gdb: remove TYPE_FIELD_ENUMVAL
[binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "demangle.h"
29 #include "language.h"
30 #include "gdbcmd.h"
31 #include "regcache.h"
32 #include "cp-abi.h"
33 #include "block.h"
34 #include "infcall.h"
35 #include "dictionary.h"
36 #include "cp-support.h"
37 #include "target-float.h"
38 #include "tracepoint.h"
39 #include "observable.h"
40 #include "objfiles.h"
41 #include "extension.h"
42 #include "gdbtypes.h"
43 #include "gdbsupport/byte-vector.h"
44
45 /* Local functions. */
46
47 static int typecmp (bool staticp, bool varargs, int nargs,
48 struct field t1[], const gdb::array_view<value *> t2);
49
50 static struct value *search_struct_field (const char *, struct value *,
51 struct type *, int);
52
53 static struct value *search_struct_method (const char *, struct value **,
54 gdb::optional<gdb::array_view<value *>>,
55 LONGEST, int *, struct type *);
56
57 static int find_oload_champ_namespace (gdb::array_view<value *> args,
58 const char *, const char *,
59 std::vector<symbol *> *oload_syms,
60 badness_vector *,
61 const int no_adl);
62
63 static int find_oload_champ_namespace_loop (gdb::array_view<value *> args,
64 const char *, const char *,
65 int, std::vector<symbol *> *oload_syms,
66 badness_vector *, int *,
67 const int no_adl);
68
69 static int find_oload_champ (gdb::array_view<value *> args,
70 size_t num_fns,
71 fn_field *methods,
72 xmethod_worker_up *xmethods,
73 symbol **functions,
74 badness_vector *oload_champ_bv);
75
76 static int oload_method_static_p (struct fn_field *, int);
77
78 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
79
80 static enum oload_classification classify_oload_match
81 (const badness_vector &, int, int);
82
83 static struct value *value_struct_elt_for_reference (struct type *,
84 int, struct type *,
85 const char *,
86 struct type *,
87 int, enum noside);
88
89 static struct value *value_namespace_elt (const struct type *,
90 const char *, int , enum noside);
91
92 static struct value *value_maybe_namespace_elt (const struct type *,
93 const char *, int,
94 enum noside);
95
96 static CORE_ADDR allocate_space_in_inferior (int);
97
98 static struct value *cast_into_complex (struct type *, struct value *);
99
100 bool overload_resolution = false;
101 static void
102 show_overload_resolution (struct ui_file *file, int from_tty,
103 struct cmd_list_element *c,
104 const char *value)
105 {
106 fprintf_filtered (file, _("Overload resolution in evaluating "
107 "C++ functions is %s.\n"),
108 value);
109 }
110
111 /* Find the address of function name NAME in the inferior. If OBJF_P
112 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
113 is defined. */
114
115 struct value *
116 find_function_in_inferior (const char *name, struct objfile **objf_p)
117 {
118 struct block_symbol sym;
119
120 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
121 if (sym.symbol != NULL)
122 {
123 if (SYMBOL_CLASS (sym.symbol) != LOC_BLOCK)
124 {
125 error (_("\"%s\" exists in this program but is not a function."),
126 name);
127 }
128
129 if (objf_p)
130 *objf_p = symbol_objfile (sym.symbol);
131
132 return value_of_variable (sym.symbol, sym.block);
133 }
134 else
135 {
136 struct bound_minimal_symbol msymbol =
137 lookup_bound_minimal_symbol (name);
138
139 if (msymbol.minsym != NULL)
140 {
141 struct objfile *objfile = msymbol.objfile;
142 struct gdbarch *gdbarch = objfile->arch ();
143
144 struct type *type;
145 CORE_ADDR maddr;
146 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
147 type = lookup_function_type (type);
148 type = lookup_pointer_type (type);
149 maddr = BMSYMBOL_VALUE_ADDRESS (msymbol);
150
151 if (objf_p)
152 *objf_p = objfile;
153
154 return value_from_pointer (type, maddr);
155 }
156 else
157 {
158 if (!target_has_execution ())
159 error (_("evaluation of this expression "
160 "requires the target program to be active"));
161 else
162 error (_("evaluation of this expression requires the "
163 "program to have a function \"%s\"."),
164 name);
165 }
166 }
167 }
168
169 /* Allocate NBYTES of space in the inferior using the inferior's
170 malloc and return a value that is a pointer to the allocated
171 space. */
172
173 struct value *
174 value_allocate_space_in_inferior (int len)
175 {
176 struct objfile *objf;
177 struct value *val = find_function_in_inferior ("malloc", &objf);
178 struct gdbarch *gdbarch = objf->arch ();
179 struct value *blocklen;
180
181 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
182 val = call_function_by_hand (val, NULL, blocklen);
183 if (value_logical_not (val))
184 {
185 if (!target_has_execution ())
186 error (_("No memory available to program now: "
187 "you need to start the target first"));
188 else
189 error (_("No memory available to program: call to malloc failed"));
190 }
191 return val;
192 }
193
194 static CORE_ADDR
195 allocate_space_in_inferior (int len)
196 {
197 return value_as_long (value_allocate_space_in_inferior (len));
198 }
199
200 /* Cast struct value VAL to type TYPE and return as a value.
201 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
202 for this to work. Typedef to one of the codes is permitted.
203 Returns NULL if the cast is neither an upcast nor a downcast. */
204
205 static struct value *
206 value_cast_structs (struct type *type, struct value *v2)
207 {
208 struct type *t1;
209 struct type *t2;
210 struct value *v;
211
212 gdb_assert (type != NULL && v2 != NULL);
213
214 t1 = check_typedef (type);
215 t2 = check_typedef (value_type (v2));
216
217 /* Check preconditions. */
218 gdb_assert ((t1->code () == TYPE_CODE_STRUCT
219 || t1->code () == TYPE_CODE_UNION)
220 && !!"Precondition is that type is of STRUCT or UNION kind.");
221 gdb_assert ((t2->code () == TYPE_CODE_STRUCT
222 || t2->code () == TYPE_CODE_UNION)
223 && !!"Precondition is that value is of STRUCT or UNION kind");
224
225 if (t1->name () != NULL
226 && t2->name () != NULL
227 && !strcmp (t1->name (), t2->name ()))
228 return NULL;
229
230 /* Upcasting: look in the type of the source to see if it contains the
231 type of the target as a superclass. If so, we'll need to
232 offset the pointer rather than just change its type. */
233 if (t1->name () != NULL)
234 {
235 v = search_struct_field (t1->name (),
236 v2, t2, 1);
237 if (v)
238 return v;
239 }
240
241 /* Downcasting: look in the type of the target to see if it contains the
242 type of the source as a superclass. If so, we'll need to
243 offset the pointer rather than just change its type. */
244 if (t2->name () != NULL)
245 {
246 /* Try downcasting using the run-time type of the value. */
247 int full, using_enc;
248 LONGEST top;
249 struct type *real_type;
250
251 real_type = value_rtti_type (v2, &full, &top, &using_enc);
252 if (real_type)
253 {
254 v = value_full_object (v2, real_type, full, top, using_enc);
255 v = value_at_lazy (real_type, value_address (v));
256 real_type = value_type (v);
257
258 /* We might be trying to cast to the outermost enclosing
259 type, in which case search_struct_field won't work. */
260 if (real_type->name () != NULL
261 && !strcmp (real_type->name (), t1->name ()))
262 return v;
263
264 v = search_struct_field (t2->name (), v, real_type, 1);
265 if (v)
266 return v;
267 }
268
269 /* Try downcasting using information from the destination type
270 T2. This wouldn't work properly for classes with virtual
271 bases, but those were handled above. */
272 v = search_struct_field (t2->name (),
273 value_zero (t1, not_lval), t1, 1);
274 if (v)
275 {
276 /* Downcasting is possible (t1 is superclass of v2). */
277 CORE_ADDR addr2 = value_address (v2);
278
279 addr2 -= value_address (v) + value_embedded_offset (v);
280 return value_at (type, addr2);
281 }
282 }
283
284 return NULL;
285 }
286
287 /* Cast one pointer or reference type to another. Both TYPE and
288 the type of ARG2 should be pointer types, or else both should be
289 reference types. If SUBCLASS_CHECK is non-zero, this will force a
290 check to see whether TYPE is a superclass of ARG2's type. If
291 SUBCLASS_CHECK is zero, then the subclass check is done only when
292 ARG2 is itself non-zero. Returns the new pointer or reference. */
293
294 struct value *
295 value_cast_pointers (struct type *type, struct value *arg2,
296 int subclass_check)
297 {
298 struct type *type1 = check_typedef (type);
299 struct type *type2 = check_typedef (value_type (arg2));
300 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
301 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
302
303 if (t1->code () == TYPE_CODE_STRUCT
304 && t2->code () == TYPE_CODE_STRUCT
305 && (subclass_check || !value_logical_not (arg2)))
306 {
307 struct value *v2;
308
309 if (TYPE_IS_REFERENCE (type2))
310 v2 = coerce_ref (arg2);
311 else
312 v2 = value_ind (arg2);
313 gdb_assert (check_typedef (value_type (v2))->code ()
314 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
315 v2 = value_cast_structs (t1, v2);
316 /* At this point we have what we can have, un-dereference if needed. */
317 if (v2)
318 {
319 struct value *v = value_addr (v2);
320
321 deprecated_set_value_type (v, type);
322 return v;
323 }
324 }
325
326 /* No superclass found, just change the pointer type. */
327 arg2 = value_copy (arg2);
328 deprecated_set_value_type (arg2, type);
329 set_value_enclosing_type (arg2, type);
330 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
331 return arg2;
332 }
333
334 /* See value.h. */
335
336 gdb_mpq
337 value_to_gdb_mpq (struct value *value)
338 {
339 struct type *type = check_typedef (value_type (value));
340
341 gdb_mpq result;
342 if (is_floating_type (type))
343 {
344 double d = target_float_to_host_double (value_contents (value).data (),
345 type);
346 mpq_set_d (result.val, d);
347 }
348 else
349 {
350 gdb_assert (is_integral_type (type)
351 || is_fixed_point_type (type));
352
353 gdb_mpz vz;
354 vz.read (gdb::make_array_view (value_contents (value).data (),
355 TYPE_LENGTH (type)),
356 type_byte_order (type), type->is_unsigned ());
357 mpq_set_z (result.val, vz.val);
358
359 if (is_fixed_point_type (type))
360 mpq_mul (result.val, result.val,
361 type->fixed_point_scaling_factor ().val);
362 }
363
364 return result;
365 }
366
367 /* Assuming that TO_TYPE is a fixed point type, return a value
368 corresponding to the cast of FROM_VAL to that type. */
369
370 static struct value *
371 value_cast_to_fixed_point (struct type *to_type, struct value *from_val)
372 {
373 struct type *from_type = value_type (from_val);
374
375 if (from_type == to_type)
376 return from_val;
377
378 if (!is_floating_type (from_type)
379 && !is_integral_type (from_type)
380 && !is_fixed_point_type (from_type))
381 error (_("Invalid conversion from type %s to fixed point type %s"),
382 from_type->name (), to_type->name ());
383
384 gdb_mpq vq = value_to_gdb_mpq (from_val);
385
386 /* Divide that value by the scaling factor to obtain the unscaled
387 value, first in rational form, and then in integer form. */
388
389 mpq_div (vq.val, vq.val, to_type->fixed_point_scaling_factor ().val);
390 gdb_mpz unscaled = vq.get_rounded ();
391
392 /* Finally, create the result value, and pack the unscaled value
393 in it. */
394 struct value *result = allocate_value (to_type);
395 unscaled.write (gdb::make_array_view (value_contents_raw (result).data (),
396 TYPE_LENGTH (to_type)),
397 type_byte_order (to_type),
398 to_type->is_unsigned ());
399
400 return result;
401 }
402
403 /* Cast value ARG2 to type TYPE and return as a value.
404 More general than a C cast: accepts any two types of the same length,
405 and if ARG2 is an lvalue it can be cast into anything at all. */
406 /* In C++, casts may change pointer or object representations. */
407
408 struct value *
409 value_cast (struct type *type, struct value *arg2)
410 {
411 enum type_code code1;
412 enum type_code code2;
413 int scalar;
414 struct type *type2;
415
416 int convert_to_boolean = 0;
417
418 /* TYPE might be equal in meaning to the existing type of ARG2, but for
419 many reasons, might be a different type object (e.g. TYPE might be a
420 gdbarch owned type, while VALUE_TYPE (ARG2) could be an objfile owned
421 type).
422
423 In this case we want to preserve the LVAL of ARG2 as this allows the
424 resulting value to be used in more places. We do this by calling
425 VALUE_COPY if appropriate. */
426 if (types_deeply_equal (value_type (arg2), type))
427 {
428 /* If the types are exactly equal then we can avoid creating a new
429 value completely. */
430 if (value_type (arg2) != type)
431 {
432 arg2 = value_copy (arg2);
433 deprecated_set_value_type (arg2, type);
434 }
435 return arg2;
436 }
437
438 if (is_fixed_point_type (type))
439 return value_cast_to_fixed_point (type, arg2);
440
441 /* Check if we are casting struct reference to struct reference. */
442 if (TYPE_IS_REFERENCE (check_typedef (type)))
443 {
444 /* We dereference type; then we recurse and finally
445 we generate value of the given reference. Nothing wrong with
446 that. */
447 struct type *t1 = check_typedef (type);
448 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
449 struct value *val = value_cast (dereftype, arg2);
450
451 return value_ref (val, t1->code ());
452 }
453
454 if (TYPE_IS_REFERENCE (check_typedef (value_type (arg2))))
455 /* We deref the value and then do the cast. */
456 return value_cast (type, coerce_ref (arg2));
457
458 /* Strip typedefs / resolve stubs in order to get at the type's
459 code/length, but remember the original type, to use as the
460 resulting type of the cast, in case it was a typedef. */
461 struct type *to_type = type;
462
463 type = check_typedef (type);
464 code1 = type->code ();
465 arg2 = coerce_ref (arg2);
466 type2 = check_typedef (value_type (arg2));
467
468 /* You can't cast to a reference type. See value_cast_pointers
469 instead. */
470 gdb_assert (!TYPE_IS_REFERENCE (type));
471
472 /* A cast to an undetermined-length array_type, such as
473 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
474 where N is sizeof(OBJECT)/sizeof(TYPE). */
475 if (code1 == TYPE_CODE_ARRAY)
476 {
477 struct type *element_type = TYPE_TARGET_TYPE (type);
478 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
479
480 if (element_length > 0 && type->bounds ()->high.kind () == PROP_UNDEFINED)
481 {
482 struct type *range_type = type->index_type ();
483 int val_length = TYPE_LENGTH (type2);
484 LONGEST low_bound, high_bound, new_length;
485
486 if (!get_discrete_bounds (range_type, &low_bound, &high_bound))
487 low_bound = 0, high_bound = 0;
488 new_length = val_length / element_length;
489 if (val_length % element_length != 0)
490 warning (_("array element type size does not "
491 "divide object size in cast"));
492 /* FIXME-type-allocation: need a way to free this type when
493 we are done with it. */
494 range_type = create_static_range_type (NULL,
495 TYPE_TARGET_TYPE (range_type),
496 low_bound,
497 new_length + low_bound - 1);
498 deprecated_set_value_type (arg2,
499 create_array_type (NULL,
500 element_type,
501 range_type));
502 return arg2;
503 }
504 }
505
506 if (current_language->c_style_arrays_p ()
507 && type2->code () == TYPE_CODE_ARRAY
508 && !type2->is_vector ())
509 arg2 = value_coerce_array (arg2);
510
511 if (type2->code () == TYPE_CODE_FUNC)
512 arg2 = value_coerce_function (arg2);
513
514 type2 = check_typedef (value_type (arg2));
515 code2 = type2->code ();
516
517 if (code1 == TYPE_CODE_COMPLEX)
518 return cast_into_complex (to_type, arg2);
519 if (code1 == TYPE_CODE_BOOL)
520 {
521 code1 = TYPE_CODE_INT;
522 convert_to_boolean = 1;
523 }
524 if (code1 == TYPE_CODE_CHAR)
525 code1 = TYPE_CODE_INT;
526 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
527 code2 = TYPE_CODE_INT;
528
529 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
530 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
531 || code2 == TYPE_CODE_RANGE
532 || is_fixed_point_type (type2));
533
534 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
535 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
536 && type->name () != 0)
537 {
538 struct value *v = value_cast_structs (to_type, arg2);
539
540 if (v)
541 return v;
542 }
543
544 if (is_floating_type (type) && scalar)
545 {
546 if (is_floating_value (arg2))
547 {
548 struct value *v = allocate_value (to_type);
549 target_float_convert (value_contents (arg2).data (), type2,
550 value_contents_raw (v).data (), type);
551 return v;
552 }
553 else if (is_fixed_point_type (type2))
554 {
555 gdb_mpq fp_val;
556
557 fp_val.read_fixed_point
558 (gdb::make_array_view (value_contents (arg2).data (),
559 TYPE_LENGTH (type2)),
560 type_byte_order (type2), type2->is_unsigned (),
561 type2->fixed_point_scaling_factor ());
562
563 struct value *v = allocate_value (to_type);
564 target_float_from_host_double (value_contents_raw (v).data (),
565 to_type, mpq_get_d (fp_val.val));
566 return v;
567 }
568
569 /* The only option left is an integral type. */
570 if (type2->is_unsigned ())
571 return value_from_ulongest (to_type, value_as_long (arg2));
572 else
573 return value_from_longest (to_type, value_as_long (arg2));
574 }
575 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
576 || code1 == TYPE_CODE_RANGE)
577 && (scalar || code2 == TYPE_CODE_PTR
578 || code2 == TYPE_CODE_MEMBERPTR))
579 {
580 LONGEST longest;
581
582 /* When we cast pointers to integers, we mustn't use
583 gdbarch_pointer_to_address to find the address the pointer
584 represents, as value_as_long would. GDB should evaluate
585 expressions just as the compiler would --- and the compiler
586 sees a cast as a simple reinterpretation of the pointer's
587 bits. */
588 if (code2 == TYPE_CODE_PTR)
589 longest = extract_unsigned_integer
590 (value_contents (arg2).data (), TYPE_LENGTH (type2),
591 type_byte_order (type2));
592 else
593 longest = value_as_long (arg2);
594 return value_from_longest (to_type, convert_to_boolean ?
595 (LONGEST) (longest ? 1 : 0) : longest);
596 }
597 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
598 || code2 == TYPE_CODE_ENUM
599 || code2 == TYPE_CODE_RANGE))
600 {
601 /* TYPE_LENGTH (type) is the length of a pointer, but we really
602 want the length of an address! -- we are really dealing with
603 addresses (i.e., gdb representations) not pointers (i.e.,
604 target representations) here.
605
606 This allows things like "print *(int *)0x01000234" to work
607 without printing a misleading message -- which would
608 otherwise occur when dealing with a target having two byte
609 pointers and four byte addresses. */
610
611 int addr_bit = gdbarch_addr_bit (type2->arch ());
612 LONGEST longest = value_as_long (arg2);
613
614 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
615 {
616 if (longest >= ((LONGEST) 1 << addr_bit)
617 || longest <= -((LONGEST) 1 << addr_bit))
618 warning (_("value truncated"));
619 }
620 return value_from_longest (to_type, longest);
621 }
622 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
623 && value_as_long (arg2) == 0)
624 {
625 struct value *result = allocate_value (to_type);
626
627 cplus_make_method_ptr (to_type,
628 value_contents_writeable (result).data (), 0, 0);
629 return result;
630 }
631 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
632 && value_as_long (arg2) == 0)
633 {
634 /* The Itanium C++ ABI represents NULL pointers to members as
635 minus one, instead of biasing the normal case. */
636 return value_from_longest (to_type, -1);
637 }
638 else if (code1 == TYPE_CODE_ARRAY && type->is_vector ()
639 && code2 == TYPE_CODE_ARRAY && type2->is_vector ()
640 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
641 error (_("Cannot convert between vector values of different sizes"));
642 else if (code1 == TYPE_CODE_ARRAY && type->is_vector () && scalar
643 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
644 error (_("can only cast scalar to vector of same size"));
645 else if (code1 == TYPE_CODE_VOID)
646 {
647 return value_zero (to_type, not_lval);
648 }
649 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
650 {
651 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
652 return value_cast_pointers (to_type, arg2, 0);
653
654 arg2 = value_copy (arg2);
655 deprecated_set_value_type (arg2, to_type);
656 set_value_enclosing_type (arg2, to_type);
657 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
658 return arg2;
659 }
660 else if (VALUE_LVAL (arg2) == lval_memory)
661 return value_at_lazy (to_type, value_address (arg2));
662 else
663 {
664 if (current_language->la_language == language_ada)
665 error (_("Invalid type conversion."));
666 error (_("Invalid cast."));
667 }
668 }
669
670 /* The C++ reinterpret_cast operator. */
671
672 struct value *
673 value_reinterpret_cast (struct type *type, struct value *arg)
674 {
675 struct value *result;
676 struct type *real_type = check_typedef (type);
677 struct type *arg_type, *dest_type;
678 int is_ref = 0;
679 enum type_code dest_code, arg_code;
680
681 /* Do reference, function, and array conversion. */
682 arg = coerce_array (arg);
683
684 /* Attempt to preserve the type the user asked for. */
685 dest_type = type;
686
687 /* If we are casting to a reference type, transform
688 reinterpret_cast<T&[&]>(V) to *reinterpret_cast<T*>(&V). */
689 if (TYPE_IS_REFERENCE (real_type))
690 {
691 is_ref = 1;
692 arg = value_addr (arg);
693 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
694 real_type = lookup_pointer_type (real_type);
695 }
696
697 arg_type = value_type (arg);
698
699 dest_code = real_type->code ();
700 arg_code = arg_type->code ();
701
702 /* We can convert pointer types, or any pointer type to int, or int
703 type to pointer. */
704 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
705 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
706 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
707 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
708 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
709 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
710 || (dest_code == arg_code
711 && (dest_code == TYPE_CODE_PTR
712 || dest_code == TYPE_CODE_METHODPTR
713 || dest_code == TYPE_CODE_MEMBERPTR)))
714 result = value_cast (dest_type, arg);
715 else
716 error (_("Invalid reinterpret_cast"));
717
718 if (is_ref)
719 result = value_cast (type, value_ref (value_ind (result),
720 type->code ()));
721
722 return result;
723 }
724
725 /* A helper for value_dynamic_cast. This implements the first of two
726 runtime checks: we iterate over all the base classes of the value's
727 class which are equal to the desired class; if only one of these
728 holds the value, then it is the answer. */
729
730 static int
731 dynamic_cast_check_1 (struct type *desired_type,
732 const gdb_byte *valaddr,
733 LONGEST embedded_offset,
734 CORE_ADDR address,
735 struct value *val,
736 struct type *search_type,
737 CORE_ADDR arg_addr,
738 struct type *arg_type,
739 struct value **result)
740 {
741 int i, result_count = 0;
742
743 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
744 {
745 LONGEST offset = baseclass_offset (search_type, i, valaddr,
746 embedded_offset,
747 address, val);
748
749 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
750 {
751 if (address + embedded_offset + offset >= arg_addr
752 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
753 {
754 ++result_count;
755 if (!*result)
756 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
757 address + embedded_offset + offset);
758 }
759 }
760 else
761 result_count += dynamic_cast_check_1 (desired_type,
762 valaddr,
763 embedded_offset + offset,
764 address, val,
765 TYPE_BASECLASS (search_type, i),
766 arg_addr,
767 arg_type,
768 result);
769 }
770
771 return result_count;
772 }
773
774 /* A helper for value_dynamic_cast. This implements the second of two
775 runtime checks: we look for a unique public sibling class of the
776 argument's declared class. */
777
778 static int
779 dynamic_cast_check_2 (struct type *desired_type,
780 const gdb_byte *valaddr,
781 LONGEST embedded_offset,
782 CORE_ADDR address,
783 struct value *val,
784 struct type *search_type,
785 struct value **result)
786 {
787 int i, result_count = 0;
788
789 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
790 {
791 LONGEST offset;
792
793 if (! BASETYPE_VIA_PUBLIC (search_type, i))
794 continue;
795
796 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
797 address, val);
798 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
799 {
800 ++result_count;
801 if (*result == NULL)
802 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
803 address + embedded_offset + offset);
804 }
805 else
806 result_count += dynamic_cast_check_2 (desired_type,
807 valaddr,
808 embedded_offset + offset,
809 address, val,
810 TYPE_BASECLASS (search_type, i),
811 result);
812 }
813
814 return result_count;
815 }
816
817 /* The C++ dynamic_cast operator. */
818
819 struct value *
820 value_dynamic_cast (struct type *type, struct value *arg)
821 {
822 int full, using_enc;
823 LONGEST top;
824 struct type *resolved_type = check_typedef (type);
825 struct type *arg_type = check_typedef (value_type (arg));
826 struct type *class_type, *rtti_type;
827 struct value *result, *tem, *original_arg = arg;
828 CORE_ADDR addr;
829 int is_ref = TYPE_IS_REFERENCE (resolved_type);
830
831 if (resolved_type->code () != TYPE_CODE_PTR
832 && !TYPE_IS_REFERENCE (resolved_type))
833 error (_("Argument to dynamic_cast must be a pointer or reference type"));
834 if (TYPE_TARGET_TYPE (resolved_type)->code () != TYPE_CODE_VOID
835 && TYPE_TARGET_TYPE (resolved_type)->code () != TYPE_CODE_STRUCT)
836 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
837
838 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
839 if (resolved_type->code () == TYPE_CODE_PTR)
840 {
841 if (arg_type->code () != TYPE_CODE_PTR
842 && ! (arg_type->code () == TYPE_CODE_INT
843 && value_as_long (arg) == 0))
844 error (_("Argument to dynamic_cast does not have pointer type"));
845 if (arg_type->code () == TYPE_CODE_PTR)
846 {
847 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
848 if (arg_type->code () != TYPE_CODE_STRUCT)
849 error (_("Argument to dynamic_cast does "
850 "not have pointer to class type"));
851 }
852
853 /* Handle NULL pointers. */
854 if (value_as_long (arg) == 0)
855 return value_zero (type, not_lval);
856
857 arg = value_ind (arg);
858 }
859 else
860 {
861 if (arg_type->code () != TYPE_CODE_STRUCT)
862 error (_("Argument to dynamic_cast does not have class type"));
863 }
864
865 /* If the classes are the same, just return the argument. */
866 if (class_types_same_p (class_type, arg_type))
867 return value_cast (type, arg);
868
869 /* If the target type is a unique base class of the argument's
870 declared type, just cast it. */
871 if (is_ancestor (class_type, arg_type))
872 {
873 if (is_unique_ancestor (class_type, arg))
874 return value_cast (type, original_arg);
875 error (_("Ambiguous dynamic_cast"));
876 }
877
878 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
879 if (! rtti_type)
880 error (_("Couldn't determine value's most derived type for dynamic_cast"));
881
882 /* Compute the most derived object's address. */
883 addr = value_address (arg);
884 if (full)
885 {
886 /* Done. */
887 }
888 else if (using_enc)
889 addr += top;
890 else
891 addr += top + value_embedded_offset (arg);
892
893 /* dynamic_cast<void *> means to return a pointer to the
894 most-derived object. */
895 if (resolved_type->code () == TYPE_CODE_PTR
896 && TYPE_TARGET_TYPE (resolved_type)->code () == TYPE_CODE_VOID)
897 return value_at_lazy (type, addr);
898
899 tem = value_at (type, addr);
900 type = value_type (tem);
901
902 /* The first dynamic check specified in 5.2.7. */
903 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
904 {
905 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
906 return tem;
907 result = NULL;
908 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
909 value_contents_for_printing (tem).data (),
910 value_embedded_offset (tem),
911 value_address (tem), tem,
912 rtti_type, addr,
913 arg_type,
914 &result) == 1)
915 return value_cast (type,
916 is_ref
917 ? value_ref (result, resolved_type->code ())
918 : value_addr (result));
919 }
920
921 /* The second dynamic check specified in 5.2.7. */
922 result = NULL;
923 if (is_public_ancestor (arg_type, rtti_type)
924 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
925 value_contents_for_printing (tem).data (),
926 value_embedded_offset (tem),
927 value_address (tem), tem,
928 rtti_type, &result) == 1)
929 return value_cast (type,
930 is_ref
931 ? value_ref (result, resolved_type->code ())
932 : value_addr (result));
933
934 if (resolved_type->code () == TYPE_CODE_PTR)
935 return value_zero (type, not_lval);
936
937 error (_("dynamic_cast failed"));
938 }
939
940 /* Create a not_lval value of numeric type TYPE that is one, and return it. */
941
942 struct value *
943 value_one (struct type *type)
944 {
945 struct type *type1 = check_typedef (type);
946 struct value *val;
947
948 if (is_integral_type (type1) || is_floating_type (type1))
949 {
950 val = value_from_longest (type, (LONGEST) 1);
951 }
952 else if (type1->code () == TYPE_CODE_ARRAY && type1->is_vector ())
953 {
954 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
955 int i;
956 LONGEST low_bound, high_bound;
957 struct value *tmp;
958
959 if (!get_array_bounds (type1, &low_bound, &high_bound))
960 error (_("Could not determine the vector bounds"));
961
962 val = allocate_value (type);
963 for (i = 0; i < high_bound - low_bound + 1; i++)
964 {
965 tmp = value_one (eltype);
966 memcpy ((value_contents_writeable (val).data ()
967 + i * TYPE_LENGTH (eltype)),
968 value_contents_all (tmp).data (), TYPE_LENGTH (eltype));
969 }
970 }
971 else
972 {
973 error (_("Not a numeric type."));
974 }
975
976 /* value_one result is never used for assignments to. */
977 gdb_assert (VALUE_LVAL (val) == not_lval);
978
979 return val;
980 }
981
982 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack.
983 The type of the created value may differ from the passed type TYPE.
984 Make sure to retrieve the returned values's new type after this call
985 e.g. in case the type is a variable length array. */
986
987 static struct value *
988 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
989 {
990 struct value *val;
991
992 if (check_typedef (type)->code () == TYPE_CODE_VOID)
993 error (_("Attempt to dereference a generic pointer."));
994
995 val = value_from_contents_and_address (type, NULL, addr);
996
997 if (!lazy)
998 value_fetch_lazy (val);
999
1000 return val;
1001 }
1002
1003 /* Return a value with type TYPE located at ADDR.
1004
1005 Call value_at only if the data needs to be fetched immediately;
1006 if we can be 'lazy' and defer the fetch, perhaps indefinitely, call
1007 value_at_lazy instead. value_at_lazy simply records the address of
1008 the data and sets the lazy-evaluation-required flag. The lazy flag
1009 is tested in the value_contents macro, which is used if and when
1010 the contents are actually required. The type of the created value
1011 may differ from the passed type TYPE. Make sure to retrieve the
1012 returned values's new type after this call e.g. in case the type
1013 is a variable length array.
1014
1015 Note: value_at does *NOT* handle embedded offsets; perform such
1016 adjustments before or after calling it. */
1017
1018 struct value *
1019 value_at (struct type *type, CORE_ADDR addr)
1020 {
1021 return get_value_at (type, addr, 0);
1022 }
1023
1024 /* Return a lazy value with type TYPE located at ADDR (cf. value_at).
1025 The type of the created value may differ from the passed type TYPE.
1026 Make sure to retrieve the returned values's new type after this call
1027 e.g. in case the type is a variable length array. */
1028
1029 struct value *
1030 value_at_lazy (struct type *type, CORE_ADDR addr)
1031 {
1032 return get_value_at (type, addr, 1);
1033 }
1034
1035 void
1036 read_value_memory (struct value *val, LONGEST bit_offset,
1037 int stack, CORE_ADDR memaddr,
1038 gdb_byte *buffer, size_t length)
1039 {
1040 ULONGEST xfered_total = 0;
1041 struct gdbarch *arch = get_value_arch (val);
1042 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1043 enum target_object object;
1044
1045 object = stack ? TARGET_OBJECT_STACK_MEMORY : TARGET_OBJECT_MEMORY;
1046
1047 while (xfered_total < length)
1048 {
1049 enum target_xfer_status status;
1050 ULONGEST xfered_partial;
1051
1052 status = target_xfer_partial (current_inferior ()->top_target (),
1053 object, NULL,
1054 buffer + xfered_total * unit_size, NULL,
1055 memaddr + xfered_total,
1056 length - xfered_total,
1057 &xfered_partial);
1058
1059 if (status == TARGET_XFER_OK)
1060 /* nothing */;
1061 else if (status == TARGET_XFER_UNAVAILABLE)
1062 mark_value_bits_unavailable (val, (xfered_total * HOST_CHAR_BIT
1063 + bit_offset),
1064 xfered_partial * HOST_CHAR_BIT);
1065 else if (status == TARGET_XFER_EOF)
1066 memory_error (TARGET_XFER_E_IO, memaddr + xfered_total);
1067 else
1068 memory_error (status, memaddr + xfered_total);
1069
1070 xfered_total += xfered_partial;
1071 QUIT;
1072 }
1073 }
1074
1075 /* Store the contents of FROMVAL into the location of TOVAL.
1076 Return a new value with the location of TOVAL and contents of FROMVAL. */
1077
1078 struct value *
1079 value_assign (struct value *toval, struct value *fromval)
1080 {
1081 struct type *type;
1082 struct value *val;
1083 struct frame_id old_frame;
1084
1085 if (!deprecated_value_modifiable (toval))
1086 error (_("Left operand of assignment is not a modifiable lvalue."));
1087
1088 toval = coerce_ref (toval);
1089
1090 type = value_type (toval);
1091 if (VALUE_LVAL (toval) != lval_internalvar)
1092 fromval = value_cast (type, fromval);
1093 else
1094 {
1095 /* Coerce arrays and functions to pointers, except for arrays
1096 which only live in GDB's storage. */
1097 if (!value_must_coerce_to_target (fromval))
1098 fromval = coerce_array (fromval);
1099 }
1100
1101 type = check_typedef (type);
1102
1103 /* Since modifying a register can trash the frame chain, and
1104 modifying memory can trash the frame cache, we save the old frame
1105 and then restore the new frame afterwards. */
1106 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1107
1108 switch (VALUE_LVAL (toval))
1109 {
1110 case lval_internalvar:
1111 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1112 return value_of_internalvar (type->arch (),
1113 VALUE_INTERNALVAR (toval));
1114
1115 case lval_internalvar_component:
1116 {
1117 LONGEST offset = value_offset (toval);
1118
1119 /* Are we dealing with a bitfield?
1120
1121 It is important to mention that `value_parent (toval)' is
1122 non-NULL iff `value_bitsize (toval)' is non-zero. */
1123 if (value_bitsize (toval))
1124 {
1125 /* VALUE_INTERNALVAR below refers to the parent value, while
1126 the offset is relative to this parent value. */
1127 gdb_assert (value_parent (value_parent (toval)) == NULL);
1128 offset += value_offset (value_parent (toval));
1129 }
1130
1131 set_internalvar_component (VALUE_INTERNALVAR (toval),
1132 offset,
1133 value_bitpos (toval),
1134 value_bitsize (toval),
1135 fromval);
1136 }
1137 break;
1138
1139 case lval_memory:
1140 {
1141 const gdb_byte *dest_buffer;
1142 CORE_ADDR changed_addr;
1143 int changed_len;
1144 gdb_byte buffer[sizeof (LONGEST)];
1145
1146 if (value_bitsize (toval))
1147 {
1148 struct value *parent = value_parent (toval);
1149
1150 changed_addr = value_address (parent) + value_offset (toval);
1151 changed_len = (value_bitpos (toval)
1152 + value_bitsize (toval)
1153 + HOST_CHAR_BIT - 1)
1154 / HOST_CHAR_BIT;
1155
1156 /* If we can read-modify-write exactly the size of the
1157 containing type (e.g. short or int) then do so. This
1158 is safer for volatile bitfields mapped to hardware
1159 registers. */
1160 if (changed_len < TYPE_LENGTH (type)
1161 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1162 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1163 changed_len = TYPE_LENGTH (type);
1164
1165 if (changed_len > (int) sizeof (LONGEST))
1166 error (_("Can't handle bitfields which "
1167 "don't fit in a %d bit word."),
1168 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1169
1170 read_memory (changed_addr, buffer, changed_len);
1171 modify_field (type, buffer, value_as_long (fromval),
1172 value_bitpos (toval), value_bitsize (toval));
1173 dest_buffer = buffer;
1174 }
1175 else
1176 {
1177 changed_addr = value_address (toval);
1178 changed_len = type_length_units (type);
1179 dest_buffer = value_contents (fromval).data ();
1180 }
1181
1182 write_memory_with_notification (changed_addr, dest_buffer, changed_len);
1183 }
1184 break;
1185
1186 case lval_register:
1187 {
1188 struct frame_info *frame;
1189 struct gdbarch *gdbarch;
1190 int value_reg;
1191
1192 /* Figure out which frame this register value is in. The value
1193 holds the frame_id for the next frame, that is the frame this
1194 register value was unwound from.
1195
1196 Below we will call put_frame_register_bytes which requires that
1197 we pass it the actual frame in which the register value is
1198 valid, i.e. not the next frame. */
1199 frame = frame_find_by_id (VALUE_NEXT_FRAME_ID (toval));
1200 frame = get_prev_frame_always (frame);
1201
1202 value_reg = VALUE_REGNUM (toval);
1203
1204 if (!frame)
1205 error (_("Value being assigned to is no longer active."));
1206
1207 gdbarch = get_frame_arch (frame);
1208
1209 if (value_bitsize (toval))
1210 {
1211 struct value *parent = value_parent (toval);
1212 LONGEST offset = value_offset (parent) + value_offset (toval);
1213 size_t changed_len;
1214 gdb_byte buffer[sizeof (LONGEST)];
1215 int optim, unavail;
1216
1217 changed_len = (value_bitpos (toval)
1218 + value_bitsize (toval)
1219 + HOST_CHAR_BIT - 1)
1220 / HOST_CHAR_BIT;
1221
1222 if (changed_len > sizeof (LONGEST))
1223 error (_("Can't handle bitfields which "
1224 "don't fit in a %d bit word."),
1225 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1226
1227 if (!get_frame_register_bytes (frame, value_reg, offset,
1228 {buffer, changed_len},
1229 &optim, &unavail))
1230 {
1231 if (optim)
1232 throw_error (OPTIMIZED_OUT_ERROR,
1233 _("value has been optimized out"));
1234 if (unavail)
1235 throw_error (NOT_AVAILABLE_ERROR,
1236 _("value is not available"));
1237 }
1238
1239 modify_field (type, buffer, value_as_long (fromval),
1240 value_bitpos (toval), value_bitsize (toval));
1241
1242 put_frame_register_bytes (frame, value_reg, offset,
1243 {buffer, changed_len});
1244 }
1245 else
1246 {
1247 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval),
1248 type))
1249 {
1250 /* If TOVAL is a special machine register requiring
1251 conversion of program values to a special raw
1252 format. */
1253 gdbarch_value_to_register (gdbarch, frame,
1254 VALUE_REGNUM (toval), type,
1255 value_contents (fromval).data ());
1256 }
1257 else
1258 {
1259 gdb::array_view<const gdb_byte> contents
1260 = gdb::make_array_view (value_contents (fromval).data (),
1261 TYPE_LENGTH (type));
1262 put_frame_register_bytes (frame, value_reg,
1263 value_offset (toval),
1264 contents);
1265 }
1266 }
1267
1268 gdb::observers::register_changed.notify (frame, value_reg);
1269 break;
1270 }
1271
1272 case lval_computed:
1273 {
1274 const struct lval_funcs *funcs = value_computed_funcs (toval);
1275
1276 if (funcs->write != NULL)
1277 {
1278 funcs->write (toval, fromval);
1279 break;
1280 }
1281 }
1282 /* Fall through. */
1283
1284 default:
1285 error (_("Left operand of assignment is not an lvalue."));
1286 }
1287
1288 /* Assigning to the stack pointer, frame pointer, and other
1289 (architecture and calling convention specific) registers may
1290 cause the frame cache and regcache to be out of date. Assigning to memory
1291 also can. We just do this on all assignments to registers or
1292 memory, for simplicity's sake; I doubt the slowdown matters. */
1293 switch (VALUE_LVAL (toval))
1294 {
1295 case lval_memory:
1296 case lval_register:
1297 case lval_computed:
1298
1299 gdb::observers::target_changed.notify
1300 (current_inferior ()->top_target ());
1301
1302 /* Having destroyed the frame cache, restore the selected
1303 frame. */
1304
1305 /* FIXME: cagney/2002-11-02: There has to be a better way of
1306 doing this. Instead of constantly saving/restoring the
1307 frame. Why not create a get_selected_frame() function that,
1308 having saved the selected frame's ID can automatically
1309 re-find the previously selected frame automatically. */
1310
1311 {
1312 struct frame_info *fi = frame_find_by_id (old_frame);
1313
1314 if (fi != NULL)
1315 select_frame (fi);
1316 }
1317
1318 break;
1319 default:
1320 break;
1321 }
1322
1323 /* If the field does not entirely fill a LONGEST, then zero the sign
1324 bits. If the field is signed, and is negative, then sign
1325 extend. */
1326 if ((value_bitsize (toval) > 0)
1327 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1328 {
1329 LONGEST fieldval = value_as_long (fromval);
1330 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1331
1332 fieldval &= valmask;
1333 if (!type->is_unsigned ()
1334 && (fieldval & (valmask ^ (valmask >> 1))))
1335 fieldval |= ~valmask;
1336
1337 fromval = value_from_longest (type, fieldval);
1338 }
1339
1340 /* The return value is a copy of TOVAL so it shares its location
1341 information, but its contents are updated from FROMVAL. This
1342 implies the returned value is not lazy, even if TOVAL was. */
1343 val = value_copy (toval);
1344 set_value_lazy (val, 0);
1345 memcpy (value_contents_raw (val).data (), value_contents (fromval).data (),
1346 TYPE_LENGTH (type));
1347
1348 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1349 in the case of pointer types. For object types, the enclosing type
1350 and embedded offset must *not* be copied: the target object refered
1351 to by TOVAL retains its original dynamic type after assignment. */
1352 if (type->code () == TYPE_CODE_PTR)
1353 {
1354 set_value_enclosing_type (val, value_enclosing_type (fromval));
1355 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1356 }
1357
1358 return val;
1359 }
1360
1361 /* Extend a value ARG1 to COUNT repetitions of its type. */
1362
1363 struct value *
1364 value_repeat (struct value *arg1, int count)
1365 {
1366 struct value *val;
1367
1368 if (VALUE_LVAL (arg1) != lval_memory)
1369 error (_("Only values in memory can be extended with '@'."));
1370 if (count < 1)
1371 error (_("Invalid number %d of repetitions."), count);
1372
1373 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1374
1375 VALUE_LVAL (val) = lval_memory;
1376 set_value_address (val, value_address (arg1));
1377
1378 read_value_memory (val, 0, value_stack (val), value_address (val),
1379 value_contents_all_raw (val).data (),
1380 type_length_units (value_enclosing_type (val)));
1381
1382 return val;
1383 }
1384
1385 struct value *
1386 value_of_variable (struct symbol *var, const struct block *b)
1387 {
1388 struct frame_info *frame = NULL;
1389
1390 if (symbol_read_needs_frame (var))
1391 frame = get_selected_frame (_("No frame selected."));
1392
1393 return read_var_value (var, b, frame);
1394 }
1395
1396 struct value *
1397 address_of_variable (struct symbol *var, const struct block *b)
1398 {
1399 struct type *type = SYMBOL_TYPE (var);
1400 struct value *val;
1401
1402 /* Evaluate it first; if the result is a memory address, we're fine.
1403 Lazy evaluation pays off here. */
1404
1405 val = value_of_variable (var, b);
1406 type = value_type (val);
1407
1408 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1409 || type->code () == TYPE_CODE_FUNC)
1410 {
1411 CORE_ADDR addr = value_address (val);
1412
1413 return value_from_pointer (lookup_pointer_type (type), addr);
1414 }
1415
1416 /* Not a memory address; check what the problem was. */
1417 switch (VALUE_LVAL (val))
1418 {
1419 case lval_register:
1420 {
1421 struct frame_info *frame;
1422 const char *regname;
1423
1424 frame = frame_find_by_id (VALUE_NEXT_FRAME_ID (val));
1425 gdb_assert (frame);
1426
1427 regname = gdbarch_register_name (get_frame_arch (frame),
1428 VALUE_REGNUM (val));
1429 gdb_assert (regname && *regname);
1430
1431 error (_("Address requested for identifier "
1432 "\"%s\" which is in register $%s"),
1433 var->print_name (), regname);
1434 break;
1435 }
1436
1437 default:
1438 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1439 var->print_name ());
1440 break;
1441 }
1442
1443 return val;
1444 }
1445
1446 /* See value.h. */
1447
1448 bool
1449 value_must_coerce_to_target (struct value *val)
1450 {
1451 struct type *valtype;
1452
1453 /* The only lval kinds which do not live in target memory. */
1454 if (VALUE_LVAL (val) != not_lval
1455 && VALUE_LVAL (val) != lval_internalvar
1456 && VALUE_LVAL (val) != lval_xcallable)
1457 return false;
1458
1459 valtype = check_typedef (value_type (val));
1460
1461 switch (valtype->code ())
1462 {
1463 case TYPE_CODE_ARRAY:
1464 return valtype->is_vector () ? 0 : 1;
1465 case TYPE_CODE_STRING:
1466 return true;
1467 default:
1468 return false;
1469 }
1470 }
1471
1472 /* Make sure that VAL lives in target memory if it's supposed to. For
1473 instance, strings are constructed as character arrays in GDB's
1474 storage, and this function copies them to the target. */
1475
1476 struct value *
1477 value_coerce_to_target (struct value *val)
1478 {
1479 LONGEST length;
1480 CORE_ADDR addr;
1481
1482 if (!value_must_coerce_to_target (val))
1483 return val;
1484
1485 length = TYPE_LENGTH (check_typedef (value_type (val)));
1486 addr = allocate_space_in_inferior (length);
1487 write_memory (addr, value_contents (val).data (), length);
1488 return value_at_lazy (value_type (val), addr);
1489 }
1490
1491 /* Given a value which is an array, return a value which is a pointer
1492 to its first element, regardless of whether or not the array has a
1493 nonzero lower bound.
1494
1495 FIXME: A previous comment here indicated that this routine should
1496 be substracting the array's lower bound. It's not clear to me that
1497 this is correct. Given an array subscripting operation, it would
1498 certainly work to do the adjustment here, essentially computing:
1499
1500 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1501
1502 However I believe a more appropriate and logical place to account
1503 for the lower bound is to do so in value_subscript, essentially
1504 computing:
1505
1506 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1507
1508 As further evidence consider what would happen with operations
1509 other than array subscripting, where the caller would get back a
1510 value that had an address somewhere before the actual first element
1511 of the array, and the information about the lower bound would be
1512 lost because of the coercion to pointer type. */
1513
1514 struct value *
1515 value_coerce_array (struct value *arg1)
1516 {
1517 struct type *type = check_typedef (value_type (arg1));
1518
1519 /* If the user tries to do something requiring a pointer with an
1520 array that has not yet been pushed to the target, then this would
1521 be a good time to do so. */
1522 arg1 = value_coerce_to_target (arg1);
1523
1524 if (VALUE_LVAL (arg1) != lval_memory)
1525 error (_("Attempt to take address of value not located in memory."));
1526
1527 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1528 value_address (arg1));
1529 }
1530
1531 /* Given a value which is a function, return a value which is a pointer
1532 to it. */
1533
1534 struct value *
1535 value_coerce_function (struct value *arg1)
1536 {
1537 struct value *retval;
1538
1539 if (VALUE_LVAL (arg1) != lval_memory)
1540 error (_("Attempt to take address of value not located in memory."));
1541
1542 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1543 value_address (arg1));
1544 return retval;
1545 }
1546
1547 /* Return a pointer value for the object for which ARG1 is the
1548 contents. */
1549
1550 struct value *
1551 value_addr (struct value *arg1)
1552 {
1553 struct value *arg2;
1554 struct type *type = check_typedef (value_type (arg1));
1555
1556 if (TYPE_IS_REFERENCE (type))
1557 {
1558 if (value_bits_synthetic_pointer (arg1, value_embedded_offset (arg1),
1559 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1560 arg1 = coerce_ref (arg1);
1561 else
1562 {
1563 /* Copy the value, but change the type from (T&) to (T*). We
1564 keep the same location information, which is efficient, and
1565 allows &(&X) to get the location containing the reference.
1566 Do the same to its enclosing type for consistency. */
1567 struct type *type_ptr
1568 = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1569 struct type *enclosing_type
1570 = check_typedef (value_enclosing_type (arg1));
1571 struct type *enclosing_type_ptr
1572 = lookup_pointer_type (TYPE_TARGET_TYPE (enclosing_type));
1573
1574 arg2 = value_copy (arg1);
1575 deprecated_set_value_type (arg2, type_ptr);
1576 set_value_enclosing_type (arg2, enclosing_type_ptr);
1577
1578 return arg2;
1579 }
1580 }
1581 if (type->code () == TYPE_CODE_FUNC)
1582 return value_coerce_function (arg1);
1583
1584 /* If this is an array that has not yet been pushed to the target,
1585 then this would be a good time to force it to memory. */
1586 arg1 = value_coerce_to_target (arg1);
1587
1588 if (VALUE_LVAL (arg1) != lval_memory)
1589 error (_("Attempt to take address of value not located in memory."));
1590
1591 /* Get target memory address. */
1592 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1593 (value_address (arg1)
1594 + value_embedded_offset (arg1)));
1595
1596 /* This may be a pointer to a base subobject; so remember the
1597 full derived object's type ... */
1598 set_value_enclosing_type (arg2,
1599 lookup_pointer_type (value_enclosing_type (arg1)));
1600 /* ... and also the relative position of the subobject in the full
1601 object. */
1602 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1603 return arg2;
1604 }
1605
1606 /* Return a reference value for the object for which ARG1 is the
1607 contents. */
1608
1609 struct value *
1610 value_ref (struct value *arg1, enum type_code refcode)
1611 {
1612 struct value *arg2;
1613 struct type *type = check_typedef (value_type (arg1));
1614
1615 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
1616
1617 if ((type->code () == TYPE_CODE_REF
1618 || type->code () == TYPE_CODE_RVALUE_REF)
1619 && type->code () == refcode)
1620 return arg1;
1621
1622 arg2 = value_addr (arg1);
1623 deprecated_set_value_type (arg2, lookup_reference_type (type, refcode));
1624 return arg2;
1625 }
1626
1627 /* Given a value of a pointer type, apply the C unary * operator to
1628 it. */
1629
1630 struct value *
1631 value_ind (struct value *arg1)
1632 {
1633 struct type *base_type;
1634 struct value *arg2;
1635
1636 arg1 = coerce_array (arg1);
1637
1638 base_type = check_typedef (value_type (arg1));
1639
1640 if (VALUE_LVAL (arg1) == lval_computed)
1641 {
1642 const struct lval_funcs *funcs = value_computed_funcs (arg1);
1643
1644 if (funcs->indirect)
1645 {
1646 struct value *result = funcs->indirect (arg1);
1647
1648 if (result)
1649 return result;
1650 }
1651 }
1652
1653 if (base_type->code () == TYPE_CODE_PTR)
1654 {
1655 struct type *enc_type;
1656
1657 /* We may be pointing to something embedded in a larger object.
1658 Get the real type of the enclosing object. */
1659 enc_type = check_typedef (value_enclosing_type (arg1));
1660 enc_type = TYPE_TARGET_TYPE (enc_type);
1661
1662 CORE_ADDR base_addr;
1663 if (check_typedef (enc_type)->code () == TYPE_CODE_FUNC
1664 || check_typedef (enc_type)->code () == TYPE_CODE_METHOD)
1665 {
1666 /* For functions, go through find_function_addr, which knows
1667 how to handle function descriptors. */
1668 base_addr = find_function_addr (arg1, NULL);
1669 }
1670 else
1671 {
1672 /* Retrieve the enclosing object pointed to. */
1673 base_addr = (value_as_address (arg1)
1674 - value_pointed_to_offset (arg1));
1675 }
1676 arg2 = value_at_lazy (enc_type, base_addr);
1677 enc_type = value_type (arg2);
1678 return readjust_indirect_value_type (arg2, enc_type, base_type,
1679 arg1, base_addr);
1680 }
1681
1682 error (_("Attempt to take contents of a non-pointer value."));
1683 }
1684 \f
1685 /* Create a value for an array by allocating space in GDB, copying the
1686 data into that space, and then setting up an array value.
1687
1688 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1689 is populated from the values passed in ELEMVEC.
1690
1691 The element type of the array is inherited from the type of the
1692 first element, and all elements must have the same size (though we
1693 don't currently enforce any restriction on their types). */
1694
1695 struct value *
1696 value_array (int lowbound, int highbound, struct value **elemvec)
1697 {
1698 int nelem;
1699 int idx;
1700 ULONGEST typelength;
1701 struct value *val;
1702 struct type *arraytype;
1703
1704 /* Validate that the bounds are reasonable and that each of the
1705 elements have the same size. */
1706
1707 nelem = highbound - lowbound + 1;
1708 if (nelem <= 0)
1709 {
1710 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1711 }
1712 typelength = type_length_units (value_enclosing_type (elemvec[0]));
1713 for (idx = 1; idx < nelem; idx++)
1714 {
1715 if (type_length_units (value_enclosing_type (elemvec[idx]))
1716 != typelength)
1717 {
1718 error (_("array elements must all be the same size"));
1719 }
1720 }
1721
1722 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1723 lowbound, highbound);
1724
1725 if (!current_language->c_style_arrays_p ())
1726 {
1727 val = allocate_value (arraytype);
1728 for (idx = 0; idx < nelem; idx++)
1729 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1730 typelength);
1731 return val;
1732 }
1733
1734 /* Allocate space to store the array, and then initialize it by
1735 copying in each element. */
1736
1737 val = allocate_value (arraytype);
1738 for (idx = 0; idx < nelem; idx++)
1739 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1740 return val;
1741 }
1742
1743 struct value *
1744 value_cstring (const char *ptr, ssize_t len, struct type *char_type)
1745 {
1746 struct value *val;
1747 int lowbound = current_language->string_lower_bound ();
1748 ssize_t highbound = len / TYPE_LENGTH (char_type);
1749 struct type *stringtype
1750 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1751
1752 val = allocate_value (stringtype);
1753 memcpy (value_contents_raw (val).data (), ptr, len);
1754 return val;
1755 }
1756
1757 /* Create a value for a string constant by allocating space in the
1758 inferior, copying the data into that space, and returning the
1759 address with type TYPE_CODE_STRING. PTR points to the string
1760 constant data; LEN is number of characters.
1761
1762 Note that string types are like array of char types with a lower
1763 bound of zero and an upper bound of LEN - 1. Also note that the
1764 string may contain embedded null bytes. */
1765
1766 struct value *
1767 value_string (const char *ptr, ssize_t len, struct type *char_type)
1768 {
1769 struct value *val;
1770 int lowbound = current_language->string_lower_bound ();
1771 ssize_t highbound = len / TYPE_LENGTH (char_type);
1772 struct type *stringtype
1773 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1774
1775 val = allocate_value (stringtype);
1776 memcpy (value_contents_raw (val).data (), ptr, len);
1777 return val;
1778 }
1779
1780 \f
1781 /* See if we can pass arguments in T2 to a function which takes arguments
1782 of types T1. T1 is a list of NARGS arguments, and T2 is an array_view
1783 of the values we're trying to pass. If some arguments need coercion of
1784 some sort, then the coerced values are written into T2. Return value is
1785 0 if the arguments could be matched, or the position at which they
1786 differ if not.
1787
1788 STATICP is nonzero if the T1 argument list came from a static
1789 member function. T2 must still include the ``this'' pointer, but
1790 it will be skipped.
1791
1792 For non-static member functions, we ignore the first argument,
1793 which is the type of the instance variable. This is because we
1794 want to handle calls with objects from derived classes. This is
1795 not entirely correct: we should actually check to make sure that a
1796 requested operation is type secure, shouldn't we? FIXME. */
1797
1798 static int
1799 typecmp (bool staticp, bool varargs, int nargs,
1800 struct field t1[], gdb::array_view<value *> t2)
1801 {
1802 int i;
1803
1804 /* Skip ``this'' argument if applicable. T2 will always include
1805 THIS. */
1806 if (staticp)
1807 t2 = t2.slice (1);
1808
1809 for (i = 0;
1810 (i < nargs) && t1[i].type ()->code () != TYPE_CODE_VOID;
1811 i++)
1812 {
1813 struct type *tt1, *tt2;
1814
1815 if (i == t2.size ())
1816 return i + 1;
1817
1818 tt1 = check_typedef (t1[i].type ());
1819 tt2 = check_typedef (value_type (t2[i]));
1820
1821 if (TYPE_IS_REFERENCE (tt1)
1822 /* We should be doing hairy argument matching, as below. */
1823 && (check_typedef (TYPE_TARGET_TYPE (tt1))->code ()
1824 == tt2->code ()))
1825 {
1826 if (tt2->code () == TYPE_CODE_ARRAY)
1827 t2[i] = value_coerce_array (t2[i]);
1828 else
1829 t2[i] = value_ref (t2[i], tt1->code ());
1830 continue;
1831 }
1832
1833 /* djb - 20000715 - Until the new type structure is in the
1834 place, and we can attempt things like implicit conversions,
1835 we need to do this so you can take something like a map<const
1836 char *>, and properly access map["hello"], because the
1837 argument to [] will be a reference to a pointer to a char,
1838 and the argument will be a pointer to a char. */
1839 while (TYPE_IS_REFERENCE (tt1) || tt1->code () == TYPE_CODE_PTR)
1840 {
1841 tt1 = check_typedef ( TYPE_TARGET_TYPE (tt1) );
1842 }
1843 while (tt2->code () == TYPE_CODE_ARRAY
1844 || tt2->code () == TYPE_CODE_PTR
1845 || TYPE_IS_REFERENCE (tt2))
1846 {
1847 tt2 = check_typedef (TYPE_TARGET_TYPE (tt2));
1848 }
1849 if (tt1->code () == tt2->code ())
1850 continue;
1851 /* Array to pointer is a `trivial conversion' according to the
1852 ARM. */
1853
1854 /* We should be doing much hairier argument matching (see
1855 section 13.2 of the ARM), but as a quick kludge, just check
1856 for the same type code. */
1857 if (t1[i].type ()->code () != value_type (t2[i])->code ())
1858 return i + 1;
1859 }
1860 if (varargs || i == t2.size ())
1861 return 0;
1862 return i + 1;
1863 }
1864
1865 /* Helper class for search_struct_field that keeps track of found
1866 results and possibly throws an exception if the search yields
1867 ambiguous results. See search_struct_field for description of
1868 LOOKING_FOR_BASECLASS. */
1869
1870 struct struct_field_searcher
1871 {
1872 /* A found field. */
1873 struct found_field
1874 {
1875 /* Path to the structure where the field was found. */
1876 std::vector<struct type *> path;
1877
1878 /* The field found. */
1879 struct value *field_value;
1880 };
1881
1882 /* See corresponding fields for description of parameters. */
1883 struct_field_searcher (const char *name,
1884 struct type *outermost_type,
1885 bool looking_for_baseclass)
1886 : m_name (name),
1887 m_looking_for_baseclass (looking_for_baseclass),
1888 m_outermost_type (outermost_type)
1889 {
1890 }
1891
1892 /* The search entry point. If LOOKING_FOR_BASECLASS is true and the
1893 base class search yields ambiguous results, this throws an
1894 exception. If LOOKING_FOR_BASECLASS is false, the found fields
1895 are accumulated and the caller (search_struct_field) takes care
1896 of throwing an error if the field search yields ambiguous
1897 results. The latter is done that way so that the error message
1898 can include a list of all the found candidates. */
1899 void search (struct value *arg, LONGEST offset, struct type *type);
1900
1901 const std::vector<found_field> &fields ()
1902 {
1903 return m_fields;
1904 }
1905
1906 struct value *baseclass ()
1907 {
1908 return m_baseclass;
1909 }
1910
1911 private:
1912 /* Update results to include V, a found field/baseclass. */
1913 void update_result (struct value *v, LONGEST boffset);
1914
1915 /* The name of the field/baseclass we're searching for. */
1916 const char *m_name;
1917
1918 /* Whether we're looking for a baseclass, or a field. */
1919 const bool m_looking_for_baseclass;
1920
1921 /* The offset of the baseclass containing the field/baseclass we
1922 last recorded. */
1923 LONGEST m_last_boffset = 0;
1924
1925 /* If looking for a baseclass, then the result is stored here. */
1926 struct value *m_baseclass = nullptr;
1927
1928 /* When looking for fields, the found candidates are stored
1929 here. */
1930 std::vector<found_field> m_fields;
1931
1932 /* The type of the initial type passed to search_struct_field; this
1933 is used for error reporting when the lookup is ambiguous. */
1934 struct type *m_outermost_type;
1935
1936 /* The full path to the struct being inspected. E.g. for field 'x'
1937 defined in class B inherited by class A, we have A and B pushed
1938 on the path. */
1939 std::vector <struct type *> m_struct_path;
1940 };
1941
1942 void
1943 struct_field_searcher::update_result (struct value *v, LONGEST boffset)
1944 {
1945 if (v != NULL)
1946 {
1947 if (m_looking_for_baseclass)
1948 {
1949 if (m_baseclass != nullptr
1950 /* The result is not ambiguous if all the classes that are
1951 found occupy the same space. */
1952 && m_last_boffset != boffset)
1953 error (_("base class '%s' is ambiguous in type '%s'"),
1954 m_name, TYPE_SAFE_NAME (m_outermost_type));
1955
1956 m_baseclass = v;
1957 m_last_boffset = boffset;
1958 }
1959 else
1960 {
1961 /* The field is not ambiguous if it occupies the same
1962 space. */
1963 if (m_fields.empty () || m_last_boffset != boffset)
1964 m_fields.push_back ({m_struct_path, v});
1965 }
1966 }
1967 }
1968
1969 /* A helper for search_struct_field. This does all the work; most
1970 arguments are as passed to search_struct_field. */
1971
1972 void
1973 struct_field_searcher::search (struct value *arg1, LONGEST offset,
1974 struct type *type)
1975 {
1976 int i;
1977 int nbases;
1978
1979 m_struct_path.push_back (type);
1980 SCOPE_EXIT { m_struct_path.pop_back (); };
1981
1982 type = check_typedef (type);
1983 nbases = TYPE_N_BASECLASSES (type);
1984
1985 if (!m_looking_for_baseclass)
1986 for (i = type->num_fields () - 1; i >= nbases; i--)
1987 {
1988 const char *t_field_name = type->field (i).name ();
1989
1990 if (t_field_name && (strcmp_iw (t_field_name, m_name) == 0))
1991 {
1992 struct value *v;
1993
1994 if (field_is_static (&type->field (i)))
1995 v = value_static_field (type, i);
1996 else
1997 v = value_primitive_field (arg1, offset, i, type);
1998
1999 update_result (v, offset);
2000 return;
2001 }
2002
2003 if (t_field_name
2004 && t_field_name[0] == '\0')
2005 {
2006 struct type *field_type = type->field (i).type ();
2007
2008 if (field_type->code () == TYPE_CODE_UNION
2009 || field_type->code () == TYPE_CODE_STRUCT)
2010 {
2011 /* Look for a match through the fields of an anonymous
2012 union, or anonymous struct. C++ provides anonymous
2013 unions.
2014
2015 In the GNU Chill (now deleted from GDB)
2016 implementation of variant record types, each
2017 <alternative field> has an (anonymous) union type,
2018 each member of the union represents a <variant
2019 alternative>. Each <variant alternative> is
2020 represented as a struct, with a member for each
2021 <variant field>. */
2022
2023 LONGEST new_offset = offset;
2024
2025 /* This is pretty gross. In G++, the offset in an
2026 anonymous union is relative to the beginning of the
2027 enclosing struct. In the GNU Chill (now deleted
2028 from GDB) implementation of variant records, the
2029 bitpos is zero in an anonymous union field, so we
2030 have to add the offset of the union here. */
2031 if (field_type->code () == TYPE_CODE_STRUCT
2032 || (field_type->num_fields () > 0
2033 && field_type->field (0).loc_bitpos () == 0))
2034 new_offset += type->field (i).loc_bitpos () / 8;
2035
2036 search (arg1, new_offset, field_type);
2037 }
2038 }
2039 }
2040
2041 for (i = 0; i < nbases; i++)
2042 {
2043 struct value *v = NULL;
2044 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2045 /* If we are looking for baseclasses, this is what we get when
2046 we hit them. But it could happen that the base part's member
2047 name is not yet filled in. */
2048 int found_baseclass = (m_looking_for_baseclass
2049 && TYPE_BASECLASS_NAME (type, i) != NULL
2050 && (strcmp_iw (m_name,
2051 TYPE_BASECLASS_NAME (type,
2052 i)) == 0));
2053 LONGEST boffset = value_embedded_offset (arg1) + offset;
2054
2055 if (BASETYPE_VIA_VIRTUAL (type, i))
2056 {
2057 struct value *v2;
2058
2059 boffset = baseclass_offset (type, i,
2060 value_contents_for_printing (arg1).data (),
2061 value_embedded_offset (arg1) + offset,
2062 value_address (arg1),
2063 arg1);
2064
2065 /* The virtual base class pointer might have been clobbered
2066 by the user program. Make sure that it still points to a
2067 valid memory location. */
2068
2069 boffset += value_embedded_offset (arg1) + offset;
2070 if (boffset < 0
2071 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
2072 {
2073 CORE_ADDR base_addr;
2074
2075 base_addr = value_address (arg1) + boffset;
2076 v2 = value_at_lazy (basetype, base_addr);
2077 if (target_read_memory (base_addr,
2078 value_contents_raw (v2).data (),
2079 TYPE_LENGTH (value_type (v2))) != 0)
2080 error (_("virtual baseclass botch"));
2081 }
2082 else
2083 {
2084 v2 = value_copy (arg1);
2085 deprecated_set_value_type (v2, basetype);
2086 set_value_embedded_offset (v2, boffset);
2087 }
2088
2089 if (found_baseclass)
2090 v = v2;
2091 else
2092 search (v2, 0, TYPE_BASECLASS (type, i));
2093 }
2094 else if (found_baseclass)
2095 v = value_primitive_field (arg1, offset, i, type);
2096 else
2097 {
2098 search (arg1, offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2099 basetype);
2100 }
2101
2102 update_result (v, boffset);
2103 }
2104 }
2105
2106 /* Helper function used by value_struct_elt to recurse through
2107 baseclasses. Look for a field NAME in ARG1. Search in it assuming
2108 it has (class) type TYPE. If found, return value, else return NULL.
2109
2110 If LOOKING_FOR_BASECLASS, then instead of looking for struct
2111 fields, look for a baseclass named NAME. */
2112
2113 static struct value *
2114 search_struct_field (const char *name, struct value *arg1,
2115 struct type *type, int looking_for_baseclass)
2116 {
2117 struct_field_searcher searcher (name, type, looking_for_baseclass);
2118
2119 searcher.search (arg1, 0, type);
2120
2121 if (!looking_for_baseclass)
2122 {
2123 const auto &fields = searcher.fields ();
2124
2125 if (fields.empty ())
2126 return nullptr;
2127 else if (fields.size () == 1)
2128 return fields[0].field_value;
2129 else
2130 {
2131 std::string candidates;
2132
2133 for (auto &&candidate : fields)
2134 {
2135 gdb_assert (!candidate.path.empty ());
2136
2137 struct type *field_type = value_type (candidate.field_value);
2138 struct type *struct_type = candidate.path.back ();
2139
2140 std::string path;
2141 bool first = true;
2142 for (struct type *t : candidate.path)
2143 {
2144 if (first)
2145 first = false;
2146 else
2147 path += " -> ";
2148 path += t->name ();
2149 }
2150
2151 candidates += string_printf ("\n '%s %s::%s' (%s)",
2152 TYPE_SAFE_NAME (field_type),
2153 TYPE_SAFE_NAME (struct_type),
2154 name,
2155 path.c_str ());
2156 }
2157
2158 error (_("Request for member '%s' is ambiguous in type '%s'."
2159 " Candidates are:%s"),
2160 name, TYPE_SAFE_NAME (type),
2161 candidates.c_str ());
2162 }
2163 }
2164 else
2165 return searcher.baseclass ();
2166 }
2167
2168 /* Helper function used by value_struct_elt to recurse through
2169 baseclasses. Look for a field NAME in ARG1. Adjust the address of
2170 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2171 TYPE.
2172
2173 ARGS is an optional array of argument values used to help finding NAME.
2174 The contents of ARGS can be adjusted if type coercion is required in
2175 order to find a matching NAME.
2176
2177 If found, return value, else if name matched and args not return
2178 (value) -1, else return NULL. */
2179
2180 static struct value *
2181 search_struct_method (const char *name, struct value **arg1p,
2182 gdb::optional<gdb::array_view<value *>> args,
2183 LONGEST offset, int *static_memfuncp,
2184 struct type *type)
2185 {
2186 int i;
2187 struct value *v;
2188 int name_matched = 0;
2189
2190 type = check_typedef (type);
2191 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2192 {
2193 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2194
2195 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2196 {
2197 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2198 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2199
2200 name_matched = 1;
2201 check_stub_method_group (type, i);
2202 if (j > 0 && !args.has_value ())
2203 error (_("cannot resolve overloaded method "
2204 "`%s': no arguments supplied"), name);
2205 else if (j == 0 && !args.has_value ())
2206 {
2207 v = value_fn_field (arg1p, f, j, type, offset);
2208 if (v != NULL)
2209 return v;
2210 }
2211 else
2212 while (j >= 0)
2213 {
2214 gdb_assert (args.has_value ());
2215 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2216 TYPE_FN_FIELD_TYPE (f, j)->has_varargs (),
2217 TYPE_FN_FIELD_TYPE (f, j)->num_fields (),
2218 TYPE_FN_FIELD_ARGS (f, j), *args))
2219 {
2220 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2221 return value_virtual_fn_field (arg1p, f, j,
2222 type, offset);
2223 if (TYPE_FN_FIELD_STATIC_P (f, j)
2224 && static_memfuncp)
2225 *static_memfuncp = 1;
2226 v = value_fn_field (arg1p, f, j, type, offset);
2227 if (v != NULL)
2228 return v;
2229 }
2230 j--;
2231 }
2232 }
2233 }
2234
2235 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2236 {
2237 LONGEST base_offset;
2238 LONGEST this_offset;
2239
2240 if (BASETYPE_VIA_VIRTUAL (type, i))
2241 {
2242 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2243 struct value *base_val;
2244 const gdb_byte *base_valaddr;
2245
2246 /* The virtual base class pointer might have been
2247 clobbered by the user program. Make sure that it
2248 still points to a valid memory location. */
2249
2250 if (offset < 0 || offset >= TYPE_LENGTH (type))
2251 {
2252 CORE_ADDR address;
2253
2254 gdb::byte_vector tmp (TYPE_LENGTH (baseclass));
2255 address = value_address (*arg1p);
2256
2257 if (target_read_memory (address + offset,
2258 tmp.data (), TYPE_LENGTH (baseclass)) != 0)
2259 error (_("virtual baseclass botch"));
2260
2261 base_val = value_from_contents_and_address (baseclass,
2262 tmp.data (),
2263 address + offset);
2264 base_valaddr = value_contents_for_printing (base_val).data ();
2265 this_offset = 0;
2266 }
2267 else
2268 {
2269 base_val = *arg1p;
2270 base_valaddr = value_contents_for_printing (*arg1p).data ();
2271 this_offset = offset;
2272 }
2273
2274 base_offset = baseclass_offset (type, i, base_valaddr,
2275 this_offset, value_address (base_val),
2276 base_val);
2277 }
2278 else
2279 {
2280 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2281 }
2282 v = search_struct_method (name, arg1p, args, base_offset + offset,
2283 static_memfuncp, TYPE_BASECLASS (type, i));
2284 if (v == (struct value *) - 1)
2285 {
2286 name_matched = 1;
2287 }
2288 else if (v)
2289 {
2290 /* FIXME-bothner: Why is this commented out? Why is it here? */
2291 /* *arg1p = arg1_tmp; */
2292 return v;
2293 }
2294 }
2295 if (name_matched)
2296 return (struct value *) - 1;
2297 else
2298 return NULL;
2299 }
2300
2301 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2302 extract the component named NAME from the ultimate target
2303 structure/union and return it as a value with its appropriate type.
2304 ERR is used in the error message if *ARGP's type is wrong.
2305
2306 C++: ARGS is a list of argument types to aid in the selection of
2307 an appropriate method. Also, handle derived types.
2308
2309 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2310 where the truthvalue of whether the function that was resolved was
2311 a static member function or not is stored.
2312
2313 ERR is an error message to be printed in case the field is not
2314 found. */
2315
2316 struct value *
2317 value_struct_elt (struct value **argp,
2318 gdb::optional<gdb::array_view<value *>> args,
2319 const char *name, int *static_memfuncp, const char *err)
2320 {
2321 struct type *t;
2322 struct value *v;
2323
2324 *argp = coerce_array (*argp);
2325
2326 t = check_typedef (value_type (*argp));
2327
2328 /* Follow pointers until we get to a non-pointer. */
2329
2330 while (t->is_pointer_or_reference ())
2331 {
2332 *argp = value_ind (*argp);
2333 /* Don't coerce fn pointer to fn and then back again! */
2334 if (check_typedef (value_type (*argp))->code () != TYPE_CODE_FUNC)
2335 *argp = coerce_array (*argp);
2336 t = check_typedef (value_type (*argp));
2337 }
2338
2339 if (t->code () != TYPE_CODE_STRUCT
2340 && t->code () != TYPE_CODE_UNION)
2341 error (_("Attempt to extract a component of a value that is not a %s."),
2342 err);
2343
2344 /* Assume it's not, unless we see that it is. */
2345 if (static_memfuncp)
2346 *static_memfuncp = 0;
2347
2348 if (!args.has_value ())
2349 {
2350 /* if there are no arguments ...do this... */
2351
2352 /* Try as a field first, because if we succeed, there is less
2353 work to be done. */
2354 v = search_struct_field (name, *argp, t, 0);
2355 if (v)
2356 return v;
2357
2358 /* C++: If it was not found as a data field, then try to
2359 return it as a pointer to a method. */
2360 v = search_struct_method (name, argp, args, 0,
2361 static_memfuncp, t);
2362
2363 if (v == (struct value *) - 1)
2364 error (_("Cannot take address of method %s."), name);
2365 else if (v == 0)
2366 {
2367 if (TYPE_NFN_FIELDS (t))
2368 error (_("There is no member or method named %s."), name);
2369 else
2370 error (_("There is no member named %s."), name);
2371 }
2372 return v;
2373 }
2374
2375 v = search_struct_method (name, argp, args, 0,
2376 static_memfuncp, t);
2377
2378 if (v == (struct value *) - 1)
2379 {
2380 error (_("One of the arguments you tried to pass to %s could not "
2381 "be converted to what the function wants."), name);
2382 }
2383 else if (v == 0)
2384 {
2385 /* See if user tried to invoke data as function. If so, hand it
2386 back. If it's not callable (i.e., a pointer to function),
2387 gdb should give an error. */
2388 v = search_struct_field (name, *argp, t, 0);
2389 /* If we found an ordinary field, then it is not a method call.
2390 So, treat it as if it were a static member function. */
2391 if (v && static_memfuncp)
2392 *static_memfuncp = 1;
2393 }
2394
2395 if (!v)
2396 throw_error (NOT_FOUND_ERROR,
2397 _("Structure has no component named %s."), name);
2398 return v;
2399 }
2400
2401 /* Given *ARGP, a value of type structure or union, or a pointer/reference
2402 to a structure or union, extract and return its component (field) of
2403 type FTYPE at the specified BITPOS.
2404 Throw an exception on error. */
2405
2406 struct value *
2407 value_struct_elt_bitpos (struct value **argp, int bitpos, struct type *ftype,
2408 const char *err)
2409 {
2410 struct type *t;
2411 int i;
2412
2413 *argp = coerce_array (*argp);
2414
2415 t = check_typedef (value_type (*argp));
2416
2417 while (t->is_pointer_or_reference ())
2418 {
2419 *argp = value_ind (*argp);
2420 if (check_typedef (value_type (*argp))->code () != TYPE_CODE_FUNC)
2421 *argp = coerce_array (*argp);
2422 t = check_typedef (value_type (*argp));
2423 }
2424
2425 if (t->code () != TYPE_CODE_STRUCT
2426 && t->code () != TYPE_CODE_UNION)
2427 error (_("Attempt to extract a component of a value that is not a %s."),
2428 err);
2429
2430 for (i = TYPE_N_BASECLASSES (t); i < t->num_fields (); i++)
2431 {
2432 if (!field_is_static (&t->field (i))
2433 && bitpos == t->field (i).loc_bitpos ()
2434 && types_equal (ftype, t->field (i).type ()))
2435 return value_primitive_field (*argp, 0, i, t);
2436 }
2437
2438 error (_("No field with matching bitpos and type."));
2439
2440 /* Never hit. */
2441 return NULL;
2442 }
2443
2444 /* Search through the methods of an object (and its bases) to find a
2445 specified method. Return a reference to the fn_field list METHODS of
2446 overloaded instances defined in the source language. If available
2447 and matching, a vector of matching xmethods defined in extension
2448 languages are also returned in XMETHODS.
2449
2450 Helper function for value_find_oload_list.
2451 ARGP is a pointer to a pointer to a value (the object).
2452 METHOD is a string containing the method name.
2453 OFFSET is the offset within the value.
2454 TYPE is the assumed type of the object.
2455 METHODS is a pointer to the matching overloaded instances defined
2456 in the source language. Since this is a recursive function,
2457 *METHODS should be set to NULL when calling this function.
2458 NUM_FNS is the number of overloaded instances. *NUM_FNS should be set to
2459 0 when calling this function.
2460 XMETHODS is the vector of matching xmethod workers. *XMETHODS
2461 should also be set to NULL when calling this function.
2462 BASETYPE is set to the actual type of the subobject where the
2463 method is found.
2464 BOFFSET is the offset of the base subobject where the method is found. */
2465
2466 static void
2467 find_method_list (struct value **argp, const char *method,
2468 LONGEST offset, struct type *type,
2469 gdb::array_view<fn_field> *methods,
2470 std::vector<xmethod_worker_up> *xmethods,
2471 struct type **basetype, LONGEST *boffset)
2472 {
2473 int i;
2474 struct fn_field *f = NULL;
2475
2476 gdb_assert (methods != NULL && xmethods != NULL);
2477 type = check_typedef (type);
2478
2479 /* First check in object itself.
2480 This function is called recursively to search through base classes.
2481 If there is a source method match found at some stage, then we need not
2482 look for source methods in consequent recursive calls. */
2483 if (methods->empty ())
2484 {
2485 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2486 {
2487 /* pai: FIXME What about operators and type conversions? */
2488 const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2489
2490 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2491 {
2492 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2493 f = TYPE_FN_FIELDLIST1 (type, i);
2494 *methods = gdb::make_array_view (f, len);
2495
2496 *basetype = type;
2497 *boffset = offset;
2498
2499 /* Resolve any stub methods. */
2500 check_stub_method_group (type, i);
2501
2502 break;
2503 }
2504 }
2505 }
2506
2507 /* Unlike source methods, xmethods can be accumulated over successive
2508 recursive calls. In other words, an xmethod named 'm' in a class
2509 will not hide an xmethod named 'm' in its base class(es). We want
2510 it to be this way because xmethods are after all convenience functions
2511 and hence there is no point restricting them with something like method
2512 hiding. Moreover, if hiding is done for xmethods as well, then we will
2513 have to provide a mechanism to un-hide (like the 'using' construct). */
2514 get_matching_xmethod_workers (type, method, xmethods);
2515
2516 /* If source methods are not found in current class, look for them in the
2517 base classes. We also have to go through the base classes to gather
2518 extension methods. */
2519 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2520 {
2521 LONGEST base_offset;
2522
2523 if (BASETYPE_VIA_VIRTUAL (type, i))
2524 {
2525 base_offset = baseclass_offset (type, i,
2526 value_contents_for_printing (*argp).data (),
2527 value_offset (*argp) + offset,
2528 value_address (*argp), *argp);
2529 }
2530 else /* Non-virtual base, simply use bit position from debug
2531 info. */
2532 {
2533 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2534 }
2535
2536 find_method_list (argp, method, base_offset + offset,
2537 TYPE_BASECLASS (type, i), methods,
2538 xmethods, basetype, boffset);
2539 }
2540 }
2541
2542 /* Return the list of overloaded methods of a specified name. The methods
2543 could be those GDB finds in the binary, or xmethod. Methods found in
2544 the binary are returned in METHODS, and xmethods are returned in
2545 XMETHODS.
2546
2547 ARGP is a pointer to a pointer to a value (the object).
2548 METHOD is the method name.
2549 OFFSET is the offset within the value contents.
2550 METHODS is the list of matching overloaded instances defined in
2551 the source language.
2552 XMETHODS is the vector of matching xmethod workers defined in
2553 extension languages.
2554 BASETYPE is set to the type of the base subobject that defines the
2555 method.
2556 BOFFSET is the offset of the base subobject which defines the method. */
2557
2558 static void
2559 value_find_oload_method_list (struct value **argp, const char *method,
2560 LONGEST offset,
2561 gdb::array_view<fn_field> *methods,
2562 std::vector<xmethod_worker_up> *xmethods,
2563 struct type **basetype, LONGEST *boffset)
2564 {
2565 struct type *t;
2566
2567 t = check_typedef (value_type (*argp));
2568
2569 /* Code snarfed from value_struct_elt. */
2570 while (t->is_pointer_or_reference ())
2571 {
2572 *argp = value_ind (*argp);
2573 /* Don't coerce fn pointer to fn and then back again! */
2574 if (check_typedef (value_type (*argp))->code () != TYPE_CODE_FUNC)
2575 *argp = coerce_array (*argp);
2576 t = check_typedef (value_type (*argp));
2577 }
2578
2579 if (t->code () != TYPE_CODE_STRUCT
2580 && t->code () != TYPE_CODE_UNION)
2581 error (_("Attempt to extract a component of a "
2582 "value that is not a struct or union"));
2583
2584 gdb_assert (methods != NULL && xmethods != NULL);
2585
2586 /* Clear the lists. */
2587 *methods = {};
2588 xmethods->clear ();
2589
2590 find_method_list (argp, method, 0, t, methods, xmethods,
2591 basetype, boffset);
2592 }
2593
2594 /* Given an array of arguments (ARGS) (which includes an entry for
2595 "this" in the case of C++ methods), the NAME of a function, and
2596 whether it's a method or not (METHOD), find the best function that
2597 matches on the argument types according to the overload resolution
2598 rules.
2599
2600 METHOD can be one of three values:
2601 NON_METHOD for non-member functions.
2602 METHOD: for member functions.
2603 BOTH: used for overload resolution of operators where the
2604 candidates are expected to be either member or non member
2605 functions. In this case the first argument ARGTYPES
2606 (representing 'this') is expected to be a reference to the
2607 target object, and will be dereferenced when attempting the
2608 non-member search.
2609
2610 In the case of class methods, the parameter OBJ is an object value
2611 in which to search for overloaded methods.
2612
2613 In the case of non-method functions, the parameter FSYM is a symbol
2614 corresponding to one of the overloaded functions.
2615
2616 Return value is an integer: 0 -> good match, 10 -> debugger applied
2617 non-standard coercions, 100 -> incompatible.
2618
2619 If a method is being searched for, VALP will hold the value.
2620 If a non-method is being searched for, SYMP will hold the symbol
2621 for it.
2622
2623 If a method is being searched for, and it is a static method,
2624 then STATICP will point to a non-zero value.
2625
2626 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2627 ADL overload candidates when performing overload resolution for a fully
2628 qualified name.
2629
2630 If NOSIDE is EVAL_AVOID_SIDE_EFFECTS, then OBJP's memory cannot be
2631 read while picking the best overload match (it may be all zeroes and thus
2632 not have a vtable pointer), in which case skip virtual function lookup.
2633 This is ok as typically EVAL_AVOID_SIDE_EFFECTS is only used to determine
2634 the result type.
2635
2636 Note: This function does *not* check the value of
2637 overload_resolution. Caller must check it to see whether overload
2638 resolution is permitted. */
2639
2640 int
2641 find_overload_match (gdb::array_view<value *> args,
2642 const char *name, enum oload_search_type method,
2643 struct value **objp, struct symbol *fsym,
2644 struct value **valp, struct symbol **symp,
2645 int *staticp, const int no_adl,
2646 const enum noside noside)
2647 {
2648 struct value *obj = (objp ? *objp : NULL);
2649 struct type *obj_type = obj ? value_type (obj) : NULL;
2650 /* Index of best overloaded function. */
2651 int func_oload_champ = -1;
2652 int method_oload_champ = -1;
2653 int src_method_oload_champ = -1;
2654 int ext_method_oload_champ = -1;
2655
2656 /* The measure for the current best match. */
2657 badness_vector method_badness;
2658 badness_vector func_badness;
2659 badness_vector ext_method_badness;
2660 badness_vector src_method_badness;
2661
2662 struct value *temp = obj;
2663 /* For methods, the list of overloaded methods. */
2664 gdb::array_view<fn_field> methods;
2665 /* For non-methods, the list of overloaded function symbols. */
2666 std::vector<symbol *> functions;
2667 /* For xmethods, the vector of xmethod workers. */
2668 std::vector<xmethod_worker_up> xmethods;
2669 struct type *basetype = NULL;
2670 LONGEST boffset;
2671
2672 const char *obj_type_name = NULL;
2673 const char *func_name = NULL;
2674 gdb::unique_xmalloc_ptr<char> temp_func;
2675 enum oload_classification match_quality;
2676 enum oload_classification method_match_quality = INCOMPATIBLE;
2677 enum oload_classification src_method_match_quality = INCOMPATIBLE;
2678 enum oload_classification ext_method_match_quality = INCOMPATIBLE;
2679 enum oload_classification func_match_quality = INCOMPATIBLE;
2680
2681 /* Get the list of overloaded methods or functions. */
2682 if (method == METHOD || method == BOTH)
2683 {
2684 gdb_assert (obj);
2685
2686 /* OBJ may be a pointer value rather than the object itself. */
2687 obj = coerce_ref (obj);
2688 while (check_typedef (value_type (obj))->code () == TYPE_CODE_PTR)
2689 obj = coerce_ref (value_ind (obj));
2690 obj_type_name = value_type (obj)->name ();
2691
2692 /* First check whether this is a data member, e.g. a pointer to
2693 a function. */
2694 if (check_typedef (value_type (obj))->code () == TYPE_CODE_STRUCT)
2695 {
2696 *valp = search_struct_field (name, obj,
2697 check_typedef (value_type (obj)), 0);
2698 if (*valp)
2699 {
2700 *staticp = 1;
2701 return 0;
2702 }
2703 }
2704
2705 /* Retrieve the list of methods with the name NAME. */
2706 value_find_oload_method_list (&temp, name, 0, &methods,
2707 &xmethods, &basetype, &boffset);
2708 /* If this is a method only search, and no methods were found
2709 the search has failed. */
2710 if (method == METHOD && methods.empty () && xmethods.empty ())
2711 error (_("Couldn't find method %s%s%s"),
2712 obj_type_name,
2713 (obj_type_name && *obj_type_name) ? "::" : "",
2714 name);
2715 /* If we are dealing with stub method types, they should have
2716 been resolved by find_method_list via
2717 value_find_oload_method_list above. */
2718 if (!methods.empty ())
2719 {
2720 gdb_assert (TYPE_SELF_TYPE (methods[0].type) != NULL);
2721
2722 src_method_oload_champ
2723 = find_oload_champ (args,
2724 methods.size (),
2725 methods.data (), NULL, NULL,
2726 &src_method_badness);
2727
2728 src_method_match_quality = classify_oload_match
2729 (src_method_badness, args.size (),
2730 oload_method_static_p (methods.data (), src_method_oload_champ));
2731 }
2732
2733 if (!xmethods.empty ())
2734 {
2735 ext_method_oload_champ
2736 = find_oload_champ (args,
2737 xmethods.size (),
2738 NULL, xmethods.data (), NULL,
2739 &ext_method_badness);
2740 ext_method_match_quality = classify_oload_match (ext_method_badness,
2741 args.size (), 0);
2742 }
2743
2744 if (src_method_oload_champ >= 0 && ext_method_oload_champ >= 0)
2745 {
2746 switch (compare_badness (ext_method_badness, src_method_badness))
2747 {
2748 case 0: /* Src method and xmethod are equally good. */
2749 /* If src method and xmethod are equally good, then
2750 xmethod should be the winner. Hence, fall through to the
2751 case where a xmethod is better than the source
2752 method, except when the xmethod match quality is
2753 non-standard. */
2754 /* FALLTHROUGH */
2755 case 1: /* Src method and ext method are incompatible. */
2756 /* If ext method match is not standard, then let source method
2757 win. Otherwise, fallthrough to let xmethod win. */
2758 if (ext_method_match_quality != STANDARD)
2759 {
2760 method_oload_champ = src_method_oload_champ;
2761 method_badness = src_method_badness;
2762 ext_method_oload_champ = -1;
2763 method_match_quality = src_method_match_quality;
2764 break;
2765 }
2766 /* FALLTHROUGH */
2767 case 2: /* Ext method is champion. */
2768 method_oload_champ = ext_method_oload_champ;
2769 method_badness = ext_method_badness;
2770 src_method_oload_champ = -1;
2771 method_match_quality = ext_method_match_quality;
2772 break;
2773 case 3: /* Src method is champion. */
2774 method_oload_champ = src_method_oload_champ;
2775 method_badness = src_method_badness;
2776 ext_method_oload_champ = -1;
2777 method_match_quality = src_method_match_quality;
2778 break;
2779 default:
2780 gdb_assert_not_reached ("Unexpected overload comparison "
2781 "result");
2782 break;
2783 }
2784 }
2785 else if (src_method_oload_champ >= 0)
2786 {
2787 method_oload_champ = src_method_oload_champ;
2788 method_badness = src_method_badness;
2789 method_match_quality = src_method_match_quality;
2790 }
2791 else if (ext_method_oload_champ >= 0)
2792 {
2793 method_oload_champ = ext_method_oload_champ;
2794 method_badness = ext_method_badness;
2795 method_match_quality = ext_method_match_quality;
2796 }
2797 }
2798
2799 if (method == NON_METHOD || method == BOTH)
2800 {
2801 const char *qualified_name = NULL;
2802
2803 /* If the overload match is being search for both as a method
2804 and non member function, the first argument must now be
2805 dereferenced. */
2806 if (method == BOTH)
2807 args[0] = value_ind (args[0]);
2808
2809 if (fsym)
2810 {
2811 qualified_name = fsym->natural_name ();
2812
2813 /* If we have a function with a C++ name, try to extract just
2814 the function part. Do not try this for non-functions (e.g.
2815 function pointers). */
2816 if (qualified_name
2817 && (check_typedef (SYMBOL_TYPE (fsym))->code ()
2818 == TYPE_CODE_FUNC))
2819 {
2820 temp_func = cp_func_name (qualified_name);
2821
2822 /* If cp_func_name did not remove anything, the name of the
2823 symbol did not include scope or argument types - it was
2824 probably a C-style function. */
2825 if (temp_func != nullptr)
2826 {
2827 if (strcmp (temp_func.get (), qualified_name) == 0)
2828 func_name = NULL;
2829 else
2830 func_name = temp_func.get ();
2831 }
2832 }
2833 }
2834 else
2835 {
2836 func_name = name;
2837 qualified_name = name;
2838 }
2839
2840 /* If there was no C++ name, this must be a C-style function or
2841 not a function at all. Just return the same symbol. Do the
2842 same if cp_func_name fails for some reason. */
2843 if (func_name == NULL)
2844 {
2845 *symp = fsym;
2846 return 0;
2847 }
2848
2849 func_oload_champ = find_oload_champ_namespace (args,
2850 func_name,
2851 qualified_name,
2852 &functions,
2853 &func_badness,
2854 no_adl);
2855
2856 if (func_oload_champ >= 0)
2857 func_match_quality = classify_oload_match (func_badness,
2858 args.size (), 0);
2859 }
2860
2861 /* Did we find a match ? */
2862 if (method_oload_champ == -1 && func_oload_champ == -1)
2863 throw_error (NOT_FOUND_ERROR,
2864 _("No symbol \"%s\" in current context."),
2865 name);
2866
2867 /* If we have found both a method match and a function
2868 match, find out which one is better, and calculate match
2869 quality. */
2870 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2871 {
2872 switch (compare_badness (func_badness, method_badness))
2873 {
2874 case 0: /* Top two contenders are equally good. */
2875 /* FIXME: GDB does not support the general ambiguous case.
2876 All candidates should be collected and presented the
2877 user. */
2878 error (_("Ambiguous overload resolution"));
2879 break;
2880 case 1: /* Incomparable top contenders. */
2881 /* This is an error incompatible candidates
2882 should not have been proposed. */
2883 error (_("Internal error: incompatible "
2884 "overload candidates proposed"));
2885 break;
2886 case 2: /* Function champion. */
2887 method_oload_champ = -1;
2888 match_quality = func_match_quality;
2889 break;
2890 case 3: /* Method champion. */
2891 func_oload_champ = -1;
2892 match_quality = method_match_quality;
2893 break;
2894 default:
2895 error (_("Internal error: unexpected overload comparison result"));
2896 break;
2897 }
2898 }
2899 else
2900 {
2901 /* We have either a method match or a function match. */
2902 if (method_oload_champ >= 0)
2903 match_quality = method_match_quality;
2904 else
2905 match_quality = func_match_quality;
2906 }
2907
2908 if (match_quality == INCOMPATIBLE)
2909 {
2910 if (method == METHOD)
2911 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2912 obj_type_name,
2913 (obj_type_name && *obj_type_name) ? "::" : "",
2914 name);
2915 else
2916 error (_("Cannot resolve function %s to any overloaded instance"),
2917 func_name);
2918 }
2919 else if (match_quality == NON_STANDARD)
2920 {
2921 if (method == METHOD)
2922 warning (_("Using non-standard conversion to match "
2923 "method %s%s%s to supplied arguments"),
2924 obj_type_name,
2925 (obj_type_name && *obj_type_name) ? "::" : "",
2926 name);
2927 else
2928 warning (_("Using non-standard conversion to match "
2929 "function %s to supplied arguments"),
2930 func_name);
2931 }
2932
2933 if (staticp != NULL)
2934 *staticp = oload_method_static_p (methods.data (), method_oload_champ);
2935
2936 if (method_oload_champ >= 0)
2937 {
2938 if (src_method_oload_champ >= 0)
2939 {
2940 if (TYPE_FN_FIELD_VIRTUAL_P (methods, method_oload_champ)
2941 && noside != EVAL_AVOID_SIDE_EFFECTS)
2942 {
2943 *valp = value_virtual_fn_field (&temp, methods.data (),
2944 method_oload_champ, basetype,
2945 boffset);
2946 }
2947 else
2948 *valp = value_fn_field (&temp, methods.data (),
2949 method_oload_champ, basetype, boffset);
2950 }
2951 else
2952 *valp = value_from_xmethod
2953 (std::move (xmethods[ext_method_oload_champ]));
2954 }
2955 else
2956 *symp = functions[func_oload_champ];
2957
2958 if (objp)
2959 {
2960 struct type *temp_type = check_typedef (value_type (temp));
2961 struct type *objtype = check_typedef (obj_type);
2962
2963 if (temp_type->code () != TYPE_CODE_PTR
2964 && objtype->is_pointer_or_reference ())
2965 {
2966 temp = value_addr (temp);
2967 }
2968 *objp = temp;
2969 }
2970
2971 switch (match_quality)
2972 {
2973 case INCOMPATIBLE:
2974 return 100;
2975 case NON_STANDARD:
2976 return 10;
2977 default: /* STANDARD */
2978 return 0;
2979 }
2980 }
2981
2982 /* Find the best overload match, searching for FUNC_NAME in namespaces
2983 contained in QUALIFIED_NAME until it either finds a good match or
2984 runs out of namespaces. It stores the overloaded functions in
2985 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. If NO_ADL,
2986 argument dependent lookup is not performed. */
2987
2988 static int
2989 find_oload_champ_namespace (gdb::array_view<value *> args,
2990 const char *func_name,
2991 const char *qualified_name,
2992 std::vector<symbol *> *oload_syms,
2993 badness_vector *oload_champ_bv,
2994 const int no_adl)
2995 {
2996 int oload_champ;
2997
2998 find_oload_champ_namespace_loop (args,
2999 func_name,
3000 qualified_name, 0,
3001 oload_syms, oload_champ_bv,
3002 &oload_champ,
3003 no_adl);
3004
3005 return oload_champ;
3006 }
3007
3008 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
3009 how deep we've looked for namespaces, and the champ is stored in
3010 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
3011 if it isn't. Other arguments are the same as in
3012 find_oload_champ_namespace. */
3013
3014 static int
3015 find_oload_champ_namespace_loop (gdb::array_view<value *> args,
3016 const char *func_name,
3017 const char *qualified_name,
3018 int namespace_len,
3019 std::vector<symbol *> *oload_syms,
3020 badness_vector *oload_champ_bv,
3021 int *oload_champ,
3022 const int no_adl)
3023 {
3024 int next_namespace_len = namespace_len;
3025 int searched_deeper = 0;
3026 int new_oload_champ;
3027 char *new_namespace;
3028
3029 if (next_namespace_len != 0)
3030 {
3031 gdb_assert (qualified_name[next_namespace_len] == ':');
3032 next_namespace_len += 2;
3033 }
3034 next_namespace_len +=
3035 cp_find_first_component (qualified_name + next_namespace_len);
3036
3037 /* First, see if we have a deeper namespace we can search in.
3038 If we get a good match there, use it. */
3039
3040 if (qualified_name[next_namespace_len] == ':')
3041 {
3042 searched_deeper = 1;
3043
3044 if (find_oload_champ_namespace_loop (args,
3045 func_name, qualified_name,
3046 next_namespace_len,
3047 oload_syms, oload_champ_bv,
3048 oload_champ, no_adl))
3049 {
3050 return 1;
3051 }
3052 };
3053
3054 /* If we reach here, either we're in the deepest namespace or we
3055 didn't find a good match in a deeper namespace. But, in the
3056 latter case, we still have a bad match in a deeper namespace;
3057 note that we might not find any match at all in the current
3058 namespace. (There's always a match in the deepest namespace,
3059 because this overload mechanism only gets called if there's a
3060 function symbol to start off with.) */
3061
3062 new_namespace = (char *) alloca (namespace_len + 1);
3063 strncpy (new_namespace, qualified_name, namespace_len);
3064 new_namespace[namespace_len] = '\0';
3065
3066 std::vector<symbol *> new_oload_syms
3067 = make_symbol_overload_list (func_name, new_namespace);
3068
3069 /* If we have reached the deepest level perform argument
3070 determined lookup. */
3071 if (!searched_deeper && !no_adl)
3072 {
3073 int ix;
3074 struct type **arg_types;
3075
3076 /* Prepare list of argument types for overload resolution. */
3077 arg_types = (struct type **)
3078 alloca (args.size () * (sizeof (struct type *)));
3079 for (ix = 0; ix < args.size (); ix++)
3080 arg_types[ix] = value_type (args[ix]);
3081 add_symbol_overload_list_adl ({arg_types, args.size ()}, func_name,
3082 &new_oload_syms);
3083 }
3084
3085 badness_vector new_oload_champ_bv;
3086 new_oload_champ = find_oload_champ (args,
3087 new_oload_syms.size (),
3088 NULL, NULL, new_oload_syms.data (),
3089 &new_oload_champ_bv);
3090
3091 /* Case 1: We found a good match. Free earlier matches (if any),
3092 and return it. Case 2: We didn't find a good match, but we're
3093 not the deepest function. Then go with the bad match that the
3094 deeper function found. Case 3: We found a bad match, and we're
3095 the deepest function. Then return what we found, even though
3096 it's a bad match. */
3097
3098 if (new_oload_champ != -1
3099 && classify_oload_match (new_oload_champ_bv, args.size (), 0) == STANDARD)
3100 {
3101 *oload_syms = std::move (new_oload_syms);
3102 *oload_champ = new_oload_champ;
3103 *oload_champ_bv = std::move (new_oload_champ_bv);
3104 return 1;
3105 }
3106 else if (searched_deeper)
3107 {
3108 return 0;
3109 }
3110 else
3111 {
3112 *oload_syms = std::move (new_oload_syms);
3113 *oload_champ = new_oload_champ;
3114 *oload_champ_bv = std::move (new_oload_champ_bv);
3115 return 0;
3116 }
3117 }
3118
3119 /* Look for a function to take ARGS. Find the best match from among
3120 the overloaded methods or functions given by METHODS or FUNCTIONS
3121 or XMETHODS, respectively. One, and only one of METHODS, FUNCTIONS
3122 and XMETHODS can be non-NULL.
3123
3124 NUM_FNS is the length of the array pointed at by METHODS, FUNCTIONS
3125 or XMETHODS, whichever is non-NULL.
3126
3127 Return the index of the best match; store an indication of the
3128 quality of the match in OLOAD_CHAMP_BV. */
3129
3130 static int
3131 find_oload_champ (gdb::array_view<value *> args,
3132 size_t num_fns,
3133 fn_field *methods,
3134 xmethod_worker_up *xmethods,
3135 symbol **functions,
3136 badness_vector *oload_champ_bv)
3137 {
3138 /* A measure of how good an overloaded instance is. */
3139 badness_vector bv;
3140 /* Index of best overloaded function. */
3141 int oload_champ = -1;
3142 /* Current ambiguity state for overload resolution. */
3143 int oload_ambiguous = 0;
3144 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
3145
3146 /* A champion can be found among methods alone, or among functions
3147 alone, or in xmethods alone, but not in more than one of these
3148 groups. */
3149 gdb_assert ((methods != NULL) + (functions != NULL) + (xmethods != NULL)
3150 == 1);
3151
3152 /* Consider each candidate in turn. */
3153 for (size_t ix = 0; ix < num_fns; ix++)
3154 {
3155 int jj;
3156 int static_offset = 0;
3157 std::vector<type *> parm_types;
3158
3159 if (xmethods != NULL)
3160 parm_types = xmethods[ix]->get_arg_types ();
3161 else
3162 {
3163 size_t nparms;
3164
3165 if (methods != NULL)
3166 {
3167 nparms = TYPE_FN_FIELD_TYPE (methods, ix)->num_fields ();
3168 static_offset = oload_method_static_p (methods, ix);
3169 }
3170 else
3171 nparms = SYMBOL_TYPE (functions[ix])->num_fields ();
3172
3173 parm_types.reserve (nparms);
3174 for (jj = 0; jj < nparms; jj++)
3175 {
3176 type *t = (methods != NULL
3177 ? (TYPE_FN_FIELD_ARGS (methods, ix)[jj].type ())
3178 : SYMBOL_TYPE (functions[ix])->field (jj).type ());
3179 parm_types.push_back (t);
3180 }
3181 }
3182
3183 /* Compare parameter types to supplied argument types. Skip
3184 THIS for static methods. */
3185 bv = rank_function (parm_types,
3186 args.slice (static_offset));
3187
3188 if (overload_debug)
3189 {
3190 if (methods != NULL)
3191 fprintf_filtered (gdb_stderr,
3192 "Overloaded method instance %s, # of parms %d\n",
3193 methods[ix].physname, (int) parm_types.size ());
3194 else if (xmethods != NULL)
3195 fprintf_filtered (gdb_stderr,
3196 "Xmethod worker, # of parms %d\n",
3197 (int) parm_types.size ());
3198 else
3199 fprintf_filtered (gdb_stderr,
3200 "Overloaded function instance "
3201 "%s # of parms %d\n",
3202 functions[ix]->demangled_name (),
3203 (int) parm_types.size ());
3204
3205 fprintf_filtered (gdb_stderr,
3206 "...Badness of length : {%d, %d}\n",
3207 bv[0].rank, bv[0].subrank);
3208
3209 for (jj = 1; jj < bv.size (); jj++)
3210 fprintf_filtered (gdb_stderr,
3211 "...Badness of arg %d : {%d, %d}\n",
3212 jj, bv[jj].rank, bv[jj].subrank);
3213 }
3214
3215 if (oload_champ_bv->empty ())
3216 {
3217 *oload_champ_bv = std::move (bv);
3218 oload_champ = 0;
3219 }
3220 else /* See whether current candidate is better or worse than
3221 previous best. */
3222 switch (compare_badness (bv, *oload_champ_bv))
3223 {
3224 case 0: /* Top two contenders are equally good. */
3225 oload_ambiguous = 1;
3226 break;
3227 case 1: /* Incomparable top contenders. */
3228 oload_ambiguous = 2;
3229 break;
3230 case 2: /* New champion, record details. */
3231 *oload_champ_bv = std::move (bv);
3232 oload_ambiguous = 0;
3233 oload_champ = ix;
3234 break;
3235 case 3:
3236 default:
3237 break;
3238 }
3239 if (overload_debug)
3240 fprintf_filtered (gdb_stderr, "Overload resolution "
3241 "champion is %d, ambiguous? %d\n",
3242 oload_champ, oload_ambiguous);
3243 }
3244
3245 return oload_champ;
3246 }
3247
3248 /* Return 1 if we're looking at a static method, 0 if we're looking at
3249 a non-static method or a function that isn't a method. */
3250
3251 static int
3252 oload_method_static_p (struct fn_field *fns_ptr, int index)
3253 {
3254 if (fns_ptr && index >= 0 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
3255 return 1;
3256 else
3257 return 0;
3258 }
3259
3260 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
3261
3262 static enum oload_classification
3263 classify_oload_match (const badness_vector &oload_champ_bv,
3264 int nargs,
3265 int static_offset)
3266 {
3267 int ix;
3268 enum oload_classification worst = STANDARD;
3269
3270 for (ix = 1; ix <= nargs - static_offset; ix++)
3271 {
3272 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
3273 or worse return INCOMPATIBLE. */
3274 if (compare_ranks (oload_champ_bv[ix],
3275 INCOMPATIBLE_TYPE_BADNESS) <= 0)
3276 return INCOMPATIBLE; /* Truly mismatched types. */
3277 /* Otherwise If this conversion is as bad as
3278 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
3279 else if (compare_ranks (oload_champ_bv[ix],
3280 NS_POINTER_CONVERSION_BADNESS) <= 0)
3281 worst = NON_STANDARD; /* Non-standard type conversions
3282 needed. */
3283 }
3284
3285 /* If no INCOMPATIBLE classification was found, return the worst one
3286 that was found (if any). */
3287 return worst;
3288 }
3289
3290 /* C++: return 1 is NAME is a legitimate name for the destructor of
3291 type TYPE. If TYPE does not have a destructor, or if NAME is
3292 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
3293 have CHECK_TYPEDEF applied, this function will apply it itself. */
3294
3295 int
3296 destructor_name_p (const char *name, struct type *type)
3297 {
3298 if (name[0] == '~')
3299 {
3300 const char *dname = type_name_or_error (type);
3301 const char *cp = strchr (dname, '<');
3302 unsigned int len;
3303
3304 /* Do not compare the template part for template classes. */
3305 if (cp == NULL)
3306 len = strlen (dname);
3307 else
3308 len = cp - dname;
3309 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3310 error (_("name of destructor must equal name of class"));
3311 else
3312 return 1;
3313 }
3314 return 0;
3315 }
3316
3317 /* Find an enum constant named NAME in TYPE. TYPE must be an "enum
3318 class". If the name is found, return a value representing it;
3319 otherwise throw an exception. */
3320
3321 static struct value *
3322 enum_constant_from_type (struct type *type, const char *name)
3323 {
3324 int i;
3325 int name_len = strlen (name);
3326
3327 gdb_assert (type->code () == TYPE_CODE_ENUM
3328 && type->is_declared_class ());
3329
3330 for (i = TYPE_N_BASECLASSES (type); i < type->num_fields (); ++i)
3331 {
3332 const char *fname = type->field (i).name ();
3333 int len;
3334
3335 if (type->field (i).loc_kind () != FIELD_LOC_KIND_ENUMVAL
3336 || fname == NULL)
3337 continue;
3338
3339 /* Look for the trailing "::NAME", since enum class constant
3340 names are qualified here. */
3341 len = strlen (fname);
3342 if (len + 2 >= name_len
3343 && fname[len - name_len - 2] == ':'
3344 && fname[len - name_len - 1] == ':'
3345 && strcmp (&fname[len - name_len], name) == 0)
3346 return value_from_longest (type, type->field (i).loc_enumval ());
3347 }
3348
3349 error (_("no constant named \"%s\" in enum \"%s\""),
3350 name, type->name ());
3351 }
3352
3353 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3354 return the appropriate member (or the address of the member, if
3355 WANT_ADDRESS). This function is used to resolve user expressions
3356 of the form "DOMAIN::NAME". For more details on what happens, see
3357 the comment before value_struct_elt_for_reference. */
3358
3359 struct value *
3360 value_aggregate_elt (struct type *curtype, const char *name,
3361 struct type *expect_type, int want_address,
3362 enum noside noside)
3363 {
3364 switch (curtype->code ())
3365 {
3366 case TYPE_CODE_STRUCT:
3367 case TYPE_CODE_UNION:
3368 return value_struct_elt_for_reference (curtype, 0, curtype,
3369 name, expect_type,
3370 want_address, noside);
3371 case TYPE_CODE_NAMESPACE:
3372 return value_namespace_elt (curtype, name,
3373 want_address, noside);
3374
3375 case TYPE_CODE_ENUM:
3376 return enum_constant_from_type (curtype, name);
3377
3378 default:
3379 internal_error (__FILE__, __LINE__,
3380 _("non-aggregate type in value_aggregate_elt"));
3381 }
3382 }
3383
3384 /* Compares the two method/function types T1 and T2 for "equality"
3385 with respect to the methods' parameters. If the types of the
3386 two parameter lists are the same, returns 1; 0 otherwise. This
3387 comparison may ignore any artificial parameters in T1 if
3388 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3389 the first artificial parameter in T1, assumed to be a 'this' pointer.
3390
3391 The type T2 is expected to have come from make_params (in eval.c). */
3392
3393 static int
3394 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3395 {
3396 int start = 0;
3397
3398 if (t1->num_fields () > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3399 ++start;
3400
3401 /* If skipping artificial fields, find the first real field
3402 in T1. */
3403 if (skip_artificial)
3404 {
3405 while (start < t1->num_fields ()
3406 && TYPE_FIELD_ARTIFICIAL (t1, start))
3407 ++start;
3408 }
3409
3410 /* Now compare parameters. */
3411
3412 /* Special case: a method taking void. T1 will contain no
3413 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3414 if ((t1->num_fields () - start) == 0 && t2->num_fields () == 1
3415 && t2->field (0).type ()->code () == TYPE_CODE_VOID)
3416 return 1;
3417
3418 if ((t1->num_fields () - start) == t2->num_fields ())
3419 {
3420 int i;
3421
3422 for (i = 0; i < t2->num_fields (); ++i)
3423 {
3424 if (compare_ranks (rank_one_type (t1->field (start + i).type (),
3425 t2->field (i).type (), NULL),
3426 EXACT_MATCH_BADNESS) != 0)
3427 return 0;
3428 }
3429
3430 return 1;
3431 }
3432
3433 return 0;
3434 }
3435
3436 /* C++: Given an aggregate type VT, and a class type CLS, search
3437 recursively for CLS using value V; If found, store the offset
3438 which is either fetched from the virtual base pointer if CLS
3439 is virtual or accumulated offset of its parent classes if
3440 CLS is non-virtual in *BOFFS, set ISVIRT to indicate if CLS
3441 is virtual, and return true. If not found, return false. */
3442
3443 static bool
3444 get_baseclass_offset (struct type *vt, struct type *cls,
3445 struct value *v, int *boffs, bool *isvirt)
3446 {
3447 for (int i = 0; i < TYPE_N_BASECLASSES (vt); i++)
3448 {
3449 struct type *t = vt->field (i).type ();
3450 if (types_equal (t, cls))
3451 {
3452 if (BASETYPE_VIA_VIRTUAL (vt, i))
3453 {
3454 const gdb_byte *adr = value_contents_for_printing (v).data ();
3455 *boffs = baseclass_offset (vt, i, adr, value_offset (v),
3456 value_as_long (v), v);
3457 *isvirt = true;
3458 }
3459 else
3460 *isvirt = false;
3461 return true;
3462 }
3463
3464 if (get_baseclass_offset (check_typedef (t), cls, v, boffs, isvirt))
3465 {
3466 if (*isvirt == false) /* Add non-virtual base offset. */
3467 {
3468 const gdb_byte *adr = value_contents_for_printing (v).data ();
3469 *boffs += baseclass_offset (vt, i, adr, value_offset (v),
3470 value_as_long (v), v);
3471 }
3472 return true;
3473 }
3474 }
3475
3476 return false;
3477 }
3478
3479 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3480 return the address of this member as a "pointer to member" type.
3481 If INTYPE is non-null, then it will be the type of the member we
3482 are looking for. This will help us resolve "pointers to member
3483 functions". This function is used to resolve user expressions of
3484 the form "DOMAIN::NAME". */
3485
3486 static struct value *
3487 value_struct_elt_for_reference (struct type *domain, int offset,
3488 struct type *curtype, const char *name,
3489 struct type *intype,
3490 int want_address,
3491 enum noside noside)
3492 {
3493 struct type *t = check_typedef (curtype);
3494 int i;
3495 struct value *result;
3496
3497 if (t->code () != TYPE_CODE_STRUCT
3498 && t->code () != TYPE_CODE_UNION)
3499 error (_("Internal error: non-aggregate type "
3500 "to value_struct_elt_for_reference"));
3501
3502 for (i = t->num_fields () - 1; i >= TYPE_N_BASECLASSES (t); i--)
3503 {
3504 const char *t_field_name = t->field (i).name ();
3505
3506 if (t_field_name && strcmp (t_field_name, name) == 0)
3507 {
3508 if (field_is_static (&t->field (i)))
3509 {
3510 struct value *v = value_static_field (t, i);
3511 if (want_address)
3512 v = value_addr (v);
3513 return v;
3514 }
3515 if (TYPE_FIELD_PACKED (t, i))
3516 error (_("pointers to bitfield members not allowed"));
3517
3518 if (want_address)
3519 return value_from_longest
3520 (lookup_memberptr_type (t->field (i).type (), domain),
3521 offset + (LONGEST) (t->field (i).loc_bitpos () >> 3));
3522 else if (noside != EVAL_NORMAL)
3523 return allocate_value (t->field (i).type ());
3524 else
3525 {
3526 /* Try to evaluate NAME as a qualified name with implicit
3527 this pointer. In this case, attempt to return the
3528 equivalent to `this->*(&TYPE::NAME)'. */
3529 struct value *v = value_of_this_silent (current_language);
3530 if (v != NULL)
3531 {
3532 struct value *ptr, *this_v = v;
3533 long mem_offset;
3534 struct type *type, *tmp;
3535
3536 ptr = value_aggregate_elt (domain, name, NULL, 1, noside);
3537 type = check_typedef (value_type (ptr));
3538 gdb_assert (type != NULL
3539 && type->code () == TYPE_CODE_MEMBERPTR);
3540 tmp = lookup_pointer_type (TYPE_SELF_TYPE (type));
3541 v = value_cast_pointers (tmp, v, 1);
3542 mem_offset = value_as_long (ptr);
3543 if (domain != curtype)
3544 {
3545 /* Find class offset of type CURTYPE from either its
3546 parent type DOMAIN or the type of implied this. */
3547 int boff = 0;
3548 bool isvirt = false;
3549 if (get_baseclass_offset (domain, curtype, v, &boff,
3550 &isvirt))
3551 mem_offset += boff;
3552 else
3553 {
3554 struct type *p = check_typedef (value_type (this_v));
3555 p = check_typedef (TYPE_TARGET_TYPE (p));
3556 if (get_baseclass_offset (p, curtype, this_v,
3557 &boff, &isvirt))
3558 mem_offset += boff;
3559 }
3560 }
3561 tmp = lookup_pointer_type (TYPE_TARGET_TYPE (type));
3562 result = value_from_pointer (tmp,
3563 value_as_long (v) + mem_offset);
3564 return value_ind (result);
3565 }
3566
3567 error (_("Cannot reference non-static field \"%s\""), name);
3568 }
3569 }
3570 }
3571
3572 /* C++: If it was not found as a data field, then try to return it
3573 as a pointer to a method. */
3574
3575 /* Perform all necessary dereferencing. */
3576 while (intype && intype->code () == TYPE_CODE_PTR)
3577 intype = TYPE_TARGET_TYPE (intype);
3578
3579 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3580 {
3581 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3582
3583 if (t_field_name && strcmp (t_field_name, name) == 0)
3584 {
3585 int j;
3586 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3587 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3588
3589 check_stub_method_group (t, i);
3590
3591 if (intype)
3592 {
3593 for (j = 0; j < len; ++j)
3594 {
3595 if (TYPE_CONST (intype) != TYPE_FN_FIELD_CONST (f, j))
3596 continue;
3597 if (TYPE_VOLATILE (intype) != TYPE_FN_FIELD_VOLATILE (f, j))
3598 continue;
3599
3600 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3601 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3602 intype, 1))
3603 break;
3604 }
3605
3606 if (j == len)
3607 error (_("no member function matches "
3608 "that type instantiation"));
3609 }
3610 else
3611 {
3612 int ii;
3613
3614 j = -1;
3615 for (ii = 0; ii < len; ++ii)
3616 {
3617 /* Skip artificial methods. This is necessary if,
3618 for example, the user wants to "print
3619 subclass::subclass" with only one user-defined
3620 constructor. There is no ambiguity in this case.
3621 We are careful here to allow artificial methods
3622 if they are the unique result. */
3623 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3624 {
3625 if (j == -1)
3626 j = ii;
3627 continue;
3628 }
3629
3630 /* Desired method is ambiguous if more than one
3631 method is defined. */
3632 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3633 error (_("non-unique member `%s' requires "
3634 "type instantiation"), name);
3635
3636 j = ii;
3637 }
3638
3639 if (j == -1)
3640 error (_("no matching member function"));
3641 }
3642
3643 if (TYPE_FN_FIELD_STATIC_P (f, j))
3644 {
3645 struct symbol *s =
3646 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3647 0, VAR_DOMAIN, 0).symbol;
3648
3649 if (s == NULL)
3650 return NULL;
3651
3652 if (want_address)
3653 return value_addr (read_var_value (s, 0, 0));
3654 else
3655 return read_var_value (s, 0, 0);
3656 }
3657
3658 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3659 {
3660 if (want_address)
3661 {
3662 result = allocate_value
3663 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3664 cplus_make_method_ptr (value_type (result),
3665 value_contents_writeable (result).data (),
3666 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3667 }
3668 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3669 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3670 else
3671 error (_("Cannot reference virtual member function \"%s\""),
3672 name);
3673 }
3674 else
3675 {
3676 struct symbol *s =
3677 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3678 0, VAR_DOMAIN, 0).symbol;
3679
3680 if (s == NULL)
3681 return NULL;
3682
3683 struct value *v = read_var_value (s, 0, 0);
3684 if (!want_address)
3685 result = v;
3686 else
3687 {
3688 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3689 cplus_make_method_ptr (value_type (result),
3690 value_contents_writeable (result).data (),
3691 value_address (v), 0);
3692 }
3693 }
3694 return result;
3695 }
3696 }
3697 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3698 {
3699 struct value *v;
3700 int base_offset;
3701
3702 if (BASETYPE_VIA_VIRTUAL (t, i))
3703 base_offset = 0;
3704 else
3705 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3706 v = value_struct_elt_for_reference (domain,
3707 offset + base_offset,
3708 TYPE_BASECLASS (t, i),
3709 name, intype,
3710 want_address, noside);
3711 if (v)
3712 return v;
3713 }
3714
3715 /* As a last chance, pretend that CURTYPE is a namespace, and look
3716 it up that way; this (frequently) works for types nested inside
3717 classes. */
3718
3719 return value_maybe_namespace_elt (curtype, name,
3720 want_address, noside);
3721 }
3722
3723 /* C++: Return the member NAME of the namespace given by the type
3724 CURTYPE. */
3725
3726 static struct value *
3727 value_namespace_elt (const struct type *curtype,
3728 const char *name, int want_address,
3729 enum noside noside)
3730 {
3731 struct value *retval = value_maybe_namespace_elt (curtype, name,
3732 want_address,
3733 noside);
3734
3735 if (retval == NULL)
3736 error (_("No symbol \"%s\" in namespace \"%s\"."),
3737 name, curtype->name ());
3738
3739 return retval;
3740 }
3741
3742 /* A helper function used by value_namespace_elt and
3743 value_struct_elt_for_reference. It looks up NAME inside the
3744 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3745 is a class and NAME refers to a type in CURTYPE itself (as opposed
3746 to, say, some base class of CURTYPE). */
3747
3748 static struct value *
3749 value_maybe_namespace_elt (const struct type *curtype,
3750 const char *name, int want_address,
3751 enum noside noside)
3752 {
3753 const char *namespace_name = curtype->name ();
3754 struct block_symbol sym;
3755 struct value *result;
3756
3757 sym = cp_lookup_symbol_namespace (namespace_name, name,
3758 get_selected_block (0), VAR_DOMAIN);
3759
3760 if (sym.symbol == NULL)
3761 return NULL;
3762 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3763 && (SYMBOL_CLASS (sym.symbol) == LOC_TYPEDEF))
3764 result = allocate_value (SYMBOL_TYPE (sym.symbol));
3765 else
3766 result = value_of_variable (sym.symbol, sym.block);
3767
3768 if (want_address)
3769 result = value_addr (result);
3770
3771 return result;
3772 }
3773
3774 /* Given a pointer or a reference value V, find its real (RTTI) type.
3775
3776 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3777 and refer to the values computed for the object pointed to. */
3778
3779 struct type *
3780 value_rtti_indirect_type (struct value *v, int *full,
3781 LONGEST *top, int *using_enc)
3782 {
3783 struct value *target = NULL;
3784 struct type *type, *real_type, *target_type;
3785
3786 type = value_type (v);
3787 type = check_typedef (type);
3788 if (TYPE_IS_REFERENCE (type))
3789 target = coerce_ref (v);
3790 else if (type->code () == TYPE_CODE_PTR)
3791 {
3792
3793 try
3794 {
3795 target = value_ind (v);
3796 }
3797 catch (const gdb_exception_error &except)
3798 {
3799 if (except.error == MEMORY_ERROR)
3800 {
3801 /* value_ind threw a memory error. The pointer is NULL or
3802 contains an uninitialized value: we can't determine any
3803 type. */
3804 return NULL;
3805 }
3806 throw;
3807 }
3808 }
3809 else
3810 return NULL;
3811
3812 real_type = value_rtti_type (target, full, top, using_enc);
3813
3814 if (real_type)
3815 {
3816 /* Copy qualifiers to the referenced object. */
3817 target_type = value_type (target);
3818 real_type = make_cv_type (TYPE_CONST (target_type),
3819 TYPE_VOLATILE (target_type), real_type, NULL);
3820 if (TYPE_IS_REFERENCE (type))
3821 real_type = lookup_reference_type (real_type, type->code ());
3822 else if (type->code () == TYPE_CODE_PTR)
3823 real_type = lookup_pointer_type (real_type);
3824 else
3825 internal_error (__FILE__, __LINE__, _("Unexpected value type."));
3826
3827 /* Copy qualifiers to the pointer/reference. */
3828 real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type),
3829 real_type, NULL);
3830 }
3831
3832 return real_type;
3833 }
3834
3835 /* Given a value pointed to by ARGP, check its real run-time type, and
3836 if that is different from the enclosing type, create a new value
3837 using the real run-time type as the enclosing type (and of the same
3838 type as ARGP) and return it, with the embedded offset adjusted to
3839 be the correct offset to the enclosed object. RTYPE is the type,
3840 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3841 by value_rtti_type(). If these are available, they can be supplied
3842 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3843 NULL if they're not available. */
3844
3845 struct value *
3846 value_full_object (struct value *argp,
3847 struct type *rtype,
3848 int xfull, int xtop,
3849 int xusing_enc)
3850 {
3851 struct type *real_type;
3852 int full = 0;
3853 LONGEST top = -1;
3854 int using_enc = 0;
3855 struct value *new_val;
3856
3857 if (rtype)
3858 {
3859 real_type = rtype;
3860 full = xfull;
3861 top = xtop;
3862 using_enc = xusing_enc;
3863 }
3864 else
3865 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3866
3867 /* If no RTTI data, or if object is already complete, do nothing. */
3868 if (!real_type || real_type == value_enclosing_type (argp))
3869 return argp;
3870
3871 /* In a destructor we might see a real type that is a superclass of
3872 the object's type. In this case it is better to leave the object
3873 as-is. */
3874 if (full
3875 && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp)))
3876 return argp;
3877
3878 /* If we have the full object, but for some reason the enclosing
3879 type is wrong, set it. */
3880 /* pai: FIXME -- sounds iffy */
3881 if (full)
3882 {
3883 argp = value_copy (argp);
3884 set_value_enclosing_type (argp, real_type);
3885 return argp;
3886 }
3887
3888 /* Check if object is in memory. */
3889 if (VALUE_LVAL (argp) != lval_memory)
3890 {
3891 warning (_("Couldn't retrieve complete object of RTTI "
3892 "type %s; object may be in register(s)."),
3893 real_type->name ());
3894
3895 return argp;
3896 }
3897
3898 /* All other cases -- retrieve the complete object. */
3899 /* Go back by the computed top_offset from the beginning of the
3900 object, adjusting for the embedded offset of argp if that's what
3901 value_rtti_type used for its computation. */
3902 new_val = value_at_lazy (real_type, value_address (argp) - top +
3903 (using_enc ? 0 : value_embedded_offset (argp)));
3904 deprecated_set_value_type (new_val, value_type (argp));
3905 set_value_embedded_offset (new_val, (using_enc
3906 ? top + value_embedded_offset (argp)
3907 : top));
3908 return new_val;
3909 }
3910
3911
3912 /* Return the value of the local variable, if one exists. Throw error
3913 otherwise, such as if the request is made in an inappropriate context. */
3914
3915 struct value *
3916 value_of_this (const struct language_defn *lang)
3917 {
3918 struct block_symbol sym;
3919 const struct block *b;
3920 struct frame_info *frame;
3921
3922 if (lang->name_of_this () == NULL)
3923 error (_("no `this' in current language"));
3924
3925 frame = get_selected_frame (_("no frame selected"));
3926
3927 b = get_frame_block (frame, NULL);
3928
3929 sym = lookup_language_this (lang, b);
3930 if (sym.symbol == NULL)
3931 error (_("current stack frame does not contain a variable named `%s'"),
3932 lang->name_of_this ());
3933
3934 return read_var_value (sym.symbol, sym.block, frame);
3935 }
3936
3937 /* Return the value of the local variable, if one exists. Return NULL
3938 otherwise. Never throw error. */
3939
3940 struct value *
3941 value_of_this_silent (const struct language_defn *lang)
3942 {
3943 struct value *ret = NULL;
3944
3945 try
3946 {
3947 ret = value_of_this (lang);
3948 }
3949 catch (const gdb_exception_error &except)
3950 {
3951 }
3952
3953 return ret;
3954 }
3955
3956 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3957 elements long, starting at LOWBOUND. The result has the same lower
3958 bound as the original ARRAY. */
3959
3960 struct value *
3961 value_slice (struct value *array, int lowbound, int length)
3962 {
3963 struct type *slice_range_type, *slice_type, *range_type;
3964 LONGEST lowerbound, upperbound;
3965 struct value *slice;
3966 struct type *array_type;
3967
3968 array_type = check_typedef (value_type (array));
3969 if (array_type->code () != TYPE_CODE_ARRAY
3970 && array_type->code () != TYPE_CODE_STRING)
3971 error (_("cannot take slice of non-array"));
3972
3973 if (type_not_allocated (array_type))
3974 error (_("array not allocated"));
3975 if (type_not_associated (array_type))
3976 error (_("array not associated"));
3977
3978 range_type = array_type->index_type ();
3979 if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
3980 error (_("slice from bad array or bitstring"));
3981
3982 if (lowbound < lowerbound || length < 0
3983 || lowbound + length - 1 > upperbound)
3984 error (_("slice out of range"));
3985
3986 /* FIXME-type-allocation: need a way to free this type when we are
3987 done with it. */
3988 slice_range_type = create_static_range_type (NULL,
3989 TYPE_TARGET_TYPE (range_type),
3990 lowbound,
3991 lowbound + length - 1);
3992
3993 {
3994 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3995 LONGEST offset
3996 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3997
3998 slice_type = create_array_type (NULL,
3999 element_type,
4000 slice_range_type);
4001 slice_type->set_code (array_type->code ());
4002
4003 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
4004 slice = allocate_value_lazy (slice_type);
4005 else
4006 {
4007 slice = allocate_value (slice_type);
4008 value_contents_copy (slice, 0, array, offset,
4009 type_length_units (slice_type));
4010 }
4011
4012 set_value_component_location (slice, array);
4013 set_value_offset (slice, value_offset (array) + offset);
4014 }
4015
4016 return slice;
4017 }
4018
4019 /* See value.h. */
4020
4021 struct value *
4022 value_literal_complex (struct value *arg1,
4023 struct value *arg2,
4024 struct type *type)
4025 {
4026 struct value *val;
4027 struct type *real_type = TYPE_TARGET_TYPE (type);
4028
4029 val = allocate_value (type);
4030 arg1 = value_cast (real_type, arg1);
4031 arg2 = value_cast (real_type, arg2);
4032
4033 memcpy (value_contents_raw (val).data (),
4034 value_contents (arg1).data (), TYPE_LENGTH (real_type));
4035 memcpy (value_contents_raw (val).data () + TYPE_LENGTH (real_type),
4036 value_contents (arg2).data (), TYPE_LENGTH (real_type));
4037 return val;
4038 }
4039
4040 /* See value.h. */
4041
4042 struct value *
4043 value_real_part (struct value *value)
4044 {
4045 struct type *type = check_typedef (value_type (value));
4046 struct type *ttype = TYPE_TARGET_TYPE (type);
4047
4048 gdb_assert (type->code () == TYPE_CODE_COMPLEX);
4049 return value_from_component (value, ttype, 0);
4050 }
4051
4052 /* See value.h. */
4053
4054 struct value *
4055 value_imaginary_part (struct value *value)
4056 {
4057 struct type *type = check_typedef (value_type (value));
4058 struct type *ttype = TYPE_TARGET_TYPE (type);
4059
4060 gdb_assert (type->code () == TYPE_CODE_COMPLEX);
4061 return value_from_component (value, ttype,
4062 TYPE_LENGTH (check_typedef (ttype)));
4063 }
4064
4065 /* Cast a value into the appropriate complex data type. */
4066
4067 static struct value *
4068 cast_into_complex (struct type *type, struct value *val)
4069 {
4070 struct type *real_type = TYPE_TARGET_TYPE (type);
4071
4072 if (value_type (val)->code () == TYPE_CODE_COMPLEX)
4073 {
4074 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
4075 struct value *re_val = allocate_value (val_real_type);
4076 struct value *im_val = allocate_value (val_real_type);
4077
4078 memcpy (value_contents_raw (re_val).data (),
4079 value_contents (val).data (), TYPE_LENGTH (val_real_type));
4080 memcpy (value_contents_raw (im_val).data (),
4081 value_contents (val).data () + TYPE_LENGTH (val_real_type),
4082 TYPE_LENGTH (val_real_type));
4083
4084 return value_literal_complex (re_val, im_val, type);
4085 }
4086 else if (value_type (val)->code () == TYPE_CODE_FLT
4087 || value_type (val)->code () == TYPE_CODE_INT)
4088 return value_literal_complex (val,
4089 value_zero (real_type, not_lval),
4090 type);
4091 else
4092 error (_("cannot cast non-number to complex"));
4093 }
4094
4095 void _initialize_valops ();
4096 void
4097 _initialize_valops ()
4098 {
4099 add_setshow_boolean_cmd ("overload-resolution", class_support,
4100 &overload_resolution, _("\
4101 Set overload resolution in evaluating C++ functions."), _("\
4102 Show overload resolution in evaluating C++ functions."),
4103 NULL, NULL,
4104 show_overload_resolution,
4105 &setlist, &showlist);
4106 overload_resolution = 1;
4107 }