gdb/
[binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "demangle.h"
29 #include "language.h"
30 #include "gdbcmd.h"
31 #include "regcache.h"
32 #include "cp-abi.h"
33 #include "block.h"
34 #include "infcall.h"
35 #include "dictionary.h"
36 #include "cp-support.h"
37 #include "dfp.h"
38 #include "user-regs.h"
39 #include "tracepoint.h"
40 #include <errno.h>
41 #include "gdb_string.h"
42 #include "gdb_assert.h"
43 #include "cp-support.h"
44 #include "observer.h"
45 #include "objfiles.h"
46 #include "symtab.h"
47 #include "exceptions.h"
48
49 extern unsigned int overload_debug;
50 /* Local functions. */
51
52 static int typecmp (int staticp, int varargs, int nargs,
53 struct field t1[], struct value *t2[]);
54
55 static struct value *search_struct_field (const char *, struct value *,
56 int, struct type *, int);
57
58 static struct value *search_struct_method (const char *, struct value **,
59 struct value **,
60 int, int *, struct type *);
61
62 static int find_oload_champ_namespace (struct value **, int,
63 const char *, const char *,
64 struct symbol ***,
65 struct badness_vector **,
66 const int no_adl);
67
68 static
69 int find_oload_champ_namespace_loop (struct value **, int,
70 const char *, const char *,
71 int, struct symbol ***,
72 struct badness_vector **, int *,
73 const int no_adl);
74
75 static int find_oload_champ (struct value **, int, int, int,
76 struct fn_field *, struct symbol **,
77 struct badness_vector **);
78
79 static int oload_method_static (int, struct fn_field *, int);
80
81 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
82
83 static enum
84 oload_classification classify_oload_match (struct badness_vector *,
85 int, int);
86
87 static struct value *value_struct_elt_for_reference (struct type *,
88 int, struct type *,
89 char *,
90 struct type *,
91 int, enum noside);
92
93 static struct value *value_namespace_elt (const struct type *,
94 char *, int , enum noside);
95
96 static struct value *value_maybe_namespace_elt (const struct type *,
97 char *, int,
98 enum noside);
99
100 static CORE_ADDR allocate_space_in_inferior (int);
101
102 static struct value *cast_into_complex (struct type *, struct value *);
103
104 static struct fn_field *find_method_list (struct value **, const char *,
105 int, struct type *, int *,
106 struct type **, int *);
107
108 void _initialize_valops (void);
109
110 #if 0
111 /* Flag for whether we want to abandon failed expression evals by
112 default. */
113
114 static int auto_abandon = 0;
115 #endif
116
117 int overload_resolution = 0;
118 static void
119 show_overload_resolution (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c,
121 const char *value)
122 {
123 fprintf_filtered (file, _("Overload resolution in evaluating "
124 "C++ functions is %s.\n"),
125 value);
126 }
127
128 /* Find the address of function name NAME in the inferior. If OBJF_P
129 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
130 is defined. */
131
132 struct value *
133 find_function_in_inferior (const char *name, struct objfile **objf_p)
134 {
135 struct symbol *sym;
136
137 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
138 if (sym != NULL)
139 {
140 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
141 {
142 error (_("\"%s\" exists in this program but is not a function."),
143 name);
144 }
145
146 if (objf_p)
147 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
148
149 return value_of_variable (sym, NULL);
150 }
151 else
152 {
153 struct minimal_symbol *msymbol =
154 lookup_minimal_symbol (name, NULL, NULL);
155
156 if (msymbol != NULL)
157 {
158 struct objfile *objfile = msymbol_objfile (msymbol);
159 struct gdbarch *gdbarch = get_objfile_arch (objfile);
160
161 struct type *type;
162 CORE_ADDR maddr;
163 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
164 type = lookup_function_type (type);
165 type = lookup_pointer_type (type);
166 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
167
168 if (objf_p)
169 *objf_p = objfile;
170
171 return value_from_pointer (type, maddr);
172 }
173 else
174 {
175 if (!target_has_execution)
176 error (_("evaluation of this expression "
177 "requires the target program to be active"));
178 else
179 error (_("evaluation of this expression requires the "
180 "program to have a function \"%s\"."),
181 name);
182 }
183 }
184 }
185
186 /* Allocate NBYTES of space in the inferior using the inferior's
187 malloc and return a value that is a pointer to the allocated
188 space. */
189
190 struct value *
191 value_allocate_space_in_inferior (int len)
192 {
193 struct objfile *objf;
194 struct value *val = find_function_in_inferior ("malloc", &objf);
195 struct gdbarch *gdbarch = get_objfile_arch (objf);
196 struct value *blocklen;
197
198 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
199 val = call_function_by_hand (val, 1, &blocklen);
200 if (value_logical_not (val))
201 {
202 if (!target_has_execution)
203 error (_("No memory available to program now: "
204 "you need to start the target first"));
205 else
206 error (_("No memory available to program: call to malloc failed"));
207 }
208 return val;
209 }
210
211 static CORE_ADDR
212 allocate_space_in_inferior (int len)
213 {
214 return value_as_long (value_allocate_space_in_inferior (len));
215 }
216
217 /* Cast struct value VAL to type TYPE and return as a value.
218 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
219 for this to work. Typedef to one of the codes is permitted.
220 Returns NULL if the cast is neither an upcast nor a downcast. */
221
222 static struct value *
223 value_cast_structs (struct type *type, struct value *v2)
224 {
225 struct type *t1;
226 struct type *t2;
227 struct value *v;
228
229 gdb_assert (type != NULL && v2 != NULL);
230
231 t1 = check_typedef (type);
232 t2 = check_typedef (value_type (v2));
233
234 /* Check preconditions. */
235 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
236 || TYPE_CODE (t1) == TYPE_CODE_UNION)
237 && !!"Precondition is that type is of STRUCT or UNION kind.");
238 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
239 || TYPE_CODE (t2) == TYPE_CODE_UNION)
240 && !!"Precondition is that value is of STRUCT or UNION kind");
241
242 if (TYPE_NAME (t1) != NULL
243 && TYPE_NAME (t2) != NULL
244 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
245 return NULL;
246
247 /* Upcasting: look in the type of the source to see if it contains the
248 type of the target as a superclass. If so, we'll need to
249 offset the pointer rather than just change its type. */
250 if (TYPE_NAME (t1) != NULL)
251 {
252 v = search_struct_field (type_name_no_tag (t1),
253 v2, 0, t2, 1);
254 if (v)
255 return v;
256 }
257
258 /* Downcasting: look in the type of the target to see if it contains the
259 type of the source as a superclass. If so, we'll need to
260 offset the pointer rather than just change its type. */
261 if (TYPE_NAME (t2) != NULL)
262 {
263 /* Try downcasting using the run-time type of the value. */
264 int full, top, using_enc;
265 struct type *real_type;
266
267 real_type = value_rtti_type (v2, &full, &top, &using_enc);
268 if (real_type)
269 {
270 v = value_full_object (v2, real_type, full, top, using_enc);
271 v = value_at_lazy (real_type, value_address (v));
272
273 /* We might be trying to cast to the outermost enclosing
274 type, in which case search_struct_field won't work. */
275 if (TYPE_NAME (real_type) != NULL
276 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
277 return v;
278
279 v = search_struct_field (type_name_no_tag (t2), v, 0, real_type, 1);
280 if (v)
281 return v;
282 }
283
284 /* Try downcasting using information from the destination type
285 T2. This wouldn't work properly for classes with virtual
286 bases, but those were handled above. */
287 v = search_struct_field (type_name_no_tag (t2),
288 value_zero (t1, not_lval), 0, t1, 1);
289 if (v)
290 {
291 /* Downcasting is possible (t1 is superclass of v2). */
292 CORE_ADDR addr2 = value_address (v2);
293
294 addr2 -= value_address (v) + value_embedded_offset (v);
295 return value_at (type, addr2);
296 }
297 }
298
299 return NULL;
300 }
301
302 /* Cast one pointer or reference type to another. Both TYPE and
303 the type of ARG2 should be pointer types, or else both should be
304 reference types. If SUBCLASS_CHECK is non-zero, this will force a
305 check to see whether TYPE is a superclass of ARG2's type. If
306 SUBCLASS_CHECK is zero, then the subclass check is done only when
307 ARG2 is itself non-zero. Returns the new pointer or reference. */
308
309 struct value *
310 value_cast_pointers (struct type *type, struct value *arg2,
311 int subclass_check)
312 {
313 struct type *type1 = check_typedef (type);
314 struct type *type2 = check_typedef (value_type (arg2));
315 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
316 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
317
318 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
319 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
320 && (subclass_check || !value_logical_not (arg2)))
321 {
322 struct value *v2;
323
324 if (TYPE_CODE (type2) == TYPE_CODE_REF)
325 v2 = coerce_ref (arg2);
326 else
327 v2 = value_ind (arg2);
328 gdb_assert (TYPE_CODE (check_typedef (value_type (v2)))
329 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
330 v2 = value_cast_structs (t1, v2);
331 /* At this point we have what we can have, un-dereference if needed. */
332 if (v2)
333 {
334 struct value *v = value_addr (v2);
335
336 deprecated_set_value_type (v, type);
337 return v;
338 }
339 }
340
341 /* No superclass found, just change the pointer type. */
342 arg2 = value_copy (arg2);
343 deprecated_set_value_type (arg2, type);
344 set_value_enclosing_type (arg2, type);
345 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
346 return arg2;
347 }
348
349 /* Cast value ARG2 to type TYPE and return as a value.
350 More general than a C cast: accepts any two types of the same length,
351 and if ARG2 is an lvalue it can be cast into anything at all. */
352 /* In C++, casts may change pointer or object representations. */
353
354 struct value *
355 value_cast (struct type *type, struct value *arg2)
356 {
357 enum type_code code1;
358 enum type_code code2;
359 int scalar;
360 struct type *type2;
361
362 int convert_to_boolean = 0;
363
364 if (value_type (arg2) == type)
365 return arg2;
366
367 code1 = TYPE_CODE (check_typedef (type));
368
369 /* Check if we are casting struct reference to struct reference. */
370 if (code1 == TYPE_CODE_REF)
371 {
372 /* We dereference type; then we recurse and finally
373 we generate value of the given reference. Nothing wrong with
374 that. */
375 struct type *t1 = check_typedef (type);
376 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
377 struct value *val = value_cast (dereftype, arg2);
378
379 return value_ref (val);
380 }
381
382 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
383
384 if (code2 == TYPE_CODE_REF)
385 /* We deref the value and then do the cast. */
386 return value_cast (type, coerce_ref (arg2));
387
388 CHECK_TYPEDEF (type);
389 code1 = TYPE_CODE (type);
390 arg2 = coerce_ref (arg2);
391 type2 = check_typedef (value_type (arg2));
392
393 /* You can't cast to a reference type. See value_cast_pointers
394 instead. */
395 gdb_assert (code1 != TYPE_CODE_REF);
396
397 /* A cast to an undetermined-length array_type, such as
398 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
399 where N is sizeof(OBJECT)/sizeof(TYPE). */
400 if (code1 == TYPE_CODE_ARRAY)
401 {
402 struct type *element_type = TYPE_TARGET_TYPE (type);
403 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
404
405 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
406 {
407 struct type *range_type = TYPE_INDEX_TYPE (type);
408 int val_length = TYPE_LENGTH (type2);
409 LONGEST low_bound, high_bound, new_length;
410
411 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
412 low_bound = 0, high_bound = 0;
413 new_length = val_length / element_length;
414 if (val_length % element_length != 0)
415 warning (_("array element type size does not "
416 "divide object size in cast"));
417 /* FIXME-type-allocation: need a way to free this type when
418 we are done with it. */
419 range_type = create_range_type ((struct type *) NULL,
420 TYPE_TARGET_TYPE (range_type),
421 low_bound,
422 new_length + low_bound - 1);
423 deprecated_set_value_type (arg2,
424 create_array_type ((struct type *) NULL,
425 element_type,
426 range_type));
427 return arg2;
428 }
429 }
430
431 if (current_language->c_style_arrays
432 && TYPE_CODE (type2) == TYPE_CODE_ARRAY
433 && !TYPE_VECTOR (type2))
434 arg2 = value_coerce_array (arg2);
435
436 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
437 arg2 = value_coerce_function (arg2);
438
439 type2 = check_typedef (value_type (arg2));
440 code2 = TYPE_CODE (type2);
441
442 if (code1 == TYPE_CODE_COMPLEX)
443 return cast_into_complex (type, arg2);
444 if (code1 == TYPE_CODE_BOOL)
445 {
446 code1 = TYPE_CODE_INT;
447 convert_to_boolean = 1;
448 }
449 if (code1 == TYPE_CODE_CHAR)
450 code1 = TYPE_CODE_INT;
451 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
452 code2 = TYPE_CODE_INT;
453
454 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
455 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
456 || code2 == TYPE_CODE_RANGE);
457
458 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
459 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
460 && TYPE_NAME (type) != 0)
461 {
462 struct value *v = value_cast_structs (type, arg2);
463
464 if (v)
465 return v;
466 }
467
468 if (code1 == TYPE_CODE_FLT && scalar)
469 return value_from_double (type, value_as_double (arg2));
470 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
471 {
472 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
473 int dec_len = TYPE_LENGTH (type);
474 gdb_byte dec[16];
475
476 if (code2 == TYPE_CODE_FLT)
477 decimal_from_floating (arg2, dec, dec_len, byte_order);
478 else if (code2 == TYPE_CODE_DECFLOAT)
479 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
480 byte_order, dec, dec_len, byte_order);
481 else
482 /* The only option left is an integral type. */
483 decimal_from_integral (arg2, dec, dec_len, byte_order);
484
485 return value_from_decfloat (type, dec);
486 }
487 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
488 || code1 == TYPE_CODE_RANGE)
489 && (scalar || code2 == TYPE_CODE_PTR
490 || code2 == TYPE_CODE_MEMBERPTR))
491 {
492 LONGEST longest;
493
494 /* When we cast pointers to integers, we mustn't use
495 gdbarch_pointer_to_address to find the address the pointer
496 represents, as value_as_long would. GDB should evaluate
497 expressions just as the compiler would --- and the compiler
498 sees a cast as a simple reinterpretation of the pointer's
499 bits. */
500 if (code2 == TYPE_CODE_PTR)
501 longest = extract_unsigned_integer
502 (value_contents (arg2), TYPE_LENGTH (type2),
503 gdbarch_byte_order (get_type_arch (type2)));
504 else
505 longest = value_as_long (arg2);
506 return value_from_longest (type, convert_to_boolean ?
507 (LONGEST) (longest ? 1 : 0) : longest);
508 }
509 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
510 || code2 == TYPE_CODE_ENUM
511 || code2 == TYPE_CODE_RANGE))
512 {
513 /* TYPE_LENGTH (type) is the length of a pointer, but we really
514 want the length of an address! -- we are really dealing with
515 addresses (i.e., gdb representations) not pointers (i.e.,
516 target representations) here.
517
518 This allows things like "print *(int *)0x01000234" to work
519 without printing a misleading message -- which would
520 otherwise occur when dealing with a target having two byte
521 pointers and four byte addresses. */
522
523 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
524 LONGEST longest = value_as_long (arg2);
525
526 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
527 {
528 if (longest >= ((LONGEST) 1 << addr_bit)
529 || longest <= -((LONGEST) 1 << addr_bit))
530 warning (_("value truncated"));
531 }
532 return value_from_longest (type, longest);
533 }
534 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
535 && value_as_long (arg2) == 0)
536 {
537 struct value *result = allocate_value (type);
538
539 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
540 return result;
541 }
542 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
543 && value_as_long (arg2) == 0)
544 {
545 /* The Itanium C++ ABI represents NULL pointers to members as
546 minus one, instead of biasing the normal case. */
547 return value_from_longest (type, -1);
548 }
549 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar)
550 {
551 /* Widen the scalar to a vector. */
552 struct type *eltype;
553 struct value *val;
554 LONGEST low_bound, high_bound;
555 int i;
556
557 if (!get_array_bounds (type, &low_bound, &high_bound))
558 error (_("Could not determine the vector bounds"));
559
560 eltype = check_typedef (TYPE_TARGET_TYPE (type));
561 arg2 = value_cast (eltype, arg2);
562 val = allocate_value (type);
563
564 for (i = 0; i < high_bound - low_bound + 1; i++)
565 {
566 /* Duplicate the contents of arg2 into the destination vector. */
567 memcpy (value_contents_writeable (val) + (i * TYPE_LENGTH (eltype)),
568 value_contents_all (arg2), TYPE_LENGTH (eltype));
569 }
570 return val;
571 }
572 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
573 {
574 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
575 return value_cast_pointers (type, arg2, 0);
576
577 arg2 = value_copy (arg2);
578 deprecated_set_value_type (arg2, type);
579 set_value_enclosing_type (arg2, type);
580 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
581 return arg2;
582 }
583 else if (VALUE_LVAL (arg2) == lval_memory)
584 return value_at_lazy (type, value_address (arg2));
585 else if (code1 == TYPE_CODE_VOID)
586 {
587 return value_zero (type, not_lval);
588 }
589 else
590 {
591 error (_("Invalid cast."));
592 return 0;
593 }
594 }
595
596 /* The C++ reinterpret_cast operator. */
597
598 struct value *
599 value_reinterpret_cast (struct type *type, struct value *arg)
600 {
601 struct value *result;
602 struct type *real_type = check_typedef (type);
603 struct type *arg_type, *dest_type;
604 int is_ref = 0;
605 enum type_code dest_code, arg_code;
606
607 /* Do reference, function, and array conversion. */
608 arg = coerce_array (arg);
609
610 /* Attempt to preserve the type the user asked for. */
611 dest_type = type;
612
613 /* If we are casting to a reference type, transform
614 reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */
615 if (TYPE_CODE (real_type) == TYPE_CODE_REF)
616 {
617 is_ref = 1;
618 arg = value_addr (arg);
619 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
620 real_type = lookup_pointer_type (real_type);
621 }
622
623 arg_type = value_type (arg);
624
625 dest_code = TYPE_CODE (real_type);
626 arg_code = TYPE_CODE (arg_type);
627
628 /* We can convert pointer types, or any pointer type to int, or int
629 type to pointer. */
630 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
631 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
632 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
633 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
634 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
635 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
636 || (dest_code == arg_code
637 && (dest_code == TYPE_CODE_PTR
638 || dest_code == TYPE_CODE_METHODPTR
639 || dest_code == TYPE_CODE_MEMBERPTR)))
640 result = value_cast (dest_type, arg);
641 else
642 error (_("Invalid reinterpret_cast"));
643
644 if (is_ref)
645 result = value_cast (type, value_ref (value_ind (result)));
646
647 return result;
648 }
649
650 /* A helper for value_dynamic_cast. This implements the first of two
651 runtime checks: we iterate over all the base classes of the value's
652 class which are equal to the desired class; if only one of these
653 holds the value, then it is the answer. */
654
655 static int
656 dynamic_cast_check_1 (struct type *desired_type,
657 const gdb_byte *valaddr,
658 int embedded_offset,
659 CORE_ADDR address,
660 struct value *val,
661 struct type *search_type,
662 CORE_ADDR arg_addr,
663 struct type *arg_type,
664 struct value **result)
665 {
666 int i, result_count = 0;
667
668 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
669 {
670 int offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
671 address, val);
672
673 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
674 {
675 if (address + embedded_offset + offset >= arg_addr
676 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
677 {
678 ++result_count;
679 if (!*result)
680 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
681 address + embedded_offset + offset);
682 }
683 }
684 else
685 result_count += dynamic_cast_check_1 (desired_type,
686 valaddr,
687 embedded_offset + offset,
688 address, val,
689 TYPE_BASECLASS (search_type, i),
690 arg_addr,
691 arg_type,
692 result);
693 }
694
695 return result_count;
696 }
697
698 /* A helper for value_dynamic_cast. This implements the second of two
699 runtime checks: we look for a unique public sibling class of the
700 argument's declared class. */
701
702 static int
703 dynamic_cast_check_2 (struct type *desired_type,
704 const gdb_byte *valaddr,
705 int embedded_offset,
706 CORE_ADDR address,
707 struct value *val,
708 struct type *search_type,
709 struct value **result)
710 {
711 int i, result_count = 0;
712
713 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
714 {
715 int offset;
716
717 if (! BASETYPE_VIA_PUBLIC (search_type, i))
718 continue;
719
720 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
721 address, val);
722 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
723 {
724 ++result_count;
725 if (*result == NULL)
726 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
727 address + embedded_offset + offset);
728 }
729 else
730 result_count += dynamic_cast_check_2 (desired_type,
731 valaddr,
732 embedded_offset + offset,
733 address, val,
734 TYPE_BASECLASS (search_type, i),
735 result);
736 }
737
738 return result_count;
739 }
740
741 /* The C++ dynamic_cast operator. */
742
743 struct value *
744 value_dynamic_cast (struct type *type, struct value *arg)
745 {
746 int full, top, using_enc;
747 struct type *resolved_type = check_typedef (type);
748 struct type *arg_type = check_typedef (value_type (arg));
749 struct type *class_type, *rtti_type;
750 struct value *result, *tem, *original_arg = arg;
751 CORE_ADDR addr;
752 int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF;
753
754 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
755 && TYPE_CODE (resolved_type) != TYPE_CODE_REF)
756 error (_("Argument to dynamic_cast must be a pointer or reference type"));
757 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
758 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_CLASS)
759 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
760
761 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
762 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
763 {
764 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
765 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
766 && value_as_long (arg) == 0))
767 error (_("Argument to dynamic_cast does not have pointer type"));
768 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
769 {
770 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
771 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
772 error (_("Argument to dynamic_cast does "
773 "not have pointer to class type"));
774 }
775
776 /* Handle NULL pointers. */
777 if (value_as_long (arg) == 0)
778 return value_zero (type, not_lval);
779
780 arg = value_ind (arg);
781 }
782 else
783 {
784 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
785 error (_("Argument to dynamic_cast does not have class type"));
786 }
787
788 /* If the classes are the same, just return the argument. */
789 if (class_types_same_p (class_type, arg_type))
790 return value_cast (type, arg);
791
792 /* If the target type is a unique base class of the argument's
793 declared type, just cast it. */
794 if (is_ancestor (class_type, arg_type))
795 {
796 if (is_unique_ancestor (class_type, arg))
797 return value_cast (type, original_arg);
798 error (_("Ambiguous dynamic_cast"));
799 }
800
801 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
802 if (! rtti_type)
803 error (_("Couldn't determine value's most derived type for dynamic_cast"));
804
805 /* Compute the most derived object's address. */
806 addr = value_address (arg);
807 if (full)
808 {
809 /* Done. */
810 }
811 else if (using_enc)
812 addr += top;
813 else
814 addr += top + value_embedded_offset (arg);
815
816 /* dynamic_cast<void *> means to return a pointer to the
817 most-derived object. */
818 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
819 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
820 return value_at_lazy (type, addr);
821
822 tem = value_at (type, addr);
823
824 /* The first dynamic check specified in 5.2.7. */
825 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
826 {
827 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
828 return tem;
829 result = NULL;
830 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
831 value_contents_for_printing (tem),
832 value_embedded_offset (tem),
833 value_address (tem), tem,
834 rtti_type, addr,
835 arg_type,
836 &result) == 1)
837 return value_cast (type,
838 is_ref ? value_ref (result) : value_addr (result));
839 }
840
841 /* The second dynamic check specified in 5.2.7. */
842 result = NULL;
843 if (is_public_ancestor (arg_type, rtti_type)
844 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
845 value_contents_for_printing (tem),
846 value_embedded_offset (tem),
847 value_address (tem), tem,
848 rtti_type, &result) == 1)
849 return value_cast (type,
850 is_ref ? value_ref (result) : value_addr (result));
851
852 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
853 return value_zero (type, not_lval);
854
855 error (_("dynamic_cast failed"));
856 }
857
858 /* Create a value of type TYPE that is zero, and return it. */
859
860 struct value *
861 value_zero (struct type *type, enum lval_type lv)
862 {
863 struct value *val = allocate_value (type);
864
865 VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv);
866 return val;
867 }
868
869 /* Create a not_lval value of numeric type TYPE that is one, and return it. */
870
871 struct value *
872 value_one (struct type *type)
873 {
874 struct type *type1 = check_typedef (type);
875 struct value *val;
876
877 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
878 {
879 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
880 gdb_byte v[16];
881
882 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
883 val = value_from_decfloat (type, v);
884 }
885 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
886 {
887 val = value_from_double (type, (DOUBLEST) 1);
888 }
889 else if (is_integral_type (type1))
890 {
891 val = value_from_longest (type, (LONGEST) 1);
892 }
893 else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
894 {
895 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
896 int i;
897 LONGEST low_bound, high_bound;
898 struct value *tmp;
899
900 if (!get_array_bounds (type1, &low_bound, &high_bound))
901 error (_("Could not determine the vector bounds"));
902
903 val = allocate_value (type);
904 for (i = 0; i < high_bound - low_bound + 1; i++)
905 {
906 tmp = value_one (eltype);
907 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
908 value_contents_all (tmp), TYPE_LENGTH (eltype));
909 }
910 }
911 else
912 {
913 error (_("Not a numeric type."));
914 }
915
916 /* value_one result is never used for assignments to. */
917 gdb_assert (VALUE_LVAL (val) == not_lval);
918
919 return val;
920 }
921
922 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack. */
923
924 static struct value *
925 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
926 {
927 struct value *val;
928
929 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
930 error (_("Attempt to dereference a generic pointer."));
931
932 val = value_from_contents_and_address (type, NULL, addr);
933
934 if (!lazy)
935 value_fetch_lazy (val);
936
937 return val;
938 }
939
940 /* Return a value with type TYPE located at ADDR.
941
942 Call value_at only if the data needs to be fetched immediately;
943 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
944 value_at_lazy instead. value_at_lazy simply records the address of
945 the data and sets the lazy-evaluation-required flag. The lazy flag
946 is tested in the value_contents macro, which is used if and when
947 the contents are actually required.
948
949 Note: value_at does *NOT* handle embedded offsets; perform such
950 adjustments before or after calling it. */
951
952 struct value *
953 value_at (struct type *type, CORE_ADDR addr)
954 {
955 return get_value_at (type, addr, 0);
956 }
957
958 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
959
960 struct value *
961 value_at_lazy (struct type *type, CORE_ADDR addr)
962 {
963 return get_value_at (type, addr, 1);
964 }
965
966 /* Called only from the value_contents and value_contents_all()
967 macros, if the current data for a variable needs to be loaded into
968 value_contents(VAL). Fetches the data from the user's process, and
969 clears the lazy flag to indicate that the data in the buffer is
970 valid.
971
972 If the value is zero-length, we avoid calling read_memory, which
973 would abort. We mark the value as fetched anyway -- all 0 bytes of
974 it.
975
976 This function returns a value because it is used in the
977 value_contents macro as part of an expression, where a void would
978 not work. The value is ignored. */
979
980 int
981 value_fetch_lazy (struct value *val)
982 {
983 gdb_assert (value_lazy (val));
984 allocate_value_contents (val);
985 if (value_bitsize (val))
986 {
987 /* To read a lazy bitfield, read the entire enclosing value. This
988 prevents reading the same block of (possibly volatile) memory once
989 per bitfield. It would be even better to read only the containing
990 word, but we have no way to record that just specific bits of a
991 value have been fetched. */
992 struct type *type = check_typedef (value_type (val));
993 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
994 struct value *parent = value_parent (val);
995 LONGEST offset = value_offset (val);
996 LONGEST num;
997 int length = TYPE_LENGTH (type);
998
999 if (!value_bits_valid (val,
1000 TARGET_CHAR_BIT * offset + value_bitpos (val),
1001 value_bitsize (val)))
1002 error (_("value has been optimized out"));
1003
1004 if (!unpack_value_bits_as_long (value_type (val),
1005 value_contents_for_printing (parent),
1006 offset,
1007 value_bitpos (val),
1008 value_bitsize (val), parent, &num))
1009 mark_value_bytes_unavailable (val,
1010 value_embedded_offset (val),
1011 length);
1012 else
1013 store_signed_integer (value_contents_raw (val), length,
1014 byte_order, num);
1015 }
1016 else if (VALUE_LVAL (val) == lval_memory)
1017 {
1018 CORE_ADDR addr = value_address (val);
1019 int length = TYPE_LENGTH (check_typedef (value_enclosing_type (val)));
1020
1021 if (length)
1022 read_value_memory (val, 0, value_stack (val),
1023 addr, value_contents_all_raw (val), length);
1024 }
1025 else if (VALUE_LVAL (val) == lval_register)
1026 {
1027 struct frame_info *frame;
1028 int regnum;
1029 struct type *type = check_typedef (value_type (val));
1030 struct value *new_val = val, *mark = value_mark ();
1031
1032 /* Offsets are not supported here; lazy register values must
1033 refer to the entire register. */
1034 gdb_assert (value_offset (val) == 0);
1035
1036 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
1037 {
1038 frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
1039 regnum = VALUE_REGNUM (new_val);
1040
1041 gdb_assert (frame != NULL);
1042
1043 /* Convertible register routines are used for multi-register
1044 values and for interpretation in different types
1045 (e.g. float or int from a double register). Lazy
1046 register values should have the register's natural type,
1047 so they do not apply. */
1048 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
1049 regnum, type));
1050
1051 new_val = get_frame_register_value (frame, regnum);
1052 }
1053
1054 /* If it's still lazy (for instance, a saved register on the
1055 stack), fetch it. */
1056 if (value_lazy (new_val))
1057 value_fetch_lazy (new_val);
1058
1059 /* If the register was not saved, mark it optimized out. */
1060 if (value_optimized_out (new_val))
1061 set_value_optimized_out (val, 1);
1062 else
1063 {
1064 set_value_lazy (val, 0);
1065 value_contents_copy (val, value_embedded_offset (val),
1066 new_val, value_embedded_offset (new_val),
1067 TYPE_LENGTH (type));
1068 }
1069
1070 if (frame_debug)
1071 {
1072 struct gdbarch *gdbarch;
1073 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1074 regnum = VALUE_REGNUM (val);
1075 gdbarch = get_frame_arch (frame);
1076
1077 fprintf_unfiltered (gdb_stdlog,
1078 "{ value_fetch_lazy "
1079 "(frame=%d,regnum=%d(%s),...) ",
1080 frame_relative_level (frame), regnum,
1081 user_reg_map_regnum_to_name (gdbarch, regnum));
1082
1083 fprintf_unfiltered (gdb_stdlog, "->");
1084 if (value_optimized_out (new_val))
1085 fprintf_unfiltered (gdb_stdlog, " optimized out");
1086 else
1087 {
1088 int i;
1089 const gdb_byte *buf = value_contents (new_val);
1090
1091 if (VALUE_LVAL (new_val) == lval_register)
1092 fprintf_unfiltered (gdb_stdlog, " register=%d",
1093 VALUE_REGNUM (new_val));
1094 else if (VALUE_LVAL (new_val) == lval_memory)
1095 fprintf_unfiltered (gdb_stdlog, " address=%s",
1096 paddress (gdbarch,
1097 value_address (new_val)));
1098 else
1099 fprintf_unfiltered (gdb_stdlog, " computed");
1100
1101 fprintf_unfiltered (gdb_stdlog, " bytes=");
1102 fprintf_unfiltered (gdb_stdlog, "[");
1103 for (i = 0; i < register_size (gdbarch, regnum); i++)
1104 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1105 fprintf_unfiltered (gdb_stdlog, "]");
1106 }
1107
1108 fprintf_unfiltered (gdb_stdlog, " }\n");
1109 }
1110
1111 /* Dispose of the intermediate values. This prevents
1112 watchpoints from trying to watch the saved frame pointer. */
1113 value_free_to_mark (mark);
1114 }
1115 else if (VALUE_LVAL (val) == lval_computed
1116 && value_computed_funcs (val)->read != NULL)
1117 value_computed_funcs (val)->read (val);
1118 else if (value_optimized_out (val))
1119 /* Keep it optimized out. */;
1120 else
1121 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
1122
1123 set_value_lazy (val, 0);
1124 return 0;
1125 }
1126
1127 void
1128 read_value_memory (struct value *val, int embedded_offset,
1129 int stack, CORE_ADDR memaddr,
1130 gdb_byte *buffer, size_t length)
1131 {
1132 if (length)
1133 {
1134 VEC(mem_range_s) *available_memory;
1135
1136 if (get_traceframe_number () < 0
1137 || !traceframe_available_memory (&available_memory, memaddr, length))
1138 {
1139 if (stack)
1140 read_stack (memaddr, buffer, length);
1141 else
1142 read_memory (memaddr, buffer, length);
1143 }
1144 else
1145 {
1146 struct target_section_table *table;
1147 struct cleanup *old_chain;
1148 CORE_ADDR unavail;
1149 mem_range_s *r;
1150 int i;
1151
1152 /* Fallback to reading from read-only sections. */
1153 table = target_get_section_table (&exec_ops);
1154 available_memory =
1155 section_table_available_memory (available_memory,
1156 memaddr, length,
1157 table->sections,
1158 table->sections_end);
1159
1160 old_chain = make_cleanup (VEC_cleanup(mem_range_s),
1161 &available_memory);
1162
1163 normalize_mem_ranges (available_memory);
1164
1165 /* Mark which bytes are unavailable, and read those which
1166 are available. */
1167
1168 unavail = memaddr;
1169
1170 for (i = 0;
1171 VEC_iterate (mem_range_s, available_memory, i, r);
1172 i++)
1173 {
1174 if (mem_ranges_overlap (r->start, r->length,
1175 memaddr, length))
1176 {
1177 CORE_ADDR lo1, hi1, lo2, hi2;
1178 CORE_ADDR start, end;
1179
1180 /* Get the intersection window. */
1181 lo1 = memaddr;
1182 hi1 = memaddr + length;
1183 lo2 = r->start;
1184 hi2 = r->start + r->length;
1185 start = max (lo1, lo2);
1186 end = min (hi1, hi2);
1187
1188 gdb_assert (end - memaddr <= length);
1189
1190 if (start > unavail)
1191 mark_value_bytes_unavailable (val,
1192 (embedded_offset
1193 + unavail - memaddr),
1194 start - unavail);
1195 unavail = end;
1196
1197 read_memory (start, buffer + start - memaddr, end - start);
1198 }
1199 }
1200
1201 if (unavail != memaddr + length)
1202 mark_value_bytes_unavailable (val,
1203 embedded_offset + unavail - memaddr,
1204 (memaddr + length) - unavail);
1205
1206 do_cleanups (old_chain);
1207 }
1208 }
1209 }
1210
1211 /* Store the contents of FROMVAL into the location of TOVAL.
1212 Return a new value with the location of TOVAL and contents of FROMVAL. */
1213
1214 struct value *
1215 value_assign (struct value *toval, struct value *fromval)
1216 {
1217 struct type *type;
1218 struct value *val;
1219 struct frame_id old_frame;
1220
1221 if (!deprecated_value_modifiable (toval))
1222 error (_("Left operand of assignment is not a modifiable lvalue."));
1223
1224 toval = coerce_ref (toval);
1225
1226 type = value_type (toval);
1227 if (VALUE_LVAL (toval) != lval_internalvar)
1228 fromval = value_cast (type, fromval);
1229 else
1230 {
1231 /* Coerce arrays and functions to pointers, except for arrays
1232 which only live in GDB's storage. */
1233 if (!value_must_coerce_to_target (fromval))
1234 fromval = coerce_array (fromval);
1235 }
1236
1237 CHECK_TYPEDEF (type);
1238
1239 /* Since modifying a register can trash the frame chain, and
1240 modifying memory can trash the frame cache, we save the old frame
1241 and then restore the new frame afterwards. */
1242 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1243
1244 switch (VALUE_LVAL (toval))
1245 {
1246 case lval_internalvar:
1247 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1248 return value_of_internalvar (get_type_arch (type),
1249 VALUE_INTERNALVAR (toval));
1250
1251 case lval_internalvar_component:
1252 set_internalvar_component (VALUE_INTERNALVAR (toval),
1253 value_offset (toval),
1254 value_bitpos (toval),
1255 value_bitsize (toval),
1256 fromval);
1257 break;
1258
1259 case lval_memory:
1260 {
1261 const gdb_byte *dest_buffer;
1262 CORE_ADDR changed_addr;
1263 int changed_len;
1264 gdb_byte buffer[sizeof (LONGEST)];
1265
1266 if (value_bitsize (toval))
1267 {
1268 struct value *parent = value_parent (toval);
1269
1270 changed_addr = value_address (parent) + value_offset (toval);
1271 changed_len = (value_bitpos (toval)
1272 + value_bitsize (toval)
1273 + HOST_CHAR_BIT - 1)
1274 / HOST_CHAR_BIT;
1275
1276 /* If we can read-modify-write exactly the size of the
1277 containing type (e.g. short or int) then do so. This
1278 is safer for volatile bitfields mapped to hardware
1279 registers. */
1280 if (changed_len < TYPE_LENGTH (type)
1281 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1282 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1283 changed_len = TYPE_LENGTH (type);
1284
1285 if (changed_len > (int) sizeof (LONGEST))
1286 error (_("Can't handle bitfields which "
1287 "don't fit in a %d bit word."),
1288 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1289
1290 read_memory (changed_addr, buffer, changed_len);
1291 modify_field (type, buffer, value_as_long (fromval),
1292 value_bitpos (toval), value_bitsize (toval));
1293 dest_buffer = buffer;
1294 }
1295 else
1296 {
1297 changed_addr = value_address (toval);
1298 changed_len = TYPE_LENGTH (type);
1299 dest_buffer = value_contents (fromval);
1300 }
1301
1302 write_memory_with_notification (changed_addr, dest_buffer, changed_len);
1303 }
1304 break;
1305
1306 case lval_register:
1307 {
1308 struct frame_info *frame;
1309 struct gdbarch *gdbarch;
1310 int value_reg;
1311
1312 /* Figure out which frame this is in currently. */
1313 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1314 value_reg = VALUE_REGNUM (toval);
1315
1316 if (!frame)
1317 error (_("Value being assigned to is no longer active."));
1318
1319 gdbarch = get_frame_arch (frame);
1320 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
1321 {
1322 /* If TOVAL is a special machine register requiring
1323 conversion of program values to a special raw
1324 format. */
1325 gdbarch_value_to_register (gdbarch, frame,
1326 VALUE_REGNUM (toval), type,
1327 value_contents (fromval));
1328 }
1329 else
1330 {
1331 if (value_bitsize (toval))
1332 {
1333 struct value *parent = value_parent (toval);
1334 int offset = value_offset (parent) + value_offset (toval);
1335 int changed_len;
1336 gdb_byte buffer[sizeof (LONGEST)];
1337 int optim, unavail;
1338
1339 changed_len = (value_bitpos (toval)
1340 + value_bitsize (toval)
1341 + HOST_CHAR_BIT - 1)
1342 / HOST_CHAR_BIT;
1343
1344 if (changed_len > (int) sizeof (LONGEST))
1345 error (_("Can't handle bitfields which "
1346 "don't fit in a %d bit word."),
1347 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1348
1349 if (!get_frame_register_bytes (frame, value_reg, offset,
1350 changed_len, buffer,
1351 &optim, &unavail))
1352 {
1353 if (optim)
1354 error (_("value has been optimized out"));
1355 if (unavail)
1356 throw_error (NOT_AVAILABLE_ERROR,
1357 _("value is not available"));
1358 }
1359
1360 modify_field (type, buffer, value_as_long (fromval),
1361 value_bitpos (toval), value_bitsize (toval));
1362
1363 put_frame_register_bytes (frame, value_reg, offset,
1364 changed_len, buffer);
1365 }
1366 else
1367 {
1368 put_frame_register_bytes (frame, value_reg,
1369 value_offset (toval),
1370 TYPE_LENGTH (type),
1371 value_contents (fromval));
1372 }
1373 }
1374
1375 if (deprecated_register_changed_hook)
1376 deprecated_register_changed_hook (-1);
1377 observer_notify_target_changed (&current_target);
1378 break;
1379 }
1380
1381 case lval_computed:
1382 {
1383 const struct lval_funcs *funcs = value_computed_funcs (toval);
1384
1385 if (funcs->write != NULL)
1386 {
1387 funcs->write (toval, fromval);
1388 break;
1389 }
1390 }
1391 /* Fall through. */
1392
1393 default:
1394 error (_("Left operand of assignment is not an lvalue."));
1395 }
1396
1397 /* Assigning to the stack pointer, frame pointer, and other
1398 (architecture and calling convention specific) registers may
1399 cause the frame cache to be out of date. Assigning to memory
1400 also can. We just do this on all assignments to registers or
1401 memory, for simplicity's sake; I doubt the slowdown matters. */
1402 switch (VALUE_LVAL (toval))
1403 {
1404 case lval_memory:
1405 case lval_register:
1406 case lval_computed:
1407
1408 reinit_frame_cache ();
1409
1410 /* Having destroyed the frame cache, restore the selected
1411 frame. */
1412
1413 /* FIXME: cagney/2002-11-02: There has to be a better way of
1414 doing this. Instead of constantly saving/restoring the
1415 frame. Why not create a get_selected_frame() function that,
1416 having saved the selected frame's ID can automatically
1417 re-find the previously selected frame automatically. */
1418
1419 {
1420 struct frame_info *fi = frame_find_by_id (old_frame);
1421
1422 if (fi != NULL)
1423 select_frame (fi);
1424 }
1425
1426 break;
1427 default:
1428 break;
1429 }
1430
1431 /* If the field does not entirely fill a LONGEST, then zero the sign
1432 bits. If the field is signed, and is negative, then sign
1433 extend. */
1434 if ((value_bitsize (toval) > 0)
1435 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1436 {
1437 LONGEST fieldval = value_as_long (fromval);
1438 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1439
1440 fieldval &= valmask;
1441 if (!TYPE_UNSIGNED (type)
1442 && (fieldval & (valmask ^ (valmask >> 1))))
1443 fieldval |= ~valmask;
1444
1445 fromval = value_from_longest (type, fieldval);
1446 }
1447
1448 /* The return value is a copy of TOVAL so it shares its location
1449 information, but its contents are updated from FROMVAL. This
1450 implies the returned value is not lazy, even if TOVAL was. */
1451 val = value_copy (toval);
1452 set_value_lazy (val, 0);
1453 memcpy (value_contents_raw (val), value_contents (fromval),
1454 TYPE_LENGTH (type));
1455
1456 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1457 in the case of pointer types. For object types, the enclosing type
1458 and embedded offset must *not* be copied: the target object refered
1459 to by TOVAL retains its original dynamic type after assignment. */
1460 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1461 {
1462 set_value_enclosing_type (val, value_enclosing_type (fromval));
1463 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1464 }
1465
1466 return val;
1467 }
1468
1469 /* Extend a value VAL to COUNT repetitions of its type. */
1470
1471 struct value *
1472 value_repeat (struct value *arg1, int count)
1473 {
1474 struct value *val;
1475
1476 if (VALUE_LVAL (arg1) != lval_memory)
1477 error (_("Only values in memory can be extended with '@'."));
1478 if (count < 1)
1479 error (_("Invalid number %d of repetitions."), count);
1480
1481 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1482
1483 VALUE_LVAL (val) = lval_memory;
1484 set_value_address (val, value_address (arg1));
1485
1486 read_value_memory (val, 0, value_stack (val), value_address (val),
1487 value_contents_all_raw (val),
1488 TYPE_LENGTH (value_enclosing_type (val)));
1489
1490 return val;
1491 }
1492
1493 struct value *
1494 value_of_variable (struct symbol *var, const struct block *b)
1495 {
1496 struct frame_info *frame;
1497
1498 if (!symbol_read_needs_frame (var))
1499 frame = NULL;
1500 else if (!b)
1501 frame = get_selected_frame (_("No frame selected."));
1502 else
1503 {
1504 frame = block_innermost_frame (b);
1505 if (!frame)
1506 {
1507 if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
1508 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1509 error (_("No frame is currently executing in block %s."),
1510 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1511 else
1512 error (_("No frame is currently executing in specified block"));
1513 }
1514 }
1515
1516 return read_var_value (var, frame);
1517 }
1518
1519 struct value *
1520 address_of_variable (struct symbol *var, struct block *b)
1521 {
1522 struct type *type = SYMBOL_TYPE (var);
1523 struct value *val;
1524
1525 /* Evaluate it first; if the result is a memory address, we're fine.
1526 Lazy evaluation pays off here. */
1527
1528 val = value_of_variable (var, b);
1529
1530 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1531 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1532 {
1533 CORE_ADDR addr = value_address (val);
1534
1535 return value_from_pointer (lookup_pointer_type (type), addr);
1536 }
1537
1538 /* Not a memory address; check what the problem was. */
1539 switch (VALUE_LVAL (val))
1540 {
1541 case lval_register:
1542 {
1543 struct frame_info *frame;
1544 const char *regname;
1545
1546 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1547 gdb_assert (frame);
1548
1549 regname = gdbarch_register_name (get_frame_arch (frame),
1550 VALUE_REGNUM (val));
1551 gdb_assert (regname && *regname);
1552
1553 error (_("Address requested for identifier "
1554 "\"%s\" which is in register $%s"),
1555 SYMBOL_PRINT_NAME (var), regname);
1556 break;
1557 }
1558
1559 default:
1560 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1561 SYMBOL_PRINT_NAME (var));
1562 break;
1563 }
1564
1565 return val;
1566 }
1567
1568 /* Return one if VAL does not live in target memory, but should in order
1569 to operate on it. Otherwise return zero. */
1570
1571 int
1572 value_must_coerce_to_target (struct value *val)
1573 {
1574 struct type *valtype;
1575
1576 /* The only lval kinds which do not live in target memory. */
1577 if (VALUE_LVAL (val) != not_lval
1578 && VALUE_LVAL (val) != lval_internalvar)
1579 return 0;
1580
1581 valtype = check_typedef (value_type (val));
1582
1583 switch (TYPE_CODE (valtype))
1584 {
1585 case TYPE_CODE_ARRAY:
1586 return TYPE_VECTOR (valtype) ? 0 : 1;
1587 case TYPE_CODE_STRING:
1588 return 1;
1589 default:
1590 return 0;
1591 }
1592 }
1593
1594 /* Make sure that VAL lives in target memory if it's supposed to. For
1595 instance, strings are constructed as character arrays in GDB's
1596 storage, and this function copies them to the target. */
1597
1598 struct value *
1599 value_coerce_to_target (struct value *val)
1600 {
1601 LONGEST length;
1602 CORE_ADDR addr;
1603
1604 if (!value_must_coerce_to_target (val))
1605 return val;
1606
1607 length = TYPE_LENGTH (check_typedef (value_type (val)));
1608 addr = allocate_space_in_inferior (length);
1609 write_memory (addr, value_contents (val), length);
1610 return value_at_lazy (value_type (val), addr);
1611 }
1612
1613 /* Given a value which is an array, return a value which is a pointer
1614 to its first element, regardless of whether or not the array has a
1615 nonzero lower bound.
1616
1617 FIXME: A previous comment here indicated that this routine should
1618 be substracting the array's lower bound. It's not clear to me that
1619 this is correct. Given an array subscripting operation, it would
1620 certainly work to do the adjustment here, essentially computing:
1621
1622 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1623
1624 However I believe a more appropriate and logical place to account
1625 for the lower bound is to do so in value_subscript, essentially
1626 computing:
1627
1628 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1629
1630 As further evidence consider what would happen with operations
1631 other than array subscripting, where the caller would get back a
1632 value that had an address somewhere before the actual first element
1633 of the array, and the information about the lower bound would be
1634 lost because of the coercion to pointer type. */
1635
1636 struct value *
1637 value_coerce_array (struct value *arg1)
1638 {
1639 struct type *type = check_typedef (value_type (arg1));
1640
1641 /* If the user tries to do something requiring a pointer with an
1642 array that has not yet been pushed to the target, then this would
1643 be a good time to do so. */
1644 arg1 = value_coerce_to_target (arg1);
1645
1646 if (VALUE_LVAL (arg1) != lval_memory)
1647 error (_("Attempt to take address of value not located in memory."));
1648
1649 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1650 value_address (arg1));
1651 }
1652
1653 /* Given a value which is a function, return a value which is a pointer
1654 to it. */
1655
1656 struct value *
1657 value_coerce_function (struct value *arg1)
1658 {
1659 struct value *retval;
1660
1661 if (VALUE_LVAL (arg1) != lval_memory)
1662 error (_("Attempt to take address of value not located in memory."));
1663
1664 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1665 value_address (arg1));
1666 return retval;
1667 }
1668
1669 /* Return a pointer value for the object for which ARG1 is the
1670 contents. */
1671
1672 struct value *
1673 value_addr (struct value *arg1)
1674 {
1675 struct value *arg2;
1676 struct type *type = check_typedef (value_type (arg1));
1677
1678 if (TYPE_CODE (type) == TYPE_CODE_REF)
1679 {
1680 /* Copy the value, but change the type from (T&) to (T*). We
1681 keep the same location information, which is efficient, and
1682 allows &(&X) to get the location containing the reference. */
1683 arg2 = value_copy (arg1);
1684 deprecated_set_value_type (arg2,
1685 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1686 return arg2;
1687 }
1688 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1689 return value_coerce_function (arg1);
1690
1691 /* If this is an array that has not yet been pushed to the target,
1692 then this would be a good time to force it to memory. */
1693 arg1 = value_coerce_to_target (arg1);
1694
1695 if (VALUE_LVAL (arg1) != lval_memory)
1696 error (_("Attempt to take address of value not located in memory."));
1697
1698 /* Get target memory address. */
1699 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1700 (value_address (arg1)
1701 + value_embedded_offset (arg1)));
1702
1703 /* This may be a pointer to a base subobject; so remember the
1704 full derived object's type ... */
1705 set_value_enclosing_type (arg2,
1706 lookup_pointer_type (value_enclosing_type (arg1)));
1707 /* ... and also the relative position of the subobject in the full
1708 object. */
1709 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1710 return arg2;
1711 }
1712
1713 /* Return a reference value for the object for which ARG1 is the
1714 contents. */
1715
1716 struct value *
1717 value_ref (struct value *arg1)
1718 {
1719 struct value *arg2;
1720 struct type *type = check_typedef (value_type (arg1));
1721
1722 if (TYPE_CODE (type) == TYPE_CODE_REF)
1723 return arg1;
1724
1725 arg2 = value_addr (arg1);
1726 deprecated_set_value_type (arg2, lookup_reference_type (type));
1727 return arg2;
1728 }
1729
1730 /* Given a value of a pointer type, apply the C unary * operator to
1731 it. */
1732
1733 struct value *
1734 value_ind (struct value *arg1)
1735 {
1736 struct type *base_type;
1737 struct value *arg2;
1738
1739 arg1 = coerce_array (arg1);
1740
1741 base_type = check_typedef (value_type (arg1));
1742
1743 if (VALUE_LVAL (arg1) == lval_computed)
1744 {
1745 const struct lval_funcs *funcs = value_computed_funcs (arg1);
1746
1747 if (funcs->indirect)
1748 {
1749 struct value *result = funcs->indirect (arg1);
1750
1751 if (result)
1752 return result;
1753 }
1754 }
1755
1756 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1757 {
1758 struct type *enc_type;
1759
1760 /* We may be pointing to something embedded in a larger object.
1761 Get the real type of the enclosing object. */
1762 enc_type = check_typedef (value_enclosing_type (arg1));
1763 enc_type = TYPE_TARGET_TYPE (enc_type);
1764
1765 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1766 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1767 /* For functions, go through find_function_addr, which knows
1768 how to handle function descriptors. */
1769 arg2 = value_at_lazy (enc_type,
1770 find_function_addr (arg1, NULL));
1771 else
1772 /* Retrieve the enclosing object pointed to. */
1773 arg2 = value_at_lazy (enc_type,
1774 (value_as_address (arg1)
1775 - value_pointed_to_offset (arg1)));
1776
1777 return readjust_indirect_value_type (arg2, enc_type, base_type, arg1);
1778 }
1779
1780 error (_("Attempt to take contents of a non-pointer value."));
1781 return 0; /* For lint -- never reached. */
1782 }
1783 \f
1784 /* Create a value for an array by allocating space in GDB, copying the
1785 data into that space, and then setting up an array value.
1786
1787 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1788 is populated from the values passed in ELEMVEC.
1789
1790 The element type of the array is inherited from the type of the
1791 first element, and all elements must have the same size (though we
1792 don't currently enforce any restriction on their types). */
1793
1794 struct value *
1795 value_array (int lowbound, int highbound, struct value **elemvec)
1796 {
1797 int nelem;
1798 int idx;
1799 unsigned int typelength;
1800 struct value *val;
1801 struct type *arraytype;
1802
1803 /* Validate that the bounds are reasonable and that each of the
1804 elements have the same size. */
1805
1806 nelem = highbound - lowbound + 1;
1807 if (nelem <= 0)
1808 {
1809 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1810 }
1811 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1812 for (idx = 1; idx < nelem; idx++)
1813 {
1814 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1815 {
1816 error (_("array elements must all be the same size"));
1817 }
1818 }
1819
1820 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1821 lowbound, highbound);
1822
1823 if (!current_language->c_style_arrays)
1824 {
1825 val = allocate_value (arraytype);
1826 for (idx = 0; idx < nelem; idx++)
1827 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1828 typelength);
1829 return val;
1830 }
1831
1832 /* Allocate space to store the array, and then initialize it by
1833 copying in each element. */
1834
1835 val = allocate_value (arraytype);
1836 for (idx = 0; idx < nelem; idx++)
1837 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1838 return val;
1839 }
1840
1841 struct value *
1842 value_cstring (char *ptr, int len, struct type *char_type)
1843 {
1844 struct value *val;
1845 int lowbound = current_language->string_lower_bound;
1846 int highbound = len / TYPE_LENGTH (char_type);
1847 struct type *stringtype
1848 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1849
1850 val = allocate_value (stringtype);
1851 memcpy (value_contents_raw (val), ptr, len);
1852 return val;
1853 }
1854
1855 /* Create a value for a string constant by allocating space in the
1856 inferior, copying the data into that space, and returning the
1857 address with type TYPE_CODE_STRING. PTR points to the string
1858 constant data; LEN is number of characters.
1859
1860 Note that string types are like array of char types with a lower
1861 bound of zero and an upper bound of LEN - 1. Also note that the
1862 string may contain embedded null bytes. */
1863
1864 struct value *
1865 value_string (char *ptr, int len, struct type *char_type)
1866 {
1867 struct value *val;
1868 int lowbound = current_language->string_lower_bound;
1869 int highbound = len / TYPE_LENGTH (char_type);
1870 struct type *stringtype
1871 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1872
1873 val = allocate_value (stringtype);
1874 memcpy (value_contents_raw (val), ptr, len);
1875 return val;
1876 }
1877
1878 \f
1879 /* See if we can pass arguments in T2 to a function which takes
1880 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1881 a NULL-terminated vector. If some arguments need coercion of some
1882 sort, then the coerced values are written into T2. Return value is
1883 0 if the arguments could be matched, or the position at which they
1884 differ if not.
1885
1886 STATICP is nonzero if the T1 argument list came from a static
1887 member function. T2 will still include the ``this'' pointer, but
1888 it will be skipped.
1889
1890 For non-static member functions, we ignore the first argument,
1891 which is the type of the instance variable. This is because we
1892 want to handle calls with objects from derived classes. This is
1893 not entirely correct: we should actually check to make sure that a
1894 requested operation is type secure, shouldn't we? FIXME. */
1895
1896 static int
1897 typecmp (int staticp, int varargs, int nargs,
1898 struct field t1[], struct value *t2[])
1899 {
1900 int i;
1901
1902 if (t2 == 0)
1903 internal_error (__FILE__, __LINE__,
1904 _("typecmp: no argument list"));
1905
1906 /* Skip ``this'' argument if applicable. T2 will always include
1907 THIS. */
1908 if (staticp)
1909 t2 ++;
1910
1911 for (i = 0;
1912 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1913 i++)
1914 {
1915 struct type *tt1, *tt2;
1916
1917 if (!t2[i])
1918 return i + 1;
1919
1920 tt1 = check_typedef (t1[i].type);
1921 tt2 = check_typedef (value_type (t2[i]));
1922
1923 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1924 /* We should be doing hairy argument matching, as below. */
1925 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1)))
1926 == TYPE_CODE (tt2)))
1927 {
1928 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1929 t2[i] = value_coerce_array (t2[i]);
1930 else
1931 t2[i] = value_ref (t2[i]);
1932 continue;
1933 }
1934
1935 /* djb - 20000715 - Until the new type structure is in the
1936 place, and we can attempt things like implicit conversions,
1937 we need to do this so you can take something like a map<const
1938 char *>, and properly access map["hello"], because the
1939 argument to [] will be a reference to a pointer to a char,
1940 and the argument will be a pointer to a char. */
1941 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1942 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1943 {
1944 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1945 }
1946 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1947 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1948 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1949 {
1950 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1951 }
1952 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1953 continue;
1954 /* Array to pointer is a `trivial conversion' according to the
1955 ARM. */
1956
1957 /* We should be doing much hairier argument matching (see
1958 section 13.2 of the ARM), but as a quick kludge, just check
1959 for the same type code. */
1960 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1961 return i + 1;
1962 }
1963 if (varargs || t2[i] == NULL)
1964 return 0;
1965 return i + 1;
1966 }
1967
1968 /* Helper class for do_search_struct_field that updates *RESULT_PTR
1969 and *LAST_BOFFSET, and possibly throws an exception if the field
1970 search has yielded ambiguous results. */
1971
1972 static void
1973 update_search_result (struct value **result_ptr, struct value *v,
1974 int *last_boffset, int boffset,
1975 const char *name, struct type *type)
1976 {
1977 if (v != NULL)
1978 {
1979 if (*result_ptr != NULL
1980 /* The result is not ambiguous if all the classes that are
1981 found occupy the same space. */
1982 && *last_boffset != boffset)
1983 error (_("base class '%s' is ambiguous in type '%s'"),
1984 name, TYPE_SAFE_NAME (type));
1985 *result_ptr = v;
1986 *last_boffset = boffset;
1987 }
1988 }
1989
1990 /* A helper for search_struct_field. This does all the work; most
1991 arguments are as passed to search_struct_field. The result is
1992 stored in *RESULT_PTR, which must be initialized to NULL.
1993 OUTERMOST_TYPE is the type of the initial type passed to
1994 search_struct_field; this is used for error reporting when the
1995 lookup is ambiguous. */
1996
1997 static void
1998 do_search_struct_field (const char *name, struct value *arg1, int offset,
1999 struct type *type, int looking_for_baseclass,
2000 struct value **result_ptr,
2001 int *last_boffset,
2002 struct type *outermost_type)
2003 {
2004 int i;
2005 int nbases;
2006
2007 CHECK_TYPEDEF (type);
2008 nbases = TYPE_N_BASECLASSES (type);
2009
2010 if (!looking_for_baseclass)
2011 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2012 {
2013 const char *t_field_name = TYPE_FIELD_NAME (type, i);
2014
2015 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2016 {
2017 struct value *v;
2018
2019 if (field_is_static (&TYPE_FIELD (type, i)))
2020 {
2021 v = value_static_field (type, i);
2022 if (v == 0)
2023 error (_("field %s is nonexistent or "
2024 "has been optimized out"),
2025 name);
2026 }
2027 else
2028 v = value_primitive_field (arg1, offset, i, type);
2029 *result_ptr = v;
2030 return;
2031 }
2032
2033 if (t_field_name
2034 && (t_field_name[0] == '\0'
2035 || (TYPE_CODE (type) == TYPE_CODE_UNION
2036 && (strcmp_iw (t_field_name, "else") == 0))))
2037 {
2038 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2039
2040 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2041 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2042 {
2043 /* Look for a match through the fields of an anonymous
2044 union, or anonymous struct. C++ provides anonymous
2045 unions.
2046
2047 In the GNU Chill (now deleted from GDB)
2048 implementation of variant record types, each
2049 <alternative field> has an (anonymous) union type,
2050 each member of the union represents a <variant
2051 alternative>. Each <variant alternative> is
2052 represented as a struct, with a member for each
2053 <variant field>. */
2054
2055 struct value *v = NULL;
2056 int new_offset = offset;
2057
2058 /* This is pretty gross. In G++, the offset in an
2059 anonymous union is relative to the beginning of the
2060 enclosing struct. In the GNU Chill (now deleted
2061 from GDB) implementation of variant records, the
2062 bitpos is zero in an anonymous union field, so we
2063 have to add the offset of the union here. */
2064 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2065 || (TYPE_NFIELDS (field_type) > 0
2066 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2067 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2068
2069 do_search_struct_field (name, arg1, new_offset,
2070 field_type,
2071 looking_for_baseclass, &v,
2072 last_boffset,
2073 outermost_type);
2074 if (v)
2075 {
2076 *result_ptr = v;
2077 return;
2078 }
2079 }
2080 }
2081 }
2082
2083 for (i = 0; i < nbases; i++)
2084 {
2085 struct value *v = NULL;
2086 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2087 /* If we are looking for baseclasses, this is what we get when
2088 we hit them. But it could happen that the base part's member
2089 name is not yet filled in. */
2090 int found_baseclass = (looking_for_baseclass
2091 && TYPE_BASECLASS_NAME (type, i) != NULL
2092 && (strcmp_iw (name,
2093 TYPE_BASECLASS_NAME (type,
2094 i)) == 0));
2095 int boffset = value_embedded_offset (arg1) + offset;
2096
2097 if (BASETYPE_VIA_VIRTUAL (type, i))
2098 {
2099 struct value *v2;
2100
2101 boffset = baseclass_offset (type, i,
2102 value_contents_for_printing (arg1),
2103 value_embedded_offset (arg1) + offset,
2104 value_address (arg1),
2105 arg1);
2106
2107 /* The virtual base class pointer might have been clobbered
2108 by the user program. Make sure that it still points to a
2109 valid memory location. */
2110
2111 boffset += value_embedded_offset (arg1) + offset;
2112 if (boffset < 0
2113 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
2114 {
2115 CORE_ADDR base_addr;
2116
2117 v2 = allocate_value (basetype);
2118 base_addr = value_address (arg1) + boffset;
2119 if (target_read_memory (base_addr,
2120 value_contents_raw (v2),
2121 TYPE_LENGTH (basetype)) != 0)
2122 error (_("virtual baseclass botch"));
2123 VALUE_LVAL (v2) = lval_memory;
2124 set_value_address (v2, base_addr);
2125 }
2126 else
2127 {
2128 v2 = value_copy (arg1);
2129 deprecated_set_value_type (v2, basetype);
2130 set_value_embedded_offset (v2, boffset);
2131 }
2132
2133 if (found_baseclass)
2134 v = v2;
2135 else
2136 {
2137 do_search_struct_field (name, v2, 0,
2138 TYPE_BASECLASS (type, i),
2139 looking_for_baseclass,
2140 result_ptr, last_boffset,
2141 outermost_type);
2142 }
2143 }
2144 else if (found_baseclass)
2145 v = value_primitive_field (arg1, offset, i, type);
2146 else
2147 {
2148 do_search_struct_field (name, arg1,
2149 offset + TYPE_BASECLASS_BITPOS (type,
2150 i) / 8,
2151 basetype, looking_for_baseclass,
2152 result_ptr, last_boffset,
2153 outermost_type);
2154 }
2155
2156 update_search_result (result_ptr, v, last_boffset,
2157 boffset, name, outermost_type);
2158 }
2159 }
2160
2161 /* Helper function used by value_struct_elt to recurse through
2162 baseclasses. Look for a field NAME in ARG1. Adjust the address of
2163 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2164 TYPE. If found, return value, else return NULL.
2165
2166 If LOOKING_FOR_BASECLASS, then instead of looking for struct
2167 fields, look for a baseclass named NAME. */
2168
2169 static struct value *
2170 search_struct_field (const char *name, struct value *arg1, int offset,
2171 struct type *type, int looking_for_baseclass)
2172 {
2173 struct value *result = NULL;
2174 int boffset = 0;
2175
2176 do_search_struct_field (name, arg1, offset, type, looking_for_baseclass,
2177 &result, &boffset, type);
2178 return result;
2179 }
2180
2181 /* Helper function used by value_struct_elt to recurse through
2182 baseclasses. Look for a field NAME in ARG1. Adjust the address of
2183 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2184 TYPE.
2185
2186 If found, return value, else if name matched and args not return
2187 (value) -1, else return NULL. */
2188
2189 static struct value *
2190 search_struct_method (const char *name, struct value **arg1p,
2191 struct value **args, int offset,
2192 int *static_memfuncp, struct type *type)
2193 {
2194 int i;
2195 struct value *v;
2196 int name_matched = 0;
2197 char dem_opname[64];
2198
2199 CHECK_TYPEDEF (type);
2200 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2201 {
2202 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2203
2204 /* FIXME! May need to check for ARM demangling here. */
2205 if (strncmp (t_field_name, "__", 2) == 0 ||
2206 strncmp (t_field_name, "op", 2) == 0 ||
2207 strncmp (t_field_name, "type", 4) == 0)
2208 {
2209 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2210 t_field_name = dem_opname;
2211 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2212 t_field_name = dem_opname;
2213 }
2214 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2215 {
2216 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2217 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2218
2219 name_matched = 1;
2220 check_stub_method_group (type, i);
2221 if (j > 0 && args == 0)
2222 error (_("cannot resolve overloaded method "
2223 "`%s': no arguments supplied"), name);
2224 else if (j == 0 && args == 0)
2225 {
2226 v = value_fn_field (arg1p, f, j, type, offset);
2227 if (v != NULL)
2228 return v;
2229 }
2230 else
2231 while (j >= 0)
2232 {
2233 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2234 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2235 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2236 TYPE_FN_FIELD_ARGS (f, j), args))
2237 {
2238 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2239 return value_virtual_fn_field (arg1p, f, j,
2240 type, offset);
2241 if (TYPE_FN_FIELD_STATIC_P (f, j)
2242 && static_memfuncp)
2243 *static_memfuncp = 1;
2244 v = value_fn_field (arg1p, f, j, type, offset);
2245 if (v != NULL)
2246 return v;
2247 }
2248 j--;
2249 }
2250 }
2251 }
2252
2253 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2254 {
2255 int base_offset;
2256 int skip = 0;
2257 int this_offset;
2258
2259 if (BASETYPE_VIA_VIRTUAL (type, i))
2260 {
2261 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2262 struct value *base_val;
2263 const gdb_byte *base_valaddr;
2264
2265 /* The virtual base class pointer might have been
2266 clobbered by the user program. Make sure that it
2267 still points to a valid memory location. */
2268
2269 if (offset < 0 || offset >= TYPE_LENGTH (type))
2270 {
2271 gdb_byte *tmp;
2272 struct cleanup *back_to;
2273 CORE_ADDR address;
2274
2275 tmp = xmalloc (TYPE_LENGTH (baseclass));
2276 back_to = make_cleanup (xfree, tmp);
2277 address = value_address (*arg1p);
2278
2279 if (target_read_memory (address + offset,
2280 tmp, TYPE_LENGTH (baseclass)) != 0)
2281 error (_("virtual baseclass botch"));
2282
2283 base_val = value_from_contents_and_address (baseclass,
2284 tmp,
2285 address + offset);
2286 base_valaddr = value_contents_for_printing (base_val);
2287 this_offset = 0;
2288 do_cleanups (back_to);
2289 }
2290 else
2291 {
2292 base_val = *arg1p;
2293 base_valaddr = value_contents_for_printing (*arg1p);
2294 this_offset = offset;
2295 }
2296
2297 base_offset = baseclass_offset (type, i, base_valaddr,
2298 this_offset, value_address (base_val),
2299 base_val);
2300 }
2301 else
2302 {
2303 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2304 }
2305 v = search_struct_method (name, arg1p, args, base_offset + offset,
2306 static_memfuncp, TYPE_BASECLASS (type, i));
2307 if (v == (struct value *) - 1)
2308 {
2309 name_matched = 1;
2310 }
2311 else if (v)
2312 {
2313 /* FIXME-bothner: Why is this commented out? Why is it here? */
2314 /* *arg1p = arg1_tmp; */
2315 return v;
2316 }
2317 }
2318 if (name_matched)
2319 return (struct value *) - 1;
2320 else
2321 return NULL;
2322 }
2323
2324 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2325 extract the component named NAME from the ultimate target
2326 structure/union and return it as a value with its appropriate type.
2327 ERR is used in the error message if *ARGP's type is wrong.
2328
2329 C++: ARGS is a list of argument types to aid in the selection of
2330 an appropriate method. Also, handle derived types.
2331
2332 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2333 where the truthvalue of whether the function that was resolved was
2334 a static member function or not is stored.
2335
2336 ERR is an error message to be printed in case the field is not
2337 found. */
2338
2339 struct value *
2340 value_struct_elt (struct value **argp, struct value **args,
2341 const char *name, int *static_memfuncp, const char *err)
2342 {
2343 struct type *t;
2344 struct value *v;
2345
2346 *argp = coerce_array (*argp);
2347
2348 t = check_typedef (value_type (*argp));
2349
2350 /* Follow pointers until we get to a non-pointer. */
2351
2352 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2353 {
2354 *argp = value_ind (*argp);
2355 /* Don't coerce fn pointer to fn and then back again! */
2356 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2357 *argp = coerce_array (*argp);
2358 t = check_typedef (value_type (*argp));
2359 }
2360
2361 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2362 && TYPE_CODE (t) != TYPE_CODE_UNION)
2363 error (_("Attempt to extract a component of a value that is not a %s."),
2364 err);
2365
2366 /* Assume it's not, unless we see that it is. */
2367 if (static_memfuncp)
2368 *static_memfuncp = 0;
2369
2370 if (!args)
2371 {
2372 /* if there are no arguments ...do this... */
2373
2374 /* Try as a field first, because if we succeed, there is less
2375 work to be done. */
2376 v = search_struct_field (name, *argp, 0, t, 0);
2377 if (v)
2378 return v;
2379
2380 /* C++: If it was not found as a data field, then try to
2381 return it as a pointer to a method. */
2382 v = search_struct_method (name, argp, args, 0,
2383 static_memfuncp, t);
2384
2385 if (v == (struct value *) - 1)
2386 error (_("Cannot take address of method %s."), name);
2387 else if (v == 0)
2388 {
2389 if (TYPE_NFN_FIELDS (t))
2390 error (_("There is no member or method named %s."), name);
2391 else
2392 error (_("There is no member named %s."), name);
2393 }
2394 return v;
2395 }
2396
2397 v = search_struct_method (name, argp, args, 0,
2398 static_memfuncp, t);
2399
2400 if (v == (struct value *) - 1)
2401 {
2402 error (_("One of the arguments you tried to pass to %s could not "
2403 "be converted to what the function wants."), name);
2404 }
2405 else if (v == 0)
2406 {
2407 /* See if user tried to invoke data as function. If so, hand it
2408 back. If it's not callable (i.e., a pointer to function),
2409 gdb should give an error. */
2410 v = search_struct_field (name, *argp, 0, t, 0);
2411 /* If we found an ordinary field, then it is not a method call.
2412 So, treat it as if it were a static member function. */
2413 if (v && static_memfuncp)
2414 *static_memfuncp = 1;
2415 }
2416
2417 if (!v)
2418 throw_error (NOT_FOUND_ERROR,
2419 _("Structure has no component named %s."), name);
2420 return v;
2421 }
2422
2423 /* Search through the methods of an object (and its bases) to find a
2424 specified method. Return the pointer to the fn_field list of
2425 overloaded instances.
2426
2427 Helper function for value_find_oload_list.
2428 ARGP is a pointer to a pointer to a value (the object).
2429 METHOD is a string containing the method name.
2430 OFFSET is the offset within the value.
2431 TYPE is the assumed type of the object.
2432 NUM_FNS is the number of overloaded instances.
2433 BASETYPE is set to the actual type of the subobject where the
2434 method is found.
2435 BOFFSET is the offset of the base subobject where the method is found. */
2436
2437 static struct fn_field *
2438 find_method_list (struct value **argp, const char *method,
2439 int offset, struct type *type, int *num_fns,
2440 struct type **basetype, int *boffset)
2441 {
2442 int i;
2443 struct fn_field *f;
2444 CHECK_TYPEDEF (type);
2445
2446 *num_fns = 0;
2447
2448 /* First check in object itself. */
2449 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2450 {
2451 /* pai: FIXME What about operators and type conversions? */
2452 const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2453
2454 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2455 {
2456 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2457 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2458
2459 *num_fns = len;
2460 *basetype = type;
2461 *boffset = offset;
2462
2463 /* Resolve any stub methods. */
2464 check_stub_method_group (type, i);
2465
2466 return f;
2467 }
2468 }
2469
2470 /* Not found in object, check in base subobjects. */
2471 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2472 {
2473 int base_offset;
2474
2475 if (BASETYPE_VIA_VIRTUAL (type, i))
2476 {
2477 base_offset = baseclass_offset (type, i,
2478 value_contents_for_printing (*argp),
2479 value_offset (*argp) + offset,
2480 value_address (*argp), *argp);
2481 }
2482 else /* Non-virtual base, simply use bit position from debug
2483 info. */
2484 {
2485 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2486 }
2487 f = find_method_list (argp, method, base_offset + offset,
2488 TYPE_BASECLASS (type, i), num_fns,
2489 basetype, boffset);
2490 if (f)
2491 return f;
2492 }
2493 return NULL;
2494 }
2495
2496 /* Return the list of overloaded methods of a specified name.
2497
2498 ARGP is a pointer to a pointer to a value (the object).
2499 METHOD is the method name.
2500 OFFSET is the offset within the value contents.
2501 NUM_FNS is the number of overloaded instances.
2502 BASETYPE is set to the type of the base subobject that defines the
2503 method.
2504 BOFFSET is the offset of the base subobject which defines the method. */
2505
2506 static struct fn_field *
2507 value_find_oload_method_list (struct value **argp, const char *method,
2508 int offset, int *num_fns,
2509 struct type **basetype, int *boffset)
2510 {
2511 struct type *t;
2512
2513 t = check_typedef (value_type (*argp));
2514
2515 /* Code snarfed from value_struct_elt. */
2516 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2517 {
2518 *argp = value_ind (*argp);
2519 /* Don't coerce fn pointer to fn and then back again! */
2520 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2521 *argp = coerce_array (*argp);
2522 t = check_typedef (value_type (*argp));
2523 }
2524
2525 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2526 && TYPE_CODE (t) != TYPE_CODE_UNION)
2527 error (_("Attempt to extract a component of a "
2528 "value that is not a struct or union"));
2529
2530 return find_method_list (argp, method, 0, t, num_fns,
2531 basetype, boffset);
2532 }
2533
2534 /* Given an array of arguments (ARGS) (which includes an
2535 entry for "this" in the case of C++ methods), the number of
2536 arguments NARGS, the NAME of a function whether it's a method or
2537 not (METHOD), and the degree of laxness (LAX) in conforming to
2538 overload resolution rules in ANSI C++, find the best function that
2539 matches on the argument types according to the overload resolution
2540 rules.
2541
2542 METHOD can be one of three values:
2543 NON_METHOD for non-member functions.
2544 METHOD: for member functions.
2545 BOTH: used for overload resolution of operators where the
2546 candidates are expected to be either member or non member
2547 functions. In this case the first argument ARGTYPES
2548 (representing 'this') is expected to be a reference to the
2549 target object, and will be dereferenced when attempting the
2550 non-member search.
2551
2552 In the case of class methods, the parameter OBJ is an object value
2553 in which to search for overloaded methods.
2554
2555 In the case of non-method functions, the parameter FSYM is a symbol
2556 corresponding to one of the overloaded functions.
2557
2558 Return value is an integer: 0 -> good match, 10 -> debugger applied
2559 non-standard coercions, 100 -> incompatible.
2560
2561 If a method is being searched for, VALP will hold the value.
2562 If a non-method is being searched for, SYMP will hold the symbol
2563 for it.
2564
2565 If a method is being searched for, and it is a static method,
2566 then STATICP will point to a non-zero value.
2567
2568 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2569 ADL overload candidates when performing overload resolution for a fully
2570 qualified name.
2571
2572 Note: This function does *not* check the value of
2573 overload_resolution. Caller must check it to see whether overload
2574 resolution is permitted. */
2575
2576 int
2577 find_overload_match (struct value **args, int nargs,
2578 const char *name, enum oload_search_type method,
2579 int lax, struct value **objp, struct symbol *fsym,
2580 struct value **valp, struct symbol **symp,
2581 int *staticp, const int no_adl)
2582 {
2583 struct value *obj = (objp ? *objp : NULL);
2584 struct type *obj_type = obj ? value_type (obj) : NULL;
2585 /* Index of best overloaded function. */
2586 int func_oload_champ = -1;
2587 int method_oload_champ = -1;
2588
2589 /* The measure for the current best match. */
2590 struct badness_vector *method_badness = NULL;
2591 struct badness_vector *func_badness = NULL;
2592
2593 struct value *temp = obj;
2594 /* For methods, the list of overloaded methods. */
2595 struct fn_field *fns_ptr = NULL;
2596 /* For non-methods, the list of overloaded function symbols. */
2597 struct symbol **oload_syms = NULL;
2598 /* Number of overloaded instances being considered. */
2599 int num_fns = 0;
2600 struct type *basetype = NULL;
2601 int boffset;
2602
2603 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2604
2605 const char *obj_type_name = NULL;
2606 const char *func_name = NULL;
2607 enum oload_classification match_quality;
2608 enum oload_classification method_match_quality = INCOMPATIBLE;
2609 enum oload_classification func_match_quality = INCOMPATIBLE;
2610
2611 /* Get the list of overloaded methods or functions. */
2612 if (method == METHOD || method == BOTH)
2613 {
2614 gdb_assert (obj);
2615
2616 /* OBJ may be a pointer value rather than the object itself. */
2617 obj = coerce_ref (obj);
2618 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2619 obj = coerce_ref (value_ind (obj));
2620 obj_type_name = TYPE_NAME (value_type (obj));
2621
2622 /* First check whether this is a data member, e.g. a pointer to
2623 a function. */
2624 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2625 {
2626 *valp = search_struct_field (name, obj, 0,
2627 check_typedef (value_type (obj)), 0);
2628 if (*valp)
2629 {
2630 *staticp = 1;
2631 do_cleanups (all_cleanups);
2632 return 0;
2633 }
2634 }
2635
2636 /* Retrieve the list of methods with the name NAME. */
2637 fns_ptr = value_find_oload_method_list (&temp, name,
2638 0, &num_fns,
2639 &basetype, &boffset);
2640 /* If this is a method only search, and no methods were found
2641 the search has faild. */
2642 if (method == METHOD && (!fns_ptr || !num_fns))
2643 error (_("Couldn't find method %s%s%s"),
2644 obj_type_name,
2645 (obj_type_name && *obj_type_name) ? "::" : "",
2646 name);
2647 /* If we are dealing with stub method types, they should have
2648 been resolved by find_method_list via
2649 value_find_oload_method_list above. */
2650 if (fns_ptr)
2651 {
2652 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2653 method_oload_champ = find_oload_champ (args, nargs, method,
2654 num_fns, fns_ptr,
2655 oload_syms, &method_badness);
2656
2657 method_match_quality =
2658 classify_oload_match (method_badness, nargs,
2659 oload_method_static (method, fns_ptr,
2660 method_oload_champ));
2661
2662 make_cleanup (xfree, method_badness);
2663 }
2664
2665 }
2666
2667 if (method == NON_METHOD || method == BOTH)
2668 {
2669 const char *qualified_name = NULL;
2670
2671 /* If the overload match is being search for both as a method
2672 and non member function, the first argument must now be
2673 dereferenced. */
2674 if (method == BOTH)
2675 args[0] = value_ind (args[0]);
2676
2677 if (fsym)
2678 {
2679 qualified_name = SYMBOL_NATURAL_NAME (fsym);
2680
2681 /* If we have a function with a C++ name, try to extract just
2682 the function part. Do not try this for non-functions (e.g.
2683 function pointers). */
2684 if (qualified_name
2685 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym)))
2686 == TYPE_CODE_FUNC)
2687 {
2688 char *temp;
2689
2690 temp = cp_func_name (qualified_name);
2691
2692 /* If cp_func_name did not remove anything, the name of the
2693 symbol did not include scope or argument types - it was
2694 probably a C-style function. */
2695 if (temp)
2696 {
2697 make_cleanup (xfree, temp);
2698 if (strcmp (temp, qualified_name) == 0)
2699 func_name = NULL;
2700 else
2701 func_name = temp;
2702 }
2703 }
2704 }
2705 else
2706 {
2707 func_name = name;
2708 qualified_name = name;
2709 }
2710
2711 /* If there was no C++ name, this must be a C-style function or
2712 not a function at all. Just return the same symbol. Do the
2713 same if cp_func_name fails for some reason. */
2714 if (func_name == NULL)
2715 {
2716 *symp = fsym;
2717 do_cleanups (all_cleanups);
2718 return 0;
2719 }
2720
2721 func_oload_champ = find_oload_champ_namespace (args, nargs,
2722 func_name,
2723 qualified_name,
2724 &oload_syms,
2725 &func_badness,
2726 no_adl);
2727
2728 if (func_oload_champ >= 0)
2729 func_match_quality = classify_oload_match (func_badness, nargs, 0);
2730
2731 make_cleanup (xfree, oload_syms);
2732 make_cleanup (xfree, func_badness);
2733 }
2734
2735 /* Did we find a match ? */
2736 if (method_oload_champ == -1 && func_oload_champ == -1)
2737 throw_error (NOT_FOUND_ERROR,
2738 _("No symbol \"%s\" in current context."),
2739 name);
2740
2741 /* If we have found both a method match and a function
2742 match, find out which one is better, and calculate match
2743 quality. */
2744 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2745 {
2746 switch (compare_badness (func_badness, method_badness))
2747 {
2748 case 0: /* Top two contenders are equally good. */
2749 /* FIXME: GDB does not support the general ambiguous case.
2750 All candidates should be collected and presented the
2751 user. */
2752 error (_("Ambiguous overload resolution"));
2753 break;
2754 case 1: /* Incomparable top contenders. */
2755 /* This is an error incompatible candidates
2756 should not have been proposed. */
2757 error (_("Internal error: incompatible "
2758 "overload candidates proposed"));
2759 break;
2760 case 2: /* Function champion. */
2761 method_oload_champ = -1;
2762 match_quality = func_match_quality;
2763 break;
2764 case 3: /* Method champion. */
2765 func_oload_champ = -1;
2766 match_quality = method_match_quality;
2767 break;
2768 default:
2769 error (_("Internal error: unexpected overload comparison result"));
2770 break;
2771 }
2772 }
2773 else
2774 {
2775 /* We have either a method match or a function match. */
2776 if (method_oload_champ >= 0)
2777 match_quality = method_match_quality;
2778 else
2779 match_quality = func_match_quality;
2780 }
2781
2782 if (match_quality == INCOMPATIBLE)
2783 {
2784 if (method == METHOD)
2785 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2786 obj_type_name,
2787 (obj_type_name && *obj_type_name) ? "::" : "",
2788 name);
2789 else
2790 error (_("Cannot resolve function %s to any overloaded instance"),
2791 func_name);
2792 }
2793 else if (match_quality == NON_STANDARD)
2794 {
2795 if (method == METHOD)
2796 warning (_("Using non-standard conversion to match "
2797 "method %s%s%s to supplied arguments"),
2798 obj_type_name,
2799 (obj_type_name && *obj_type_name) ? "::" : "",
2800 name);
2801 else
2802 warning (_("Using non-standard conversion to match "
2803 "function %s to supplied arguments"),
2804 func_name);
2805 }
2806
2807 if (staticp != NULL)
2808 *staticp = oload_method_static (method, fns_ptr, method_oload_champ);
2809
2810 if (method_oload_champ >= 0)
2811 {
2812 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ))
2813 *valp = value_virtual_fn_field (&temp, fns_ptr, method_oload_champ,
2814 basetype, boffset);
2815 else
2816 *valp = value_fn_field (&temp, fns_ptr, method_oload_champ,
2817 basetype, boffset);
2818 }
2819 else
2820 *symp = oload_syms[func_oload_champ];
2821
2822 if (objp)
2823 {
2824 struct type *temp_type = check_typedef (value_type (temp));
2825 struct type *objtype = check_typedef (obj_type);
2826
2827 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2828 && (TYPE_CODE (objtype) == TYPE_CODE_PTR
2829 || TYPE_CODE (objtype) == TYPE_CODE_REF))
2830 {
2831 temp = value_addr (temp);
2832 }
2833 *objp = temp;
2834 }
2835
2836 do_cleanups (all_cleanups);
2837
2838 switch (match_quality)
2839 {
2840 case INCOMPATIBLE:
2841 return 100;
2842 case NON_STANDARD:
2843 return 10;
2844 default: /* STANDARD */
2845 return 0;
2846 }
2847 }
2848
2849 /* Find the best overload match, searching for FUNC_NAME in namespaces
2850 contained in QUALIFIED_NAME until it either finds a good match or
2851 runs out of namespaces. It stores the overloaded functions in
2852 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2853 calling function is responsible for freeing *OLOAD_SYMS and
2854 *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not
2855 performned. */
2856
2857 static int
2858 find_oload_champ_namespace (struct value **args, int nargs,
2859 const char *func_name,
2860 const char *qualified_name,
2861 struct symbol ***oload_syms,
2862 struct badness_vector **oload_champ_bv,
2863 const int no_adl)
2864 {
2865 int oload_champ;
2866
2867 find_oload_champ_namespace_loop (args, nargs,
2868 func_name,
2869 qualified_name, 0,
2870 oload_syms, oload_champ_bv,
2871 &oload_champ,
2872 no_adl);
2873
2874 return oload_champ;
2875 }
2876
2877 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2878 how deep we've looked for namespaces, and the champ is stored in
2879 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2880 if it isn't. Other arguments are the same as in
2881 find_oload_champ_namespace
2882
2883 It is the caller's responsibility to free *OLOAD_SYMS and
2884 *OLOAD_CHAMP_BV. */
2885
2886 static int
2887 find_oload_champ_namespace_loop (struct value **args, int nargs,
2888 const char *func_name,
2889 const char *qualified_name,
2890 int namespace_len,
2891 struct symbol ***oload_syms,
2892 struct badness_vector **oload_champ_bv,
2893 int *oload_champ,
2894 const int no_adl)
2895 {
2896 int next_namespace_len = namespace_len;
2897 int searched_deeper = 0;
2898 int num_fns = 0;
2899 struct cleanup *old_cleanups;
2900 int new_oload_champ;
2901 struct symbol **new_oload_syms;
2902 struct badness_vector *new_oload_champ_bv;
2903 char *new_namespace;
2904
2905 if (next_namespace_len != 0)
2906 {
2907 gdb_assert (qualified_name[next_namespace_len] == ':');
2908 next_namespace_len += 2;
2909 }
2910 next_namespace_len +=
2911 cp_find_first_component (qualified_name + next_namespace_len);
2912
2913 /* Initialize these to values that can safely be xfree'd. */
2914 *oload_syms = NULL;
2915 *oload_champ_bv = NULL;
2916
2917 /* First, see if we have a deeper namespace we can search in.
2918 If we get a good match there, use it. */
2919
2920 if (qualified_name[next_namespace_len] == ':')
2921 {
2922 searched_deeper = 1;
2923
2924 if (find_oload_champ_namespace_loop (args, nargs,
2925 func_name, qualified_name,
2926 next_namespace_len,
2927 oload_syms, oload_champ_bv,
2928 oload_champ, no_adl))
2929 {
2930 return 1;
2931 }
2932 };
2933
2934 /* If we reach here, either we're in the deepest namespace or we
2935 didn't find a good match in a deeper namespace. But, in the
2936 latter case, we still have a bad match in a deeper namespace;
2937 note that we might not find any match at all in the current
2938 namespace. (There's always a match in the deepest namespace,
2939 because this overload mechanism only gets called if there's a
2940 function symbol to start off with.) */
2941
2942 old_cleanups = make_cleanup (xfree, *oload_syms);
2943 make_cleanup (xfree, *oload_champ_bv);
2944 new_namespace = alloca (namespace_len + 1);
2945 strncpy (new_namespace, qualified_name, namespace_len);
2946 new_namespace[namespace_len] = '\0';
2947 new_oload_syms = make_symbol_overload_list (func_name,
2948 new_namespace);
2949
2950 /* If we have reached the deepest level perform argument
2951 determined lookup. */
2952 if (!searched_deeper && !no_adl)
2953 {
2954 int ix;
2955 struct type **arg_types;
2956
2957 /* Prepare list of argument types for overload resolution. */
2958 arg_types = (struct type **)
2959 alloca (nargs * (sizeof (struct type *)));
2960 for (ix = 0; ix < nargs; ix++)
2961 arg_types[ix] = value_type (args[ix]);
2962 make_symbol_overload_list_adl (arg_types, nargs, func_name);
2963 }
2964
2965 while (new_oload_syms[num_fns])
2966 ++num_fns;
2967
2968 new_oload_champ = find_oload_champ (args, nargs, 0, num_fns,
2969 NULL, new_oload_syms,
2970 &new_oload_champ_bv);
2971
2972 /* Case 1: We found a good match. Free earlier matches (if any),
2973 and return it. Case 2: We didn't find a good match, but we're
2974 not the deepest function. Then go with the bad match that the
2975 deeper function found. Case 3: We found a bad match, and we're
2976 the deepest function. Then return what we found, even though
2977 it's a bad match. */
2978
2979 if (new_oload_champ != -1
2980 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2981 {
2982 *oload_syms = new_oload_syms;
2983 *oload_champ = new_oload_champ;
2984 *oload_champ_bv = new_oload_champ_bv;
2985 do_cleanups (old_cleanups);
2986 return 1;
2987 }
2988 else if (searched_deeper)
2989 {
2990 xfree (new_oload_syms);
2991 xfree (new_oload_champ_bv);
2992 discard_cleanups (old_cleanups);
2993 return 0;
2994 }
2995 else
2996 {
2997 *oload_syms = new_oload_syms;
2998 *oload_champ = new_oload_champ;
2999 *oload_champ_bv = new_oload_champ_bv;
3000 do_cleanups (old_cleanups);
3001 return 0;
3002 }
3003 }
3004
3005 /* Look for a function to take NARGS args of ARGS. Find
3006 the best match from among the overloaded methods or functions
3007 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
3008 The number of methods/functions in the list is given by NUM_FNS.
3009 Return the index of the best match; store an indication of the
3010 quality of the match in OLOAD_CHAMP_BV.
3011
3012 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
3013
3014 static int
3015 find_oload_champ (struct value **args, int nargs, int method,
3016 int num_fns, struct fn_field *fns_ptr,
3017 struct symbol **oload_syms,
3018 struct badness_vector **oload_champ_bv)
3019 {
3020 int ix;
3021 /* A measure of how good an overloaded instance is. */
3022 struct badness_vector *bv;
3023 /* Index of best overloaded function. */
3024 int oload_champ = -1;
3025 /* Current ambiguity state for overload resolution. */
3026 int oload_ambiguous = 0;
3027 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
3028
3029 *oload_champ_bv = NULL;
3030
3031 /* Consider each candidate in turn. */
3032 for (ix = 0; ix < num_fns; ix++)
3033 {
3034 int jj;
3035 int static_offset = oload_method_static (method, fns_ptr, ix);
3036 int nparms;
3037 struct type **parm_types;
3038
3039 if (method)
3040 {
3041 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
3042 }
3043 else
3044 {
3045 /* If it's not a method, this is the proper place. */
3046 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
3047 }
3048
3049 /* Prepare array of parameter types. */
3050 parm_types = (struct type **)
3051 xmalloc (nparms * (sizeof (struct type *)));
3052 for (jj = 0; jj < nparms; jj++)
3053 parm_types[jj] = (method
3054 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
3055 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
3056 jj));
3057
3058 /* Compare parameter types to supplied argument types. Skip
3059 THIS for static methods. */
3060 bv = rank_function (parm_types, nparms,
3061 args + static_offset,
3062 nargs - static_offset);
3063
3064 if (!*oload_champ_bv)
3065 {
3066 *oload_champ_bv = bv;
3067 oload_champ = 0;
3068 }
3069 else /* See whether current candidate is better or worse than
3070 previous best. */
3071 switch (compare_badness (bv, *oload_champ_bv))
3072 {
3073 case 0: /* Top two contenders are equally good. */
3074 oload_ambiguous = 1;
3075 break;
3076 case 1: /* Incomparable top contenders. */
3077 oload_ambiguous = 2;
3078 break;
3079 case 2: /* New champion, record details. */
3080 *oload_champ_bv = bv;
3081 oload_ambiguous = 0;
3082 oload_champ = ix;
3083 break;
3084 case 3:
3085 default:
3086 break;
3087 }
3088 xfree (parm_types);
3089 if (overload_debug)
3090 {
3091 if (method)
3092 fprintf_filtered (gdb_stderr,
3093 "Overloaded method instance %s, # of parms %d\n",
3094 fns_ptr[ix].physname, nparms);
3095 else
3096 fprintf_filtered (gdb_stderr,
3097 "Overloaded function instance "
3098 "%s # of parms %d\n",
3099 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
3100 nparms);
3101 for (jj = 0; jj < nargs - static_offset; jj++)
3102 fprintf_filtered (gdb_stderr,
3103 "...Badness @ %d : %d\n",
3104 jj, bv->rank[jj].rank);
3105 fprintf_filtered (gdb_stderr, "Overload resolution "
3106 "champion is %d, ambiguous? %d\n",
3107 oload_champ, oload_ambiguous);
3108 }
3109 }
3110
3111 return oload_champ;
3112 }
3113
3114 /* Return 1 if we're looking at a static method, 0 if we're looking at
3115 a non-static method or a function that isn't a method. */
3116
3117 static int
3118 oload_method_static (int method, struct fn_field *fns_ptr, int index)
3119 {
3120 if (method && fns_ptr && index >= 0
3121 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
3122 return 1;
3123 else
3124 return 0;
3125 }
3126
3127 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
3128
3129 static enum oload_classification
3130 classify_oload_match (struct badness_vector *oload_champ_bv,
3131 int nargs,
3132 int static_offset)
3133 {
3134 int ix;
3135 enum oload_classification worst = STANDARD;
3136
3137 for (ix = 1; ix <= nargs - static_offset; ix++)
3138 {
3139 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
3140 or worse return INCOMPATIBLE. */
3141 if (compare_ranks (oload_champ_bv->rank[ix],
3142 INCOMPATIBLE_TYPE_BADNESS) <= 0)
3143 return INCOMPATIBLE; /* Truly mismatched types. */
3144 /* Otherwise If this conversion is as bad as
3145 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
3146 else if (compare_ranks (oload_champ_bv->rank[ix],
3147 NS_POINTER_CONVERSION_BADNESS) <= 0)
3148 worst = NON_STANDARD; /* Non-standard type conversions
3149 needed. */
3150 }
3151
3152 /* If no INCOMPATIBLE classification was found, return the worst one
3153 that was found (if any). */
3154 return worst;
3155 }
3156
3157 /* C++: return 1 is NAME is a legitimate name for the destructor of
3158 type TYPE. If TYPE does not have a destructor, or if NAME is
3159 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
3160 have CHECK_TYPEDEF applied, this function will apply it itself. */
3161
3162 int
3163 destructor_name_p (const char *name, struct type *type)
3164 {
3165 if (name[0] == '~')
3166 {
3167 const char *dname = type_name_no_tag_or_error (type);
3168 const char *cp = strchr (dname, '<');
3169 unsigned int len;
3170
3171 /* Do not compare the template part for template classes. */
3172 if (cp == NULL)
3173 len = strlen (dname);
3174 else
3175 len = cp - dname;
3176 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3177 error (_("name of destructor must equal name of class"));
3178 else
3179 return 1;
3180 }
3181 return 0;
3182 }
3183
3184 /* Given TYPE, a structure/union,
3185 return 1 if the component named NAME from the ultimate target
3186 structure/union is defined, otherwise, return 0. */
3187
3188 int
3189 check_field (struct type *type, const char *name)
3190 {
3191 int i;
3192
3193 /* The type may be a stub. */
3194 CHECK_TYPEDEF (type);
3195
3196 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
3197 {
3198 const char *t_field_name = TYPE_FIELD_NAME (type, i);
3199
3200 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
3201 return 1;
3202 }
3203
3204 /* C++: If it was not found as a data field, then try to return it
3205 as a pointer to a method. */
3206
3207 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
3208 {
3209 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
3210 return 1;
3211 }
3212
3213 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
3214 if (check_field (TYPE_BASECLASS (type, i), name))
3215 return 1;
3216
3217 return 0;
3218 }
3219
3220 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3221 return the appropriate member (or the address of the member, if
3222 WANT_ADDRESS). This function is used to resolve user expressions
3223 of the form "DOMAIN::NAME". For more details on what happens, see
3224 the comment before value_struct_elt_for_reference. */
3225
3226 struct value *
3227 value_aggregate_elt (struct type *curtype, char *name,
3228 struct type *expect_type, int want_address,
3229 enum noside noside)
3230 {
3231 switch (TYPE_CODE (curtype))
3232 {
3233 case TYPE_CODE_STRUCT:
3234 case TYPE_CODE_UNION:
3235 return value_struct_elt_for_reference (curtype, 0, curtype,
3236 name, expect_type,
3237 want_address, noside);
3238 case TYPE_CODE_NAMESPACE:
3239 return value_namespace_elt (curtype, name,
3240 want_address, noside);
3241 default:
3242 internal_error (__FILE__, __LINE__,
3243 _("non-aggregate type in value_aggregate_elt"));
3244 }
3245 }
3246
3247 /* Compares the two method/function types T1 and T2 for "equality"
3248 with respect to the methods' parameters. If the types of the
3249 two parameter lists are the same, returns 1; 0 otherwise. This
3250 comparison may ignore any artificial parameters in T1 if
3251 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3252 the first artificial parameter in T1, assumed to be a 'this' pointer.
3253
3254 The type T2 is expected to have come from make_params (in eval.c). */
3255
3256 static int
3257 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3258 {
3259 int start = 0;
3260
3261 if (TYPE_NFIELDS (t1) > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3262 ++start;
3263
3264 /* If skipping artificial fields, find the first real field
3265 in T1. */
3266 if (skip_artificial)
3267 {
3268 while (start < TYPE_NFIELDS (t1)
3269 && TYPE_FIELD_ARTIFICIAL (t1, start))
3270 ++start;
3271 }
3272
3273 /* Now compare parameters. */
3274
3275 /* Special case: a method taking void. T1 will contain no
3276 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3277 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
3278 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
3279 return 1;
3280
3281 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
3282 {
3283 int i;
3284
3285 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
3286 {
3287 if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3288 TYPE_FIELD_TYPE (t2, i), NULL),
3289 EXACT_MATCH_BADNESS) != 0)
3290 return 0;
3291 }
3292
3293 return 1;
3294 }
3295
3296 return 0;
3297 }
3298
3299 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3300 return the address of this member as a "pointer to member" type.
3301 If INTYPE is non-null, then it will be the type of the member we
3302 are looking for. This will help us resolve "pointers to member
3303 functions". This function is used to resolve user expressions of
3304 the form "DOMAIN::NAME". */
3305
3306 static struct value *
3307 value_struct_elt_for_reference (struct type *domain, int offset,
3308 struct type *curtype, char *name,
3309 struct type *intype,
3310 int want_address,
3311 enum noside noside)
3312 {
3313 struct type *t = curtype;
3314 int i;
3315 struct value *v, *result;
3316
3317 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3318 && TYPE_CODE (t) != TYPE_CODE_UNION)
3319 error (_("Internal error: non-aggregate type "
3320 "to value_struct_elt_for_reference"));
3321
3322 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3323 {
3324 const char *t_field_name = TYPE_FIELD_NAME (t, i);
3325
3326 if (t_field_name && strcmp (t_field_name, name) == 0)
3327 {
3328 if (field_is_static (&TYPE_FIELD (t, i)))
3329 {
3330 v = value_static_field (t, i);
3331 if (v == NULL)
3332 error (_("static field %s has been optimized out"),
3333 name);
3334 if (want_address)
3335 v = value_addr (v);
3336 return v;
3337 }
3338 if (TYPE_FIELD_PACKED (t, i))
3339 error (_("pointers to bitfield members not allowed"));
3340
3341 if (want_address)
3342 return value_from_longest
3343 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3344 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3345 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3346 return allocate_value (TYPE_FIELD_TYPE (t, i));
3347 else
3348 error (_("Cannot reference non-static field \"%s\""), name);
3349 }
3350 }
3351
3352 /* C++: If it was not found as a data field, then try to return it
3353 as a pointer to a method. */
3354
3355 /* Perform all necessary dereferencing. */
3356 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3357 intype = TYPE_TARGET_TYPE (intype);
3358
3359 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3360 {
3361 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3362 char dem_opname[64];
3363
3364 if (strncmp (t_field_name, "__", 2) == 0
3365 || strncmp (t_field_name, "op", 2) == 0
3366 || strncmp (t_field_name, "type", 4) == 0)
3367 {
3368 if (cplus_demangle_opname (t_field_name,
3369 dem_opname, DMGL_ANSI))
3370 t_field_name = dem_opname;
3371 else if (cplus_demangle_opname (t_field_name,
3372 dem_opname, 0))
3373 t_field_name = dem_opname;
3374 }
3375 if (t_field_name && strcmp (t_field_name, name) == 0)
3376 {
3377 int j;
3378 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3379 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3380
3381 check_stub_method_group (t, i);
3382
3383 if (intype)
3384 {
3385 for (j = 0; j < len; ++j)
3386 {
3387 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3388 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3389 intype, 1))
3390 break;
3391 }
3392
3393 if (j == len)
3394 error (_("no member function matches "
3395 "that type instantiation"));
3396 }
3397 else
3398 {
3399 int ii;
3400
3401 j = -1;
3402 for (ii = 0; ii < len; ++ii)
3403 {
3404 /* Skip artificial methods. This is necessary if,
3405 for example, the user wants to "print
3406 subclass::subclass" with only one user-defined
3407 constructor. There is no ambiguity in this case.
3408 We are careful here to allow artificial methods
3409 if they are the unique result. */
3410 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3411 {
3412 if (j == -1)
3413 j = ii;
3414 continue;
3415 }
3416
3417 /* Desired method is ambiguous if more than one
3418 method is defined. */
3419 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3420 error (_("non-unique member `%s' requires "
3421 "type instantiation"), name);
3422
3423 j = ii;
3424 }
3425
3426 if (j == -1)
3427 error (_("no matching member function"));
3428 }
3429
3430 if (TYPE_FN_FIELD_STATIC_P (f, j))
3431 {
3432 struct symbol *s =
3433 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3434 0, VAR_DOMAIN, 0);
3435
3436 if (s == NULL)
3437 return NULL;
3438
3439 if (want_address)
3440 return value_addr (read_var_value (s, 0));
3441 else
3442 return read_var_value (s, 0);
3443 }
3444
3445 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3446 {
3447 if (want_address)
3448 {
3449 result = allocate_value
3450 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3451 cplus_make_method_ptr (value_type (result),
3452 value_contents_writeable (result),
3453 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3454 }
3455 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3456 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3457 else
3458 error (_("Cannot reference virtual member function \"%s\""),
3459 name);
3460 }
3461 else
3462 {
3463 struct symbol *s =
3464 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3465 0, VAR_DOMAIN, 0);
3466
3467 if (s == NULL)
3468 return NULL;
3469
3470 v = read_var_value (s, 0);
3471 if (!want_address)
3472 result = v;
3473 else
3474 {
3475 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3476 cplus_make_method_ptr (value_type (result),
3477 value_contents_writeable (result),
3478 value_address (v), 0);
3479 }
3480 }
3481 return result;
3482 }
3483 }
3484 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3485 {
3486 struct value *v;
3487 int base_offset;
3488
3489 if (BASETYPE_VIA_VIRTUAL (t, i))
3490 base_offset = 0;
3491 else
3492 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3493 v = value_struct_elt_for_reference (domain,
3494 offset + base_offset,
3495 TYPE_BASECLASS (t, i),
3496 name, intype,
3497 want_address, noside);
3498 if (v)
3499 return v;
3500 }
3501
3502 /* As a last chance, pretend that CURTYPE is a namespace, and look
3503 it up that way; this (frequently) works for types nested inside
3504 classes. */
3505
3506 return value_maybe_namespace_elt (curtype, name,
3507 want_address, noside);
3508 }
3509
3510 /* C++: Return the member NAME of the namespace given by the type
3511 CURTYPE. */
3512
3513 static struct value *
3514 value_namespace_elt (const struct type *curtype,
3515 char *name, int want_address,
3516 enum noside noside)
3517 {
3518 struct value *retval = value_maybe_namespace_elt (curtype, name,
3519 want_address,
3520 noside);
3521
3522 if (retval == NULL)
3523 error (_("No symbol \"%s\" in namespace \"%s\"."),
3524 name, TYPE_TAG_NAME (curtype));
3525
3526 return retval;
3527 }
3528
3529 /* A helper function used by value_namespace_elt and
3530 value_struct_elt_for_reference. It looks up NAME inside the
3531 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3532 is a class and NAME refers to a type in CURTYPE itself (as opposed
3533 to, say, some base class of CURTYPE). */
3534
3535 static struct value *
3536 value_maybe_namespace_elt (const struct type *curtype,
3537 char *name, int want_address,
3538 enum noside noside)
3539 {
3540 const char *namespace_name = TYPE_TAG_NAME (curtype);
3541 struct symbol *sym;
3542 struct value *result;
3543
3544 sym = cp_lookup_symbol_namespace (namespace_name, name,
3545 get_selected_block (0), VAR_DOMAIN);
3546
3547 if (sym == NULL)
3548 {
3549 char *concatenated_name = alloca (strlen (namespace_name) + 2
3550 + strlen (name) + 1);
3551
3552 sprintf (concatenated_name, "%s::%s", namespace_name, name);
3553 sym = lookup_static_symbol_aux (concatenated_name, VAR_DOMAIN);
3554 }
3555
3556 if (sym == NULL)
3557 return NULL;
3558 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3559 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
3560 result = allocate_value (SYMBOL_TYPE (sym));
3561 else
3562 result = value_of_variable (sym, get_selected_block (0));
3563
3564 if (result && want_address)
3565 result = value_addr (result);
3566
3567 return result;
3568 }
3569
3570 /* Given a pointer or a reference value V, find its real (RTTI) type.
3571
3572 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3573 and refer to the values computed for the object pointed to. */
3574
3575 struct type *
3576 value_rtti_indirect_type (struct value *v, int *full,
3577 int *top, int *using_enc)
3578 {
3579 struct value *target;
3580 struct type *type, *real_type, *target_type;
3581
3582 type = value_type (v);
3583 type = check_typedef (type);
3584 if (TYPE_CODE (type) == TYPE_CODE_REF)
3585 target = coerce_ref (v);
3586 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3587 target = value_ind (v);
3588 else
3589 return NULL;
3590
3591 real_type = value_rtti_type (target, full, top, using_enc);
3592
3593 if (real_type)
3594 {
3595 /* Copy qualifiers to the referenced object. */
3596 target_type = value_type (target);
3597 real_type = make_cv_type (TYPE_CONST (target_type),
3598 TYPE_VOLATILE (target_type), real_type, NULL);
3599 if (TYPE_CODE (type) == TYPE_CODE_REF)
3600 real_type = lookup_reference_type (real_type);
3601 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3602 real_type = lookup_pointer_type (real_type);
3603 else
3604 internal_error (__FILE__, __LINE__, _("Unexpected value type."));
3605
3606 /* Copy qualifiers to the pointer/reference. */
3607 real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type),
3608 real_type, NULL);
3609 }
3610
3611 return real_type;
3612 }
3613
3614 /* Given a value pointed to by ARGP, check its real run-time type, and
3615 if that is different from the enclosing type, create a new value
3616 using the real run-time type as the enclosing type (and of the same
3617 type as ARGP) and return it, with the embedded offset adjusted to
3618 be the correct offset to the enclosed object. RTYPE is the type,
3619 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3620 by value_rtti_type(). If these are available, they can be supplied
3621 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3622 NULL if they're not available. */
3623
3624 struct value *
3625 value_full_object (struct value *argp,
3626 struct type *rtype,
3627 int xfull, int xtop,
3628 int xusing_enc)
3629 {
3630 struct type *real_type;
3631 int full = 0;
3632 int top = -1;
3633 int using_enc = 0;
3634 struct value *new_val;
3635
3636 if (rtype)
3637 {
3638 real_type = rtype;
3639 full = xfull;
3640 top = xtop;
3641 using_enc = xusing_enc;
3642 }
3643 else
3644 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3645
3646 /* If no RTTI data, or if object is already complete, do nothing. */
3647 if (!real_type || real_type == value_enclosing_type (argp))
3648 return argp;
3649
3650 /* In a destructor we might see a real type that is a superclass of
3651 the object's type. In this case it is better to leave the object
3652 as-is. */
3653 if (full
3654 && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp)))
3655 return argp;
3656
3657 /* If we have the full object, but for some reason the enclosing
3658 type is wrong, set it. */
3659 /* pai: FIXME -- sounds iffy */
3660 if (full)
3661 {
3662 argp = value_copy (argp);
3663 set_value_enclosing_type (argp, real_type);
3664 return argp;
3665 }
3666
3667 /* Check if object is in memory. */
3668 if (VALUE_LVAL (argp) != lval_memory)
3669 {
3670 warning (_("Couldn't retrieve complete object of RTTI "
3671 "type %s; object may be in register(s)."),
3672 TYPE_NAME (real_type));
3673
3674 return argp;
3675 }
3676
3677 /* All other cases -- retrieve the complete object. */
3678 /* Go back by the computed top_offset from the beginning of the
3679 object, adjusting for the embedded offset of argp if that's what
3680 value_rtti_type used for its computation. */
3681 new_val = value_at_lazy (real_type, value_address (argp) - top +
3682 (using_enc ? 0 : value_embedded_offset (argp)));
3683 deprecated_set_value_type (new_val, value_type (argp));
3684 set_value_embedded_offset (new_val, (using_enc
3685 ? top + value_embedded_offset (argp)
3686 : top));
3687 return new_val;
3688 }
3689
3690
3691 /* Return the value of the local variable, if one exists. Throw error
3692 otherwise, such as if the request is made in an inappropriate context. */
3693
3694 struct value *
3695 value_of_this (const struct language_defn *lang)
3696 {
3697 struct symbol *sym;
3698 struct block *b;
3699 struct frame_info *frame;
3700
3701 if (!lang->la_name_of_this)
3702 error (_("no `this' in current language"));
3703
3704 frame = get_selected_frame (_("no frame selected"));
3705
3706 b = get_frame_block (frame, NULL);
3707
3708 sym = lookup_language_this (lang, b);
3709 if (sym == NULL)
3710 error (_("current stack frame does not contain a variable named `%s'"),
3711 lang->la_name_of_this);
3712
3713 return read_var_value (sym, frame);
3714 }
3715
3716 /* Return the value of the local variable, if one exists. Return NULL
3717 otherwise. Never throw error. */
3718
3719 struct value *
3720 value_of_this_silent (const struct language_defn *lang)
3721 {
3722 struct value *ret = NULL;
3723 volatile struct gdb_exception except;
3724
3725 TRY_CATCH (except, RETURN_MASK_ERROR)
3726 {
3727 ret = value_of_this (lang);
3728 }
3729
3730 return ret;
3731 }
3732
3733 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3734 elements long, starting at LOWBOUND. The result has the same lower
3735 bound as the original ARRAY. */
3736
3737 struct value *
3738 value_slice (struct value *array, int lowbound, int length)
3739 {
3740 struct type *slice_range_type, *slice_type, *range_type;
3741 LONGEST lowerbound, upperbound;
3742 struct value *slice;
3743 struct type *array_type;
3744
3745 array_type = check_typedef (value_type (array));
3746 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3747 && TYPE_CODE (array_type) != TYPE_CODE_STRING)
3748 error (_("cannot take slice of non-array"));
3749
3750 range_type = TYPE_INDEX_TYPE (array_type);
3751 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3752 error (_("slice from bad array or bitstring"));
3753
3754 if (lowbound < lowerbound || length < 0
3755 || lowbound + length - 1 > upperbound)
3756 error (_("slice out of range"));
3757
3758 /* FIXME-type-allocation: need a way to free this type when we are
3759 done with it. */
3760 slice_range_type = create_range_type ((struct type *) NULL,
3761 TYPE_TARGET_TYPE (range_type),
3762 lowbound,
3763 lowbound + length - 1);
3764
3765 {
3766 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3767 LONGEST offset =
3768 (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3769
3770 slice_type = create_array_type ((struct type *) NULL,
3771 element_type,
3772 slice_range_type);
3773 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3774
3775 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3776 slice = allocate_value_lazy (slice_type);
3777 else
3778 {
3779 slice = allocate_value (slice_type);
3780 value_contents_copy (slice, 0, array, offset,
3781 TYPE_LENGTH (slice_type));
3782 }
3783
3784 set_value_component_location (slice, array);
3785 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3786 set_value_offset (slice, value_offset (array) + offset);
3787 }
3788 return slice;
3789 }
3790
3791 /* Create a value for a FORTRAN complex number. Currently most of the
3792 time values are coerced to COMPLEX*16 (i.e. a complex number
3793 composed of 2 doubles. This really should be a smarter routine
3794 that figures out precision inteligently as opposed to assuming
3795 doubles. FIXME: fmb */
3796
3797 struct value *
3798 value_literal_complex (struct value *arg1,
3799 struct value *arg2,
3800 struct type *type)
3801 {
3802 struct value *val;
3803 struct type *real_type = TYPE_TARGET_TYPE (type);
3804
3805 val = allocate_value (type);
3806 arg1 = value_cast (real_type, arg1);
3807 arg2 = value_cast (real_type, arg2);
3808
3809 memcpy (value_contents_raw (val),
3810 value_contents (arg1), TYPE_LENGTH (real_type));
3811 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3812 value_contents (arg2), TYPE_LENGTH (real_type));
3813 return val;
3814 }
3815
3816 /* Cast a value into the appropriate complex data type. */
3817
3818 static struct value *
3819 cast_into_complex (struct type *type, struct value *val)
3820 {
3821 struct type *real_type = TYPE_TARGET_TYPE (type);
3822
3823 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3824 {
3825 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3826 struct value *re_val = allocate_value (val_real_type);
3827 struct value *im_val = allocate_value (val_real_type);
3828
3829 memcpy (value_contents_raw (re_val),
3830 value_contents (val), TYPE_LENGTH (val_real_type));
3831 memcpy (value_contents_raw (im_val),
3832 value_contents (val) + TYPE_LENGTH (val_real_type),
3833 TYPE_LENGTH (val_real_type));
3834
3835 return value_literal_complex (re_val, im_val, type);
3836 }
3837 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3838 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3839 return value_literal_complex (val,
3840 value_zero (real_type, not_lval),
3841 type);
3842 else
3843 error (_("cannot cast non-number to complex"));
3844 }
3845
3846 void
3847 _initialize_valops (void)
3848 {
3849 add_setshow_boolean_cmd ("overload-resolution", class_support,
3850 &overload_resolution, _("\
3851 Set overload resolution in evaluating C++ functions."), _("\
3852 Show overload resolution in evaluating C++ functions."),
3853 NULL, NULL,
3854 show_overload_resolution,
3855 &setlist, &showlist);
3856 overload_resolution = 1;
3857 }