.2 of the ARM), but as a quick kludge, just check
1974 for the same type code. */
1975 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1976 return i + 1;
1977 }
1978 if (varargs || t2[i] == NULL)
1979 return 0;
1980 return i + 1;
1981 }
1982
1983 /* Helper class for do_search_struct_field that updates *RESULT_PTR
1984 and *LAST_BOFFSET, and possibly throws an exception if the field
1985 search has yielded ambiguous results. */
1986
1987 static void
1988 update_search_result (struct value **result_ptr, struct value *v,
1989 int *last_boffset, int boffset,
1990 const char *name, struct type *type)
1991 {
1992 if (v != NULL)
1993 {
1994 if (*result_ptr != NULL
1995 /* The result is not ambiguous if all the classes that are
1996 found occupy the same space. */
1997 && *last_boffset != boffset)
1998 error (_("base class '%s' is ambiguous in type '%s'"),
1999 name, TYPE_SAFE_NAME (type));
2000 *result_ptr = v;
2001 *last_boffset = boffset;
2002 }
2003 }
2004
2005 /* A helper for search_struct_field. This does all the work; most
2006 arguments are as passed to search_struct_field. The result is
2007 stored in *RESULT_PTR, which must be initialized to NULL.
2008 OUTERMOST_TYPE is the type of the initial type passed to
2009 search_struct_field; this is used for error reporting when the
2010 lookup is ambiguous. */
2011
2012 static void
2013 do_search_struct_field (const char *name, struct value *arg1, int offset,
2014 struct type *type, int looking_for_baseclass,
2015 struct value **result_ptr,
2016 int *last_boffset,
2017 struct type *outermost_type)
2018 {
2019 int i;
2020 int nbases;
2021
2022 CHECK_TYPEDEF (type);
2023 nbases = TYPE_N_BASECLASSES (type);
2024
2025 if (!looking_for_baseclass)
2026 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2027 {
2028 const char *t_field_name = TYPE_FIELD_NAME (type, i);
2029
2030 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2031 {
2032 struct value *v;
2033
2034 if (field_is_static (&TYPE_FIELD (type, i)))
2035 {
2036 v = value_static_field (type, i);
2037 if (v == 0)
2038 error (_("field %s is nonexistent or "
2039 "has been optimized out"),
2040 name);
2041 }
2042 else
2043 v = value_primitive_field (arg1, offset, i, type);
2044 *result_ptr = v;
2045 return;
2046 }
2047
2048 if (t_field_name
2049 && (t_field_name[0] == '\0'
2050 || (TYPE_CODE (type) == TYPE_CODE_UNION
2051 && (strcmp_iw (t_field_name, "else") == 0))))
2052 {
2053 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2054
2055 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2056 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2057 {
2058 /* Look for a match through the fields of an anonymous
2059 union, or anonymous struct. C++ provides anonymous
2060 unions.
2061
2062 In the GNU Chill (now deleted from GDB)
2063 implementation of variant record types, each
2064 <alternative field> has an (anonymous) union type,
2065 each member of the union represents a <variant
2066 alternative>. Each <variant alternative> is
2067 represented as a struct, with a member for each
2068 <variant field>. */
2069
2070 struct value *v = NULL;
2071 int new_offset = offset;
2072
2073 /* This is pretty gross. In G++, the offset in an
2074 anonymous union is relative to the beginning of the
2075 enclosing struct. In the GNU Chill (now deleted
2076 from GDB) implementation of variant records, the
2077 bitpos is zero in an anonymous union field, so we
2078 have to add the offset of the union here. */
2079 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2080 || (TYPE_NFIELDS (field_type) > 0
2081 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2082 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2083
2084 do_search_struct_field (name, arg1, new_offset,
2085 field_type,
2086 looking_for_baseclass, &v,
2087 last_boffset,
2088 outermost_type);
2089 if (v)
2090 {
2091 *result_ptr = v;
2092 return;
2093 }
2094 }
2095 }
2096 }
2097
2098 for (i = 0; i < nbases; i++)
2099 {
2100 struct value *v = NULL;
2101 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2102 /* If we are looking for baseclasses, this is what we get when
2103 we hit them. But it could happen that the base part's member
2104 name is not yet filled in. */
2105 int found_baseclass = (looking_for_baseclass
2106 && TYPE_BASECLASS_NAME (type, i) != NULL
2107 && (strcmp_iw (name,
2108 TYPE_BASECLASS_NAME (type,
2109 i)) == 0));
2110 int boffset = value_embedded_offset (arg1) + offset;
2111
2112 if (BASETYPE_VIA_VIRTUAL (type, i))
2113 {
2114 struct value *v2;
2115
2116 boffset = baseclass_offset (type, i,
2117 value_contents_for_printing (arg1),
2118 value_embedded_offset (arg1) + offset,
2119 value_address (arg1),
2120 arg1);
2121
2122 /* The virtual base class pointer might have been clobbered
2123 by the user program. Make sure that it still points to a
2124 valid memory location. */
2125
2126 boffset += value_embedded_offset (arg1) + offset;
2127 if (boffset < 0
2128 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
2129 {
2130 CORE_ADDR base_addr;
2131
2132 v2 = allocate_value (basetype);
2133 base_addr = value_address (arg1) + boffset;
2134 if (target_read_memory (base_addr,
2135 value_contents_raw (v2),
2136 TYPE_LENGTH (basetype)) != 0)
2137 error (_("virtual baseclass botch"));
2138 VALUE_LVAL (v2) = lval_memory;
2139 set_value_address (v2, base_addr);
2140 }
2141 else
2142 {
2143 v2 = value_copy (arg1);
2144 deprecated_set_value_type (v2, basetype);
2145 set_value_embedded_offset (v2, boffset);
2146 }
2147
2148 if (found_baseclass)
2149 v = v2;
2150 else
2151 {
2152 do_search_struct_field (name, v2, 0,
2153 TYPE_BASECLASS (type, i),
2154 looking_for_baseclass,
2155 result_ptr, last_boffset,
2156 outermost_type);
2157 }
2158 }
2159 else if (found_baseclass)
2160 v = value_primitive_field (arg1, offset, i, type);
2161 else
2162 {
2163 do_search_struct_field (name, arg1,
2164 offset + TYPE_BASECLASS_BITPOS (type,
2165 i) / 8,
2166 basetype, looking_for_baseclass,
2167 result_ptr, last_boffset,
2168 outermost_type);
2169 }
2170
2171 update_search_result (result_ptr, v, last_boffset,
2172 boffset, name, outermost_type);
2173 }
2174 }
2175
2176 /* Helper function used by value_struct_elt to recurse through
2177 baseclasses. Look for a field NAME in ARG1. Adjust the address of
2178 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2179 TYPE. If found, return value, else return NULL.
2180
2181 If LOOKING_FOR_BASECLASS, then instead of looking for struct
2182 fields, look for a baseclass named NAME. */
2183
2184 static struct value *
2185 search_struct_field (const char *name, struct value *arg1, int offset,
2186 struct type *type, int looking_for_baseclass)
2187 {
2188 struct value *result = NULL;
2189 int boffset = 0;
2190
2191 do_search_struct_field (name, arg1, offset, type, looking_for_baseclass,
2192 &result, &boffset, type);
2193 return result;
2194 }
2195
2196 /* Helper function used by value_struct_elt to recurse through
2197 baseclasses. Look for a field NAME in ARG1. Adjust the address of
2198 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2199 TYPE.
2200
2201 If found, return value, else if name matched and args not return
2202 (value) -1, else return NULL. */
2203
2204 static struct value *
2205 search_struct_method (const char *name, struct value **arg1p,
2206 struct value **args, int offset,
2207 int *static_memfuncp, struct type *type)
2208 {
2209 int i;
2210 struct value *v;
2211 int name_matched = 0;
2212 char dem_opname[64];
2213
2214 CHECK_TYPEDEF (type);
2215 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2216 {
2217 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2218
2219 /* FIXME! May need to check for ARM demangling here. */
2220 if (strncmp (t_field_name, "__", 2) == 0 ||
2221 strncmp (t_field_name, "op", 2) == 0 ||
2222 strncmp (t_field_name, "type", 4) == 0)
2223 {
2224 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2225 t_field_name = dem_opname;
2226 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2227 t_field_name = dem_opname;
2228 }
2229 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2230 {
2231 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2232 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2233
2234 name_matched = 1;
2235 check_stub_method_group (type, i);
2236 if (j > 0 && args == 0)
2237 error (_("cannot resolve overloaded method "
2238 "`%s': no arguments supplied"), name);
2239 else if (j == 0 && args == 0)
2240 {
2241 v = value_fn_field (arg1p, f, j, type, offset);
2242 if (v != NULL)
2243 return v;
2244 }
2245 else
2246 while (j >= 0)
2247 {
2248 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2249 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2250 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2251 TYPE_FN_FIELD_ARGS (f, j), args))
2252 {
2253 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2254 return value_virtual_fn_field (arg1p, f, j,
2255 type, offset);
2256 if (TYPE_FN_FIELD_STATIC_P (f, j)
2257 && static_memfuncp)
2258 *static_memfuncp = 1;
2259 v = value_fn_field (arg1p, f, j, type, offset);
2260 if (v != NULL)
2261 return v;
2262 }
2263 j--;
2264 }
2265 }
2266 }
2267
2268 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2269 {
2270 int base_offset;
2271 int skip = 0;
2272 int this_offset;
2273
2274 if (BASETYPE_VIA_VIRTUAL (type, i))
2275 {
2276 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2277 struct value *base_val;
2278 const gdb_byte *base_valaddr;
2279
2280 /* The virtual base class pointer might have been
2281 clobbered by the user program. Make sure that it
2282 still points to a valid memory location. */
2283
2284 if (offset < 0 || offset >= TYPE_LENGTH (type))
2285 {
2286 gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass));
2287 CORE_ADDR address = value_address (*arg1p);
2288
2289 if (target_read_memory (address + offset,
2290 tmp, TYPE_LENGTH (baseclass)) != 0)
2291 error (_("virtual baseclass botch"));
2292
2293 base_val = value_from_contents_and_address (baseclass,
2294 tmp,
2295 address + offset);
2296 base_valaddr = value_contents_for_printing (base_val);
2297 this_offset = 0;
2298 }
2299 else
2300 {
2301 base_val = *arg1p;
2302 base_valaddr = value_contents_for_printing (*arg1p);
2303 this_offset = offset;
2304 }
2305
2306 base_offset = baseclass_offset (type, i, base_valaddr,
2307 this_offset, value_address (base_val),
2308 base_val);
2309 }
2310 else
2311 {
2312 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2313 }
2314 v = search_struct_method (name, arg1p, args, base_offset + offset,
2315 static_memfuncp, TYPE_BASECLASS (type, i));
2316 if (v == (struct value *) - 1)
2317 {
2318 name_matched = 1;
2319 }
2320 else if (v)
2321 {
2322 /* FIXME-bothner: Why is this commented out? Why is it here? */
2323 /* *arg1p = arg1_tmp; */
2324 return v;
2325 }
2326 }
2327 if (name_matched)
2328 return (struct value *) - 1;
2329 else
2330 return NULL;
2331 }
2332
2333 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2334 extract the component named NAME from the ultimate target
2335 structure/union and return it as a value with its appropriate type.
2336 ERR is used in the error message if *ARGP's type is wrong.
2337
2338 C++: ARGS is a list of argument types to aid in the selection of
2339 an appropriate method. Also, handle derived types.
2340
2341 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2342 where the truthvalue of whether the function that was resolved was
2343 a static member function or not is stored.
2344
2345 ERR is an error message to be printed in case the field is not
2346 found. */
2347
2348 struct value *
2349 value_struct_elt (struct value **argp, struct value **args,
2350 const char *name, int *static_memfuncp, const char *err)
2351 {
2352 struct type *t;
2353 struct value *v;
2354
2355 *argp = coerce_array (*argp);
2356
2357 t = check_typedef (value_type (*argp));
2358
2359 /* Follow pointers until we get to a non-pointer. */
2360
2361 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2362 {
2363 *argp = value_ind (*argp);
2364 /* Don't coerce fn pointer to fn and then back again! */
2365 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2366 *argp = coerce_array (*argp);
2367 t = check_typedef (value_type (*argp));
2368 }
2369
2370 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2371 && TYPE_CODE (t) != TYPE_CODE_UNION)
2372 error (_("Attempt to extract a component of a value that is not a %s."),
2373 err);
2374
2375 /* Assume it's not, unless we see that it is. */
2376 if (static_memfuncp)
2377 *static_memfuncp = 0;
2378
2379 if (!args)
2380 {
2381 /* if there are no arguments ...do this... */
2382
2383 /* Try as a field first, because if we succeed, there is less
2384 work to be done. */
2385 v = search_struct_field (name, *argp, 0, t, 0);
2386 if (v)
2387 return v;
2388
2389 /* C++: If it was not found as a data field, then try to
2390 return it as a pointer to a method. */
2391 v = search_struct_method (name, argp, args, 0,
2392 static_memfuncp, t);
2393
2394 if (v == (struct value *) - 1)
2395 error (_("Cannot take address of method %s."), name);
2396 else if (v == 0)
2397 {
2398 if (TYPE_NFN_FIELDS (t))
2399 error (_("There is no member or method named %s."), name);
2400 else
2401 error (_("There is no member named %s."), name);
2402 }
2403 return v;
2404 }
2405
2406 v = search_struct_method (name, argp, args, 0,
2407 static_memfuncp, t);
2408
2409 if (v == (struct value *) - 1)
2410 {
2411 error (_("One of the arguments you tried to pass to %s could not "
2412 "be converted to what the function wants."), name);
2413 }
2414 else if (v == 0)
2415 {
2416 /* See if user tried to invoke data as function. If so, hand it
2417 back. If it's not callable (i.e., a pointer to function),
2418 gdb should give an error. */
2419 v = search_struct_field (name, *argp, 0, t, 0);
2420 /* If we found an ordinary field, then it is not a method call.
2421 So, treat it as if it were a static member function. */
2422 if (v && static_memfuncp)
2423 *static_memfuncp = 1;
2424 }
2425
2426 if (!v)
2427 throw_error (NOT_FOUND_ERROR,
2428 _("Structure has no component named %s."), name);
2429 return v;
2430 }
2431
2432 /* Search through the methods of an object (and its bases) to find a
2433 specified method. Return the pointer to the fn_field list of
2434 overloaded instances.
2435
2436 Helper function for value_find_oload_list.
2437 ARGP is a pointer to a pointer to a value (the object).
2438 METHOD is a string containing the method name.
2439 OFFSET is the offset within the value.
2440 TYPE is the assumed type of the object.
2441 NUM_FNS is the number of overloaded instances.
2442 BASETYPE is set to the actual type of the subobject where the
2443 method is found.
2444 BOFFSET is the offset of the base subobject where the method is found. */
2445
2446 static struct fn_field *
2447 find_method_list (struct value **argp, const char *method,
2448 int offset, struct type *type, int *num_fns,
2449 struct type **basetype, int *boffset)
2450 {
2451 int i;
2452 struct fn_field *f;
2453 CHECK_TYPEDEF (type);
2454
2455 *num_fns = 0;
2456
2457 /* First check in object itself. */
2458 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2459 {
2460 /* pai: FIXME What about operators and type conversions? */
2461 const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2462
2463 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2464 {
2465 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2466 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2467
2468 *num_fns = len;
2469 *basetype = type;
2470 *boffset = offset;
2471
2472 /* Resolve any stub methods. */
2473 check_stub_method_group (type, i);
2474
2475 return f;
2476 }
2477 }
2478
2479 /* Not found in object, check in base subobjects. */
2480 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2481 {
2482 int base_offset;
2483
2484 if (BASETYPE_VIA_VIRTUAL (type, i))
2485 {
2486 base_offset = baseclass_offset (type, i,
2487 value_contents_for_printing (*argp),
2488 value_offset (*argp) + offset,
2489 value_address (*argp), *argp);
2490 }
2491 else /* Non-virtual base, simply use bit position from debug
2492 info. */
2493 {
2494 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2495 }
2496 f = find_method_list (argp, method, base_offset + offset,
2497 TYPE_BASECLASS (type, i), num_fns,
2498 basetype, boffset);
2499 if (f)
2500 return f;
2501 }
2502 return NULL;
2503 }
2504
2505 /* Return the list of overloaded methods of a specified name.
2506
2507 ARGP is a pointer to a pointer to a value (the object).
2508 METHOD is the method name.
2509 OFFSET is the offset within the value contents.
2510 NUM_FNS is the number of overloaded instances.
2511 BASETYPE is set to the type of the base subobject that defines the
2512 method.
2513 BOFFSET is the offset of the base subobject which defines the method. */
2514
2515 static struct fn_field *
2516 value_find_oload_method_list (struct value **argp, const char *method,
2517 int offset, int *num_fns,
2518 struct type **basetype, int *boffset)
2519 {
2520 struct type *t;
2521
2522 t = check_typedef (value_type (*argp));
2523
2524 /* Code snarfed from value_struct_elt. */
2525 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2526 {
2527 *argp = value_ind (*argp);
2528 /* Don't coerce fn pointer to fn and then back again! */
2529 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2530 *argp = coerce_array (*argp);
2531 t = check_typedef (value_type (*argp));
2532 }
2533
2534 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2535 && TYPE_CODE (t) != TYPE_CODE_UNION)
2536 error (_("Attempt to extract a component of a "
2537 "value that is not a struct or union"));
2538
2539 return find_method_list (argp, method, 0, t, num_fns,
2540 basetype, boffset);
2541 }
2542
2543 /* Given an array of arguments (ARGS) (which includes an
2544 entry for "this" in the case of C++ methods), the number of
2545 arguments NARGS, the NAME of a function whether it's a method or
2546 not (METHOD), and the degree of laxness (LAX) in conforming to
2547 overload resolution rules in ANSI C++, find the best function that
2548 matches on the argument types according to the overload resolution
2549 rules.
2550
2551 METHOD can be one of three values:
2552 NON_METHOD for non-member functions.
2553 METHOD: for member functions.
2554 BOTH: used for overload resolution of operators where the
2555 candidates are expected to be either member or non member
2556 functions. In this case the first argument ARGTYPES
2557 (representing 'this') is expected to be a reference to the
2558 target object, and will be dereferenced when attempting the
2559 non-member search.
2560
2561 In the case of class methods, the parameter OBJ is an object value
2562 in which to search for overloaded methods.
2563
2564 In the case of non-method functions, the parameter FSYM is a symbol
2565 corresponding to one of the overloaded functions.
2566
2567 Return value is an integer: 0 -> good match, 10 -> debugger applied
2568 non-standard coercions, 100 -> incompatible.
2569
2570 If a method is being searched for, VALP will hold the value.
2571 If a non-method is being searched for, SYMP will hold the symbol
2572 for it.
2573
2574 If a method is being searched for, and it is a static method,
2575 then STATICP will point to a non-zero value.
2576
2577 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2578 ADL overload candidates when performing overload resolution for a fully
2579 qualified name.
2580
2581 Note: This function does *not* check the value of
2582 overload_resolution. Caller must check it to see whether overload
2583 resolution is permitted. */
2584
2585 int
2586 find_overload_match (struct value **args, int nargs,
2587 const char *name, enum oload_search_type method,
2588 int lax, struct value **objp, struct symbol *fsym,
2589 struct value **valp, struct symbol **symp,
2590 int *staticp, const int no_adl)
2591 {
2592 struct value *obj = (objp ? *objp : NULL);
2593 struct type *obj_type = obj ? value_type (obj) : NULL;
2594 /* Index of best overloaded function. */
2595 int func_oload_champ = -1;
2596 int method_oload_champ = -1;
2597
2598 /* The measure for the current best match. */
2599 struct badness_vector *method_badness = NULL;
2600 struct badness_vector *func_badness = NULL;
2601
2602 struct value *temp = obj;
2603 /* For methods, the list of overloaded methods. */
2604 struct fn_field *fns_ptr = NULL;
2605 /* For non-methods, the list of overloaded function symbols. */
2606 struct symbol **oload_syms = NULL;
2607 /* Number of overloaded instances being considered. */
2608 int num_fns = 0;
2609 struct type *basetype = NULL;
2610 int boffset;
2611
2612 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2613
2614 const char *obj_type_name = NULL;
2615 const char *func_name = NULL;
2616 enum oload_classification match_quality;
2617 enum oload_classification method_match_quality = INCOMPATIBLE;
2618 enum oload_classification func_match_quality = INCOMPATIBLE;
2619
2620 /* Get the list of overloaded methods or functions. */
2621 if (method == METHOD || method == BOTH)
2622 {
2623 gdb_assert (obj);
2624
2625 /* OBJ may be a pointer value rather than the object itself. */
2626 obj = coerce_ref (obj);
2627 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2628 obj = coerce_ref (value_ind (obj));
2629 obj_type_name = TYPE_NAME (value_type (obj));
2630
2631 /* First check whether this is a data member, e.g. a pointer to
2632 a function. */
2633 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2634 {
2635 *valp = search_struct_field (name, obj, 0,
2636 check_typedef (value_type (obj)), 0);
2637 if (*valp)
2638 {
2639 *staticp = 1;
2640 do_cleanups (all_cleanups);
2641 return 0;
2642 }
2643 }
2644
2645 /* Retrieve the list of methods with the name NAME. */
2646 fns_ptr = value_find_oload_method_list (&temp, name,
2647 0, &num_fns,
2648 &basetype, &boffset);
2649 /* If this is a method only search, and no methods were found
2650 the search has faild. */
2651 if (method == METHOD && (!fns_ptr || !num_fns))
2652 error (_("Couldn't find method %s%s%s"),
2653 obj_type_name,
2654 (obj_type_name && *obj_type_name) ? "::" : "",
2655 name);
2656 /* If we are dealing with stub method types, they should have
2657 been resolved by find_method_list via
2658 value_find_oload_method_list above. */
2659 if (fns_ptr)
2660 {
2661 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2662 method_oload_champ = find_oload_champ (args, nargs, method,
2663 num_fns, fns_ptr,
2664 oload_syms, &method_badness);
2665
2666 method_match_quality =
2667 classify_oload_match (method_badness, nargs,
2668 oload_method_static (method, fns_ptr,
2669 method_oload_champ));
2670
2671 make_cleanup (xfree, method_badness);
2672 }
2673
2674 }
2675
2676 if (method == NON_METHOD || method == BOTH)
2677 {
2678 const char *qualified_name = NULL;
2679
2680 /* If the overload match is being search for both as a method
2681 and non member function, the first argument must now be
2682 dereferenced. */
2683 if (method == BOTH)
2684 args[0] = value_ind (args[0]);
2685
2686 if (fsym)
2687 {
2688 qualified_name = SYMBOL_NATURAL_NAME (fsym);
2689
2690 /* If we have a function with a C++ name, try to extract just
2691 the function part. Do not try this for non-functions (e.g.
2692 function pointers). */
2693 if (qualified_name
2694 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym)))
2695 == TYPE_CODE_FUNC)
2696 {
2697 char *temp;
2698
2699 temp = cp_func_name (qualified_name);
2700
2701 /* If cp_func_name did not remove anything, the name of the
2702 symbol did not include scope or argument types - it was
2703 probably a C-style function. */
2704 if (temp)
2705 {
2706 make_cleanup (xfree, temp);
2707 if (strcmp (temp, qualified_name) == 0)
2708 func_name = NULL;
2709 else
2710 func_name = temp;
2711 }
2712 }
2713 }
2714 else
2715 {
2716 func_name = name;
2717 qualified_name = name;
2718 }
2719
2720 /* If there was no C++ name, this must be a C-style function or
2721 not a function at all. Just return the same symbol. Do the
2722 same if cp_func_name fails for some reason. */
2723 if (func_name == NULL)
2724 {
2725 *symp = fsym;
2726 do_cleanups (all_cleanups);
2727 return 0;
2728 }
2729
2730 func_oload_champ = find_oload_champ_namespace (args, nargs,
2731 func_name,
2732 qualified_name,
2733 &oload_syms,
2734 &func_badness,
2735 no_adl);
2736
2737 if (func_oload_champ >= 0)
2738 func_match_quality = classify_oload_match (func_badness, nargs, 0);
2739
2740 make_cleanup (xfree, oload_syms);
2741 make_cleanup (xfree, func_badness);
2742 }
2743
2744 /* Did we find a match ? */
2745 if (method_oload_champ == -1 && func_oload_champ == -1)
2746 throw_error (NOT_FOUND_ERROR,
2747 _("No symbol \"%s\" in current context."),
2748 name);
2749
2750 /* If we have found both a method match and a function
2751 match, find out which one is better, and calculate match
2752 quality. */
2753 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2754 {
2755 switch (compare_badness (func_badness, method_badness))
2756 {
2757 case 0: /* Top two contenders are equally good. */
2758 /* FIXME: GDB does not support the general ambiguous case.
2759 All candidates should be collected and presented the
2760 user. */
2761 error (_("Ambiguous overload resolution"));
2762 break;
2763 case 1: /* Incomparable top contenders. */
2764 /* This is an error incompatible candidates
2765 should not have been proposed. */
2766 error (_("Internal error: incompatible "
2767 "overload candidates proposed"));
2768 break;
2769 case 2: /* Function champion. */
2770 method_oload_champ = -1;
2771 match_quality = func_match_quality;
2772 break;
2773 case 3: /* Method champion. */
2774 func_oload_champ = -1;
2775 match_quality = method_match_quality;
2776 break;
2777 default:
2778 error (_("Internal error: unexpected overload comparison result"));
2779 break;
2780 }
2781 }
2782 else
2783 {
2784 /* We have either a method match or a function match. */
2785 if (method_oload_champ >= 0)
2786 match_quality = method_match_quality;
2787 else
2788 match_quality = func_match_quality;
2789 }
2790
2791 if (match_quality == INCOMPATIBLE)
2792 {
2793 if (method == METHOD)
2794 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2795 obj_type_name,
2796 (obj_type_name && *obj_type_name) ? "::" : "",
2797 name);
2798 else
2799 error (_("Cannot resolve function %s to any overloaded instance"),
2800 func_name);
2801 }
2802 else if (match_quality == NON_STANDARD)
2803 {
2804 if (method == METHOD)
2805 warning (_("Using non-standard conversion to match "
2806 "method %s%s%s to supplied arguments"),
2807 obj_type_name,
2808 (obj_type_name && *obj_type_name) ? "::" : "",
2809 name);
2810 else
2811 warning (_("Using non-standard conversion to match "
2812 "function %s to supplied arguments"),
2813 func_name);
2814 }
2815
2816 if (staticp != NULL)
2817 *staticp = oload_method_static (method, fns_ptr, method_oload_champ);
2818
2819 if (method_oload_champ >= 0)
2820 {
2821 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ))
2822 *valp = value_virtual_fn_field (&temp, fns_ptr, method_oload_champ,
2823 basetype, boffset);
2824 else
2825 *valp = value_fn_field (&temp, fns_ptr, method_oload_champ,
2826 basetype, boffset);
2827 }
2828 else
2829 *symp = oload_syms[func_oload_champ];
2830
2831 if (objp)
2832 {
2833 struct type *temp_type = check_typedef (value_type (temp));
2834 struct type *objtype = check_typedef (obj_type);
2835
2836 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2837 && (TYPE_CODE (objtype) == TYPE_CODE_PTR
2838 || TYPE_CODE (objtype) == TYPE_CODE_REF))
2839 {
2840 temp = value_addr (temp);
2841 }
2842 *objp = temp;
2843 }
2844
2845 do_cleanups (all_cleanups);
2846
2847 switch (match_quality)
2848 {
2849 case INCOMPATIBLE:
2850 return 100;
2851 case NON_STANDARD:
2852 return 10;
2853 default: /* STANDARD */
2854 return 0;
2855 }
2856 }
2857
2858 /* Find the best overload match, searching for FUNC_NAME in namespaces
2859 contained in QUALIFIED_NAME until it either finds a good match or
2860 runs out of namespaces. It stores the overloaded functions in
2861 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2862 calling function is responsible for freeing *OLOAD_SYMS and
2863 *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not
2864 performned. */
2865
2866 static int
2867 find_oload_champ_namespace (struct value **args, int nargs,
2868 const char *func_name,
2869 const char *qualified_name,
2870 struct symbol ***oload_syms,
2871 struct badness_vector **oload_champ_bv,
2872 const int no_adl)
2873 {
2874 int oload_champ;
2875
2876 find_oload_champ_namespace_loop (args, nargs,
2877 func_name,
2878 qualified_name, 0,
2879 oload_syms, oload_champ_bv,
2880 &oload_champ,
2881 no_adl);
2882
2883 return oload_champ;
2884 }
2885
2886 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2887 how deep we've looked for namespaces, and the champ is stored in
2888 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2889 if it isn't. Other arguments are the same as in
2890 find_oload_champ_namespace
2891
2892 It is the caller's responsibility to free *OLOAD_SYMS and
2893 *OLOAD_CHAMP_BV. */
2894
2895 static int
2896 find_oload_champ_namespace_loop (struct value **args, int nargs,
2897 const char *func_name,
2898 const char *qualified_name,
2899 int namespace_len,
2900 struct symbol ***oload_syms,
2901 struct badness_vector **oload_champ_bv,
2902 int *oload_champ,
2903 const int no_adl)
2904 {
2905 int next_namespace_len = namespace_len;
2906 int searched_deeper = 0;
2907 int num_fns = 0;
2908 struct cleanup *old_cleanups;
2909 int new_oload_champ;
2910 struct symbol **new_oload_syms;
2911 struct badness_vector *new_oload_champ_bv;
2912 char *new_namespace;
2913
2914 if (next_namespace_len != 0)
2915 {
2916 gdb_assert (qualified_name[next_namespace_len] == ':');
2917 next_namespace_len += 2;
2918 }
2919 next_namespace_len +=
2920 cp_find_first_component (qualified_name + next_namespace_len);
2921
2922 /* Initialize these to values that can safely be xfree'd. */
2923 *oload_syms = NULL;
2924 *oload_champ_bv = NULL;
2925
2926 /* First, see if we have a deeper namespace we can search in.
2927 If we get a good match there, use it. */
2928
2929 if (qualified_name[next_namespace_len] == ':')
2930 {
2931 searched_deeper = 1;
2932
2933 if (find_oload_champ_namespace_loop (args, nargs,
2934 func_name, qualified_name,
2935 next_namespace_len,
2936 oload_syms, oload_champ_bv,
2937 oload_champ, no_adl))
2938 {
2939 return 1;
2940 }
2941 };
2942
2943 /* If we reach here, either we're in the deepest namespace or we
2944 didn't find a good match in a deeper namespace. But, in the
2945 latter case, we still have a bad match in a deeper namespace;
2946 note that we might not find any match at all in the current
2947 namespace. (There's always a match in the deepest namespace,
2948 because this overload mechanism only gets called if there's a
2949 function symbol to start off with.) */
2950
2951 old_cleanups = make_cleanup (xfree, *oload_syms);
2952 make_cleanup (xfree, *oload_champ_bv);
2953 new_namespace = alloca (namespace_len + 1);
2954 strncpy (new_namespace, qualified_name, namespace_len);
2955 new_namespace[namespace_len] = '\0';
2956 new_oload_syms = make_symbol_overload_list (func_name,
2957 new_namespace);
2958
2959 /* If we have reached the deepest level perform argument
2960 determined lookup. */
2961 if (!searched_deeper && !no_adl)
2962 {
2963 int ix;
2964 struct type **arg_types;
2965
2966 /* Prepare list of argument types for overload resolution. */
2967 arg_types = (struct type **)
2968 alloca (nargs * (sizeof (struct type *)));
2969 for (ix = 0; ix < nargs; ix++)
2970 arg_types[ix] = value_type (args[ix]);
2971 make_symbol_overload_list_adl (arg_types, nargs, func_name);
2972 }
2973
2974 while (new_oload_syms[num_fns])
2975 ++num_fns;
2976
2977 new_oload_champ = find_oload_champ (args, nargs, 0, num_fns,
2978 NULL, new_oload_syms,
2979 &new_oload_champ_bv);
2980
2981 /* Case 1: We found a good match. Free earlier matches (if any),
2982 and return it. Case 2: We didn't find a good match, but we're
2983 not the deepest function. Then go with the bad match that the
2984 deeper function found. Case 3: We found a bad match, and we're
2985 the deepest function. Then return what we found, even though
2986 it's a bad match. */
2987
2988 if (new_oload_champ != -1
2989 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2990 {
2991 *oload_syms = new_oload_syms;
2992 *oload_champ = new_oload_champ;
2993 *oload_champ_bv = new_oload_champ_bv;
2994 do_cleanups (old_cleanups);
2995 return 1;
2996 }
2997 else if (searched_deeper)
2998 {
2999 xfree (new_oload_syms);
3000 xfree (new_oload_champ_bv);
3001 discard_cleanups (old_cleanups);
3002 return 0;
3003 }
3004 else
3005 {
3006 *oload_syms = new_oload_syms;
3007 *oload_champ = new_oload_champ;
3008 *oload_champ_bv = new_oload_champ_bv;
3009 do_cleanups (old_cleanups);
3010 return 0;
3011 }
3012 }
3013
3014 /* Look for a function to take NARGS args of ARGS. Find
3015 the best match from among the overloaded methods or functions
3016 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
3017 The number of methods/functions in the list is given by NUM_FNS.
3018 Return the index of the best match; store an indication of the
3019 quality of the match in OLOAD_CHAMP_BV.
3020
3021 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
3022
3023 static int
3024 find_oload_champ (struct value **args, int nargs, int method,
3025 int num_fns, struct fn_field *fns_ptr,
3026 struct symbol **oload_syms,
3027 struct badness_vector **oload_champ_bv)
3028 {
3029 int ix;
3030 /* A measure of how good an overloaded instance is. */
3031 struct badness_vector *bv;
3032 /* Index of best overloaded function. */
3033 int oload_champ = -1;
3034 /* Current ambiguity state for overload resolution. */
3035 int oload_ambiguous = 0;
3036 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
3037
3038 *oload_champ_bv = NULL;
3039
3040 /* Consider each candidate in turn. */
3041 for (ix = 0; ix < num_fns; ix++)
3042 {
3043 int jj;
3044 int static_offset = oload_method_static (method, fns_ptr, ix);
3045 int nparms;
3046 struct type **parm_types;
3047
3048 if (method)
3049 {
3050 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
3051 }
3052 else
3053 {
3054 /* If it's not a method, this is the proper place. */
3055 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
3056 }
3057
3058 /* Prepare array of parameter types. */
3059 parm_types = (struct type **)
3060 xmalloc (nparms * (sizeof (struct type *)));
3061 for (jj = 0; jj < nparms; jj++)
3062 parm_types[jj] = (method
3063 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
3064 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
3065 jj));
3066
3067 /* Compare parameter types to supplied argument types. Skip
3068 THIS for static methods. */
3069 bv = rank_function (parm_types, nparms,
3070 args + static_offset,
3071 nargs - static_offset);
3072
3073 if (!*oload_champ_bv)
3074 {
3075 *oload_champ_bv = bv;
3076 oload_champ = 0;
3077 }
3078 else /* See whether current candidate is better or worse than
3079 previous best. */
3080 switch (compare_badness (bv, *oload_champ_bv))
3081 {
3082 case 0: /* Top two contenders are equally good. */
3083 oload_ambiguous = 1;
3084 break;
3085 case 1: /* Incomparable top contenders. */
3086 oload_ambiguous = 2;
3087 break;
3088 case 2: /* New champion, record details. */
3089 *oload_champ_bv = bv;
3090 oload_ambiguous = 0;
3091 oload_champ = ix;
3092 break;
3093 case 3:
3094 default:
3095 break;
3096 }
3097 xfree (parm_types);
3098 if (overload_debug)
3099 {
3100 if (method)
3101 fprintf_filtered (gdb_stderr,
3102 "Overloaded method instance %s, # of parms %d\n",
3103 fns_ptr[ix].physname, nparms);
3104 else
3105 fprintf_filtered (gdb_stderr,
3106 "Overloaded function instance "
3107 "%s # of parms %d\n",
3108 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
3109 nparms);
3110 for (jj = 0; jj < nargs - static_offset; jj++)
3111 fprintf_filtered (gdb_stderr,
3112 "...Badness @ %d : %d\n",
3113 jj, bv->rank[jj].rank);
3114 fprintf_filtered (gdb_stderr, "Overload resolution "
3115 "champion is %d, ambiguous? %d\n",
3116 oload_champ, oload_ambiguous);
3117 }
3118 }
3119
3120 return oload_champ;
3121 }
3122
3123 /* Return 1 if we're looking at a static method, 0 if we're looking at
3124 a non-static method or a function that isn't a method. */
3125
3126 static int
3127 oload_method_static (int method, struct fn_field *fns_ptr, int index)
3128 {
3129 if (method && fns_ptr && index >= 0
3130 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
3131 return 1;
3132 else
3133 return 0;
3134 }
3135
3136 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
3137
3138 static enum oload_classification
3139 classify_oload_match (struct badness_vector *oload_champ_bv,
3140 int nargs,
3141 int static_offset)
3142 {
3143 int ix;
3144 enum oload_classification worst = STANDARD;
3145
3146 for (ix = 1; ix <= nargs - static_offset; ix++)
3147 {
3148 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
3149 or worse return INCOMPATIBLE. */
3150 if (compare_ranks (oload_champ_bv->rank[ix],
3151 INCOMPATIBLE_TYPE_BADNESS) <= 0)
3152 return INCOMPATIBLE; /* Truly mismatched types. */
3153 /* Otherwise If this conversion is as bad as
3154 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
3155 else if (compare_ranks (oload_champ_bv->rank[ix],
3156 NS_POINTER_CONVERSION_BADNESS) <= 0)
3157 worst = NON_STANDARD; /* Non-standard type conversions
3158 needed. */
3159 }
3160
3161 /* If no INCOMPATIBLE classification was found, return the worst one
3162 that was found (if any). */
3163 return worst;
3164 }
3165
3166 /* C++: return 1 is NAME is a legitimate name for the destructor of
3167 type TYPE. If TYPE does not have a destructor, or if NAME is
3168 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
3169 have CHECK_TYPEDEF applied, this function will apply it itself. */
3170
3171 int
3172 destructor_name_p (const char *name, struct type *type)
3173 {
3174 if (name[0] == '~')
3175 {
3176 const char *dname = type_name_no_tag_or_error (type);
3177 const char *cp = strchr (dname, '<');
3178 unsigned int len;
3179
3180 /* Do not compare the template part for template classes. */
3181 if (cp == NULL)
3182 len = strlen (dname);
3183 else
3184 len = cp - dname;
3185 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3186 error (_("name of destructor must equal name of class"));
3187 else
3188 return 1;
3189 }
3190 return 0;
3191 }
3192
3193 /* Given TYPE, a structure/union,
3194 return 1 if the component named NAME from the ultimate target
3195 structure/union is defined, otherwise, return 0. */
3196
3197 int
3198 check_field (struct type *type, const char *name)
3199 {
3200 int i;
3201
3202 /* The type may be a stub. */
3203 CHECK_TYPEDEF (type);
3204
3205 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
3206 {
3207 const char *t_field_name = TYPE_FIELD_NAME (type, i);
3208
3209 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
3210 return 1;
3211 }
3212
3213 /* C++: If it was not found as a data field, then try to return it
3214 as a pointer to a method. */
3215
3216 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
3217 {
3218 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
3219 return 1;
3220 }
3221
3222 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
3223 if (check_field (TYPE_BASECLASS (type, i), name))
3224 return 1;
3225
3226 return 0;
3227 }
3228
3229 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3230 return the appropriate member (or the address of the member, if
3231 WANT_ADDRESS). This function is used to resolve user expressions
3232 of the form "DOMAIN::NAME". For more details on what happens, see
3233 the comment before value_struct_elt_for_reference. */
3234
3235 struct value *
3236 value_aggregate_elt (struct type *curtype, char *name,
3237 struct type *expect_type, int want_address,
3238 enum noside noside)
3239 {
3240 switch (TYPE_CODE (curtype))
3241 {
3242 case TYPE_CODE_STRUCT:
3243 case TYPE_CODE_UNION:
3244 return value_struct_elt_for_reference (curtype, 0, curtype,
3245 name, expect_type,
3246 want_address, noside);
3247 case TYPE_CODE_NAMESPACE:
3248 return value_namespace_elt (curtype, name,
3249 want_address, noside);
3250 default:
3251 internal_error (__FILE__, __LINE__,
3252 _("non-aggregate type in value_aggregate_elt"));
3253 }
3254 }
3255
3256 /* Compares the two method/function types T1 and T2 for "equality"
3257 with respect to the methods' parameters. If the types of the
3258 two parameter lists are the same, returns 1; 0 otherwise. This
3259 comparison may ignore any artificial parameters in T1 if
3260 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3261 the first artificial parameter in T1, assumed to be a 'this' pointer.
3262
3263 The type T2 is expected to have come from make_params (in eval.c). */
3264
3265 static int
3266 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3267 {
3268 int start = 0;
3269
3270 if (TYPE_NFIELDS (t1) > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3271 ++start;
3272
3273 /* If skipping artificial fields, find the first real field
3274 in T1. */
3275 if (skip_artificial)
3276 {
3277 while (start < TYPE_NFIELDS (t1)
3278 && TYPE_FIELD_ARTIFICIAL (t1, start))
3279 ++start;
3280 }
3281
3282 /* Now compare parameters. */
3283
3284 /* Special case: a method taking void. T1 will contain no
3285 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3286 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
3287 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
3288 return 1;
3289
3290 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
3291 {
3292 int i;
3293
3294 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
3295 {
3296 if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3297 TYPE_FIELD_TYPE (t2, i), NULL),
3298 EXACT_MATCH_BADNESS) != 0)
3299 return 0;
3300 }
3301
3302 return 1;
3303 }
3304
3305 return 0;
3306 }
3307
3308 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3309 return the address of this member as a "pointer to member" type.
3310 If INTYPE is non-null, then it will be the type of the member we
3311 are looking for. This will help us resolve "pointers to member
3312 functions". This function is used to resolve user expressions of
3313 the form "DOMAIN::NAME". */
3314
3315 static struct value *
3316 value_struct_elt_for_reference (struct type *domain, int offset,
3317 struct type *curtype, char *name,
3318 struct type *intype,
3319 int want_address,
3320 enum noside noside)
3321 {
3322 struct type *t = curtype;
3323 int i;
3324 struct value *v, *result;
3325
3326 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3327 && TYPE_CODE (t) != TYPE_CODE_UNION)
3328 error (_("Internal error: non-aggregate type "
3329 "to value_struct_elt_for_reference"));
3330
3331 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3332 {
3333 const char *t_field_name = TYPE_FIELD_NAME (t, i);
3334
3335 if (t_field_name && strcmp (t_field_name, name) == 0)
3336 {
3337 if (field_is_static (&TYPE_FIELD (t, i)))
3338 {
3339 v = value_static_field (t, i);
3340 if (v == NULL)
3341 error (_("static field %s has been optimized out"),
3342 name);
3343 if (want_address)
3344 v = value_addr (v);
3345 return v;
3346 }
3347 if (TYPE_FIELD_PACKED (t, i))
3348 error (_("pointers to bitfield members not allowed"));
3349
3350 if (want_address)
3351 return value_from_longest
3352 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3353 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3354 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3355 return allocate_value (TYPE_FIELD_TYPE (t, i));
3356 else
3357 error (_("Cannot reference non-static field \"%s\""), name);
3358 }
3359 }
3360
3361 /* C++: If it was not found as a data field, then try to return it
3362 as a pointer to a method. */
3363
3364 /* Perform all necessary dereferencing. */
3365 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3366 intype = TYPE_TARGET_TYPE (intype);
3367
3368 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3369 {
3370 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3371 char dem_opname[64];
3372
3373 if (strncmp (t_field_name, "__", 2) == 0
3374 || strncmp (t_field_name, "op", 2) == 0
3375 || strncmp (t_field_name, "type", 4) == 0)
3376 {
3377 if (cplus_demangle_opname (t_field_name,
3378 dem_opname, DMGL_ANSI))
3379 t_field_name = dem_opname;
3380 else if (cplus_demangle_opname (t_field_name,
3381 dem_opname, 0))
3382 t_field_name = dem_opname;
3383 }
3384 if (t_field_name && strcmp (t_field_name, name) == 0)
3385 {
3386 int j;
3387 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3388 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3389
3390 check_stub_method_group (t, i);
3391
3392 if (intype)
3393 {
3394 for (j = 0; j < len; ++j)
3395 {
3396 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3397 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3398 intype, 1))
3399 break;
3400 }
3401
3402 if (j == len)
3403 error (_("no member function matches "
3404 "that type instantiation"));
3405 }
3406 else
3407 {
3408 int ii;
3409
3410 j = -1;
3411 for (ii = 0; ii < len; ++ii)
3412 {
3413 /* Skip artificial methods. This is necessary if,
3414 for example, the user wants to "print
3415 subclass::subclass" with only one user-defined
3416 constructor. There is no ambiguity in this case.
3417 We are careful here to allow artificial methods
3418 if they are the unique result. */
3419 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3420 {
3421 if (j == -1)
3422 j = ii;
3423 continue;
3424 }
3425
3426 /* Desired method is ambiguous if more than one
3427 method is defined. */
3428 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3429 error (_("non-unique member `%s' requires "
3430 "type instantiation"), name);
3431
3432 j = ii;
3433 }
3434
3435 if (j == -1)
3436 error (_("no matching member function"));
3437 }
3438
3439 if (TYPE_FN_FIELD_STATIC_P (f, j))
3440 {
3441 struct symbol *s =
3442 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3443 0, VAR_DOMAIN, 0);
3444
3445 if (s == NULL)
3446 return NULL;
3447
3448 if (want_address)
3449 return value_addr (read_var_value (s, 0));
3450 else
3451 return read_var_value (s, 0);
3452 }
3453
3454 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3455 {
3456 if (want_address)
3457 {
3458 result = allocate_value
3459 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3460 cplus_make_method_ptr (value_type (result),
3461 value_contents_writeable (result),
3462 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3463 }
3464 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3465 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3466 else
3467 error (_("Cannot reference virtual member function \"%s\""),
3468 name);
3469 }
3470 else
3471 {
3472 struct symbol *s =
3473 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3474 0, VAR_DOMAIN, 0);
3475
3476 if (s == NULL)
3477 return NULL;
3478
3479 v = read_var_value (s, 0);
3480 if (!want_address)
3481 result = v;
3482 else
3483 {
3484 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3485 cplus_make_method_ptr (value_type (result),
3486 value_contents_writeable (result),
3487 value_address (v), 0);
3488 }
3489 }
3490 return result;
3491 }
3492 }
3493 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3494 {
3495 struct value *v;
3496 int base_offset;
3497
3498 if (BASETYPE_VIA_VIRTUAL (t, i))
3499 base_offset = 0;
3500 else
3501 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3502 v = value_struct_elt_for_reference (domain,
3503 offset + base_offset,
3504 TYPE_BASECLASS (t, i),
3505 name, intype,
3506 want_address, noside);
3507 if (v)
3508 return v;
3509 }
3510
3511 /* As a last chance, pretend that CURTYPE is a namespace, and look
3512 it up that way; this (frequently) works for types nested inside
3513 classes. */
3514
3515 return value_maybe_namespace_elt (curtype, name,
3516 want_address, noside);
3517 }
3518
3519 /* C++: Return the member NAME of the namespace given by the type
3520 CURTYPE. */
3521
3522 static struct value *
3523 value_namespace_elt (const struct type *curtype,
3524 char *name, int want_address,
3525 enum noside noside)
3526 {
3527 struct value *retval = value_maybe_namespace_elt (curtype, name,
3528 want_address,
3529 noside);
3530
3531 if (retval == NULL)
3532 error (_("No symbol \"%s\" in namespace \"%s\"."),
3533 name, TYPE_TAG_NAME (curtype));
3534
3535 return retval;
3536 }
3537
3538 /* A helper function used by value_namespace_elt and
3539 value_struct_elt_for_reference. It looks up NAME inside the
3540 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3541 is a class and NAME refers to a type in CURTYPE itself (as opposed
3542 to, say, some base class of CURTYPE). */
3543
3544 static struct value *
3545 value_maybe_namespace_elt (const struct type *curtype,
3546 char *name, int want_address,
3547 enum noside noside)
3548 {
3549 const char *namespace_name = TYPE_TAG_NAME (curtype);
3550 struct symbol *sym;
3551 struct value *result;
3552
3553 sym = cp_lookup_symbol_namespace (namespace_name, name,
3554 get_selected_block (0), VAR_DOMAIN);
3555
3556 if (sym == NULL)
3557 {
3558 char *concatenated_name = alloca (strlen (namespace_name) + 2
3559 + strlen (name) + 1);
3560
3561 sprintf (concatenated_name, "%s::%s", namespace_name, name);
3562 sym = lookup_static_symbol_aux (concatenated_name, VAR_DOMAIN);
3563 }
3564
3565 if (sym == NULL)
3566 return NULL;
3567 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3568 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
3569 result = allocate_value (SYMBOL_TYPE (sym));
3570 else
3571 result = value_of_variable (sym, get_selected_block (0));
3572
3573 if (result && want_address)
3574 result = value_addr (result);
3575
3576 return result;
3577 }
3578
3579 /* Given a pointer or a reference value V, find its real (RTTI) type.
3580
3581 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3582 and refer to the values computed for the object pointed to. */
3583
3584 struct type *
3585 value_rtti_indirect_type (struct value *v, int *full,
3586 int *top, int *using_enc)
3587 {
3588 struct value *target;
3589 struct type *type, *real_type, *target_type;
3590
3591 type = value_type (v);
3592 type = check_typedef (type);
3593 if (TYPE_CODE (type) == TYPE_CODE_REF)
3594 target = coerce_ref (v);
3595 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3596 target = value_ind (v);
3597 else
3598 return NULL;
3599
3600 real_type = value_rtti_type (target, full, top, using_enc);
3601
3602 if (real_type)
3603 {
3604 /* Copy qualifiers to the referenced object. */
3605 target_type = value_type (target);
3606 real_type = make_cv_type (TYPE_CONST (target_type),
3607 TYPE_VOLATILE (target_type), real_type, NULL);
3608 if (TYPE_CODE (type) == TYPE_CODE_REF)
3609 real_type = lookup_reference_type (real_type);
3610 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3611 real_type = lookup_pointer_type (real_type);
3612 else
3613 internal_error (__FILE__, __LINE__, _("Unexpected value type."));
3614
3615 /* Copy qualifiers to the pointer/reference. */
3616 real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type),
3617 real_type, NULL);
3618 }
3619
3620 return real_type;
3621 }
3622
3623 /* Given a value pointed to by ARGP, check its real run-time type, and
3624 if that is different from the enclosing type, create a new value
3625 using the real run-time type as the enclosing type (and of the same
3626 type as ARGP) and return it, with the embedded offset adjusted to
3627 be the correct offset to the enclosed object. RTYPE is the type,
3628 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3629 by value_rtti_type(). If these are available, they can be supplied
3630 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3631 NULL if they're not available. */
3632
3633 struct value *
3634 value_full_object (struct value *argp,
3635 struct type *rtype,
3636 int xfull, int xtop,
3637 int xusing_enc)
3638 {
3639 struct type *real_type;
3640 int full = 0;
3641 int top = -1;
3642 int using_enc = 0;
3643 struct value *new_val;
3644
3645 if (rtype)
3646 {
3647 real_type = rtype;
3648 full = xfull;
3649 top = xtop;
3650 using_enc = xusing_enc;
3651 }
3652 else
3653 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3654
3655 /* If no RTTI data, or if object is already complete, do nothing. */
3656 if (!real_type || real_type == value_enclosing_type (argp))
3657 return argp;
3658
3659 /* In a destructor we might see a real type that is a superclass of
3660 the object's type. In this case it is better to leave the object
3661 as-is. */
3662 if (full
3663 && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp)))
3664 return argp;
3665
3666 /* If we have the full object, but for some reason the enclosing
3667 type is wrong, set it. */
3668 /* pai: FIXME -- sounds iffy */
3669 if (full)
3670 {
3671 argp = value_copy (argp);
3672 set_value_enclosing_type (argp, real_type);
3673 return argp;
3674 }
3675
3676 /* Check if object is in memory. */
3677 if (VALUE_LVAL (argp) != lval_memory)
3678 {
3679 warning (_("Couldn't retrieve complete object of RTTI "
3680 "type %s; object may be in register(s)."),
3681 TYPE_NAME (real_type));
3682
3683 return argp;
3684 }
3685
3686 /* All other cases -- retrieve the complete object. */
3687 /* Go back by the computed top_offset from the beginning of the
3688 object, adjusting for the embedded offset of argp if that's what
3689 value_rtti_type used for its computation. */
3690 new_val = value_at_lazy (real_type, value_address (argp) - top +
3691 (using_enc ? 0 : value_embedded_offset (argp)));
3692 deprecated_set_value_type (new_val, value_type (argp));
3693 set_value_embedded_offset (new_val, (using_enc
3694 ? top + value_embedded_offset (argp)
3695 : top));
3696 return new_val;
3697 }
3698
3699
3700 /* Return the value of the local variable, if one exists. Throw error
3701 otherwise, such as if the request is made in an inappropriate context. */
3702
3703 struct value *
3704 value_of_this (const struct language_defn *lang)
3705 {
3706 struct symbol *sym;
3707 struct block *b;
3708 struct frame_info *frame;
3709
3710 if (!lang->la_name_of_this)
3711 error (_("no `this' in current language"));
3712
3713 frame = get_selected_frame (_("no frame selected"));
3714
3715 b = get_frame_block (frame, NULL);
3716
3717 sym = lookup_language_this (lang, b);
3718 if (sym == NULL)
3719 error (_("current stack frame does not contain a variable named `%s'"),
3720 lang->la_name_of_this);
3721
3722 return read_var_value (sym, frame);
3723 }
3724
3725 /* Return the value of the local variable, if one exists. Return NULL
3726 otherwise. Never throw error. */
3727
3728 struct value *
3729 value_of_this_silent (const struct language_defn *lang)
3730 {
3731 struct value *ret = NULL;
3732 volatile struct gdb_exception except;
3733
3734 TRY_CATCH (except, RETURN_MASK_ERROR)
3735 {
3736 ret = value_of_this (lang);
3737 }
3738
3739 return ret;
3740 }
3741
3742 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3743 elements long, starting at LOWBOUND. The result has the same lower
3744 bound as the original ARRAY. */
3745
3746 struct value *
3747 value_slice (struct value *array, int lowbound, int length)
3748 {
3749 struct type *slice_range_type, *slice_type, *range_type;
3750 LONGEST lowerbound, upperbound;
3751 struct value *slice;
3752 struct type *array_type;
3753
3754 array_type = check_typedef (value_type (array));
3755 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3756 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3757 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3758 error (_("cannot take slice of non-array"));
3759
3760 range_type = TYPE_INDEX_TYPE (array_type);
3761 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3762 error (_("slice from bad array or bitstring"));
3763
3764 if (lowbound < lowerbound || length < 0
3765 || lowbound + length - 1 > upperbound)
3766 error (_("slice out of range"));
3767
3768 /* FIXME-type-allocation: need a way to free this type when we are
3769 done with it. */
3770 slice_range_type = create_range_type ((struct type *) NULL,
3771 TYPE_TARGET_TYPE (range_type),
3772 lowbound,
3773 lowbound + length - 1);
3774 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3775 {
3776 int i;
3777
3778 slice_type = create_set_type ((struct type *) NULL,
3779 slice_range_type);
3780 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3781 slice = value_zero (slice_type, not_lval);
3782
3783 for (i = 0; i < length; i++)
3784 {
3785 int element = value_bit_index (array_type,
3786 value_contents (array),
3787 lowbound + i);
3788
3789 if (element < 0)
3790 error (_("internal error accessing bitstring"));
3791 else if (element > 0)
3792 {
3793 int j = i % TARGET_CHAR_BIT;
3794
3795 if (gdbarch_bits_big_endian (get_type_arch (array_type)))
3796 j = TARGET_CHAR_BIT - 1 - j;
3797 value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3798 }
3799 }
3800 /* We should set the address, bitssize, and bitspos, so the
3801 slice can be used on the LHS, but that may require extensions
3802 to value_assign. For now, just leave as a non_lval.
3803 FIXME. */
3804 }
3805 else
3806 {
3807 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3808 LONGEST offset =
3809 (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3810
3811 slice_type = create_array_type ((struct type *) NULL,
3812 element_type,
3813 slice_range_type);
3814 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3815
3816 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3817 slice = allocate_value_lazy (slice_type);
3818 else
3819 {
3820 slice = allocate_value (slice_type);
3821 value_contents_copy (slice, 0, array, offset,
3822 TYPE_LENGTH (slice_type));
3823 }
3824
3825 set_value_component_location (slice, array);
3826 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3827 set_value_offset (slice, value_offset (array) + offset);
3828 }
3829 return slice;
3830 }
3831
3832 /* Create a value for a FORTRAN complex number. Currently most of the
3833 time values are coerced to COMPLEX*16 (i.e. a complex number
3834 composed of 2 doubles. This really should be a smarter routine
3835 that figures out precision inteligently as opposed to assuming
3836 doubles. FIXME: fmb */
3837
3838 struct value *
3839 value_literal_complex (struct value *arg1,
3840 struct value *arg2,
3841 struct type *type)
3842 {
3843 struct value *val;
3844 struct type *real_type = TYPE_TARGET_TYPE (type);
3845
3846 val = allocate_value (type);
3847 arg1 = value_cast (real_type, arg1);
3848 arg2 = value_cast (real_type, arg2);
3849
3850 memcpy (value_contents_raw (val),
3851 value_contents (arg1), TYPE_LENGTH (real_type));
3852 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3853 value_contents (arg2), TYPE_LENGTH (real_type));
3854 return val;
3855 }
3856
3857 /* Cast a value into the appropriate complex data type. */
3858
3859 static struct value *
3860 cast_into_complex (struct type *type, struct value *val)
3861 {
3862 struct type *real_type = TYPE_TARGET_TYPE (type);
3863
3864 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3865 {
3866 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3867 struct value *re_val = allocate_value (val_real_type);
3868 struct value *im_val = allocate_value (val_real_type);
3869
3870 memcpy (value_contents_raw (re_val),
3871 value_contents (val), TYPE_LENGTH (val_real_type));
3872 memcpy (value_contents_raw (im_val),
3873 value_contents (val) + TYPE_LENGTH (val_real_type),
3874 TYPE_LENGTH (val_real_type));
3875
3876 return value_literal_complex (re_val, im_val, type);
3877 }
3878 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3879 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3880 return value_literal_complex (val,
3881 value_zero (real_type, not_lval),
3882 type);
3883 else
3884 error (_("cannot cast non-number to complex"));
3885 }
3886
3887 void
3888 _initialize_valops (void)
3889 {
3890 add_setshow_boolean_cmd ("overload-resolution", class_support,
3891 &overload_resolution, _("\
3892 Set overload resolution in evaluating C++ functions."), _("\
3893 Show overload resolution in evaluating C++ functions."),
3894 NULL, NULL,
3895 show_overload_resolution,
3896 &setlist, &showlist);
3897 overload_resolution = 1;
3898 }