* valops.c (value_assign): Call reinit_frame_cache when assigning
[binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 1987, 1989, 1991, 1992 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "demangle.h"
29 #include "language.h"
30
31 #include <errno.h>
32
33 /* Local functions. */
34
35 static int
36 typecmp PARAMS ((int staticp, struct type *t1[], value t2[]));
37
38 static CORE_ADDR
39 find_function_addr PARAMS ((value, struct type **));
40
41 static CORE_ADDR
42 value_push PARAMS ((CORE_ADDR, value));
43
44 static CORE_ADDR
45 value_arg_push PARAMS ((CORE_ADDR, value));
46
47 static value
48 search_struct_field PARAMS ((char *, value, int, struct type *, int));
49
50 static value
51 search_struct_method PARAMS ((char *, value *, value *, int, int *,
52 struct type *));
53
54 static int
55 check_field_in PARAMS ((struct type *, const char *));
56
57 static CORE_ADDR
58 allocate_space_in_inferior PARAMS ((int));
59
60 \f
61 /* Allocate NBYTES of space in the inferior using the inferior's malloc
62 and return a value that is a pointer to the allocated space. */
63
64 static CORE_ADDR
65 allocate_space_in_inferior (len)
66 int len;
67 {
68 register value val;
69 register struct symbol *sym;
70 struct minimal_symbol *msymbol;
71 struct type *type;
72 value blocklen;
73 LONGEST maddr;
74
75 /* Find the address of malloc in the inferior. */
76
77 sym = lookup_symbol ("malloc", 0, VAR_NAMESPACE, 0, NULL);
78 if (sym != NULL)
79 {
80 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
81 {
82 error ("\"malloc\" exists in this program but is not a function.");
83 }
84 val = value_of_variable (sym, NULL);
85 }
86 else
87 {
88 msymbol = lookup_minimal_symbol ("malloc", (struct objfile *) NULL);
89 if (msymbol != NULL)
90 {
91 type = lookup_pointer_type (builtin_type_char);
92 type = lookup_function_type (type);
93 type = lookup_pointer_type (type);
94 maddr = (LONGEST) SYMBOL_VALUE_ADDRESS (msymbol);
95 val = value_from_longest (type, maddr);
96 }
97 else
98 {
99 error ("evaluation of this expression requires the program to have a function \"malloc\".");
100 }
101 }
102
103 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
104 val = call_function_by_hand (val, 1, &blocklen);
105 if (value_logical_not (val))
106 {
107 error ("No memory available to program.");
108 }
109 return (value_as_long (val));
110 }
111
112 /* Cast value ARG2 to type TYPE and return as a value.
113 More general than a C cast: accepts any two types of the same length,
114 and if ARG2 is an lvalue it can be cast into anything at all. */
115 /* In C++, casts may change pointer or object representations. */
116
117 value
118 value_cast (type, arg2)
119 struct type *type;
120 register value arg2;
121 {
122 register enum type_code code1;
123 register enum type_code code2;
124 register int scalar;
125
126 /* Coerce arrays but not enums. Enums will work as-is
127 and coercing them would cause an infinite recursion. */
128 if (TYPE_CODE (VALUE_TYPE (arg2)) != TYPE_CODE_ENUM)
129 COERCE_ARRAY (arg2);
130
131 code1 = TYPE_CODE (type);
132 code2 = TYPE_CODE (VALUE_TYPE (arg2));
133 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
134 || code2 == TYPE_CODE_ENUM);
135
136 if ( code1 == TYPE_CODE_STRUCT
137 && code2 == TYPE_CODE_STRUCT
138 && TYPE_NAME (type) != 0)
139 {
140 /* Look in the type of the source to see if it contains the
141 type of the target as a superclass. If so, we'll need to
142 offset the object in addition to changing its type. */
143 value v = search_struct_field (type_name_no_tag (type),
144 arg2, 0, VALUE_TYPE (arg2), 1);
145 if (v)
146 {
147 VALUE_TYPE (v) = type;
148 return v;
149 }
150 }
151 if (code1 == TYPE_CODE_FLT && scalar)
152 return value_from_double (type, value_as_double (arg2));
153 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM)
154 && (scalar || code2 == TYPE_CODE_PTR))
155 return value_from_longest (type, value_as_long (arg2));
156 else if (TYPE_LENGTH (type) == TYPE_LENGTH (VALUE_TYPE (arg2)))
157 {
158 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
159 {
160 /* Look in the type of the source to see if it contains the
161 type of the target as a superclass. If so, we'll need to
162 offset the pointer rather than just change its type. */
163 struct type *t1 = TYPE_TARGET_TYPE (type);
164 struct type *t2 = TYPE_TARGET_TYPE (VALUE_TYPE (arg2));
165 if ( TYPE_CODE (t1) == TYPE_CODE_STRUCT
166 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
167 && TYPE_NAME (t1) != 0) /* if name unknown, can't have supercl */
168 {
169 value v = search_struct_field (type_name_no_tag (t1),
170 value_ind (arg2), 0, t2, 1);
171 if (v)
172 {
173 v = value_addr (v);
174 VALUE_TYPE (v) = type;
175 return v;
176 }
177 }
178 /* No superclass found, just fall through to change ptr type. */
179 }
180 VALUE_TYPE (arg2) = type;
181 return arg2;
182 }
183 else if (VALUE_LVAL (arg2) == lval_memory)
184 {
185 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2));
186 }
187 else if (code1 == TYPE_CODE_VOID)
188 {
189 return value_zero (builtin_type_void, not_lval);
190 }
191 else
192 {
193 error ("Invalid cast.");
194 return 0;
195 }
196 }
197
198 /* Create a value of type TYPE that is zero, and return it. */
199
200 value
201 value_zero (type, lv)
202 struct type *type;
203 enum lval_type lv;
204 {
205 register value val = allocate_value (type);
206
207 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (type));
208 VALUE_LVAL (val) = lv;
209
210 return val;
211 }
212
213 /* Return a value with type TYPE located at ADDR.
214
215 Call value_at only if the data needs to be fetched immediately;
216 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
217 value_at_lazy instead. value_at_lazy simply records the address of
218 the data and sets the lazy-evaluation-required flag. The lazy flag
219 is tested in the VALUE_CONTENTS macro, which is used if and when
220 the contents are actually required. */
221
222 value
223 value_at (type, addr)
224 struct type *type;
225 CORE_ADDR addr;
226 {
227 register value val = allocate_value (type);
228
229 read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (type));
230
231 VALUE_LVAL (val) = lval_memory;
232 VALUE_ADDRESS (val) = addr;
233
234 return val;
235 }
236
237 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
238
239 value
240 value_at_lazy (type, addr)
241 struct type *type;
242 CORE_ADDR addr;
243 {
244 register value val = allocate_value (type);
245
246 VALUE_LVAL (val) = lval_memory;
247 VALUE_ADDRESS (val) = addr;
248 VALUE_LAZY (val) = 1;
249
250 return val;
251 }
252
253 /* Called only from the VALUE_CONTENTS macro, if the current data for
254 a variable needs to be loaded into VALUE_CONTENTS(VAL). Fetches the
255 data from the user's process, and clears the lazy flag to indicate
256 that the data in the buffer is valid.
257
258 If the value is zero-length, we avoid calling read_memory, which would
259 abort. We mark the value as fetched anyway -- all 0 bytes of it.
260
261 This function returns a value because it is used in the VALUE_CONTENTS
262 macro as part of an expression, where a void would not work. The
263 value is ignored. */
264
265 int
266 value_fetch_lazy (val)
267 register value val;
268 {
269 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
270
271 if (TYPE_LENGTH (VALUE_TYPE (val)))
272 read_memory (addr, VALUE_CONTENTS_RAW (val),
273 TYPE_LENGTH (VALUE_TYPE (val)));
274 VALUE_LAZY (val) = 0;
275 return 0;
276 }
277
278
279 /* Store the contents of FROMVAL into the location of TOVAL.
280 Return a new value with the location of TOVAL and contents of FROMVAL. */
281
282 value
283 value_assign (toval, fromval)
284 register value toval, fromval;
285 {
286 register struct type *type = VALUE_TYPE (toval);
287 register value val;
288 char raw_buffer[MAX_REGISTER_RAW_SIZE];
289 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
290 int use_buffer = 0;
291
292 COERCE_ARRAY (fromval);
293 COERCE_REF (toval);
294
295 if (VALUE_LVAL (toval) != lval_internalvar)
296 fromval = value_cast (type, fromval);
297
298 /* If TOVAL is a special machine register requiring conversion
299 of program values to a special raw format,
300 convert FROMVAL's contents now, with result in `raw_buffer',
301 and set USE_BUFFER to the number of bytes to write. */
302
303 if (VALUE_REGNO (toval) >= 0
304 && REGISTER_CONVERTIBLE (VALUE_REGNO (toval)))
305 {
306 int regno = VALUE_REGNO (toval);
307 if (VALUE_TYPE (fromval) != REGISTER_VIRTUAL_TYPE (regno))
308 fromval = value_cast (REGISTER_VIRTUAL_TYPE (regno), fromval);
309 memcpy (virtual_buffer, VALUE_CONTENTS (fromval),
310 REGISTER_VIRTUAL_SIZE (regno));
311 REGISTER_CONVERT_TO_RAW (regno, virtual_buffer, raw_buffer);
312 use_buffer = REGISTER_RAW_SIZE (regno);
313 }
314
315 switch (VALUE_LVAL (toval))
316 {
317 case lval_internalvar:
318 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
319 break;
320
321 case lval_internalvar_component:
322 set_internalvar_component (VALUE_INTERNALVAR (toval),
323 VALUE_OFFSET (toval),
324 VALUE_BITPOS (toval),
325 VALUE_BITSIZE (toval),
326 fromval);
327 break;
328
329 case lval_memory:
330 if (VALUE_BITSIZE (toval))
331 {
332 int v; /* FIXME, this won't work for large bitfields */
333 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
334 (char *) &v, sizeof v);
335 modify_field ((char *) &v, value_as_long (fromval),
336 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
337 write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
338 (char *)&v, sizeof v);
339 }
340 else if (use_buffer)
341 write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
342 raw_buffer, use_buffer);
343 else
344 write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
345 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
346 break;
347
348 case lval_register:
349 if (VALUE_BITSIZE (toval))
350 {
351 int v;
352
353 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
354 (char *) &v, sizeof v);
355 modify_field ((char *) &v, value_as_long (fromval),
356 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
357 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
358 (char *) &v, sizeof v);
359 }
360 else if (use_buffer)
361 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
362 raw_buffer, use_buffer);
363 else
364 {
365 /* Do any conversion necessary when storing this type to more
366 than one register. */
367 #ifdef REGISTER_CONVERT_FROM_TYPE
368 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
369 REGISTER_CONVERT_FROM_TYPE(VALUE_REGNO (toval), type, raw_buffer);
370 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
371 raw_buffer, TYPE_LENGTH (type));
372 #else
373 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
374 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
375 #endif
376 }
377 /* Assigning to the stack pointer, frame pointer, and other
378 (architecture and calling convention specific) registers may
379 cause the frame cache to be out of date. We just do this
380 on all assignments to registers for simplicity; I doubt the slowdown
381 matters. */
382 reinit_frame_cache ();
383 break;
384
385 case lval_reg_frame_relative:
386 {
387 /* value is stored in a series of registers in the frame
388 specified by the structure. Copy that value out, modify
389 it, and copy it back in. */
390 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
391 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
392 int byte_offset = VALUE_OFFSET (toval) % reg_size;
393 int reg_offset = VALUE_OFFSET (toval) / reg_size;
394 int amount_copied;
395 char *buffer = (char *) alloca (amount_to_copy);
396 int regno;
397 FRAME frame;
398
399 /* Figure out which frame this is in currently. */
400 for (frame = get_current_frame ();
401 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
402 frame = get_prev_frame (frame))
403 ;
404
405 if (!frame)
406 error ("Value being assigned to is no longer active.");
407
408 amount_to_copy += (reg_size - amount_to_copy % reg_size);
409
410 /* Copy it out. */
411 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
412 amount_copied = 0);
413 amount_copied < amount_to_copy;
414 amount_copied += reg_size, regno++)
415 {
416 get_saved_register (buffer + amount_copied,
417 (int *)NULL, (CORE_ADDR *)NULL,
418 frame, regno, (enum lval_type *)NULL);
419 }
420
421 /* Modify what needs to be modified. */
422 if (VALUE_BITSIZE (toval))
423 modify_field (buffer + byte_offset,
424 value_as_long (fromval),
425 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
426 else if (use_buffer)
427 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
428 else
429 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
430 TYPE_LENGTH (type));
431
432 /* Copy it back. */
433 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
434 amount_copied = 0);
435 amount_copied < amount_to_copy;
436 amount_copied += reg_size, regno++)
437 {
438 enum lval_type lval;
439 CORE_ADDR addr;
440 int optim;
441
442 /* Just find out where to put it. */
443 get_saved_register ((char *)NULL,
444 &optim, &addr, frame, regno, &lval);
445
446 if (optim)
447 error ("Attempt to assign to a value that was optimized out.");
448 if (lval == lval_memory)
449 write_memory (addr, buffer + amount_copied, reg_size);
450 else if (lval == lval_register)
451 write_register_bytes (addr, buffer + amount_copied, reg_size);
452 else
453 error ("Attempt to assign to an unmodifiable value.");
454 }
455 }
456 break;
457
458
459 default:
460 error ("Left side of = operation is not an lvalue.");
461 }
462
463 /* Return a value just like TOVAL except with the contents of FROMVAL
464 (except in the case of the type if TOVAL is an internalvar). */
465
466 if (VALUE_LVAL (toval) == lval_internalvar
467 || VALUE_LVAL (toval) == lval_internalvar_component)
468 {
469 type = VALUE_TYPE (fromval);
470 }
471
472 /* FIXME: This loses if fromval is a different size than toval, for
473 example because fromval got cast in the REGISTER_CONVERTIBLE case
474 above. */
475 val = allocate_value (type);
476 memcpy (val, toval, VALUE_CONTENTS_RAW (val) - (char *) val);
477 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
478 TYPE_LENGTH (type));
479 VALUE_TYPE (val) = type;
480
481 return val;
482 }
483
484 /* Extend a value VAL to COUNT repetitions of its type. */
485
486 value
487 value_repeat (arg1, count)
488 value arg1;
489 int count;
490 {
491 register value val;
492
493 if (VALUE_LVAL (arg1) != lval_memory)
494 error ("Only values in memory can be extended with '@'.");
495 if (count < 1)
496 error ("Invalid number %d of repetitions.", count);
497
498 val = allocate_repeat_value (VALUE_TYPE (arg1), count);
499
500 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
501 VALUE_CONTENTS_RAW (val),
502 TYPE_LENGTH (VALUE_TYPE (val)) * count);
503 VALUE_LVAL (val) = lval_memory;
504 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
505
506 return val;
507 }
508
509 value
510 value_of_variable (var, b)
511 struct symbol *var;
512 struct block *b;
513 {
514 value val;
515 FRAME fr;
516
517 if (b == NULL)
518 /* Use selected frame. */
519 fr = NULL;
520 else
521 {
522 fr = block_innermost_frame (b);
523 if (fr == NULL && symbol_read_needs_frame (var))
524 {
525 if (BLOCK_FUNCTION (b) != NULL
526 && SYMBOL_NAME (BLOCK_FUNCTION (b)) != NULL)
527 error ("No frame is currently executing in block %s.",
528 SYMBOL_NAME (BLOCK_FUNCTION (b)));
529 else
530 error ("No frame is currently executing in specified block");
531 }
532 }
533 val = read_var_value (var, fr);
534 if (val == 0)
535 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
536 return val;
537 }
538
539 /* Given a value which is an array, return a value which is a pointer to its
540 first element, regardless of whether or not the array has a nonzero lower
541 bound.
542
543 FIXME: A previous comment here indicated that this routine should be
544 substracting the array's lower bound. It's not clear to me that this
545 is correct. Given an array subscripting operation, it would certainly
546 work to do the adjustment here, essentially computing:
547
548 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
549
550 However I believe a more appropriate and logical place to account for
551 the lower bound is to do so in value_subscript, essentially computing:
552
553 (&array[0] + ((index - lowerbound) * sizeof array[0]))
554
555 As further evidence consider what would happen with operations other
556 than array subscripting, where the caller would get back a value that
557 had an address somewhere before the actual first element of the array,
558 and the information about the lower bound would be lost because of
559 the coercion to pointer type.
560 */
561
562 value
563 value_coerce_array (arg1)
564 value arg1;
565 {
566 register struct type *type;
567
568 if (VALUE_LVAL (arg1) != lval_memory)
569 error ("Attempt to take address of value not located in memory.");
570
571 /* Get type of elements. */
572 if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_ARRAY)
573 type = TYPE_TARGET_TYPE (VALUE_TYPE (arg1));
574 else
575 /* A phony array made by value_repeat.
576 Its type is the type of the elements, not an array type. */
577 type = VALUE_TYPE (arg1);
578
579 return value_from_longest (lookup_pointer_type (type),
580 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
581 }
582
583 /* Given a value which is a function, return a value which is a pointer
584 to it. */
585
586 value
587 value_coerce_function (arg1)
588 value arg1;
589 {
590
591 if (VALUE_LVAL (arg1) != lval_memory)
592 error ("Attempt to take address of value not located in memory.");
593
594 return value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)),
595 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
596 }
597
598 /* Return a pointer value for the object for which ARG1 is the contents. */
599
600 value
601 value_addr (arg1)
602 value arg1;
603 {
604 struct type *type = VALUE_TYPE (arg1);
605 if (TYPE_CODE (type) == TYPE_CODE_REF)
606 {
607 /* Copy the value, but change the type from (T&) to (T*).
608 We keep the same location information, which is efficient,
609 and allows &(&X) to get the location containing the reference. */
610 value arg2 = value_copy (arg1);
611 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
612 return arg2;
613 }
614 if (VALUE_REPEATED (arg1)
615 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
616 return value_coerce_array (arg1);
617 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
618 return value_coerce_function (arg1);
619
620 if (VALUE_LVAL (arg1) != lval_memory)
621 error ("Attempt to take address of value not located in memory.");
622
623 return value_from_longest (lookup_pointer_type (type),
624 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
625 }
626
627 /* Given a value of a pointer type, apply the C unary * operator to it. */
628
629 value
630 value_ind (arg1)
631 value arg1;
632 {
633 COERCE_ARRAY (arg1);
634
635 if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_MEMBER)
636 error ("not implemented: member types in value_ind");
637
638 /* Allow * on an integer so we can cast it to whatever we want.
639 This returns an int, which seems like the most C-like thing
640 to do. "long long" variables are rare enough that
641 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
642 if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_INT)
643 return value_at (builtin_type_int,
644 (CORE_ADDR) value_as_long (arg1));
645 else if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_PTR)
646 return value_at_lazy (TYPE_TARGET_TYPE (VALUE_TYPE (arg1)),
647 value_as_pointer (arg1));
648 error ("Attempt to take contents of a non-pointer value.");
649 return 0; /* For lint -- never reached */
650 }
651 \f
652 /* Pushing small parts of stack frames. */
653
654 /* Push one word (the size of object that a register holds). */
655
656 CORE_ADDR
657 push_word (sp, word)
658 CORE_ADDR sp;
659 REGISTER_TYPE word;
660 {
661 register int len = sizeof (REGISTER_TYPE);
662 char buffer[MAX_REGISTER_RAW_SIZE];
663
664 store_unsigned_integer (buffer, len, word);
665 #if 1 INNER_THAN 2
666 sp -= len;
667 write_memory (sp, buffer, len);
668 #else /* stack grows upward */
669 write_memory (sp, buffer, len);
670 sp += len;
671 #endif /* stack grows upward */
672
673 return sp;
674 }
675
676 /* Push LEN bytes with data at BUFFER. */
677
678 CORE_ADDR
679 push_bytes (sp, buffer, len)
680 CORE_ADDR sp;
681 char *buffer;
682 int len;
683 {
684 #if 1 INNER_THAN 2
685 sp -= len;
686 write_memory (sp, buffer, len);
687 #else /* stack grows upward */
688 write_memory (sp, buffer, len);
689 sp += len;
690 #endif /* stack grows upward */
691
692 return sp;
693 }
694
695 /* Push onto the stack the specified value VALUE. */
696
697 static CORE_ADDR
698 value_push (sp, arg)
699 register CORE_ADDR sp;
700 value arg;
701 {
702 register int len = TYPE_LENGTH (VALUE_TYPE (arg));
703
704 #if 1 INNER_THAN 2
705 sp -= len;
706 write_memory (sp, VALUE_CONTENTS (arg), len);
707 #else /* stack grows upward */
708 write_memory (sp, VALUE_CONTENTS (arg), len);
709 sp += len;
710 #endif /* stack grows upward */
711
712 return sp;
713 }
714
715 /* Perform the standard coercions that are specified
716 for arguments to be passed to C functions. */
717
718 value
719 value_arg_coerce (arg)
720 value arg;
721 {
722 register struct type *type;
723
724 /* FIXME: We should coerce this according to the prototype (if we have
725 one). Right now we do a little bit of this in typecmp(), but that
726 doesn't always get called. For example, if passing a ref to a function
727 without a prototype, we probably should de-reference it. Currently
728 we don't. */
729
730 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_ENUM)
731 arg = value_cast (builtin_type_unsigned_int, arg);
732
733 #if 1 /* FIXME: This is only a temporary patch. -fnf */
734 if (VALUE_REPEATED (arg)
735 || TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_ARRAY)
736 arg = value_coerce_array (arg);
737 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FUNC)
738 arg = value_coerce_function (arg);
739 #endif
740
741 type = VALUE_TYPE (arg);
742
743 if (TYPE_CODE (type) == TYPE_CODE_INT
744 && TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
745 return value_cast (builtin_type_int, arg);
746
747 if (TYPE_CODE (type) == TYPE_CODE_FLT
748 && TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
749 return value_cast (builtin_type_double, arg);
750
751 return arg;
752 }
753
754 /* Push the value ARG, first coercing it as an argument
755 to a C function. */
756
757 static CORE_ADDR
758 value_arg_push (sp, arg)
759 register CORE_ADDR sp;
760 value arg;
761 {
762 return value_push (sp, value_arg_coerce (arg));
763 }
764
765 /* Determine a function's address and its return type from its value.
766 Calls error() if the function is not valid for calling. */
767
768 static CORE_ADDR
769 find_function_addr (function, retval_type)
770 value function;
771 struct type **retval_type;
772 {
773 register struct type *ftype = VALUE_TYPE (function);
774 register enum type_code code = TYPE_CODE (ftype);
775 struct type *value_type;
776 CORE_ADDR funaddr;
777
778 /* If it's a member function, just look at the function
779 part of it. */
780
781 /* Determine address to call. */
782 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
783 {
784 funaddr = VALUE_ADDRESS (function);
785 value_type = TYPE_TARGET_TYPE (ftype);
786 }
787 else if (code == TYPE_CODE_PTR)
788 {
789 funaddr = value_as_pointer (function);
790 if (TYPE_CODE (TYPE_TARGET_TYPE (ftype)) == TYPE_CODE_FUNC
791 || TYPE_CODE (TYPE_TARGET_TYPE (ftype)) == TYPE_CODE_METHOD)
792 value_type = TYPE_TARGET_TYPE (TYPE_TARGET_TYPE (ftype));
793 else
794 value_type = builtin_type_int;
795 }
796 else if (code == TYPE_CODE_INT)
797 {
798 /* Handle the case of functions lacking debugging info.
799 Their values are characters since their addresses are char */
800 if (TYPE_LENGTH (ftype) == 1)
801 funaddr = value_as_pointer (value_addr (function));
802 else
803 /* Handle integer used as address of a function. */
804 funaddr = (CORE_ADDR) value_as_long (function);
805
806 value_type = builtin_type_int;
807 }
808 else
809 error ("Invalid data type for function to be called.");
810
811 *retval_type = value_type;
812 return funaddr;
813 }
814
815 #if defined (CALL_DUMMY)
816 /* All this stuff with a dummy frame may seem unnecessarily complicated
817 (why not just save registers in GDB?). The purpose of pushing a dummy
818 frame which looks just like a real frame is so that if you call a
819 function and then hit a breakpoint (get a signal, etc), "backtrace"
820 will look right. Whether the backtrace needs to actually show the
821 stack at the time the inferior function was called is debatable, but
822 it certainly needs to not display garbage. So if you are contemplating
823 making dummy frames be different from normal frames, consider that. */
824
825 /* Perform a function call in the inferior.
826 ARGS is a vector of values of arguments (NARGS of them).
827 FUNCTION is a value, the function to be called.
828 Returns a value representing what the function returned.
829 May fail to return, if a breakpoint or signal is hit
830 during the execution of the function. */
831
832 value
833 call_function_by_hand (function, nargs, args)
834 value function;
835 int nargs;
836 value *args;
837 {
838 register CORE_ADDR sp;
839 register int i;
840 CORE_ADDR start_sp;
841 /* CALL_DUMMY is an array of words (REGISTER_TYPE), but each word
842 is in host byte order. It is switched to target byte order before calling
843 FIX_CALL_DUMMY. */
844 static REGISTER_TYPE dummy[] = CALL_DUMMY;
845 REGISTER_TYPE dummy1[sizeof dummy / sizeof (REGISTER_TYPE)];
846 CORE_ADDR old_sp;
847 struct type *value_type;
848 unsigned char struct_return;
849 CORE_ADDR struct_addr;
850 struct inferior_status inf_status;
851 struct cleanup *old_chain;
852 CORE_ADDR funaddr;
853 int using_gcc;
854 CORE_ADDR real_pc;
855
856 if (!target_has_execution)
857 noprocess();
858
859 save_inferior_status (&inf_status, 1);
860 old_chain = make_cleanup (restore_inferior_status, &inf_status);
861
862 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
863 (and POP_FRAME for restoring them). (At least on most machines)
864 they are saved on the stack in the inferior. */
865 PUSH_DUMMY_FRAME;
866
867 old_sp = sp = read_sp ();
868
869 #if 1 INNER_THAN 2 /* Stack grows down */
870 sp -= sizeof dummy;
871 start_sp = sp;
872 #else /* Stack grows up */
873 start_sp = sp;
874 sp += sizeof dummy;
875 #endif
876
877 funaddr = find_function_addr (function, &value_type);
878
879 {
880 struct block *b = block_for_pc (funaddr);
881 /* If compiled without -g, assume GCC. */
882 using_gcc = b == NULL || BLOCK_GCC_COMPILED (b);
883 }
884
885 /* Are we returning a value using a structure return or a normal
886 value return? */
887
888 struct_return = using_struct_return (function, funaddr, value_type,
889 using_gcc);
890
891 /* Create a call sequence customized for this function
892 and the number of arguments for it. */
893 for (i = 0; i < sizeof dummy / sizeof (REGISTER_TYPE); i++)
894 store_unsigned_integer (&dummy1[i], sizeof (REGISTER_TYPE),
895 (unsigned LONGEST)dummy[i]);
896
897 #ifdef GDB_TARGET_IS_HPPA
898 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
899 value_type, using_gcc);
900 #else
901 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
902 value_type, using_gcc);
903 real_pc = start_sp;
904 #endif
905
906 #if CALL_DUMMY_LOCATION == ON_STACK
907 write_memory (start_sp, (char *)dummy1, sizeof dummy);
908 #endif /* On stack. */
909
910 #if CALL_DUMMY_LOCATION == BEFORE_TEXT_END
911 /* Convex Unix prohibits executing in the stack segment. */
912 /* Hope there is empty room at the top of the text segment. */
913 {
914 extern CORE_ADDR text_end;
915 static checked = 0;
916 if (!checked)
917 for (start_sp = text_end - sizeof dummy; start_sp < text_end; ++start_sp)
918 if (read_memory_integer (start_sp, 1) != 0)
919 error ("text segment full -- no place to put call");
920 checked = 1;
921 sp = old_sp;
922 real_pc = text_end - sizeof dummy;
923 write_memory (real_pc, (char *)dummy1, sizeof dummy);
924 }
925 #endif /* Before text_end. */
926
927 #if CALL_DUMMY_LOCATION == AFTER_TEXT_END
928 {
929 extern CORE_ADDR text_end;
930 int errcode;
931 sp = old_sp;
932 real_pc = text_end;
933 errcode = target_write_memory (real_pc, (char *)dummy1, sizeof dummy);
934 if (errcode != 0)
935 error ("Cannot write text segment -- call_function failed");
936 }
937 #endif /* After text_end. */
938
939 #if CALL_DUMMY_LOCATION == AT_ENTRY_POINT
940 real_pc = funaddr;
941 #endif /* At entry point. */
942
943 #ifdef lint
944 sp = old_sp; /* It really is used, for some ifdef's... */
945 #endif
946
947 #ifdef STACK_ALIGN
948 /* If stack grows down, we must leave a hole at the top. */
949 {
950 int len = 0;
951
952 /* Reserve space for the return structure to be written on the
953 stack, if necessary */
954
955 if (struct_return)
956 len += TYPE_LENGTH (value_type);
957
958 for (i = nargs - 1; i >= 0; i--)
959 len += TYPE_LENGTH (VALUE_TYPE (value_arg_coerce (args[i])));
960 #ifdef CALL_DUMMY_STACK_ADJUST
961 len += CALL_DUMMY_STACK_ADJUST;
962 #endif
963 #if 1 INNER_THAN 2
964 sp -= STACK_ALIGN (len) - len;
965 #else
966 sp += STACK_ALIGN (len) - len;
967 #endif
968 }
969 #endif /* STACK_ALIGN */
970
971 /* Reserve space for the return structure to be written on the
972 stack, if necessary */
973
974 if (struct_return)
975 {
976 #if 1 INNER_THAN 2
977 sp -= TYPE_LENGTH (value_type);
978 struct_addr = sp;
979 #else
980 struct_addr = sp;
981 sp += TYPE_LENGTH (value_type);
982 #endif
983 }
984
985 #if defined (REG_STRUCT_HAS_ADDR)
986 {
987 /* This is a machine like the sparc, where we need to pass a pointer
988 to the structure, not the structure itself. */
989 if (REG_STRUCT_HAS_ADDR (using_gcc))
990 for (i = nargs - 1; i >= 0; i--)
991 if (TYPE_CODE (VALUE_TYPE (args[i])) == TYPE_CODE_STRUCT)
992 {
993 CORE_ADDR addr;
994 #if !(1 INNER_THAN 2)
995 /* The stack grows up, so the address of the thing we push
996 is the stack pointer before we push it. */
997 addr = sp;
998 #endif
999 /* Push the structure. */
1000 sp = value_push (sp, args[i]);
1001 #if 1 INNER_THAN 2
1002 /* The stack grows down, so the address of the thing we push
1003 is the stack pointer after we push it. */
1004 addr = sp;
1005 #endif
1006 /* The value we're going to pass is the address of the thing
1007 we just pushed. */
1008 args[i] = value_from_longest (lookup_pointer_type (value_type),
1009 (LONGEST) addr);
1010 }
1011 }
1012 #endif /* REG_STRUCT_HAS_ADDR. */
1013
1014 #ifdef PUSH_ARGUMENTS
1015 PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr);
1016 #else /* !PUSH_ARGUMENTS */
1017 for (i = nargs - 1; i >= 0; i--)
1018 sp = value_arg_push (sp, args[i]);
1019 #endif /* !PUSH_ARGUMENTS */
1020
1021 #ifdef CALL_DUMMY_STACK_ADJUST
1022 #if 1 INNER_THAN 2
1023 sp -= CALL_DUMMY_STACK_ADJUST;
1024 #else
1025 sp += CALL_DUMMY_STACK_ADJUST;
1026 #endif
1027 #endif /* CALL_DUMMY_STACK_ADJUST */
1028
1029 /* Store the address at which the structure is supposed to be
1030 written. Note that this (and the code which reserved the space
1031 above) assumes that gcc was used to compile this function. Since
1032 it doesn't cost us anything but space and if the function is pcc
1033 it will ignore this value, we will make that assumption.
1034
1035 Also note that on some machines (like the sparc) pcc uses a
1036 convention like gcc's. */
1037
1038 if (struct_return)
1039 STORE_STRUCT_RETURN (struct_addr, sp);
1040
1041 /* Write the stack pointer. This is here because the statements above
1042 might fool with it. On SPARC, this write also stores the register
1043 window into the right place in the new stack frame, which otherwise
1044 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1045 write_sp (sp);
1046
1047 {
1048 char retbuf[REGISTER_BYTES];
1049 char *name;
1050 struct symbol *symbol;
1051
1052 name = NULL;
1053 symbol = find_pc_function (funaddr);
1054 if (symbol)
1055 {
1056 name = SYMBOL_SOURCE_NAME (symbol);
1057 }
1058 else
1059 {
1060 /* Try the minimal symbols. */
1061 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1062
1063 if (msymbol)
1064 {
1065 name = SYMBOL_SOURCE_NAME (msymbol);
1066 }
1067 }
1068 if (name == NULL)
1069 {
1070 char format[80];
1071 sprintf (format, "at %s", local_hex_format ());
1072 name = alloca (80);
1073 sprintf (name, format, (unsigned long) funaddr);
1074 }
1075
1076 /* Execute the stack dummy routine, calling FUNCTION.
1077 When it is done, discard the empty frame
1078 after storing the contents of all regs into retbuf. */
1079 if (run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf))
1080 {
1081 /* We stopped somewhere besides the call dummy. */
1082
1083 /* If we did the cleanups, we would print a spurious error message
1084 (Unable to restore previously selected frame), would write the
1085 registers from the inf_status (which is wrong), and would do other
1086 wrong things (like set stop_bpstat to the wrong thing). */
1087 discard_cleanups (old_chain);
1088 /* Prevent memory leak. */
1089 bpstat_clear (&inf_status.stop_bpstat);
1090
1091 /* The following error message used to say "The expression
1092 which contained the function call has been discarded." It
1093 is a hard concept to explain in a few words. Ideally, GDB
1094 would be able to resume evaluation of the expression when
1095 the function finally is done executing. Perhaps someday
1096 this will be implemented (it would not be easy). */
1097
1098 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1099 a C++ name with arguments and stuff. */
1100 error ("\
1101 The program being debugged stopped while in a function called from GDB.\n\
1102 When the function (%s) is done executing, GDB will silently\n\
1103 stop (instead of continuing to evaluate the expression containing\n\
1104 the function call).", name);
1105 }
1106
1107 do_cleanups (old_chain);
1108
1109 /* Figure out the value returned by the function. */
1110 return value_being_returned (value_type, retbuf, struct_return);
1111 }
1112 }
1113 #else /* no CALL_DUMMY. */
1114 value
1115 call_function_by_hand (function, nargs, args)
1116 value function;
1117 int nargs;
1118 value *args;
1119 {
1120 error ("Cannot invoke functions on this machine.");
1121 }
1122 #endif /* no CALL_DUMMY. */
1123
1124 \f
1125 /* Create a value for an array by allocating space in the inferior, copying
1126 the data into that space, and then setting up an array value.
1127
1128 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1129 populated from the values passed in ELEMVEC.
1130
1131 The element type of the array is inherited from the type of the
1132 first element, and all elements must have the same size (though we
1133 don't currently enforce any restriction on their types). */
1134
1135 value
1136 value_array (lowbound, highbound, elemvec)
1137 int lowbound;
1138 int highbound;
1139 value *elemvec;
1140 {
1141 int nelem;
1142 int idx;
1143 int typelength;
1144 value val;
1145 struct type *rangetype;
1146 struct type *arraytype;
1147 CORE_ADDR addr;
1148
1149 /* Validate that the bounds are reasonable and that each of the elements
1150 have the same size. */
1151
1152 nelem = highbound - lowbound + 1;
1153 if (nelem <= 0)
1154 {
1155 error ("bad array bounds (%d, %d)", lowbound, highbound);
1156 }
1157 typelength = TYPE_LENGTH (VALUE_TYPE (elemvec[0]));
1158 for (idx = 0; idx < nelem; idx++)
1159 {
1160 if (TYPE_LENGTH (VALUE_TYPE (elemvec[idx])) != typelength)
1161 {
1162 error ("array elements must all be the same size");
1163 }
1164 }
1165
1166 /* Allocate space to store the array in the inferior, and then initialize
1167 it by copying in each element. FIXME: Is it worth it to create a
1168 local buffer in which to collect each value and then write all the
1169 bytes in one operation? */
1170
1171 addr = allocate_space_in_inferior (nelem * typelength);
1172 for (idx = 0; idx < nelem; idx++)
1173 {
1174 write_memory (addr + (idx * typelength), VALUE_CONTENTS (elemvec[idx]),
1175 typelength);
1176 }
1177
1178 /* Create the array type and set up an array value to be evaluated lazily. */
1179
1180 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1181 lowbound, highbound);
1182 arraytype = create_array_type ((struct type *) NULL,
1183 VALUE_TYPE (elemvec[0]), rangetype);
1184 val = value_at_lazy (arraytype, addr);
1185 return (val);
1186 }
1187
1188 /* Create a value for a string constant by allocating space in the inferior,
1189 copying the data into that space, and returning the address with type
1190 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1191 of characters.
1192 Note that string types are like array of char types with a lower bound of
1193 zero and an upper bound of LEN - 1. Also note that the string may contain
1194 embedded null bytes. */
1195
1196 value
1197 value_string (ptr, len)
1198 char *ptr;
1199 int len;
1200 {
1201 value val;
1202 struct type *rangetype;
1203 struct type *stringtype;
1204 CORE_ADDR addr;
1205
1206 /* Allocate space to store the string in the inferior, and then
1207 copy LEN bytes from PTR in gdb to that address in the inferior. */
1208
1209 addr = allocate_space_in_inferior (len);
1210 write_memory (addr, ptr, len);
1211
1212 /* Create the string type and set up a string value to be evaluated
1213 lazily. */
1214
1215 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1216 0, len - 1);
1217 stringtype = create_string_type ((struct type *) NULL, rangetype);
1218 val = value_at_lazy (stringtype, addr);
1219 return (val);
1220 }
1221 \f
1222 /* See if we can pass arguments in T2 to a function which takes arguments
1223 of types T1. Both t1 and t2 are NULL-terminated vectors. If some
1224 arguments need coercion of some sort, then the coerced values are written
1225 into T2. Return value is 0 if the arguments could be matched, or the
1226 position at which they differ if not.
1227
1228 STATICP is nonzero if the T1 argument list came from a
1229 static member function.
1230
1231 For non-static member functions, we ignore the first argument,
1232 which is the type of the instance variable. This is because we want
1233 to handle calls with objects from derived classes. This is not
1234 entirely correct: we should actually check to make sure that a
1235 requested operation is type secure, shouldn't we? FIXME. */
1236
1237 static int
1238 typecmp (staticp, t1, t2)
1239 int staticp;
1240 struct type *t1[];
1241 value t2[];
1242 {
1243 int i;
1244
1245 if (t2 == 0)
1246 return 1;
1247 if (staticp && t1 == 0)
1248 return t2[1] != 0;
1249 if (t1 == 0)
1250 return 1;
1251 if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID) return 0;
1252 if (t1[!staticp] == 0) return 0;
1253 for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
1254 {
1255 if (! t2[i])
1256 return i+1;
1257 if (TYPE_CODE (t1[i]) == TYPE_CODE_REF
1258 /* We should be doing hairy argument matching, as below. */
1259 && (TYPE_CODE (TYPE_TARGET_TYPE (t1[i]))
1260 == TYPE_CODE (VALUE_TYPE (t2[i]))))
1261 {
1262 t2[i] = value_addr (t2[i]);
1263 continue;
1264 }
1265
1266 if (TYPE_CODE (t1[i]) == TYPE_CODE_PTR
1267 && TYPE_CODE (VALUE_TYPE (t2[i])) == TYPE_CODE_ARRAY)
1268 /* Array to pointer is a `trivial conversion' according to the ARM. */
1269 continue;
1270
1271 /* We should be doing much hairier argument matching (see section 13.2
1272 of the ARM), but as a quick kludge, just check for the same type
1273 code. */
1274 if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
1275 return i+1;
1276 }
1277 if (!t1[i]) return 0;
1278 return t2[i] ? i+1 : 0;
1279 }
1280
1281 /* Helper function used by value_struct_elt to recurse through baseclasses.
1282 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1283 and search in it assuming it has (class) type TYPE.
1284 If found, return value, else return NULL.
1285
1286 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
1287 look for a baseclass named NAME. */
1288
1289 static value
1290 search_struct_field (name, arg1, offset, type, looking_for_baseclass)
1291 char *name;
1292 register value arg1;
1293 int offset;
1294 register struct type *type;
1295 int looking_for_baseclass;
1296 {
1297 int i;
1298
1299 check_stub_type (type);
1300
1301 if (! looking_for_baseclass)
1302 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1303 {
1304 char *t_field_name = TYPE_FIELD_NAME (type, i);
1305
1306 if (t_field_name && STREQ (t_field_name, name))
1307 {
1308 value v;
1309 if (TYPE_FIELD_STATIC (type, i))
1310 {
1311 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, i);
1312 struct symbol *sym =
1313 lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
1314 if (sym == NULL)
1315 error ("Internal error: could not find physical static variable named %s",
1316 phys_name);
1317 v = value_at (TYPE_FIELD_TYPE (type, i),
1318 (CORE_ADDR)SYMBOL_BLOCK_VALUE (sym));
1319 }
1320 else
1321 v = value_primitive_field (arg1, offset, i, type);
1322 if (v == 0)
1323 error("there is no field named %s", name);
1324 return v;
1325 }
1326 }
1327
1328 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1329 {
1330 value v;
1331 /* If we are looking for baseclasses, this is what we get when we
1332 hit them. But it could happen that the base part's member name
1333 is not yet filled in. */
1334 int found_baseclass = (looking_for_baseclass
1335 && TYPE_BASECLASS_NAME (type, i) != NULL
1336 && STREQ (name, TYPE_BASECLASS_NAME (type, i)));
1337
1338 if (BASETYPE_VIA_VIRTUAL (type, i))
1339 {
1340 value v2;
1341 /* Fix to use baseclass_offset instead. FIXME */
1342 baseclass_addr (type, i, VALUE_CONTENTS (arg1) + offset,
1343 &v2, (int *)NULL);
1344 if (v2 == 0)
1345 error ("virtual baseclass botch");
1346 if (found_baseclass)
1347 return v2;
1348 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
1349 looking_for_baseclass);
1350 }
1351 else if (found_baseclass)
1352 v = value_primitive_field (arg1, offset, i, type);
1353 else
1354 v = search_struct_field (name, arg1,
1355 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
1356 TYPE_BASECLASS (type, i),
1357 looking_for_baseclass);
1358 if (v) return v;
1359 }
1360 return NULL;
1361 }
1362
1363 /* Helper function used by value_struct_elt to recurse through baseclasses.
1364 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1365 and search in it assuming it has (class) type TYPE.
1366 If found, return value, else if name matched and args not return (value)-1,
1367 else return NULL. */
1368
1369 static value
1370 search_struct_method (name, arg1p, args, offset, static_memfuncp, type)
1371 char *name;
1372 register value *arg1p, *args;
1373 int offset, *static_memfuncp;
1374 register struct type *type;
1375 {
1376 int i;
1377 static int name_matched = 0;
1378
1379 check_stub_type (type);
1380 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1381 {
1382 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1383 if (t_field_name && STREQ (t_field_name, name))
1384 {
1385 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
1386 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1387 name_matched = 1;
1388
1389 if (j > 0 && args == 0)
1390 error ("cannot resolve overloaded method `%s'", name);
1391 while (j >= 0)
1392 {
1393 if (TYPE_FN_FIELD_STUB (f, j))
1394 check_stub_method (type, i, j);
1395 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
1396 TYPE_FN_FIELD_ARGS (f, j), args))
1397 {
1398 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
1399 return (value)value_virtual_fn_field (arg1p, f, j, type, offset);
1400 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
1401 *static_memfuncp = 1;
1402 return (value)value_fn_field (arg1p, f, j, type, offset);
1403 }
1404 j--;
1405 }
1406 }
1407 }
1408
1409 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1410 {
1411 value v;
1412 int base_offset;
1413
1414 if (BASETYPE_VIA_VIRTUAL (type, i))
1415 {
1416 base_offset = baseclass_offset (type, i, *arg1p, offset);
1417 if (base_offset == -1)
1418 error ("virtual baseclass botch");
1419 }
1420 else
1421 {
1422 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1423 }
1424 v = search_struct_method (name, arg1p, args, base_offset + offset,
1425 static_memfuncp, TYPE_BASECLASS (type, i));
1426 if (v == (value) -1)
1427 {
1428 name_matched = 1;
1429 }
1430 else if (v)
1431 {
1432 /* FIXME-bothner: Why is this commented out? Why is it here? */
1433 /* *arg1p = arg1_tmp;*/
1434 return v;
1435 }
1436 }
1437 if (name_matched) return (value) -1;
1438 else return NULL;
1439 }
1440
1441 /* Given *ARGP, a value of type (pointer to a)* structure/union,
1442 extract the component named NAME from the ultimate target structure/union
1443 and return it as a value with its appropriate type.
1444 ERR is used in the error message if *ARGP's type is wrong.
1445
1446 C++: ARGS is a list of argument types to aid in the selection of
1447 an appropriate method. Also, handle derived types.
1448
1449 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
1450 where the truthvalue of whether the function that was resolved was
1451 a static member function or not is stored.
1452
1453 ERR is an error message to be printed in case the field is not found. */
1454
1455 value
1456 value_struct_elt (argp, args, name, static_memfuncp, err)
1457 register value *argp, *args;
1458 char *name;
1459 int *static_memfuncp;
1460 char *err;
1461 {
1462 register struct type *t;
1463 value v;
1464
1465 COERCE_ARRAY (*argp);
1466
1467 t = VALUE_TYPE (*argp);
1468
1469 /* Follow pointers until we get to a non-pointer. */
1470
1471 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1472 {
1473 *argp = value_ind (*argp);
1474 /* Don't coerce fn pointer to fn and then back again! */
1475 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
1476 COERCE_ARRAY (*argp);
1477 t = VALUE_TYPE (*argp);
1478 }
1479
1480 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
1481 error ("not implemented: member type in value_struct_elt");
1482
1483 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
1484 && TYPE_CODE (t) != TYPE_CODE_UNION)
1485 error ("Attempt to extract a component of a value that is not a %s.", err);
1486
1487 /* Assume it's not, unless we see that it is. */
1488 if (static_memfuncp)
1489 *static_memfuncp =0;
1490
1491 if (!args)
1492 {
1493 /* if there are no arguments ...do this... */
1494
1495 /* Try as a field first, because if we succeed, there
1496 is less work to be done. */
1497 v = search_struct_field (name, *argp, 0, t, 0);
1498 if (v)
1499 return v;
1500
1501 /* C++: If it was not found as a data field, then try to
1502 return it as a pointer to a method. */
1503
1504 if (destructor_name_p (name, t))
1505 error ("Cannot get value of destructor");
1506
1507 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
1508
1509 if (v == 0)
1510 {
1511 if (TYPE_NFN_FIELDS (t))
1512 error ("There is no member or method named %s.", name);
1513 else
1514 error ("There is no member named %s.", name);
1515 }
1516 return v;
1517 }
1518
1519 if (destructor_name_p (name, t))
1520 {
1521 if (!args[1])
1522 {
1523 /* destructors are a special case. */
1524 return (value)value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, 0),
1525 TYPE_FN_FIELDLIST_LENGTH (t, 0),
1526 0, 0);
1527 }
1528 else
1529 {
1530 error ("destructor should not have any argument");
1531 }
1532 }
1533 else
1534 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
1535
1536 if (v == (value) -1)
1537 {
1538 error("Argument list of %s mismatch with component in the structure.", name);
1539 }
1540 else if (v == 0)
1541 {
1542 /* See if user tried to invoke data as function. If so,
1543 hand it back. If it's not callable (i.e., a pointer to function),
1544 gdb should give an error. */
1545 v = search_struct_field (name, *argp, 0, t, 0);
1546 }
1547
1548 if (!v)
1549 error ("Structure has no component named %s.", name);
1550 return v;
1551 }
1552
1553 /* C++: return 1 is NAME is a legitimate name for the destructor
1554 of type TYPE. If TYPE does not have a destructor, or
1555 if NAME is inappropriate for TYPE, an error is signaled. */
1556 int
1557 destructor_name_p (name, type)
1558 const char *name;
1559 const struct type *type;
1560 {
1561 /* destructors are a special case. */
1562
1563 if (name[0] == '~')
1564 {
1565 char *dname = type_name_no_tag (type);
1566 if (!STREQ (dname, name+1))
1567 error ("name of destructor must equal name of class");
1568 else
1569 return 1;
1570 }
1571 return 0;
1572 }
1573
1574 /* Helper function for check_field: Given TYPE, a structure/union,
1575 return 1 if the component named NAME from the ultimate
1576 target structure/union is defined, otherwise, return 0. */
1577
1578 static int
1579 check_field_in (type, name)
1580 register struct type *type;
1581 const char *name;
1582 {
1583 register int i;
1584
1585 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1586 {
1587 char *t_field_name = TYPE_FIELD_NAME (type, i);
1588 if (t_field_name && STREQ (t_field_name, name))
1589 return 1;
1590 }
1591
1592 /* C++: If it was not found as a data field, then try to
1593 return it as a pointer to a method. */
1594
1595 /* Destructors are a special case. */
1596 if (destructor_name_p (name, type))
1597 return 1;
1598
1599 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1600 {
1601 if (STREQ (TYPE_FN_FIELDLIST_NAME (type, i), name))
1602 return 1;
1603 }
1604
1605 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1606 if (check_field_in (TYPE_BASECLASS (type, i), name))
1607 return 1;
1608
1609 return 0;
1610 }
1611
1612
1613 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
1614 return 1 if the component named NAME from the ultimate
1615 target structure/union is defined, otherwise, return 0. */
1616
1617 int
1618 check_field (arg1, name)
1619 register value arg1;
1620 const char *name;
1621 {
1622 register struct type *t;
1623
1624 COERCE_ARRAY (arg1);
1625
1626 t = VALUE_TYPE (arg1);
1627
1628 /* Follow pointers until we get to a non-pointer. */
1629
1630 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1631 t = TYPE_TARGET_TYPE (t);
1632
1633 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
1634 error ("not implemented: member type in check_field");
1635
1636 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
1637 && TYPE_CODE (t) != TYPE_CODE_UNION)
1638 error ("Internal error: `this' is not an aggregate");
1639
1640 return check_field_in (t, name);
1641 }
1642
1643 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
1644 return the address of this member as a "pointer to member"
1645 type. If INTYPE is non-null, then it will be the type
1646 of the member we are looking for. This will help us resolve
1647 "pointers to member functions". This function is used
1648 to resolve user expressions of the form "DOMAIN::NAME". */
1649
1650 value
1651 value_struct_elt_for_reference (domain, offset, curtype, name, intype)
1652 struct type *domain, *curtype, *intype;
1653 int offset;
1654 char *name;
1655 {
1656 register struct type *t = curtype;
1657 register int i;
1658 value v;
1659
1660 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
1661 && TYPE_CODE (t) != TYPE_CODE_UNION)
1662 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
1663
1664 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
1665 {
1666 char *t_field_name = TYPE_FIELD_NAME (t, i);
1667
1668 if (t_field_name && STREQ (t_field_name, name))
1669 {
1670 if (TYPE_FIELD_STATIC (t, i))
1671 {
1672 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (t, i);
1673 struct symbol *sym =
1674 lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
1675 if (sym == NULL)
1676 error ("Internal error: could not find physical static variable named %s",
1677 phys_name);
1678 return value_at (SYMBOL_TYPE (sym),
1679 (CORE_ADDR)SYMBOL_BLOCK_VALUE (sym));
1680 }
1681 if (TYPE_FIELD_PACKED (t, i))
1682 error ("pointers to bitfield members not allowed");
1683
1684 return value_from_longest
1685 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
1686 domain)),
1687 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
1688 }
1689 }
1690
1691 /* C++: If it was not found as a data field, then try to
1692 return it as a pointer to a method. */
1693
1694 /* Destructors are a special case. */
1695 if (destructor_name_p (name, t))
1696 {
1697 error ("member pointers to destructors not implemented yet");
1698 }
1699
1700 /* Perform all necessary dereferencing. */
1701 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
1702 intype = TYPE_TARGET_TYPE (intype);
1703
1704 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
1705 {
1706 if (STREQ (TYPE_FN_FIELDLIST_NAME (t, i), name))
1707 {
1708 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
1709 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
1710
1711 if (intype == 0 && j > 1)
1712 error ("non-unique member `%s' requires type instantiation", name);
1713 if (intype)
1714 {
1715 while (j--)
1716 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
1717 break;
1718 if (j < 0)
1719 error ("no member function matches that type instantiation");
1720 }
1721 else
1722 j = 0;
1723
1724 if (TYPE_FN_FIELD_STUB (f, j))
1725 check_stub_method (t, i, j);
1726 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
1727 {
1728 return value_from_longest
1729 (lookup_reference_type
1730 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
1731 domain)),
1732 (LONGEST) METHOD_PTR_FROM_VOFFSET
1733 (TYPE_FN_FIELD_VOFFSET (f, j)));
1734 }
1735 else
1736 {
1737 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
1738 0, VAR_NAMESPACE, 0, NULL);
1739 if (s == NULL)
1740 {
1741 v = 0;
1742 }
1743 else
1744 {
1745 v = read_var_value (s, 0);
1746 #if 0
1747 VALUE_TYPE (v) = lookup_reference_type
1748 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
1749 domain));
1750 #endif
1751 }
1752 return v;
1753 }
1754 }
1755 }
1756 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
1757 {
1758 value v;
1759 int base_offset;
1760
1761 if (BASETYPE_VIA_VIRTUAL (t, i))
1762 base_offset = 0;
1763 else
1764 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
1765 v = value_struct_elt_for_reference (domain,
1766 offset + base_offset,
1767 TYPE_BASECLASS (t, i),
1768 name,
1769 intype);
1770 if (v)
1771 return v;
1772 }
1773 return 0;
1774 }
1775
1776 /* C++: return the value of the class instance variable, if one exists.
1777 Flag COMPLAIN signals an error if the request is made in an
1778 inappropriate context. */
1779 value
1780 value_of_this (complain)
1781 int complain;
1782 {
1783 extern FRAME selected_frame;
1784 struct symbol *func, *sym;
1785 struct block *b;
1786 int i;
1787 static const char funny_this[] = "this";
1788 value this;
1789
1790 if (selected_frame == 0)
1791 if (complain)
1792 error ("no frame selected");
1793 else return 0;
1794
1795 func = get_frame_function (selected_frame);
1796 if (!func)
1797 {
1798 if (complain)
1799 error ("no `this' in nameless context");
1800 else return 0;
1801 }
1802
1803 b = SYMBOL_BLOCK_VALUE (func);
1804 i = BLOCK_NSYMS (b);
1805 if (i <= 0)
1806 if (complain)
1807 error ("no args, no `this'");
1808 else return 0;
1809
1810 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
1811 symbol instead of the LOC_ARG one (if both exist). */
1812 sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE);
1813 if (sym == NULL)
1814 {
1815 if (complain)
1816 error ("current stack frame not in method");
1817 else
1818 return NULL;
1819 }
1820
1821 this = read_var_value (sym, selected_frame);
1822 if (this == 0 && complain)
1823 error ("`this' argument at unknown address");
1824 return this;
1825 }