PR gdb/28480: Improve ambiguous member detection
[binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "demangle.h"
29 #include "language.h"
30 #include "gdbcmd.h"
31 #include "regcache.h"
32 #include "cp-abi.h"
33 #include "block.h"
34 #include "infcall.h"
35 #include "dictionary.h"
36 #include "cp-support.h"
37 #include "target-float.h"
38 #include "tracepoint.h"
39 #include "observable.h"
40 #include "objfiles.h"
41 #include "extension.h"
42 #include "gdbtypes.h"
43 #include "gdbsupport/byte-vector.h"
44
45 /* Local functions. */
46
47 static int typecmp (bool staticp, bool varargs, int nargs,
48 struct field t1[], const gdb::array_view<value *> t2);
49
50 static struct value *search_struct_field (const char *, struct value *,
51 struct type *, int);
52
53 static struct value *search_struct_method (const char *, struct value **,
54 gdb::optional<gdb::array_view<value *>>,
55 LONGEST, int *, struct type *);
56
57 static int find_oload_champ_namespace (gdb::array_view<value *> args,
58 const char *, const char *,
59 std::vector<symbol *> *oload_syms,
60 badness_vector *,
61 const int no_adl);
62
63 static int find_oload_champ_namespace_loop (gdb::array_view<value *> args,
64 const char *, const char *,
65 int, std::vector<symbol *> *oload_syms,
66 badness_vector *, int *,
67 const int no_adl);
68
69 static int find_oload_champ (gdb::array_view<value *> args,
70 size_t num_fns,
71 fn_field *methods,
72 xmethod_worker_up *xmethods,
73 symbol **functions,
74 badness_vector *oload_champ_bv);
75
76 static int oload_method_static_p (struct fn_field *, int);
77
78 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
79
80 static enum oload_classification classify_oload_match
81 (const badness_vector &, int, int);
82
83 static struct value *value_struct_elt_for_reference (struct type *,
84 int, struct type *,
85 const char *,
86 struct type *,
87 int, enum noside);
88
89 static struct value *value_namespace_elt (const struct type *,
90 const char *, int , enum noside);
91
92 static struct value *value_maybe_namespace_elt (const struct type *,
93 const char *, int,
94 enum noside);
95
96 static CORE_ADDR allocate_space_in_inferior (int);
97
98 static struct value *cast_into_complex (struct type *, struct value *);
99
100 bool overload_resolution = false;
101 static void
102 show_overload_resolution (struct ui_file *file, int from_tty,
103 struct cmd_list_element *c,
104 const char *value)
105 {
106 fprintf_filtered (file, _("Overload resolution in evaluating "
107 "C++ functions is %s.\n"),
108 value);
109 }
110
111 /* Find the address of function name NAME in the inferior. If OBJF_P
112 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
113 is defined. */
114
115 struct value *
116 find_function_in_inferior (const char *name, struct objfile **objf_p)
117 {
118 struct block_symbol sym;
119
120 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
121 if (sym.symbol != NULL)
122 {
123 if (SYMBOL_CLASS (sym.symbol) != LOC_BLOCK)
124 {
125 error (_("\"%s\" exists in this program but is not a function."),
126 name);
127 }
128
129 if (objf_p)
130 *objf_p = symbol_objfile (sym.symbol);
131
132 return value_of_variable (sym.symbol, sym.block);
133 }
134 else
135 {
136 struct bound_minimal_symbol msymbol =
137 lookup_bound_minimal_symbol (name);
138
139 if (msymbol.minsym != NULL)
140 {
141 struct objfile *objfile = msymbol.objfile;
142 struct gdbarch *gdbarch = objfile->arch ();
143
144 struct type *type;
145 CORE_ADDR maddr;
146 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
147 type = lookup_function_type (type);
148 type = lookup_pointer_type (type);
149 maddr = BMSYMBOL_VALUE_ADDRESS (msymbol);
150
151 if (objf_p)
152 *objf_p = objfile;
153
154 return value_from_pointer (type, maddr);
155 }
156 else
157 {
158 if (!target_has_execution ())
159 error (_("evaluation of this expression "
160 "requires the target program to be active"));
161 else
162 error (_("evaluation of this expression requires the "
163 "program to have a function \"%s\"."),
164 name);
165 }
166 }
167 }
168
169 /* Allocate NBYTES of space in the inferior using the inferior's
170 malloc and return a value that is a pointer to the allocated
171 space. */
172
173 struct value *
174 value_allocate_space_in_inferior (int len)
175 {
176 struct objfile *objf;
177 struct value *val = find_function_in_inferior ("malloc", &objf);
178 struct gdbarch *gdbarch = objf->arch ();
179 struct value *blocklen;
180
181 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
182 val = call_function_by_hand (val, NULL, blocklen);
183 if (value_logical_not (val))
184 {
185 if (!target_has_execution ())
186 error (_("No memory available to program now: "
187 "you need to start the target first"));
188 else
189 error (_("No memory available to program: call to malloc failed"));
190 }
191 return val;
192 }
193
194 static CORE_ADDR
195 allocate_space_in_inferior (int len)
196 {
197 return value_as_long (value_allocate_space_in_inferior (len));
198 }
199
200 /* Cast struct value VAL to type TYPE and return as a value.
201 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
202 for this to work. Typedef to one of the codes is permitted.
203 Returns NULL if the cast is neither an upcast nor a downcast. */
204
205 static struct value *
206 value_cast_structs (struct type *type, struct value *v2)
207 {
208 struct type *t1;
209 struct type *t2;
210 struct value *v;
211
212 gdb_assert (type != NULL && v2 != NULL);
213
214 t1 = check_typedef (type);
215 t2 = check_typedef (value_type (v2));
216
217 /* Check preconditions. */
218 gdb_assert ((t1->code () == TYPE_CODE_STRUCT
219 || t1->code () == TYPE_CODE_UNION)
220 && !!"Precondition is that type is of STRUCT or UNION kind.");
221 gdb_assert ((t2->code () == TYPE_CODE_STRUCT
222 || t2->code () == TYPE_CODE_UNION)
223 && !!"Precondition is that value is of STRUCT or UNION kind");
224
225 if (t1->name () != NULL
226 && t2->name () != NULL
227 && !strcmp (t1->name (), t2->name ()))
228 return NULL;
229
230 /* Upcasting: look in the type of the source to see if it contains the
231 type of the target as a superclass. If so, we'll need to
232 offset the pointer rather than just change its type. */
233 if (t1->name () != NULL)
234 {
235 v = search_struct_field (t1->name (),
236 v2, t2, 1);
237 if (v)
238 return v;
239 }
240
241 /* Downcasting: look in the type of the target to see if it contains the
242 type of the source as a superclass. If so, we'll need to
243 offset the pointer rather than just change its type. */
244 if (t2->name () != NULL)
245 {
246 /* Try downcasting using the run-time type of the value. */
247 int full, using_enc;
248 LONGEST top;
249 struct type *real_type;
250
251 real_type = value_rtti_type (v2, &full, &top, &using_enc);
252 if (real_type)
253 {
254 v = value_full_object (v2, real_type, full, top, using_enc);
255 v = value_at_lazy (real_type, value_address (v));
256 real_type = value_type (v);
257
258 /* We might be trying to cast to the outermost enclosing
259 type, in which case search_struct_field won't work. */
260 if (real_type->name () != NULL
261 && !strcmp (real_type->name (), t1->name ()))
262 return v;
263
264 v = search_struct_field (t2->name (), v, real_type, 1);
265 if (v)
266 return v;
267 }
268
269 /* Try downcasting using information from the destination type
270 T2. This wouldn't work properly for classes with virtual
271 bases, but those were handled above. */
272 v = search_struct_field (t2->name (),
273 value_zero (t1, not_lval), t1, 1);
274 if (v)
275 {
276 /* Downcasting is possible (t1 is superclass of v2). */
277 CORE_ADDR addr2 = value_address (v2);
278
279 addr2 -= value_address (v) + value_embedded_offset (v);
280 return value_at (type, addr2);
281 }
282 }
283
284 return NULL;
285 }
286
287 /* Cast one pointer or reference type to another. Both TYPE and
288 the type of ARG2 should be pointer types, or else both should be
289 reference types. If SUBCLASS_CHECK is non-zero, this will force a
290 check to see whether TYPE is a superclass of ARG2's type. If
291 SUBCLASS_CHECK is zero, then the subclass check is done only when
292 ARG2 is itself non-zero. Returns the new pointer or reference. */
293
294 struct value *
295 value_cast_pointers (struct type *type, struct value *arg2,
296 int subclass_check)
297 {
298 struct type *type1 = check_typedef (type);
299 struct type *type2 = check_typedef (value_type (arg2));
300 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
301 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
302
303 if (t1->code () == TYPE_CODE_STRUCT
304 && t2->code () == TYPE_CODE_STRUCT
305 && (subclass_check || !value_logical_not (arg2)))
306 {
307 struct value *v2;
308
309 if (TYPE_IS_REFERENCE (type2))
310 v2 = coerce_ref (arg2);
311 else
312 v2 = value_ind (arg2);
313 gdb_assert (check_typedef (value_type (v2))->code ()
314 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
315 v2 = value_cast_structs (t1, v2);
316 /* At this point we have what we can have, un-dereference if needed. */
317 if (v2)
318 {
319 struct value *v = value_addr (v2);
320
321 deprecated_set_value_type (v, type);
322 return v;
323 }
324 }
325
326 /* No superclass found, just change the pointer type. */
327 arg2 = value_copy (arg2);
328 deprecated_set_value_type (arg2, type);
329 set_value_enclosing_type (arg2, type);
330 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
331 return arg2;
332 }
333
334 /* See value.h. */
335
336 gdb_mpq
337 value_to_gdb_mpq (struct value *value)
338 {
339 struct type *type = check_typedef (value_type (value));
340
341 gdb_mpq result;
342 if (is_floating_type (type))
343 {
344 double d = target_float_to_host_double (value_contents (value).data (),
345 type);
346 mpq_set_d (result.val, d);
347 }
348 else
349 {
350 gdb_assert (is_integral_type (type)
351 || is_fixed_point_type (type));
352
353 gdb_mpz vz;
354 vz.read (gdb::make_array_view (value_contents (value).data (),
355 TYPE_LENGTH (type)),
356 type_byte_order (type), type->is_unsigned ());
357 mpq_set_z (result.val, vz.val);
358
359 if (is_fixed_point_type (type))
360 mpq_mul (result.val, result.val,
361 type->fixed_point_scaling_factor ().val);
362 }
363
364 return result;
365 }
366
367 /* Assuming that TO_TYPE is a fixed point type, return a value
368 corresponding to the cast of FROM_VAL to that type. */
369
370 static struct value *
371 value_cast_to_fixed_point (struct type *to_type, struct value *from_val)
372 {
373 struct type *from_type = value_type (from_val);
374
375 if (from_type == to_type)
376 return from_val;
377
378 if (!is_floating_type (from_type)
379 && !is_integral_type (from_type)
380 && !is_fixed_point_type (from_type))
381 error (_("Invalid conversion from type %s to fixed point type %s"),
382 from_type->name (), to_type->name ());
383
384 gdb_mpq vq = value_to_gdb_mpq (from_val);
385
386 /* Divide that value by the scaling factor to obtain the unscaled
387 value, first in rational form, and then in integer form. */
388
389 mpq_div (vq.val, vq.val, to_type->fixed_point_scaling_factor ().val);
390 gdb_mpz unscaled = vq.get_rounded ();
391
392 /* Finally, create the result value, and pack the unscaled value
393 in it. */
394 struct value *result = allocate_value (to_type);
395 unscaled.write (gdb::make_array_view (value_contents_raw (result).data (),
396 TYPE_LENGTH (to_type)),
397 type_byte_order (to_type),
398 to_type->is_unsigned ());
399
400 return result;
401 }
402
403 /* Cast value ARG2 to type TYPE and return as a value.
404 More general than a C cast: accepts any two types of the same length,
405 and if ARG2 is an lvalue it can be cast into anything at all. */
406 /* In C++, casts may change pointer or object representations. */
407
408 struct value *
409 value_cast (struct type *type, struct value *arg2)
410 {
411 enum type_code code1;
412 enum type_code code2;
413 int scalar;
414 struct type *type2;
415
416 int convert_to_boolean = 0;
417
418 /* TYPE might be equal in meaning to the existing type of ARG2, but for
419 many reasons, might be a different type object (e.g. TYPE might be a
420 gdbarch owned type, while VALUE_TYPE (ARG2) could be an objfile owned
421 type).
422
423 In this case we want to preserve the LVAL of ARG2 as this allows the
424 resulting value to be used in more places. We do this by calling
425 VALUE_COPY if appropriate. */
426 if (types_deeply_equal (value_type (arg2), type))
427 {
428 /* If the types are exactly equal then we can avoid creating a new
429 value completely. */
430 if (value_type (arg2) != type)
431 {
432 arg2 = value_copy (arg2);
433 deprecated_set_value_type (arg2, type);
434 }
435 return arg2;
436 }
437
438 if (is_fixed_point_type (type))
439 return value_cast_to_fixed_point (type, arg2);
440
441 /* Check if we are casting struct reference to struct reference. */
442 if (TYPE_IS_REFERENCE (check_typedef (type)))
443 {
444 /* We dereference type; then we recurse and finally
445 we generate value of the given reference. Nothing wrong with
446 that. */
447 struct type *t1 = check_typedef (type);
448 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
449 struct value *val = value_cast (dereftype, arg2);
450
451 return value_ref (val, t1->code ());
452 }
453
454 if (TYPE_IS_REFERENCE (check_typedef (value_type (arg2))))
455 /* We deref the value and then do the cast. */
456 return value_cast (type, coerce_ref (arg2));
457
458 /* Strip typedefs / resolve stubs in order to get at the type's
459 code/length, but remember the original type, to use as the
460 resulting type of the cast, in case it was a typedef. */
461 struct type *to_type = type;
462
463 type = check_typedef (type);
464 code1 = type->code ();
465 arg2 = coerce_ref (arg2);
466 type2 = check_typedef (value_type (arg2));
467
468 /* You can't cast to a reference type. See value_cast_pointers
469 instead. */
470 gdb_assert (!TYPE_IS_REFERENCE (type));
471
472 /* A cast to an undetermined-length array_type, such as
473 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
474 where N is sizeof(OBJECT)/sizeof(TYPE). */
475 if (code1 == TYPE_CODE_ARRAY)
476 {
477 struct type *element_type = TYPE_TARGET_TYPE (type);
478 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
479
480 if (element_length > 0 && type->bounds ()->high.kind () == PROP_UNDEFINED)
481 {
482 struct type *range_type = type->index_type ();
483 int val_length = TYPE_LENGTH (type2);
484 LONGEST low_bound, high_bound, new_length;
485
486 if (!get_discrete_bounds (range_type, &low_bound, &high_bound))
487 low_bound = 0, high_bound = 0;
488 new_length = val_length / element_length;
489 if (val_length % element_length != 0)
490 warning (_("array element type size does not "
491 "divide object size in cast"));
492 /* FIXME-type-allocation: need a way to free this type when
493 we are done with it. */
494 range_type = create_static_range_type (NULL,
495 TYPE_TARGET_TYPE (range_type),
496 low_bound,
497 new_length + low_bound - 1);
498 deprecated_set_value_type (arg2,
499 create_array_type (NULL,
500 element_type,
501 range_type));
502 return arg2;
503 }
504 }
505
506 if (current_language->c_style_arrays_p ()
507 && type2->code () == TYPE_CODE_ARRAY
508 && !type2->is_vector ())
509 arg2 = value_coerce_array (arg2);
510
511 if (type2->code () == TYPE_CODE_FUNC)
512 arg2 = value_coerce_function (arg2);
513
514 type2 = check_typedef (value_type (arg2));
515 code2 = type2->code ();
516
517 if (code1 == TYPE_CODE_COMPLEX)
518 return cast_into_complex (to_type, arg2);
519 if (code1 == TYPE_CODE_BOOL)
520 {
521 code1 = TYPE_CODE_INT;
522 convert_to_boolean = 1;
523 }
524 if (code1 == TYPE_CODE_CHAR)
525 code1 = TYPE_CODE_INT;
526 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
527 code2 = TYPE_CODE_INT;
528
529 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
530 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
531 || code2 == TYPE_CODE_RANGE
532 || is_fixed_point_type (type2));
533
534 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
535 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
536 && type->name () != 0)
537 {
538 struct value *v = value_cast_structs (to_type, arg2);
539
540 if (v)
541 return v;
542 }
543
544 if (is_floating_type (type) && scalar)
545 {
546 if (is_floating_value (arg2))
547 {
548 struct value *v = allocate_value (to_type);
549 target_float_convert (value_contents (arg2).data (), type2,
550 value_contents_raw (v).data (), type);
551 return v;
552 }
553 else if (is_fixed_point_type (type2))
554 {
555 gdb_mpq fp_val;
556
557 fp_val.read_fixed_point
558 (gdb::make_array_view (value_contents (arg2).data (),
559 TYPE_LENGTH (type2)),
560 type_byte_order (type2), type2->is_unsigned (),
561 type2->fixed_point_scaling_factor ());
562
563 struct value *v = allocate_value (to_type);
564 target_float_from_host_double (value_contents_raw (v).data (),
565 to_type, mpq_get_d (fp_val.val));
566 return v;
567 }
568
569 /* The only option left is an integral type. */
570 if (type2->is_unsigned ())
571 return value_from_ulongest (to_type, value_as_long (arg2));
572 else
573 return value_from_longest (to_type, value_as_long (arg2));
574 }
575 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
576 || code1 == TYPE_CODE_RANGE)
577 && (scalar || code2 == TYPE_CODE_PTR
578 || code2 == TYPE_CODE_MEMBERPTR))
579 {
580 LONGEST longest;
581
582 /* When we cast pointers to integers, we mustn't use
583 gdbarch_pointer_to_address to find the address the pointer
584 represents, as value_as_long would. GDB should evaluate
585 expressions just as the compiler would --- and the compiler
586 sees a cast as a simple reinterpretation of the pointer's
587 bits. */
588 if (code2 == TYPE_CODE_PTR)
589 longest = extract_unsigned_integer
590 (value_contents (arg2).data (), TYPE_LENGTH (type2),
591 type_byte_order (type2));
592 else
593 longest = value_as_long (arg2);
594 return value_from_longest (to_type, convert_to_boolean ?
595 (LONGEST) (longest ? 1 : 0) : longest);
596 }
597 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
598 || code2 == TYPE_CODE_ENUM
599 || code2 == TYPE_CODE_RANGE))
600 {
601 /* TYPE_LENGTH (type) is the length of a pointer, but we really
602 want the length of an address! -- we are really dealing with
603 addresses (i.e., gdb representations) not pointers (i.e.,
604 target representations) here.
605
606 This allows things like "print *(int *)0x01000234" to work
607 without printing a misleading message -- which would
608 otherwise occur when dealing with a target having two byte
609 pointers and four byte addresses. */
610
611 int addr_bit = gdbarch_addr_bit (type2->arch ());
612 LONGEST longest = value_as_long (arg2);
613
614 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
615 {
616 if (longest >= ((LONGEST) 1 << addr_bit)
617 || longest <= -((LONGEST) 1 << addr_bit))
618 warning (_("value truncated"));
619 }
620 return value_from_longest (to_type, longest);
621 }
622 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
623 && value_as_long (arg2) == 0)
624 {
625 struct value *result = allocate_value (to_type);
626
627 cplus_make_method_ptr (to_type,
628 value_contents_writeable (result).data (), 0, 0);
629 return result;
630 }
631 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
632 && value_as_long (arg2) == 0)
633 {
634 /* The Itanium C++ ABI represents NULL pointers to members as
635 minus one, instead of biasing the normal case. */
636 return value_from_longest (to_type, -1);
637 }
638 else if (code1 == TYPE_CODE_ARRAY && type->is_vector ()
639 && code2 == TYPE_CODE_ARRAY && type2->is_vector ()
640 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
641 error (_("Cannot convert between vector values of different sizes"));
642 else if (code1 == TYPE_CODE_ARRAY && type->is_vector () && scalar
643 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
644 error (_("can only cast scalar to vector of same size"));
645 else if (code1 == TYPE_CODE_VOID)
646 {
647 return value_zero (to_type, not_lval);
648 }
649 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
650 {
651 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
652 return value_cast_pointers (to_type, arg2, 0);
653
654 arg2 = value_copy (arg2);
655 deprecated_set_value_type (arg2, to_type);
656 set_value_enclosing_type (arg2, to_type);
657 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
658 return arg2;
659 }
660 else if (VALUE_LVAL (arg2) == lval_memory)
661 return value_at_lazy (to_type, value_address (arg2));
662 else
663 {
664 if (current_language->la_language == language_ada)
665 error (_("Invalid type conversion."));
666 error (_("Invalid cast."));
667 }
668 }
669
670 /* The C++ reinterpret_cast operator. */
671
672 struct value *
673 value_reinterpret_cast (struct type *type, struct value *arg)
674 {
675 struct value *result;
676 struct type *real_type = check_typedef (type);
677 struct type *arg_type, *dest_type;
678 int is_ref = 0;
679 enum type_code dest_code, arg_code;
680
681 /* Do reference, function, and array conversion. */
682 arg = coerce_array (arg);
683
684 /* Attempt to preserve the type the user asked for. */
685 dest_type = type;
686
687 /* If we are casting to a reference type, transform
688 reinterpret_cast<T&[&]>(V) to *reinterpret_cast<T*>(&V). */
689 if (TYPE_IS_REFERENCE (real_type))
690 {
691 is_ref = 1;
692 arg = value_addr (arg);
693 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
694 real_type = lookup_pointer_type (real_type);
695 }
696
697 arg_type = value_type (arg);
698
699 dest_code = real_type->code ();
700 arg_code = arg_type->code ();
701
702 /* We can convert pointer types, or any pointer type to int, or int
703 type to pointer. */
704 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
705 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
706 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
707 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
708 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
709 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
710 || (dest_code == arg_code
711 && (dest_code == TYPE_CODE_PTR
712 || dest_code == TYPE_CODE_METHODPTR
713 || dest_code == TYPE_CODE_MEMBERPTR)))
714 result = value_cast (dest_type, arg);
715 else
716 error (_("Invalid reinterpret_cast"));
717
718 if (is_ref)
719 result = value_cast (type, value_ref (value_ind (result),
720 type->code ()));
721
722 return result;
723 }
724
725 /* A helper for value_dynamic_cast. This implements the first of two
726 runtime checks: we iterate over all the base classes of the value's
727 class which are equal to the desired class; if only one of these
728 holds the value, then it is the answer. */
729
730 static int
731 dynamic_cast_check_1 (struct type *desired_type,
732 const gdb_byte *valaddr,
733 LONGEST embedded_offset,
734 CORE_ADDR address,
735 struct value *val,
736 struct type *search_type,
737 CORE_ADDR arg_addr,
738 struct type *arg_type,
739 struct value **result)
740 {
741 int i, result_count = 0;
742
743 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
744 {
745 LONGEST offset = baseclass_offset (search_type, i, valaddr,
746 embedded_offset,
747 address, val);
748
749 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
750 {
751 if (address + embedded_offset + offset >= arg_addr
752 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
753 {
754 ++result_count;
755 if (!*result)
756 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
757 address + embedded_offset + offset);
758 }
759 }
760 else
761 result_count += dynamic_cast_check_1 (desired_type,
762 valaddr,
763 embedded_offset + offset,
764 address, val,
765 TYPE_BASECLASS (search_type, i),
766 arg_addr,
767 arg_type,
768 result);
769 }
770
771 return result_count;
772 }
773
774 /* A helper for value_dynamic_cast. This implements the second of two
775 runtime checks: we look for a unique public sibling class of the
776 argument's declared class. */
777
778 static int
779 dynamic_cast_check_2 (struct type *desired_type,
780 const gdb_byte *valaddr,
781 LONGEST embedded_offset,
782 CORE_ADDR address,
783 struct value *val,
784 struct type *search_type,
785 struct value **result)
786 {
787 int i, result_count = 0;
788
789 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
790 {
791 LONGEST offset;
792
793 if (! BASETYPE_VIA_PUBLIC (search_type, i))
794 continue;
795
796 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
797 address, val);
798 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
799 {
800 ++result_count;
801 if (*result == NULL)
802 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
803 address + embedded_offset + offset);
804 }
805 else
806 result_count += dynamic_cast_check_2 (desired_type,
807 valaddr,
808 embedded_offset + offset,
809 address, val,
810 TYPE_BASECLASS (search_type, i),
811 result);
812 }
813
814 return result_count;
815 }
816
817 /* The C++ dynamic_cast operator. */
818
819 struct value *
820 value_dynamic_cast (struct type *type, struct value *arg)
821 {
822 int full, using_enc;
823 LONGEST top;
824 struct type *resolved_type = check_typedef (type);
825 struct type *arg_type = check_typedef (value_type (arg));
826 struct type *class_type, *rtti_type;
827 struct value *result, *tem, *original_arg = arg;
828 CORE_ADDR addr;
829 int is_ref = TYPE_IS_REFERENCE (resolved_type);
830
831 if (resolved_type->code () != TYPE_CODE_PTR
832 && !TYPE_IS_REFERENCE (resolved_type))
833 error (_("Argument to dynamic_cast must be a pointer or reference type"));
834 if (TYPE_TARGET_TYPE (resolved_type)->code () != TYPE_CODE_VOID
835 && TYPE_TARGET_TYPE (resolved_type)->code () != TYPE_CODE_STRUCT)
836 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
837
838 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
839 if (resolved_type->code () == TYPE_CODE_PTR)
840 {
841 if (arg_type->code () != TYPE_CODE_PTR
842 && ! (arg_type->code () == TYPE_CODE_INT
843 && value_as_long (arg) == 0))
844 error (_("Argument to dynamic_cast does not have pointer type"));
845 if (arg_type->code () == TYPE_CODE_PTR)
846 {
847 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
848 if (arg_type->code () != TYPE_CODE_STRUCT)
849 error (_("Argument to dynamic_cast does "
850 "not have pointer to class type"));
851 }
852
853 /* Handle NULL pointers. */
854 if (value_as_long (arg) == 0)
855 return value_zero (type, not_lval);
856
857 arg = value_ind (arg);
858 }
859 else
860 {
861 if (arg_type->code () != TYPE_CODE_STRUCT)
862 error (_("Argument to dynamic_cast does not have class type"));
863 }
864
865 /* If the classes are the same, just return the argument. */
866 if (class_types_same_p (class_type, arg_type))
867 return value_cast (type, arg);
868
869 /* If the target type is a unique base class of the argument's
870 declared type, just cast it. */
871 if (is_ancestor (class_type, arg_type))
872 {
873 if (is_unique_ancestor (class_type, arg))
874 return value_cast (type, original_arg);
875 error (_("Ambiguous dynamic_cast"));
876 }
877
878 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
879 if (! rtti_type)
880 error (_("Couldn't determine value's most derived type for dynamic_cast"));
881
882 /* Compute the most derived object's address. */
883 addr = value_address (arg);
884 if (full)
885 {
886 /* Done. */
887 }
888 else if (using_enc)
889 addr += top;
890 else
891 addr += top + value_embedded_offset (arg);
892
893 /* dynamic_cast<void *> means to return a pointer to the
894 most-derived object. */
895 if (resolved_type->code () == TYPE_CODE_PTR
896 && TYPE_TARGET_TYPE (resolved_type)->code () == TYPE_CODE_VOID)
897 return value_at_lazy (type, addr);
898
899 tem = value_at (type, addr);
900 type = value_type (tem);
901
902 /* The first dynamic check specified in 5.2.7. */
903 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
904 {
905 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
906 return tem;
907 result = NULL;
908 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
909 value_contents_for_printing (tem).data (),
910 value_embedded_offset (tem),
911 value_address (tem), tem,
912 rtti_type, addr,
913 arg_type,
914 &result) == 1)
915 return value_cast (type,
916 is_ref
917 ? value_ref (result, resolved_type->code ())
918 : value_addr (result));
919 }
920
921 /* The second dynamic check specified in 5.2.7. */
922 result = NULL;
923 if (is_public_ancestor (arg_type, rtti_type)
924 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
925 value_contents_for_printing (tem).data (),
926 value_embedded_offset (tem),
927 value_address (tem), tem,
928 rtti_type, &result) == 1)
929 return value_cast (type,
930 is_ref
931 ? value_ref (result, resolved_type->code ())
932 : value_addr (result));
933
934 if (resolved_type->code () == TYPE_CODE_PTR)
935 return value_zero (type, not_lval);
936
937 error (_("dynamic_cast failed"));
938 }
939
940 /* Create a not_lval value of numeric type TYPE that is one, and return it. */
941
942 struct value *
943 value_one (struct type *type)
944 {
945 struct type *type1 = check_typedef (type);
946 struct value *val;
947
948 if (is_integral_type (type1) || is_floating_type (type1))
949 {
950 val = value_from_longest (type, (LONGEST) 1);
951 }
952 else if (type1->code () == TYPE_CODE_ARRAY && type1->is_vector ())
953 {
954 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
955 int i;
956 LONGEST low_bound, high_bound;
957 struct value *tmp;
958
959 if (!get_array_bounds (type1, &low_bound, &high_bound))
960 error (_("Could not determine the vector bounds"));
961
962 val = allocate_value (type);
963 for (i = 0; i < high_bound - low_bound + 1; i++)
964 {
965 tmp = value_one (eltype);
966 memcpy ((value_contents_writeable (val).data ()
967 + i * TYPE_LENGTH (eltype)),
968 value_contents_all (tmp).data (), TYPE_LENGTH (eltype));
969 }
970 }
971 else
972 {
973 error (_("Not a numeric type."));
974 }
975
976 /* value_one result is never used for assignments to. */
977 gdb_assert (VALUE_LVAL (val) == not_lval);
978
979 return val;
980 }
981
982 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack.
983 The type of the created value may differ from the passed type TYPE.
984 Make sure to retrieve the returned values's new type after this call
985 e.g. in case the type is a variable length array. */
986
987 static struct value *
988 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
989 {
990 struct value *val;
991
992 if (check_typedef (type)->code () == TYPE_CODE_VOID)
993 error (_("Attempt to dereference a generic pointer."));
994
995 val = value_from_contents_and_address (type, NULL, addr);
996
997 if (!lazy)
998 value_fetch_lazy (val);
999
1000 return val;
1001 }
1002
1003 /* Return a value with type TYPE located at ADDR.
1004
1005 Call value_at only if the data needs to be fetched immediately;
1006 if we can be 'lazy' and defer the fetch, perhaps indefinitely, call
1007 value_at_lazy instead. value_at_lazy simply records the address of
1008 the data and sets the lazy-evaluation-required flag. The lazy flag
1009 is tested in the value_contents macro, which is used if and when
1010 the contents are actually required. The type of the created value
1011 may differ from the passed type TYPE. Make sure to retrieve the
1012 returned values's new type after this call e.g. in case the type
1013 is a variable length array.
1014
1015 Note: value_at does *NOT* handle embedded offsets; perform such
1016 adjustments before or after calling it. */
1017
1018 struct value *
1019 value_at (struct type *type, CORE_ADDR addr)
1020 {
1021 return get_value_at (type, addr, 0);
1022 }
1023
1024 /* Return a lazy value with type TYPE located at ADDR (cf. value_at).
1025 The type of the created value may differ from the passed type TYPE.
1026 Make sure to retrieve the returned values's new type after this call
1027 e.g. in case the type is a variable length array. */
1028
1029 struct value *
1030 value_at_lazy (struct type *type, CORE_ADDR addr)
1031 {
1032 return get_value_at (type, addr, 1);
1033 }
1034
1035 void
1036 read_value_memory (struct value *val, LONGEST bit_offset,
1037 int stack, CORE_ADDR memaddr,
1038 gdb_byte *buffer, size_t length)
1039 {
1040 ULONGEST xfered_total = 0;
1041 struct gdbarch *arch = get_value_arch (val);
1042 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1043 enum target_object object;
1044
1045 object = stack ? TARGET_OBJECT_STACK_MEMORY : TARGET_OBJECT_MEMORY;
1046
1047 while (xfered_total < length)
1048 {
1049 enum target_xfer_status status;
1050 ULONGEST xfered_partial;
1051
1052 status = target_xfer_partial (current_inferior ()->top_target (),
1053 object, NULL,
1054 buffer + xfered_total * unit_size, NULL,
1055 memaddr + xfered_total,
1056 length - xfered_total,
1057 &xfered_partial);
1058
1059 if (status == TARGET_XFER_OK)
1060 /* nothing */;
1061 else if (status == TARGET_XFER_UNAVAILABLE)
1062 mark_value_bits_unavailable (val, (xfered_total * HOST_CHAR_BIT
1063 + bit_offset),
1064 xfered_partial * HOST_CHAR_BIT);
1065 else if (status == TARGET_XFER_EOF)
1066 memory_error (TARGET_XFER_E_IO, memaddr + xfered_total);
1067 else
1068 memory_error (status, memaddr + xfered_total);
1069
1070 xfered_total += xfered_partial;
1071 QUIT;
1072 }
1073 }
1074
1075 /* Store the contents of FROMVAL into the location of TOVAL.
1076 Return a new value with the location of TOVAL and contents of FROMVAL. */
1077
1078 struct value *
1079 value_assign (struct value *toval, struct value *fromval)
1080 {
1081 struct type *type;
1082 struct value *val;
1083 struct frame_id old_frame;
1084
1085 if (!deprecated_value_modifiable (toval))
1086 error (_("Left operand of assignment is not a modifiable lvalue."));
1087
1088 toval = coerce_ref (toval);
1089
1090 type = value_type (toval);
1091 if (VALUE_LVAL (toval) != lval_internalvar)
1092 fromval = value_cast (type, fromval);
1093 else
1094 {
1095 /* Coerce arrays and functions to pointers, except for arrays
1096 which only live in GDB's storage. */
1097 if (!value_must_coerce_to_target (fromval))
1098 fromval = coerce_array (fromval);
1099 }
1100
1101 type = check_typedef (type);
1102
1103 /* Since modifying a register can trash the frame chain, and
1104 modifying memory can trash the frame cache, we save the old frame
1105 and then restore the new frame afterwards. */
1106 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1107
1108 switch (VALUE_LVAL (toval))
1109 {
1110 case lval_internalvar:
1111 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1112 return value_of_internalvar (type->arch (),
1113 VALUE_INTERNALVAR (toval));
1114
1115 case lval_internalvar_component:
1116 {
1117 LONGEST offset = value_offset (toval);
1118
1119 /* Are we dealing with a bitfield?
1120
1121 It is important to mention that `value_parent (toval)' is
1122 non-NULL iff `value_bitsize (toval)' is non-zero. */
1123 if (value_bitsize (toval))
1124 {
1125 /* VALUE_INTERNALVAR below refers to the parent value, while
1126 the offset is relative to this parent value. */
1127 gdb_assert (value_parent (value_parent (toval)) == NULL);
1128 offset += value_offset (value_parent (toval));
1129 }
1130
1131 set_internalvar_component (VALUE_INTERNALVAR (toval),
1132 offset,
1133 value_bitpos (toval),
1134 value_bitsize (toval),
1135 fromval);
1136 }
1137 break;
1138
1139 case lval_memory:
1140 {
1141 const gdb_byte *dest_buffer;
1142 CORE_ADDR changed_addr;
1143 int changed_len;
1144 gdb_byte buffer[sizeof (LONGEST)];
1145
1146 if (value_bitsize (toval))
1147 {
1148 struct value *parent = value_parent (toval);
1149
1150 changed_addr = value_address (parent) + value_offset (toval);
1151 changed_len = (value_bitpos (toval)
1152 + value_bitsize (toval)
1153 + HOST_CHAR_BIT - 1)
1154 / HOST_CHAR_BIT;
1155
1156 /* If we can read-modify-write exactly the size of the
1157 containing type (e.g. short or int) then do so. This
1158 is safer for volatile bitfields mapped to hardware
1159 registers. */
1160 if (changed_len < TYPE_LENGTH (type)
1161 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1162 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1163 changed_len = TYPE_LENGTH (type);
1164
1165 if (changed_len > (int) sizeof (LONGEST))
1166 error (_("Can't handle bitfields which "
1167 "don't fit in a %d bit word."),
1168 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1169
1170 read_memory (changed_addr, buffer, changed_len);
1171 modify_field (type, buffer, value_as_long (fromval),
1172 value_bitpos (toval), value_bitsize (toval));
1173 dest_buffer = buffer;
1174 }
1175 else
1176 {
1177 changed_addr = value_address (toval);
1178 changed_len = type_length_units (type);
1179 dest_buffer = value_contents (fromval).data ();
1180 }
1181
1182 write_memory_with_notification (changed_addr, dest_buffer, changed_len);
1183 }
1184 break;
1185
1186 case lval_register:
1187 {
1188 struct frame_info *frame;
1189 struct gdbarch *gdbarch;
1190 int value_reg;
1191
1192 /* Figure out which frame this register value is in. The value
1193 holds the frame_id for the next frame, that is the frame this
1194 register value was unwound from.
1195
1196 Below we will call put_frame_register_bytes which requires that
1197 we pass it the actual frame in which the register value is
1198 valid, i.e. not the next frame. */
1199 frame = frame_find_by_id (VALUE_NEXT_FRAME_ID (toval));
1200 frame = get_prev_frame_always (frame);
1201
1202 value_reg = VALUE_REGNUM (toval);
1203
1204 if (!frame)
1205 error (_("Value being assigned to is no longer active."));
1206
1207 gdbarch = get_frame_arch (frame);
1208
1209 if (value_bitsize (toval))
1210 {
1211 struct value *parent = value_parent (toval);
1212 LONGEST offset = value_offset (parent) + value_offset (toval);
1213 size_t changed_len;
1214 gdb_byte buffer[sizeof (LONGEST)];
1215 int optim, unavail;
1216
1217 changed_len = (value_bitpos (toval)
1218 + value_bitsize (toval)
1219 + HOST_CHAR_BIT - 1)
1220 / HOST_CHAR_BIT;
1221
1222 if (changed_len > sizeof (LONGEST))
1223 error (_("Can't handle bitfields which "
1224 "don't fit in a %d bit word."),
1225 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1226
1227 if (!get_frame_register_bytes (frame, value_reg, offset,
1228 {buffer, changed_len},
1229 &optim, &unavail))
1230 {
1231 if (optim)
1232 throw_error (OPTIMIZED_OUT_ERROR,
1233 _("value has been optimized out"));
1234 if (unavail)
1235 throw_error (NOT_AVAILABLE_ERROR,
1236 _("value is not available"));
1237 }
1238
1239 modify_field (type, buffer, value_as_long (fromval),
1240 value_bitpos (toval), value_bitsize (toval));
1241
1242 put_frame_register_bytes (frame, value_reg, offset,
1243 {buffer, changed_len});
1244 }
1245 else
1246 {
1247 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval),
1248 type))
1249 {
1250 /* If TOVAL is a special machine register requiring
1251 conversion of program values to a special raw
1252 format. */
1253 gdbarch_value_to_register (gdbarch, frame,
1254 VALUE_REGNUM (toval), type,
1255 value_contents (fromval).data ());
1256 }
1257 else
1258 {
1259 gdb::array_view<const gdb_byte> contents
1260 = gdb::make_array_view (value_contents (fromval).data (),
1261 TYPE_LENGTH (type));
1262 put_frame_register_bytes (frame, value_reg,
1263 value_offset (toval),
1264 contents);
1265 }
1266 }
1267
1268 gdb::observers::register_changed.notify (frame, value_reg);
1269 break;
1270 }
1271
1272 case lval_computed:
1273 {
1274 const struct lval_funcs *funcs = value_computed_funcs (toval);
1275
1276 if (funcs->write != NULL)
1277 {
1278 funcs->write (toval, fromval);
1279 break;
1280 }
1281 }
1282 /* Fall through. */
1283
1284 default:
1285 error (_("Left operand of assignment is not an lvalue."));
1286 }
1287
1288 /* Assigning to the stack pointer, frame pointer, and other
1289 (architecture and calling convention specific) registers may
1290 cause the frame cache and regcache to be out of date. Assigning to memory
1291 also can. We just do this on all assignments to registers or
1292 memory, for simplicity's sake; I doubt the slowdown matters. */
1293 switch (VALUE_LVAL (toval))
1294 {
1295 case lval_memory:
1296 case lval_register:
1297 case lval_computed:
1298
1299 gdb::observers::target_changed.notify
1300 (current_inferior ()->top_target ());
1301
1302 /* Having destroyed the frame cache, restore the selected
1303 frame. */
1304
1305 /* FIXME: cagney/2002-11-02: There has to be a better way of
1306 doing this. Instead of constantly saving/restoring the
1307 frame. Why not create a get_selected_frame() function that,
1308 having saved the selected frame's ID can automatically
1309 re-find the previously selected frame automatically. */
1310
1311 {
1312 struct frame_info *fi = frame_find_by_id (old_frame);
1313
1314 if (fi != NULL)
1315 select_frame (fi);
1316 }
1317
1318 break;
1319 default:
1320 break;
1321 }
1322
1323 /* If the field does not entirely fill a LONGEST, then zero the sign
1324 bits. If the field is signed, and is negative, then sign
1325 extend. */
1326 if ((value_bitsize (toval) > 0)
1327 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1328 {
1329 LONGEST fieldval = value_as_long (fromval);
1330 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1331
1332 fieldval &= valmask;
1333 if (!type->is_unsigned ()
1334 && (fieldval & (valmask ^ (valmask >> 1))))
1335 fieldval |= ~valmask;
1336
1337 fromval = value_from_longest (type, fieldval);
1338 }
1339
1340 /* The return value is a copy of TOVAL so it shares its location
1341 information, but its contents are updated from FROMVAL. This
1342 implies the returned value is not lazy, even if TOVAL was. */
1343 val = value_copy (toval);
1344 set_value_lazy (val, 0);
1345 memcpy (value_contents_raw (val).data (), value_contents (fromval).data (),
1346 TYPE_LENGTH (type));
1347
1348 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1349 in the case of pointer types. For object types, the enclosing type
1350 and embedded offset must *not* be copied: the target object refered
1351 to by TOVAL retains its original dynamic type after assignment. */
1352 if (type->code () == TYPE_CODE_PTR)
1353 {
1354 set_value_enclosing_type (val, value_enclosing_type (fromval));
1355 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1356 }
1357
1358 return val;
1359 }
1360
1361 /* Extend a value ARG1 to COUNT repetitions of its type. */
1362
1363 struct value *
1364 value_repeat (struct value *arg1, int count)
1365 {
1366 struct value *val;
1367
1368 if (VALUE_LVAL (arg1) != lval_memory)
1369 error (_("Only values in memory can be extended with '@'."));
1370 if (count < 1)
1371 error (_("Invalid number %d of repetitions."), count);
1372
1373 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1374
1375 VALUE_LVAL (val) = lval_memory;
1376 set_value_address (val, value_address (arg1));
1377
1378 read_value_memory (val, 0, value_stack (val), value_address (val),
1379 value_contents_all_raw (val).data (),
1380 type_length_units (value_enclosing_type (val)));
1381
1382 return val;
1383 }
1384
1385 struct value *
1386 value_of_variable (struct symbol *var, const struct block *b)
1387 {
1388 struct frame_info *frame = NULL;
1389
1390 if (symbol_read_needs_frame (var))
1391 frame = get_selected_frame (_("No frame selected."));
1392
1393 return read_var_value (var, b, frame);
1394 }
1395
1396 struct value *
1397 address_of_variable (struct symbol *var, const struct block *b)
1398 {
1399 struct type *type = SYMBOL_TYPE (var);
1400 struct value *val;
1401
1402 /* Evaluate it first; if the result is a memory address, we're fine.
1403 Lazy evaluation pays off here. */
1404
1405 val = value_of_variable (var, b);
1406 type = value_type (val);
1407
1408 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1409 || type->code () == TYPE_CODE_FUNC)
1410 {
1411 CORE_ADDR addr = value_address (val);
1412
1413 return value_from_pointer (lookup_pointer_type (type), addr);
1414 }
1415
1416 /* Not a memory address; check what the problem was. */
1417 switch (VALUE_LVAL (val))
1418 {
1419 case lval_register:
1420 {
1421 struct frame_info *frame;
1422 const char *regname;
1423
1424 frame = frame_find_by_id (VALUE_NEXT_FRAME_ID (val));
1425 gdb_assert (frame);
1426
1427 regname = gdbarch_register_name (get_frame_arch (frame),
1428 VALUE_REGNUM (val));
1429 gdb_assert (regname && *regname);
1430
1431 error (_("Address requested for identifier "
1432 "\"%s\" which is in register $%s"),
1433 var->print_name (), regname);
1434 break;
1435 }
1436
1437 default:
1438 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1439 var->print_name ());
1440 break;
1441 }
1442
1443 return val;
1444 }
1445
1446 /* See value.h. */
1447
1448 bool
1449 value_must_coerce_to_target (struct value *val)
1450 {
1451 struct type *valtype;
1452
1453 /* The only lval kinds which do not live in target memory. */
1454 if (VALUE_LVAL (val) != not_lval
1455 && VALUE_LVAL (val) != lval_internalvar
1456 && VALUE_LVAL (val) != lval_xcallable)
1457 return false;
1458
1459 valtype = check_typedef (value_type (val));
1460
1461 switch (valtype->code ())
1462 {
1463 case TYPE_CODE_ARRAY:
1464 return valtype->is_vector () ? 0 : 1;
1465 case TYPE_CODE_STRING:
1466 return true;
1467 default:
1468 return false;
1469 }
1470 }
1471
1472 /* Make sure that VAL lives in target memory if it's supposed to. For
1473 instance, strings are constructed as character arrays in GDB's
1474 storage, and this function copies them to the target. */
1475
1476 struct value *
1477 value_coerce_to_target (struct value *val)
1478 {
1479 LONGEST length;
1480 CORE_ADDR addr;
1481
1482 if (!value_must_coerce_to_target (val))
1483 return val;
1484
1485 length = TYPE_LENGTH (check_typedef (value_type (val)));
1486 addr = allocate_space_in_inferior (length);
1487 write_memory (addr, value_contents (val).data (), length);
1488 return value_at_lazy (value_type (val), addr);
1489 }
1490
1491 /* Given a value which is an array, return a value which is a pointer
1492 to its first element, regardless of whether or not the array has a
1493 nonzero lower bound.
1494
1495 FIXME: A previous comment here indicated that this routine should
1496 be substracting the array's lower bound. It's not clear to me that
1497 this is correct. Given an array subscripting operation, it would
1498 certainly work to do the adjustment here, essentially computing:
1499
1500 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1501
1502 However I believe a more appropriate and logical place to account
1503 for the lower bound is to do so in value_subscript, essentially
1504 computing:
1505
1506 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1507
1508 As further evidence consider what would happen with operations
1509 other than array subscripting, where the caller would get back a
1510 value that had an address somewhere before the actual first element
1511 of the array, and the information about the lower bound would be
1512 lost because of the coercion to pointer type. */
1513
1514 struct value *
1515 value_coerce_array (struct value *arg1)
1516 {
1517 struct type *type = check_typedef (value_type (arg1));
1518
1519 /* If the user tries to do something requiring a pointer with an
1520 array that has not yet been pushed to the target, then this would
1521 be a good time to do so. */
1522 arg1 = value_coerce_to_target (arg1);
1523
1524 if (VALUE_LVAL (arg1) != lval_memory)
1525 error (_("Attempt to take address of value not located in memory."));
1526
1527 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1528 value_address (arg1));
1529 }
1530
1531 /* Given a value which is a function, return a value which is a pointer
1532 to it. */
1533
1534 struct value *
1535 value_coerce_function (struct value *arg1)
1536 {
1537 struct value *retval;
1538
1539 if (VALUE_LVAL (arg1) != lval_memory)
1540 error (_("Attempt to take address of value not located in memory."));
1541
1542 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1543 value_address (arg1));
1544 return retval;
1545 }
1546
1547 /* Return a pointer value for the object for which ARG1 is the
1548 contents. */
1549
1550 struct value *
1551 value_addr (struct value *arg1)
1552 {
1553 struct value *arg2;
1554 struct type *type = check_typedef (value_type (arg1));
1555
1556 if (TYPE_IS_REFERENCE (type))
1557 {
1558 if (value_bits_synthetic_pointer (arg1, value_embedded_offset (arg1),
1559 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1560 arg1 = coerce_ref (arg1);
1561 else
1562 {
1563 /* Copy the value, but change the type from (T&) to (T*). We
1564 keep the same location information, which is efficient, and
1565 allows &(&X) to get the location containing the reference.
1566 Do the same to its enclosing type for consistency. */
1567 struct type *type_ptr
1568 = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1569 struct type *enclosing_type
1570 = check_typedef (value_enclosing_type (arg1));
1571 struct type *enclosing_type_ptr
1572 = lookup_pointer_type (TYPE_TARGET_TYPE (enclosing_type));
1573
1574 arg2 = value_copy (arg1);
1575 deprecated_set_value_type (arg2, type_ptr);
1576 set_value_enclosing_type (arg2, enclosing_type_ptr);
1577
1578 return arg2;
1579 }
1580 }
1581 if (type->code () == TYPE_CODE_FUNC)
1582 return value_coerce_function (arg1);
1583
1584 /* If this is an array that has not yet been pushed to the target,
1585 then this would be a good time to force it to memory. */
1586 arg1 = value_coerce_to_target (arg1);
1587
1588 if (VALUE_LVAL (arg1) != lval_memory)
1589 error (_("Attempt to take address of value not located in memory."));
1590
1591 /* Get target memory address. */
1592 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1593 (value_address (arg1)
1594 + value_embedded_offset (arg1)));
1595
1596 /* This may be a pointer to a base subobject; so remember the
1597 full derived object's type ... */
1598 set_value_enclosing_type (arg2,
1599 lookup_pointer_type (value_enclosing_type (arg1)));
1600 /* ... and also the relative position of the subobject in the full
1601 object. */
1602 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1603 return arg2;
1604 }
1605
1606 /* Return a reference value for the object for which ARG1 is the
1607 contents. */
1608
1609 struct value *
1610 value_ref (struct value *arg1, enum type_code refcode)
1611 {
1612 struct value *arg2;
1613 struct type *type = check_typedef (value_type (arg1));
1614
1615 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
1616
1617 if ((type->code () == TYPE_CODE_REF
1618 || type->code () == TYPE_CODE_RVALUE_REF)
1619 && type->code () == refcode)
1620 return arg1;
1621
1622 arg2 = value_addr (arg1);
1623 deprecated_set_value_type (arg2, lookup_reference_type (type, refcode));
1624 return arg2;
1625 }
1626
1627 /* Given a value of a pointer type, apply the C unary * operator to
1628 it. */
1629
1630 struct value *
1631 value_ind (struct value *arg1)
1632 {
1633 struct type *base_type;
1634 struct value *arg2;
1635
1636 arg1 = coerce_array (arg1);
1637
1638 base_type = check_typedef (value_type (arg1));
1639
1640 if (VALUE_LVAL (arg1) == lval_computed)
1641 {
1642 const struct lval_funcs *funcs = value_computed_funcs (arg1);
1643
1644 if (funcs->indirect)
1645 {
1646 struct value *result = funcs->indirect (arg1);
1647
1648 if (result)
1649 return result;
1650 }
1651 }
1652
1653 if (base_type->code () == TYPE_CODE_PTR)
1654 {
1655 struct type *enc_type;
1656
1657 /* We may be pointing to something embedded in a larger object.
1658 Get the real type of the enclosing object. */
1659 enc_type = check_typedef (value_enclosing_type (arg1));
1660 enc_type = TYPE_TARGET_TYPE (enc_type);
1661
1662 CORE_ADDR base_addr;
1663 if (check_typedef (enc_type)->code () == TYPE_CODE_FUNC
1664 || check_typedef (enc_type)->code () == TYPE_CODE_METHOD)
1665 {
1666 /* For functions, go through find_function_addr, which knows
1667 how to handle function descriptors. */
1668 base_addr = find_function_addr (arg1, NULL);
1669 }
1670 else
1671 {
1672 /* Retrieve the enclosing object pointed to. */
1673 base_addr = (value_as_address (arg1)
1674 - value_pointed_to_offset (arg1));
1675 }
1676 arg2 = value_at_lazy (enc_type, base_addr);
1677 enc_type = value_type (arg2);
1678 return readjust_indirect_value_type (arg2, enc_type, base_type,
1679 arg1, base_addr);
1680 }
1681
1682 error (_("Attempt to take contents of a non-pointer value."));
1683 }
1684 \f
1685 /* Create a value for an array by allocating space in GDB, copying the
1686 data into that space, and then setting up an array value.
1687
1688 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1689 is populated from the values passed in ELEMVEC.
1690
1691 The element type of the array is inherited from the type of the
1692 first element, and all elements must have the same size (though we
1693 don't currently enforce any restriction on their types). */
1694
1695 struct value *
1696 value_array (int lowbound, int highbound, struct value **elemvec)
1697 {
1698 int nelem;
1699 int idx;
1700 ULONGEST typelength;
1701 struct value *val;
1702 struct type *arraytype;
1703
1704 /* Validate that the bounds are reasonable and that each of the
1705 elements have the same size. */
1706
1707 nelem = highbound - lowbound + 1;
1708 if (nelem <= 0)
1709 {
1710 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1711 }
1712 typelength = type_length_units (value_enclosing_type (elemvec[0]));
1713 for (idx = 1; idx < nelem; idx++)
1714 {
1715 if (type_length_units (value_enclosing_type (elemvec[idx]))
1716 != typelength)
1717 {
1718 error (_("array elements must all be the same size"));
1719 }
1720 }
1721
1722 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1723 lowbound, highbound);
1724
1725 if (!current_language->c_style_arrays_p ())
1726 {
1727 val = allocate_value (arraytype);
1728 for (idx = 0; idx < nelem; idx++)
1729 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1730 typelength);
1731 return val;
1732 }
1733
1734 /* Allocate space to store the array, and then initialize it by
1735 copying in each element. */
1736
1737 val = allocate_value (arraytype);
1738 for (idx = 0; idx < nelem; idx++)
1739 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1740 return val;
1741 }
1742
1743 struct value *
1744 value_cstring (const char *ptr, ssize_t len, struct type *char_type)
1745 {
1746 struct value *val;
1747 int lowbound = current_language->string_lower_bound ();
1748 ssize_t highbound = len / TYPE_LENGTH (char_type);
1749 struct type *stringtype
1750 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1751
1752 val = allocate_value (stringtype);
1753 memcpy (value_contents_raw (val).data (), ptr, len);
1754 return val;
1755 }
1756
1757 /* Create a value for a string constant by allocating space in the
1758 inferior, copying the data into that space, and returning the
1759 address with type TYPE_CODE_STRING. PTR points to the string
1760 constant data; LEN is number of characters.
1761
1762 Note that string types are like array of char types with a lower
1763 bound of zero and an upper bound of LEN - 1. Also note that the
1764 string may contain embedded null bytes. */
1765
1766 struct value *
1767 value_string (const char *ptr, ssize_t len, struct type *char_type)
1768 {
1769 struct value *val;
1770 int lowbound = current_language->string_lower_bound ();
1771 ssize_t highbound = len / TYPE_LENGTH (char_type);
1772 struct type *stringtype
1773 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1774
1775 val = allocate_value (stringtype);
1776 memcpy (value_contents_raw (val).data (), ptr, len);
1777 return val;
1778 }
1779
1780 \f
1781 /* See if we can pass arguments in T2 to a function which takes arguments
1782 of types T1. T1 is a list of NARGS arguments, and T2 is an array_view
1783 of the values we're trying to pass. If some arguments need coercion of
1784 some sort, then the coerced values are written into T2. Return value is
1785 0 if the arguments could be matched, or the position at which they
1786 differ if not.
1787
1788 STATICP is nonzero if the T1 argument list came from a static
1789 member function. T2 must still include the ``this'' pointer, but
1790 it will be skipped.
1791
1792 For non-static member functions, we ignore the first argument,
1793 which is the type of the instance variable. This is because we
1794 want to handle calls with objects from derived classes. This is
1795 not entirely correct: we should actually check to make sure that a
1796 requested operation is type secure, shouldn't we? FIXME. */
1797
1798 static int
1799 typecmp (bool staticp, bool varargs, int nargs,
1800 struct field t1[], gdb::array_view<value *> t2)
1801 {
1802 int i;
1803
1804 /* Skip ``this'' argument if applicable. T2 will always include
1805 THIS. */
1806 if (staticp)
1807 t2 = t2.slice (1);
1808
1809 for (i = 0;
1810 (i < nargs) && t1[i].type ()->code () != TYPE_CODE_VOID;
1811 i++)
1812 {
1813 struct type *tt1, *tt2;
1814
1815 if (i == t2.size ())
1816 return i + 1;
1817
1818 tt1 = check_typedef (t1[i].type ());
1819 tt2 = check_typedef (value_type (t2[i]));
1820
1821 if (TYPE_IS_REFERENCE (tt1)
1822 /* We should be doing hairy argument matching, as below. */
1823 && (check_typedef (TYPE_TARGET_TYPE (tt1))->code ()
1824 == tt2->code ()))
1825 {
1826 if (tt2->code () == TYPE_CODE_ARRAY)
1827 t2[i] = value_coerce_array (t2[i]);
1828 else
1829 t2[i] = value_ref (t2[i], tt1->code ());
1830 continue;
1831 }
1832
1833 /* djb - 20000715 - Until the new type structure is in the
1834 place, and we can attempt things like implicit conversions,
1835 we need to do this so you can take something like a map<const
1836 char *>, and properly access map["hello"], because the
1837 argument to [] will be a reference to a pointer to a char,
1838 and the argument will be a pointer to a char. */
1839 while (TYPE_IS_REFERENCE (tt1) || tt1->code () == TYPE_CODE_PTR)
1840 {
1841 tt1 = check_typedef ( TYPE_TARGET_TYPE (tt1) );
1842 }
1843 while (tt2->code () == TYPE_CODE_ARRAY
1844 || tt2->code () == TYPE_CODE_PTR
1845 || TYPE_IS_REFERENCE (tt2))
1846 {
1847 tt2 = check_typedef (TYPE_TARGET_TYPE (tt2));
1848 }
1849 if (tt1->code () == tt2->code ())
1850 continue;
1851 /* Array to pointer is a `trivial conversion' according to the
1852 ARM. */
1853
1854 /* We should be doing much hairier argument matching (see
1855 section 13.2 of the ARM), but as a quick kludge, just check
1856 for the same type code. */
1857 if (t1[i].type ()->code () != value_type (t2[i])->code ())
1858 return i + 1;
1859 }
1860 if (varargs || i == t2.size ())
1861 return 0;
1862 return i + 1;
1863 }
1864
1865 /* Helper class for search_struct_field that keeps track of found
1866 results and possibly throws an exception if the search yields
1867 ambiguous results. See search_struct_field for description of
1868 LOOKING_FOR_BASECLASS. */
1869
1870 struct struct_field_searcher
1871 {
1872 /* A found field. */
1873 struct found_field
1874 {
1875 /* Path to the structure where the field was found. */
1876 std::vector<struct type *> path;
1877
1878 /* The field found. */
1879 struct value *field_value;
1880 };
1881
1882 /* See corresponding fields for description of parameters. */
1883 struct_field_searcher (const char *name,
1884 struct type *outermost_type,
1885 bool looking_for_baseclass)
1886 : m_name (name),
1887 m_looking_for_baseclass (looking_for_baseclass),
1888 m_outermost_type (outermost_type)
1889 {
1890 }
1891
1892 /* The search entry point. If LOOKING_FOR_BASECLASS is true and the
1893 base class search yields ambiguous results, this throws an
1894 exception. If LOOKING_FOR_BASECLASS is false, the found fields
1895 are accumulated and the caller (search_struct_field) takes care
1896 of throwing an error if the field search yields ambiguous
1897 results. The latter is done that way so that the error message
1898 can include a list of all the found candidates. */
1899 void search (struct value *arg, LONGEST offset, struct type *type);
1900
1901 const std::vector<found_field> &fields ()
1902 {
1903 return m_fields;
1904 }
1905
1906 struct value *baseclass ()
1907 {
1908 return m_baseclass;
1909 }
1910
1911 private:
1912 /* Update results to include V, a found field/baseclass. */
1913 void update_result (struct value *v, LONGEST boffset);
1914
1915 /* The name of the field/baseclass we're searching for. */
1916 const char *m_name;
1917
1918 /* Whether we're looking for a baseclass, or a field. */
1919 const bool m_looking_for_baseclass;
1920
1921 /* The offset of the baseclass containing the field/baseclass we
1922 last recorded. */
1923 LONGEST m_last_boffset = 0;
1924
1925 /* If looking for a baseclass, then the result is stored here. */
1926 struct value *m_baseclass = nullptr;
1927
1928 /* When looking for fields, the found candidates are stored
1929 here. */
1930 std::vector<found_field> m_fields;
1931
1932 /* The type of the initial type passed to search_struct_field; this
1933 is used for error reporting when the lookup is ambiguous. */
1934 struct type *m_outermost_type;
1935
1936 /* The full path to the struct being inspected. E.g. for field 'x'
1937 defined in class B inherited by class A, we have A and B pushed
1938 on the path. */
1939 std::vector <struct type *> m_struct_path;
1940 };
1941
1942 void
1943 struct_field_searcher::update_result (struct value *v, LONGEST boffset)
1944 {
1945 if (v != NULL)
1946 {
1947 if (m_looking_for_baseclass)
1948 {
1949 if (m_baseclass != nullptr
1950 /* The result is not ambiguous if all the classes that are
1951 found occupy the same space. */
1952 && m_last_boffset != boffset)
1953 error (_("base class '%s' is ambiguous in type '%s'"),
1954 m_name, TYPE_SAFE_NAME (m_outermost_type));
1955
1956 m_baseclass = v;
1957 m_last_boffset = boffset;
1958 }
1959 else
1960 {
1961 /* The field is not ambiguous if it occupies the same
1962 space. */
1963 if (m_fields.empty () || m_last_boffset != boffset)
1964 m_fields.push_back ({m_struct_path, v});
1965 else
1966 {
1967 /*Fields can occupy the same space and have the same name (be
1968 ambiguous). This can happen when fields in two different base
1969 classes are marked [[no_unique_address]] and have the same name.
1970 The C++ standard says that such fields can only occupy the same
1971 space if they are of different type, but we don't rely on that in
1972 the following code. */
1973 bool ambiguous = false, insert = true;
1974 for (const found_field &field: m_fields)
1975 {
1976 if(field.path.back () != m_struct_path.back ())
1977 {
1978 /* Same boffset points to members of different classes.
1979 We have found an ambiguity and should record it. */
1980 ambiguous = true;
1981 }
1982 else
1983 {
1984 /* We don't need to insert this value again, because a
1985 non-ambiguous path already leads to it. */
1986 insert = false;
1987 break;
1988 }
1989 }
1990 if (ambiguous && insert)
1991 m_fields.push_back ({m_struct_path, v});
1992 }
1993 }
1994 }
1995 }
1996
1997 /* A helper for search_struct_field. This does all the work; most
1998 arguments are as passed to search_struct_field. */
1999
2000 void
2001 struct_field_searcher::search (struct value *arg1, LONGEST offset,
2002 struct type *type)
2003 {
2004 int i;
2005 int nbases;
2006
2007 m_struct_path.push_back (type);
2008 SCOPE_EXIT { m_struct_path.pop_back (); };
2009
2010 type = check_typedef (type);
2011 nbases = TYPE_N_BASECLASSES (type);
2012
2013 if (!m_looking_for_baseclass)
2014 for (i = type->num_fields () - 1; i >= nbases; i--)
2015 {
2016 const char *t_field_name = type->field (i).name ();
2017
2018 if (t_field_name && (strcmp_iw (t_field_name, m_name) == 0))
2019 {
2020 struct value *v;
2021
2022 if (field_is_static (&type->field (i)))
2023 v = value_static_field (type, i);
2024 else
2025 v = value_primitive_field (arg1, offset, i, type);
2026
2027 update_result (v, offset);
2028 return;
2029 }
2030
2031 if (t_field_name
2032 && t_field_name[0] == '\0')
2033 {
2034 struct type *field_type = type->field (i).type ();
2035
2036 if (field_type->code () == TYPE_CODE_UNION
2037 || field_type->code () == TYPE_CODE_STRUCT)
2038 {
2039 /* Look for a match through the fields of an anonymous
2040 union, or anonymous struct. C++ provides anonymous
2041 unions.
2042
2043 In the GNU Chill (now deleted from GDB)
2044 implementation of variant record types, each
2045 <alternative field> has an (anonymous) union type,
2046 each member of the union represents a <variant
2047 alternative>. Each <variant alternative> is
2048 represented as a struct, with a member for each
2049 <variant field>. */
2050
2051 LONGEST new_offset = offset;
2052
2053 /* This is pretty gross. In G++, the offset in an
2054 anonymous union is relative to the beginning of the
2055 enclosing struct. In the GNU Chill (now deleted
2056 from GDB) implementation of variant records, the
2057 bitpos is zero in an anonymous union field, so we
2058 have to add the offset of the union here. */
2059 if (field_type->code () == TYPE_CODE_STRUCT
2060 || (field_type->num_fields () > 0
2061 && field_type->field (0).loc_bitpos () == 0))
2062 new_offset += type->field (i).loc_bitpos () / 8;
2063
2064 search (arg1, new_offset, field_type);
2065 }
2066 }
2067 }
2068
2069 for (i = 0; i < nbases; i++)
2070 {
2071 struct value *v = NULL;
2072 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2073 /* If we are looking for baseclasses, this is what we get when
2074 we hit them. But it could happen that the base part's member
2075 name is not yet filled in. */
2076 int found_baseclass = (m_looking_for_baseclass
2077 && TYPE_BASECLASS_NAME (type, i) != NULL
2078 && (strcmp_iw (m_name,
2079 TYPE_BASECLASS_NAME (type,
2080 i)) == 0));
2081 LONGEST boffset = value_embedded_offset (arg1) + offset;
2082
2083 if (BASETYPE_VIA_VIRTUAL (type, i))
2084 {
2085 struct value *v2;
2086
2087 boffset = baseclass_offset (type, i,
2088 value_contents_for_printing (arg1).data (),
2089 value_embedded_offset (arg1) + offset,
2090 value_address (arg1),
2091 arg1);
2092
2093 /* The virtual base class pointer might have been clobbered
2094 by the user program. Make sure that it still points to a
2095 valid memory location. */
2096
2097 boffset += value_embedded_offset (arg1) + offset;
2098 if (boffset < 0
2099 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
2100 {
2101 CORE_ADDR base_addr;
2102
2103 base_addr = value_address (arg1) + boffset;
2104 v2 = value_at_lazy (basetype, base_addr);
2105 if (target_read_memory (base_addr,
2106 value_contents_raw (v2).data (),
2107 TYPE_LENGTH (value_type (v2))) != 0)
2108 error (_("virtual baseclass botch"));
2109 }
2110 else
2111 {
2112 v2 = value_copy (arg1);
2113 deprecated_set_value_type (v2, basetype);
2114 set_value_embedded_offset (v2, boffset);
2115 }
2116
2117 if (found_baseclass)
2118 v = v2;
2119 else
2120 search (v2, 0, TYPE_BASECLASS (type, i));
2121 }
2122 else if (found_baseclass)
2123 v = value_primitive_field (arg1, offset, i, type);
2124 else
2125 {
2126 search (arg1, offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2127 basetype);
2128 }
2129
2130 update_result (v, boffset);
2131 }
2132 }
2133
2134 /* Helper function used by value_struct_elt to recurse through
2135 baseclasses. Look for a field NAME in ARG1. Search in it assuming
2136 it has (class) type TYPE. If found, return value, else return NULL.
2137
2138 If LOOKING_FOR_BASECLASS, then instead of looking for struct
2139 fields, look for a baseclass named NAME. */
2140
2141 static struct value *
2142 search_struct_field (const char *name, struct value *arg1,
2143 struct type *type, int looking_for_baseclass)
2144 {
2145 struct_field_searcher searcher (name, type, looking_for_baseclass);
2146
2147 searcher.search (arg1, 0, type);
2148
2149 if (!looking_for_baseclass)
2150 {
2151 const auto &fields = searcher.fields ();
2152
2153 if (fields.empty ())
2154 return nullptr;
2155 else if (fields.size () == 1)
2156 return fields[0].field_value;
2157 else
2158 {
2159 std::string candidates;
2160
2161 for (auto &&candidate : fields)
2162 {
2163 gdb_assert (!candidate.path.empty ());
2164
2165 struct type *field_type = value_type (candidate.field_value);
2166 struct type *struct_type = candidate.path.back ();
2167
2168 std::string path;
2169 bool first = true;
2170 for (struct type *t : candidate.path)
2171 {
2172 if (first)
2173 first = false;
2174 else
2175 path += " -> ";
2176 path += t->name ();
2177 }
2178
2179 candidates += string_printf ("\n '%s %s::%s' (%s)",
2180 TYPE_SAFE_NAME (field_type),
2181 TYPE_SAFE_NAME (struct_type),
2182 name,
2183 path.c_str ());
2184 }
2185
2186 error (_("Request for member '%s' is ambiguous in type '%s'."
2187 " Candidates are:%s"),
2188 name, TYPE_SAFE_NAME (type),
2189 candidates.c_str ());
2190 }
2191 }
2192 else
2193 return searcher.baseclass ();
2194 }
2195
2196 /* Helper function used by value_struct_elt to recurse through
2197 baseclasses. Look for a field NAME in ARG1. Adjust the address of
2198 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2199 TYPE.
2200
2201 ARGS is an optional array of argument values used to help finding NAME.
2202 The contents of ARGS can be adjusted if type coercion is required in
2203 order to find a matching NAME.
2204
2205 If found, return value, else if name matched and args not return
2206 (value) -1, else return NULL. */
2207
2208 static struct value *
2209 search_struct_method (const char *name, struct value **arg1p,
2210 gdb::optional<gdb::array_view<value *>> args,
2211 LONGEST offset, int *static_memfuncp,
2212 struct type *type)
2213 {
2214 int i;
2215 struct value *v;
2216 int name_matched = 0;
2217
2218 type = check_typedef (type);
2219 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2220 {
2221 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2222
2223 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2224 {
2225 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2226 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2227
2228 name_matched = 1;
2229 check_stub_method_group (type, i);
2230 if (j > 0 && !args.has_value ())
2231 error (_("cannot resolve overloaded method "
2232 "`%s': no arguments supplied"), name);
2233 else if (j == 0 && !args.has_value ())
2234 {
2235 v = value_fn_field (arg1p, f, j, type, offset);
2236 if (v != NULL)
2237 return v;
2238 }
2239 else
2240 while (j >= 0)
2241 {
2242 gdb_assert (args.has_value ());
2243 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2244 TYPE_FN_FIELD_TYPE (f, j)->has_varargs (),
2245 TYPE_FN_FIELD_TYPE (f, j)->num_fields (),
2246 TYPE_FN_FIELD_ARGS (f, j), *args))
2247 {
2248 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2249 return value_virtual_fn_field (arg1p, f, j,
2250 type, offset);
2251 if (TYPE_FN_FIELD_STATIC_P (f, j)
2252 && static_memfuncp)
2253 *static_memfuncp = 1;
2254 v = value_fn_field (arg1p, f, j, type, offset);
2255 if (v != NULL)
2256 return v;
2257 }
2258 j--;
2259 }
2260 }
2261 }
2262
2263 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2264 {
2265 LONGEST base_offset;
2266 LONGEST this_offset;
2267
2268 if (BASETYPE_VIA_VIRTUAL (type, i))
2269 {
2270 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2271 struct value *base_val;
2272 const gdb_byte *base_valaddr;
2273
2274 /* The virtual base class pointer might have been
2275 clobbered by the user program. Make sure that it
2276 still points to a valid memory location. */
2277
2278 if (offset < 0 || offset >= TYPE_LENGTH (type))
2279 {
2280 CORE_ADDR address;
2281
2282 gdb::byte_vector tmp (TYPE_LENGTH (baseclass));
2283 address = value_address (*arg1p);
2284
2285 if (target_read_memory (address + offset,
2286 tmp.data (), TYPE_LENGTH (baseclass)) != 0)
2287 error (_("virtual baseclass botch"));
2288
2289 base_val = value_from_contents_and_address (baseclass,
2290 tmp.data (),
2291 address + offset);
2292 base_valaddr = value_contents_for_printing (base_val).data ();
2293 this_offset = 0;
2294 }
2295 else
2296 {
2297 base_val = *arg1p;
2298 base_valaddr = value_contents_for_printing (*arg1p).data ();
2299 this_offset = offset;
2300 }
2301
2302 base_offset = baseclass_offset (type, i, base_valaddr,
2303 this_offset, value_address (base_val),
2304 base_val);
2305 }
2306 else
2307 {
2308 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2309 }
2310 v = search_struct_method (name, arg1p, args, base_offset + offset,
2311 static_memfuncp, TYPE_BASECLASS (type, i));
2312 if (v == (struct value *) - 1)
2313 {
2314 name_matched = 1;
2315 }
2316 else if (v)
2317 {
2318 /* FIXME-bothner: Why is this commented out? Why is it here? */
2319 /* *arg1p = arg1_tmp; */
2320 return v;
2321 }
2322 }
2323 if (name_matched)
2324 return (struct value *) - 1;
2325 else
2326 return NULL;
2327 }
2328
2329 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2330 extract the component named NAME from the ultimate target
2331 structure/union and return it as a value with its appropriate type.
2332 ERR is used in the error message if *ARGP's type is wrong.
2333
2334 C++: ARGS is a list of argument types to aid in the selection of
2335 an appropriate method. Also, handle derived types.
2336
2337 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2338 where the truthvalue of whether the function that was resolved was
2339 a static member function or not is stored.
2340
2341 ERR is an error message to be printed in case the field is not
2342 found. */
2343
2344 struct value *
2345 value_struct_elt (struct value **argp,
2346 gdb::optional<gdb::array_view<value *>> args,
2347 const char *name, int *static_memfuncp, const char *err)
2348 {
2349 struct type *t;
2350 struct value *v;
2351
2352 *argp = coerce_array (*argp);
2353
2354 t = check_typedef (value_type (*argp));
2355
2356 /* Follow pointers until we get to a non-pointer. */
2357
2358 while (t->is_pointer_or_reference ())
2359 {
2360 *argp = value_ind (*argp);
2361 /* Don't coerce fn pointer to fn and then back again! */
2362 if (check_typedef (value_type (*argp))->code () != TYPE_CODE_FUNC)
2363 *argp = coerce_array (*argp);
2364 t = check_typedef (value_type (*argp));
2365 }
2366
2367 if (t->code () != TYPE_CODE_STRUCT
2368 && t->code () != TYPE_CODE_UNION)
2369 error (_("Attempt to extract a component of a value that is not a %s."),
2370 err);
2371
2372 /* Assume it's not, unless we see that it is. */
2373 if (static_memfuncp)
2374 *static_memfuncp = 0;
2375
2376 if (!args.has_value ())
2377 {
2378 /* if there are no arguments ...do this... */
2379
2380 /* Try as a field first, because if we succeed, there is less
2381 work to be done. */
2382 v = search_struct_field (name, *argp, t, 0);
2383 if (v)
2384 return v;
2385
2386 /* C++: If it was not found as a data field, then try to
2387 return it as a pointer to a method. */
2388 v = search_struct_method (name, argp, args, 0,
2389 static_memfuncp, t);
2390
2391 if (v == (struct value *) - 1)
2392 error (_("Cannot take address of method %s."), name);
2393 else if (v == 0)
2394 {
2395 if (TYPE_NFN_FIELDS (t))
2396 error (_("There is no member or method named %s."), name);
2397 else
2398 error (_("There is no member named %s."), name);
2399 }
2400 return v;
2401 }
2402
2403 v = search_struct_method (name, argp, args, 0,
2404 static_memfuncp, t);
2405
2406 if (v == (struct value *) - 1)
2407 {
2408 error (_("One of the arguments you tried to pass to %s could not "
2409 "be converted to what the function wants."), name);
2410 }
2411 else if (v == 0)
2412 {
2413 /* See if user tried to invoke data as function. If so, hand it
2414 back. If it's not callable (i.e., a pointer to function),
2415 gdb should give an error. */
2416 v = search_struct_field (name, *argp, t, 0);
2417 /* If we found an ordinary field, then it is not a method call.
2418 So, treat it as if it were a static member function. */
2419 if (v && static_memfuncp)
2420 *static_memfuncp = 1;
2421 }
2422
2423 if (!v)
2424 throw_error (NOT_FOUND_ERROR,
2425 _("Structure has no component named %s."), name);
2426 return v;
2427 }
2428
2429 /* Given *ARGP, a value of type structure or union, or a pointer/reference
2430 to a structure or union, extract and return its component (field) of
2431 type FTYPE at the specified BITPOS.
2432 Throw an exception on error. */
2433
2434 struct value *
2435 value_struct_elt_bitpos (struct value **argp, int bitpos, struct type *ftype,
2436 const char *err)
2437 {
2438 struct type *t;
2439 int i;
2440
2441 *argp = coerce_array (*argp);
2442
2443 t = check_typedef (value_type (*argp));
2444
2445 while (t->is_pointer_or_reference ())
2446 {
2447 *argp = value_ind (*argp);
2448 if (check_typedef (value_type (*argp))->code () != TYPE_CODE_FUNC)
2449 *argp = coerce_array (*argp);
2450 t = check_typedef (value_type (*argp));
2451 }
2452
2453 if (t->code () != TYPE_CODE_STRUCT
2454 && t->code () != TYPE_CODE_UNION)
2455 error (_("Attempt to extract a component of a value that is not a %s."),
2456 err);
2457
2458 for (i = TYPE_N_BASECLASSES (t); i < t->num_fields (); i++)
2459 {
2460 if (!field_is_static (&t->field (i))
2461 && bitpos == t->field (i).loc_bitpos ()
2462 && types_equal (ftype, t->field (i).type ()))
2463 return value_primitive_field (*argp, 0, i, t);
2464 }
2465
2466 error (_("No field with matching bitpos and type."));
2467
2468 /* Never hit. */
2469 return NULL;
2470 }
2471
2472 /* Search through the methods of an object (and its bases) to find a
2473 specified method. Return a reference to the fn_field list METHODS of
2474 overloaded instances defined in the source language. If available
2475 and matching, a vector of matching xmethods defined in extension
2476 languages are also returned in XMETHODS.
2477
2478 Helper function for value_find_oload_list.
2479 ARGP is a pointer to a pointer to a value (the object).
2480 METHOD is a string containing the method name.
2481 OFFSET is the offset within the value.
2482 TYPE is the assumed type of the object.
2483 METHODS is a pointer to the matching overloaded instances defined
2484 in the source language. Since this is a recursive function,
2485 *METHODS should be set to NULL when calling this function.
2486 NUM_FNS is the number of overloaded instances. *NUM_FNS should be set to
2487 0 when calling this function.
2488 XMETHODS is the vector of matching xmethod workers. *XMETHODS
2489 should also be set to NULL when calling this function.
2490 BASETYPE is set to the actual type of the subobject where the
2491 method is found.
2492 BOFFSET is the offset of the base subobject where the method is found. */
2493
2494 static void
2495 find_method_list (struct value **argp, const char *method,
2496 LONGEST offset, struct type *type,
2497 gdb::array_view<fn_field> *methods,
2498 std::vector<xmethod_worker_up> *xmethods,
2499 struct type **basetype, LONGEST *boffset)
2500 {
2501 int i;
2502 struct fn_field *f = NULL;
2503
2504 gdb_assert (methods != NULL && xmethods != NULL);
2505 type = check_typedef (type);
2506
2507 /* First check in object itself.
2508 This function is called recursively to search through base classes.
2509 If there is a source method match found at some stage, then we need not
2510 look for source methods in consequent recursive calls. */
2511 if (methods->empty ())
2512 {
2513 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2514 {
2515 /* pai: FIXME What about operators and type conversions? */
2516 const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2517
2518 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2519 {
2520 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2521 f = TYPE_FN_FIELDLIST1 (type, i);
2522 *methods = gdb::make_array_view (f, len);
2523
2524 *basetype = type;
2525 *boffset = offset;
2526
2527 /* Resolve any stub methods. */
2528 check_stub_method_group (type, i);
2529
2530 break;
2531 }
2532 }
2533 }
2534
2535 /* Unlike source methods, xmethods can be accumulated over successive
2536 recursive calls. In other words, an xmethod named 'm' in a class
2537 will not hide an xmethod named 'm' in its base class(es). We want
2538 it to be this way because xmethods are after all convenience functions
2539 and hence there is no point restricting them with something like method
2540 hiding. Moreover, if hiding is done for xmethods as well, then we will
2541 have to provide a mechanism to un-hide (like the 'using' construct). */
2542 get_matching_xmethod_workers (type, method, xmethods);
2543
2544 /* If source methods are not found in current class, look for them in the
2545 base classes. We also have to go through the base classes to gather
2546 extension methods. */
2547 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2548 {
2549 LONGEST base_offset;
2550
2551 if (BASETYPE_VIA_VIRTUAL (type, i))
2552 {
2553 base_offset = baseclass_offset (type, i,
2554 value_contents_for_printing (*argp).data (),
2555 value_offset (*argp) + offset,
2556 value_address (*argp), *argp);
2557 }
2558 else /* Non-virtual base, simply use bit position from debug
2559 info. */
2560 {
2561 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2562 }
2563
2564 find_method_list (argp, method, base_offset + offset,
2565 TYPE_BASECLASS (type, i), methods,
2566 xmethods, basetype, boffset);
2567 }
2568 }
2569
2570 /* Return the list of overloaded methods of a specified name. The methods
2571 could be those GDB finds in the binary, or xmethod. Methods found in
2572 the binary are returned in METHODS, and xmethods are returned in
2573 XMETHODS.
2574
2575 ARGP is a pointer to a pointer to a value (the object).
2576 METHOD is the method name.
2577 OFFSET is the offset within the value contents.
2578 METHODS is the list of matching overloaded instances defined in
2579 the source language.
2580 XMETHODS is the vector of matching xmethod workers defined in
2581 extension languages.
2582 BASETYPE is set to the type of the base subobject that defines the
2583 method.
2584 BOFFSET is the offset of the base subobject which defines the method. */
2585
2586 static void
2587 value_find_oload_method_list (struct value **argp, const char *method,
2588 LONGEST offset,
2589 gdb::array_view<fn_field> *methods,
2590 std::vector<xmethod_worker_up> *xmethods,
2591 struct type **basetype, LONGEST *boffset)
2592 {
2593 struct type *t;
2594
2595 t = check_typedef (value_type (*argp));
2596
2597 /* Code snarfed from value_struct_elt. */
2598 while (t->is_pointer_or_reference ())
2599 {
2600 *argp = value_ind (*argp);
2601 /* Don't coerce fn pointer to fn and then back again! */
2602 if (check_typedef (value_type (*argp))->code () != TYPE_CODE_FUNC)
2603 *argp = coerce_array (*argp);
2604 t = check_typedef (value_type (*argp));
2605 }
2606
2607 if (t->code () != TYPE_CODE_STRUCT
2608 && t->code () != TYPE_CODE_UNION)
2609 error (_("Attempt to extract a component of a "
2610 "value that is not a struct or union"));
2611
2612 gdb_assert (methods != NULL && xmethods != NULL);
2613
2614 /* Clear the lists. */
2615 *methods = {};
2616 xmethods->clear ();
2617
2618 find_method_list (argp, method, 0, t, methods, xmethods,
2619 basetype, boffset);
2620 }
2621
2622 /* Given an array of arguments (ARGS) (which includes an entry for
2623 "this" in the case of C++ methods), the NAME of a function, and
2624 whether it's a method or not (METHOD), find the best function that
2625 matches on the argument types according to the overload resolution
2626 rules.
2627
2628 METHOD can be one of three values:
2629 NON_METHOD for non-member functions.
2630 METHOD: for member functions.
2631 BOTH: used for overload resolution of operators where the
2632 candidates are expected to be either member or non member
2633 functions. In this case the first argument ARGTYPES
2634 (representing 'this') is expected to be a reference to the
2635 target object, and will be dereferenced when attempting the
2636 non-member search.
2637
2638 In the case of class methods, the parameter OBJ is an object value
2639 in which to search for overloaded methods.
2640
2641 In the case of non-method functions, the parameter FSYM is a symbol
2642 corresponding to one of the overloaded functions.
2643
2644 Return value is an integer: 0 -> good match, 10 -> debugger applied
2645 non-standard coercions, 100 -> incompatible.
2646
2647 If a method is being searched for, VALP will hold the value.
2648 If a non-method is being searched for, SYMP will hold the symbol
2649 for it.
2650
2651 If a method is being searched for, and it is a static method,
2652 then STATICP will point to a non-zero value.
2653
2654 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2655 ADL overload candidates when performing overload resolution for a fully
2656 qualified name.
2657
2658 If NOSIDE is EVAL_AVOID_SIDE_EFFECTS, then OBJP's memory cannot be
2659 read while picking the best overload match (it may be all zeroes and thus
2660 not have a vtable pointer), in which case skip virtual function lookup.
2661 This is ok as typically EVAL_AVOID_SIDE_EFFECTS is only used to determine
2662 the result type.
2663
2664 Note: This function does *not* check the value of
2665 overload_resolution. Caller must check it to see whether overload
2666 resolution is permitted. */
2667
2668 int
2669 find_overload_match (gdb::array_view<value *> args,
2670 const char *name, enum oload_search_type method,
2671 struct value **objp, struct symbol *fsym,
2672 struct value **valp, struct symbol **symp,
2673 int *staticp, const int no_adl,
2674 const enum noside noside)
2675 {
2676 struct value *obj = (objp ? *objp : NULL);
2677 struct type *obj_type = obj ? value_type (obj) : NULL;
2678 /* Index of best overloaded function. */
2679 int func_oload_champ = -1;
2680 int method_oload_champ = -1;
2681 int src_method_oload_champ = -1;
2682 int ext_method_oload_champ = -1;
2683
2684 /* The measure for the current best match. */
2685 badness_vector method_badness;
2686 badness_vector func_badness;
2687 badness_vector ext_method_badness;
2688 badness_vector src_method_badness;
2689
2690 struct value *temp = obj;
2691 /* For methods, the list of overloaded methods. */
2692 gdb::array_view<fn_field> methods;
2693 /* For non-methods, the list of overloaded function symbols. */
2694 std::vector<symbol *> functions;
2695 /* For xmethods, the vector of xmethod workers. */
2696 std::vector<xmethod_worker_up> xmethods;
2697 struct type *basetype = NULL;
2698 LONGEST boffset;
2699
2700 const char *obj_type_name = NULL;
2701 const char *func_name = NULL;
2702 gdb::unique_xmalloc_ptr<char> temp_func;
2703 enum oload_classification match_quality;
2704 enum oload_classification method_match_quality = INCOMPATIBLE;
2705 enum oload_classification src_method_match_quality = INCOMPATIBLE;
2706 enum oload_classification ext_method_match_quality = INCOMPATIBLE;
2707 enum oload_classification func_match_quality = INCOMPATIBLE;
2708
2709 /* Get the list of overloaded methods or functions. */
2710 if (method == METHOD || method == BOTH)
2711 {
2712 gdb_assert (obj);
2713
2714 /* OBJ may be a pointer value rather than the object itself. */
2715 obj = coerce_ref (obj);
2716 while (check_typedef (value_type (obj))->code () == TYPE_CODE_PTR)
2717 obj = coerce_ref (value_ind (obj));
2718 obj_type_name = value_type (obj)->name ();
2719
2720 /* First check whether this is a data member, e.g. a pointer to
2721 a function. */
2722 if (check_typedef (value_type (obj))->code () == TYPE_CODE_STRUCT)
2723 {
2724 *valp = search_struct_field (name, obj,
2725 check_typedef (value_type (obj)), 0);
2726 if (*valp)
2727 {
2728 *staticp = 1;
2729 return 0;
2730 }
2731 }
2732
2733 /* Retrieve the list of methods with the name NAME. */
2734 value_find_oload_method_list (&temp, name, 0, &methods,
2735 &xmethods, &basetype, &boffset);
2736 /* If this is a method only search, and no methods were found
2737 the search has failed. */
2738 if (method == METHOD && methods.empty () && xmethods.empty ())
2739 error (_("Couldn't find method %s%s%s"),
2740 obj_type_name,
2741 (obj_type_name && *obj_type_name) ? "::" : "",
2742 name);
2743 /* If we are dealing with stub method types, they should have
2744 been resolved by find_method_list via
2745 value_find_oload_method_list above. */
2746 if (!methods.empty ())
2747 {
2748 gdb_assert (TYPE_SELF_TYPE (methods[0].type) != NULL);
2749
2750 src_method_oload_champ
2751 = find_oload_champ (args,
2752 methods.size (),
2753 methods.data (), NULL, NULL,
2754 &src_method_badness);
2755
2756 src_method_match_quality = classify_oload_match
2757 (src_method_badness, args.size (),
2758 oload_method_static_p (methods.data (), src_method_oload_champ));
2759 }
2760
2761 if (!xmethods.empty ())
2762 {
2763 ext_method_oload_champ
2764 = find_oload_champ (args,
2765 xmethods.size (),
2766 NULL, xmethods.data (), NULL,
2767 &ext_method_badness);
2768 ext_method_match_quality = classify_oload_match (ext_method_badness,
2769 args.size (), 0);
2770 }
2771
2772 if (src_method_oload_champ >= 0 && ext_method_oload_champ >= 0)
2773 {
2774 switch (compare_badness (ext_method_badness, src_method_badness))
2775 {
2776 case 0: /* Src method and xmethod are equally good. */
2777 /* If src method and xmethod are equally good, then
2778 xmethod should be the winner. Hence, fall through to the
2779 case where a xmethod is better than the source
2780 method, except when the xmethod match quality is
2781 non-standard. */
2782 /* FALLTHROUGH */
2783 case 1: /* Src method and ext method are incompatible. */
2784 /* If ext method match is not standard, then let source method
2785 win. Otherwise, fallthrough to let xmethod win. */
2786 if (ext_method_match_quality != STANDARD)
2787 {
2788 method_oload_champ = src_method_oload_champ;
2789 method_badness = src_method_badness;
2790 ext_method_oload_champ = -1;
2791 method_match_quality = src_method_match_quality;
2792 break;
2793 }
2794 /* FALLTHROUGH */
2795 case 2: /* Ext method is champion. */
2796 method_oload_champ = ext_method_oload_champ;
2797 method_badness = ext_method_badness;
2798 src_method_oload_champ = -1;
2799 method_match_quality = ext_method_match_quality;
2800 break;
2801 case 3: /* Src method is champion. */
2802 method_oload_champ = src_method_oload_champ;
2803 method_badness = src_method_badness;
2804 ext_method_oload_champ = -1;
2805 method_match_quality = src_method_match_quality;
2806 break;
2807 default:
2808 gdb_assert_not_reached ("Unexpected overload comparison "
2809 "result");
2810 break;
2811 }
2812 }
2813 else if (src_method_oload_champ >= 0)
2814 {
2815 method_oload_champ = src_method_oload_champ;
2816 method_badness = src_method_badness;
2817 method_match_quality = src_method_match_quality;
2818 }
2819 else if (ext_method_oload_champ >= 0)
2820 {
2821 method_oload_champ = ext_method_oload_champ;
2822 method_badness = ext_method_badness;
2823 method_match_quality = ext_method_match_quality;
2824 }
2825 }
2826
2827 if (method == NON_METHOD || method == BOTH)
2828 {
2829 const char *qualified_name = NULL;
2830
2831 /* If the overload match is being search for both as a method
2832 and non member function, the first argument must now be
2833 dereferenced. */
2834 if (method == BOTH)
2835 args[0] = value_ind (args[0]);
2836
2837 if (fsym)
2838 {
2839 qualified_name = fsym->natural_name ();
2840
2841 /* If we have a function with a C++ name, try to extract just
2842 the function part. Do not try this for non-functions (e.g.
2843 function pointers). */
2844 if (qualified_name
2845 && (check_typedef (SYMBOL_TYPE (fsym))->code ()
2846 == TYPE_CODE_FUNC))
2847 {
2848 temp_func = cp_func_name (qualified_name);
2849
2850 /* If cp_func_name did not remove anything, the name of the
2851 symbol did not include scope or argument types - it was
2852 probably a C-style function. */
2853 if (temp_func != nullptr)
2854 {
2855 if (strcmp (temp_func.get (), qualified_name) == 0)
2856 func_name = NULL;
2857 else
2858 func_name = temp_func.get ();
2859 }
2860 }
2861 }
2862 else
2863 {
2864 func_name = name;
2865 qualified_name = name;
2866 }
2867
2868 /* If there was no C++ name, this must be a C-style function or
2869 not a function at all. Just return the same symbol. Do the
2870 same if cp_func_name fails for some reason. */
2871 if (func_name == NULL)
2872 {
2873 *symp = fsym;
2874 return 0;
2875 }
2876
2877 func_oload_champ = find_oload_champ_namespace (args,
2878 func_name,
2879 qualified_name,
2880 &functions,
2881 &func_badness,
2882 no_adl);
2883
2884 if (func_oload_champ >= 0)
2885 func_match_quality = classify_oload_match (func_badness,
2886 args.size (), 0);
2887 }
2888
2889 /* Did we find a match ? */
2890 if (method_oload_champ == -1 && func_oload_champ == -1)
2891 throw_error (NOT_FOUND_ERROR,
2892 _("No symbol \"%s\" in current context."),
2893 name);
2894
2895 /* If we have found both a method match and a function
2896 match, find out which one is better, and calculate match
2897 quality. */
2898 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2899 {
2900 switch (compare_badness (func_badness, method_badness))
2901 {
2902 case 0: /* Top two contenders are equally good. */
2903 /* FIXME: GDB does not support the general ambiguous case.
2904 All candidates should be collected and presented the
2905 user. */
2906 error (_("Ambiguous overload resolution"));
2907 break;
2908 case 1: /* Incomparable top contenders. */
2909 /* This is an error incompatible candidates
2910 should not have been proposed. */
2911 error (_("Internal error: incompatible "
2912 "overload candidates proposed"));
2913 break;
2914 case 2: /* Function champion. */
2915 method_oload_champ = -1;
2916 match_quality = func_match_quality;
2917 break;
2918 case 3: /* Method champion. */
2919 func_oload_champ = -1;
2920 match_quality = method_match_quality;
2921 break;
2922 default:
2923 error (_("Internal error: unexpected overload comparison result"));
2924 break;
2925 }
2926 }
2927 else
2928 {
2929 /* We have either a method match or a function match. */
2930 if (method_oload_champ >= 0)
2931 match_quality = method_match_quality;
2932 else
2933 match_quality = func_match_quality;
2934 }
2935
2936 if (match_quality == INCOMPATIBLE)
2937 {
2938 if (method == METHOD)
2939 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2940 obj_type_name,
2941 (obj_type_name && *obj_type_name) ? "::" : "",
2942 name);
2943 else
2944 error (_("Cannot resolve function %s to any overloaded instance"),
2945 func_name);
2946 }
2947 else if (match_quality == NON_STANDARD)
2948 {
2949 if (method == METHOD)
2950 warning (_("Using non-standard conversion to match "
2951 "method %s%s%s to supplied arguments"),
2952 obj_type_name,
2953 (obj_type_name && *obj_type_name) ? "::" : "",
2954 name);
2955 else
2956 warning (_("Using non-standard conversion to match "
2957 "function %s to supplied arguments"),
2958 func_name);
2959 }
2960
2961 if (staticp != NULL)
2962 *staticp = oload_method_static_p (methods.data (), method_oload_champ);
2963
2964 if (method_oload_champ >= 0)
2965 {
2966 if (src_method_oload_champ >= 0)
2967 {
2968 if (TYPE_FN_FIELD_VIRTUAL_P (methods, method_oload_champ)
2969 && noside != EVAL_AVOID_SIDE_EFFECTS)
2970 {
2971 *valp = value_virtual_fn_field (&temp, methods.data (),
2972 method_oload_champ, basetype,
2973 boffset);
2974 }
2975 else
2976 *valp = value_fn_field (&temp, methods.data (),
2977 method_oload_champ, basetype, boffset);
2978 }
2979 else
2980 *valp = value_from_xmethod
2981 (std::move (xmethods[ext_method_oload_champ]));
2982 }
2983 else
2984 *symp = functions[func_oload_champ];
2985
2986 if (objp)
2987 {
2988 struct type *temp_type = check_typedef (value_type (temp));
2989 struct type *objtype = check_typedef (obj_type);
2990
2991 if (temp_type->code () != TYPE_CODE_PTR
2992 && objtype->is_pointer_or_reference ())
2993 {
2994 temp = value_addr (temp);
2995 }
2996 *objp = temp;
2997 }
2998
2999 switch (match_quality)
3000 {
3001 case INCOMPATIBLE:
3002 return 100;
3003 case NON_STANDARD:
3004 return 10;
3005 default: /* STANDARD */
3006 return 0;
3007 }
3008 }
3009
3010 /* Find the best overload match, searching for FUNC_NAME in namespaces
3011 contained in QUALIFIED_NAME until it either finds a good match or
3012 runs out of namespaces. It stores the overloaded functions in
3013 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. If NO_ADL,
3014 argument dependent lookup is not performed. */
3015
3016 static int
3017 find_oload_champ_namespace (gdb::array_view<value *> args,
3018 const char *func_name,
3019 const char *qualified_name,
3020 std::vector<symbol *> *oload_syms,
3021 badness_vector *oload_champ_bv,
3022 const int no_adl)
3023 {
3024 int oload_champ;
3025
3026 find_oload_champ_namespace_loop (args,
3027 func_name,
3028 qualified_name, 0,
3029 oload_syms, oload_champ_bv,
3030 &oload_champ,
3031 no_adl);
3032
3033 return oload_champ;
3034 }
3035
3036 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
3037 how deep we've looked for namespaces, and the champ is stored in
3038 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
3039 if it isn't. Other arguments are the same as in
3040 find_oload_champ_namespace. */
3041
3042 static int
3043 find_oload_champ_namespace_loop (gdb::array_view<value *> args,
3044 const char *func_name,
3045 const char *qualified_name,
3046 int namespace_len,
3047 std::vector<symbol *> *oload_syms,
3048 badness_vector *oload_champ_bv,
3049 int *oload_champ,
3050 const int no_adl)
3051 {
3052 int next_namespace_len = namespace_len;
3053 int searched_deeper = 0;
3054 int new_oload_champ;
3055 char *new_namespace;
3056
3057 if (next_namespace_len != 0)
3058 {
3059 gdb_assert (qualified_name[next_namespace_len] == ':');
3060 next_namespace_len += 2;
3061 }
3062 next_namespace_len +=
3063 cp_find_first_component (qualified_name + next_namespace_len);
3064
3065 /* First, see if we have a deeper namespace we can search in.
3066 If we get a good match there, use it. */
3067
3068 if (qualified_name[next_namespace_len] == ':')
3069 {
3070 searched_deeper = 1;
3071
3072 if (find_oload_champ_namespace_loop (args,
3073 func_name, qualified_name,
3074 next_namespace_len,
3075 oload_syms, oload_champ_bv,
3076 oload_champ, no_adl))
3077 {
3078 return 1;
3079 }
3080 };
3081
3082 /* If we reach here, either we're in the deepest namespace or we
3083 didn't find a good match in a deeper namespace. But, in the
3084 latter case, we still have a bad match in a deeper namespace;
3085 note that we might not find any match at all in the current
3086 namespace. (There's always a match in the deepest namespace,
3087 because this overload mechanism only gets called if there's a
3088 function symbol to start off with.) */
3089
3090 new_namespace = (char *) alloca (namespace_len + 1);
3091 strncpy (new_namespace, qualified_name, namespace_len);
3092 new_namespace[namespace_len] = '\0';
3093
3094 std::vector<symbol *> new_oload_syms
3095 = make_symbol_overload_list (func_name, new_namespace);
3096
3097 /* If we have reached the deepest level perform argument
3098 determined lookup. */
3099 if (!searched_deeper && !no_adl)
3100 {
3101 int ix;
3102 struct type **arg_types;
3103
3104 /* Prepare list of argument types for overload resolution. */
3105 arg_types = (struct type **)
3106 alloca (args.size () * (sizeof (struct type *)));
3107 for (ix = 0; ix < args.size (); ix++)
3108 arg_types[ix] = value_type (args[ix]);
3109 add_symbol_overload_list_adl ({arg_types, args.size ()}, func_name,
3110 &new_oload_syms);
3111 }
3112
3113 badness_vector new_oload_champ_bv;
3114 new_oload_champ = find_oload_champ (args,
3115 new_oload_syms.size (),
3116 NULL, NULL, new_oload_syms.data (),
3117 &new_oload_champ_bv);
3118
3119 /* Case 1: We found a good match. Free earlier matches (if any),
3120 and return it. Case 2: We didn't find a good match, but we're
3121 not the deepest function. Then go with the bad match that the
3122 deeper function found. Case 3: We found a bad match, and we're
3123 the deepest function. Then return what we found, even though
3124 it's a bad match. */
3125
3126 if (new_oload_champ != -1
3127 && classify_oload_match (new_oload_champ_bv, args.size (), 0) == STANDARD)
3128 {
3129 *oload_syms = std::move (new_oload_syms);
3130 *oload_champ = new_oload_champ;
3131 *oload_champ_bv = std::move (new_oload_champ_bv);
3132 return 1;
3133 }
3134 else if (searched_deeper)
3135 {
3136 return 0;
3137 }
3138 else
3139 {
3140 *oload_syms = std::move (new_oload_syms);
3141 *oload_champ = new_oload_champ;
3142 *oload_champ_bv = std::move (new_oload_champ_bv);
3143 return 0;
3144 }
3145 }
3146
3147 /* Look for a function to take ARGS. Find the best match from among
3148 the overloaded methods or functions given by METHODS or FUNCTIONS
3149 or XMETHODS, respectively. One, and only one of METHODS, FUNCTIONS
3150 and XMETHODS can be non-NULL.
3151
3152 NUM_FNS is the length of the array pointed at by METHODS, FUNCTIONS
3153 or XMETHODS, whichever is non-NULL.
3154
3155 Return the index of the best match; store an indication of the
3156 quality of the match in OLOAD_CHAMP_BV. */
3157
3158 static int
3159 find_oload_champ (gdb::array_view<value *> args,
3160 size_t num_fns,
3161 fn_field *methods,
3162 xmethod_worker_up *xmethods,
3163 symbol **functions,
3164 badness_vector *oload_champ_bv)
3165 {
3166 /* A measure of how good an overloaded instance is. */
3167 badness_vector bv;
3168 /* Index of best overloaded function. */
3169 int oload_champ = -1;
3170 /* Current ambiguity state for overload resolution. */
3171 int oload_ambiguous = 0;
3172 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
3173
3174 /* A champion can be found among methods alone, or among functions
3175 alone, or in xmethods alone, but not in more than one of these
3176 groups. */
3177 gdb_assert ((methods != NULL) + (functions != NULL) + (xmethods != NULL)
3178 == 1);
3179
3180 /* Consider each candidate in turn. */
3181 for (size_t ix = 0; ix < num_fns; ix++)
3182 {
3183 int jj;
3184 int static_offset = 0;
3185 std::vector<type *> parm_types;
3186
3187 if (xmethods != NULL)
3188 parm_types = xmethods[ix]->get_arg_types ();
3189 else
3190 {
3191 size_t nparms;
3192
3193 if (methods != NULL)
3194 {
3195 nparms = TYPE_FN_FIELD_TYPE (methods, ix)->num_fields ();
3196 static_offset = oload_method_static_p (methods, ix);
3197 }
3198 else
3199 nparms = SYMBOL_TYPE (functions[ix])->num_fields ();
3200
3201 parm_types.reserve (nparms);
3202 for (jj = 0; jj < nparms; jj++)
3203 {
3204 type *t = (methods != NULL
3205 ? (TYPE_FN_FIELD_ARGS (methods, ix)[jj].type ())
3206 : SYMBOL_TYPE (functions[ix])->field (jj).type ());
3207 parm_types.push_back (t);
3208 }
3209 }
3210
3211 /* Compare parameter types to supplied argument types. Skip
3212 THIS for static methods. */
3213 bv = rank_function (parm_types,
3214 args.slice (static_offset));
3215
3216 if (overload_debug)
3217 {
3218 if (methods != NULL)
3219 fprintf_filtered (gdb_stderr,
3220 "Overloaded method instance %s, # of parms %d\n",
3221 methods[ix].physname, (int) parm_types.size ());
3222 else if (xmethods != NULL)
3223 fprintf_filtered (gdb_stderr,
3224 "Xmethod worker, # of parms %d\n",
3225 (int) parm_types.size ());
3226 else
3227 fprintf_filtered (gdb_stderr,
3228 "Overloaded function instance "
3229 "%s # of parms %d\n",
3230 functions[ix]->demangled_name (),
3231 (int) parm_types.size ());
3232
3233 fprintf_filtered (gdb_stderr,
3234 "...Badness of length : {%d, %d}\n",
3235 bv[0].rank, bv[0].subrank);
3236
3237 for (jj = 1; jj < bv.size (); jj++)
3238 fprintf_filtered (gdb_stderr,
3239 "...Badness of arg %d : {%d, %d}\n",
3240 jj, bv[jj].rank, bv[jj].subrank);
3241 }
3242
3243 if (oload_champ_bv->empty ())
3244 {
3245 *oload_champ_bv = std::move (bv);
3246 oload_champ = 0;
3247 }
3248 else /* See whether current candidate is better or worse than
3249 previous best. */
3250 switch (compare_badness (bv, *oload_champ_bv))
3251 {
3252 case 0: /* Top two contenders are equally good. */
3253 oload_ambiguous = 1;
3254 break;
3255 case 1: /* Incomparable top contenders. */
3256 oload_ambiguous = 2;
3257 break;
3258 case 2: /* New champion, record details. */
3259 *oload_champ_bv = std::move (bv);
3260 oload_ambiguous = 0;
3261 oload_champ = ix;
3262 break;
3263 case 3:
3264 default:
3265 break;
3266 }
3267 if (overload_debug)
3268 fprintf_filtered (gdb_stderr, "Overload resolution "
3269 "champion is %d, ambiguous? %d\n",
3270 oload_champ, oload_ambiguous);
3271 }
3272
3273 return oload_champ;
3274 }
3275
3276 /* Return 1 if we're looking at a static method, 0 if we're looking at
3277 a non-static method or a function that isn't a method. */
3278
3279 static int
3280 oload_method_static_p (struct fn_field *fns_ptr, int index)
3281 {
3282 if (fns_ptr && index >= 0 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
3283 return 1;
3284 else
3285 return 0;
3286 }
3287
3288 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
3289
3290 static enum oload_classification
3291 classify_oload_match (const badness_vector &oload_champ_bv,
3292 int nargs,
3293 int static_offset)
3294 {
3295 int ix;
3296 enum oload_classification worst = STANDARD;
3297
3298 for (ix = 1; ix <= nargs - static_offset; ix++)
3299 {
3300 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
3301 or worse return INCOMPATIBLE. */
3302 if (compare_ranks (oload_champ_bv[ix],
3303 INCOMPATIBLE_TYPE_BADNESS) <= 0)
3304 return INCOMPATIBLE; /* Truly mismatched types. */
3305 /* Otherwise If this conversion is as bad as
3306 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
3307 else if (compare_ranks (oload_champ_bv[ix],
3308 NS_POINTER_CONVERSION_BADNESS) <= 0)
3309 worst = NON_STANDARD; /* Non-standard type conversions
3310 needed. */
3311 }
3312
3313 /* If no INCOMPATIBLE classification was found, return the worst one
3314 that was found (if any). */
3315 return worst;
3316 }
3317
3318 /* C++: return 1 is NAME is a legitimate name for the destructor of
3319 type TYPE. If TYPE does not have a destructor, or if NAME is
3320 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
3321 have CHECK_TYPEDEF applied, this function will apply it itself. */
3322
3323 int
3324 destructor_name_p (const char *name, struct type *type)
3325 {
3326 if (name[0] == '~')
3327 {
3328 const char *dname = type_name_or_error (type);
3329 const char *cp = strchr (dname, '<');
3330 unsigned int len;
3331
3332 /* Do not compare the template part for template classes. */
3333 if (cp == NULL)
3334 len = strlen (dname);
3335 else
3336 len = cp - dname;
3337 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3338 error (_("name of destructor must equal name of class"));
3339 else
3340 return 1;
3341 }
3342 return 0;
3343 }
3344
3345 /* Find an enum constant named NAME in TYPE. TYPE must be an "enum
3346 class". If the name is found, return a value representing it;
3347 otherwise throw an exception. */
3348
3349 static struct value *
3350 enum_constant_from_type (struct type *type, const char *name)
3351 {
3352 int i;
3353 int name_len = strlen (name);
3354
3355 gdb_assert (type->code () == TYPE_CODE_ENUM
3356 && type->is_declared_class ());
3357
3358 for (i = TYPE_N_BASECLASSES (type); i < type->num_fields (); ++i)
3359 {
3360 const char *fname = type->field (i).name ();
3361 int len;
3362
3363 if (type->field (i).loc_kind () != FIELD_LOC_KIND_ENUMVAL
3364 || fname == NULL)
3365 continue;
3366
3367 /* Look for the trailing "::NAME", since enum class constant
3368 names are qualified here. */
3369 len = strlen (fname);
3370 if (len + 2 >= name_len
3371 && fname[len - name_len - 2] == ':'
3372 && fname[len - name_len - 1] == ':'
3373 && strcmp (&fname[len - name_len], name) == 0)
3374 return value_from_longest (type, type->field (i).loc_enumval ());
3375 }
3376
3377 error (_("no constant named \"%s\" in enum \"%s\""),
3378 name, type->name ());
3379 }
3380
3381 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3382 return the appropriate member (or the address of the member, if
3383 WANT_ADDRESS). This function is used to resolve user expressions
3384 of the form "DOMAIN::NAME". For more details on what happens, see
3385 the comment before value_struct_elt_for_reference. */
3386
3387 struct value *
3388 value_aggregate_elt (struct type *curtype, const char *name,
3389 struct type *expect_type, int want_address,
3390 enum noside noside)
3391 {
3392 switch (curtype->code ())
3393 {
3394 case TYPE_CODE_STRUCT:
3395 case TYPE_CODE_UNION:
3396 return value_struct_elt_for_reference (curtype, 0, curtype,
3397 name, expect_type,
3398 want_address, noside);
3399 case TYPE_CODE_NAMESPACE:
3400 return value_namespace_elt (curtype, name,
3401 want_address, noside);
3402
3403 case TYPE_CODE_ENUM:
3404 return enum_constant_from_type (curtype, name);
3405
3406 default:
3407 internal_error (__FILE__, __LINE__,
3408 _("non-aggregate type in value_aggregate_elt"));
3409 }
3410 }
3411
3412 /* Compares the two method/function types T1 and T2 for "equality"
3413 with respect to the methods' parameters. If the types of the
3414 two parameter lists are the same, returns 1; 0 otherwise. This
3415 comparison may ignore any artificial parameters in T1 if
3416 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3417 the first artificial parameter in T1, assumed to be a 'this' pointer.
3418
3419 The type T2 is expected to have come from make_params (in eval.c). */
3420
3421 static int
3422 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3423 {
3424 int start = 0;
3425
3426 if (t1->num_fields () > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3427 ++start;
3428
3429 /* If skipping artificial fields, find the first real field
3430 in T1. */
3431 if (skip_artificial)
3432 {
3433 while (start < t1->num_fields ()
3434 && TYPE_FIELD_ARTIFICIAL (t1, start))
3435 ++start;
3436 }
3437
3438 /* Now compare parameters. */
3439
3440 /* Special case: a method taking void. T1 will contain no
3441 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3442 if ((t1->num_fields () - start) == 0 && t2->num_fields () == 1
3443 && t2->field (0).type ()->code () == TYPE_CODE_VOID)
3444 return 1;
3445
3446 if ((t1->num_fields () - start) == t2->num_fields ())
3447 {
3448 int i;
3449
3450 for (i = 0; i < t2->num_fields (); ++i)
3451 {
3452 if (compare_ranks (rank_one_type (t1->field (start + i).type (),
3453 t2->field (i).type (), NULL),
3454 EXACT_MATCH_BADNESS) != 0)
3455 return 0;
3456 }
3457
3458 return 1;
3459 }
3460
3461 return 0;
3462 }
3463
3464 /* C++: Given an aggregate type VT, and a class type CLS, search
3465 recursively for CLS using value V; If found, store the offset
3466 which is either fetched from the virtual base pointer if CLS
3467 is virtual or accumulated offset of its parent classes if
3468 CLS is non-virtual in *BOFFS, set ISVIRT to indicate if CLS
3469 is virtual, and return true. If not found, return false. */
3470
3471 static bool
3472 get_baseclass_offset (struct type *vt, struct type *cls,
3473 struct value *v, int *boffs, bool *isvirt)
3474 {
3475 for (int i = 0; i < TYPE_N_BASECLASSES (vt); i++)
3476 {
3477 struct type *t = vt->field (i).type ();
3478 if (types_equal (t, cls))
3479 {
3480 if (BASETYPE_VIA_VIRTUAL (vt, i))
3481 {
3482 const gdb_byte *adr = value_contents_for_printing (v).data ();
3483 *boffs = baseclass_offset (vt, i, adr, value_offset (v),
3484 value_as_long (v), v);
3485 *isvirt = true;
3486 }
3487 else
3488 *isvirt = false;
3489 return true;
3490 }
3491
3492 if (get_baseclass_offset (check_typedef (t), cls, v, boffs, isvirt))
3493 {
3494 if (*isvirt == false) /* Add non-virtual base offset. */
3495 {
3496 const gdb_byte *adr = value_contents_for_printing (v).data ();
3497 *boffs += baseclass_offset (vt, i, adr, value_offset (v),
3498 value_as_long (v), v);
3499 }
3500 return true;
3501 }
3502 }
3503
3504 return false;
3505 }
3506
3507 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3508 return the address of this member as a "pointer to member" type.
3509 If INTYPE is non-null, then it will be the type of the member we
3510 are looking for. This will help us resolve "pointers to member
3511 functions". This function is used to resolve user expressions of
3512 the form "DOMAIN::NAME". */
3513
3514 static struct value *
3515 value_struct_elt_for_reference (struct type *domain, int offset,
3516 struct type *curtype, const char *name,
3517 struct type *intype,
3518 int want_address,
3519 enum noside noside)
3520 {
3521 struct type *t = check_typedef (curtype);
3522 int i;
3523 struct value *result;
3524
3525 if (t->code () != TYPE_CODE_STRUCT
3526 && t->code () != TYPE_CODE_UNION)
3527 error (_("Internal error: non-aggregate type "
3528 "to value_struct_elt_for_reference"));
3529
3530 for (i = t->num_fields () - 1; i >= TYPE_N_BASECLASSES (t); i--)
3531 {
3532 const char *t_field_name = t->field (i).name ();
3533
3534 if (t_field_name && strcmp (t_field_name, name) == 0)
3535 {
3536 if (field_is_static (&t->field (i)))
3537 {
3538 struct value *v = value_static_field (t, i);
3539 if (want_address)
3540 v = value_addr (v);
3541 return v;
3542 }
3543 if (TYPE_FIELD_PACKED (t, i))
3544 error (_("pointers to bitfield members not allowed"));
3545
3546 if (want_address)
3547 return value_from_longest
3548 (lookup_memberptr_type (t->field (i).type (), domain),
3549 offset + (LONGEST) (t->field (i).loc_bitpos () >> 3));
3550 else if (noside != EVAL_NORMAL)
3551 return allocate_value (t->field (i).type ());
3552 else
3553 {
3554 /* Try to evaluate NAME as a qualified name with implicit
3555 this pointer. In this case, attempt to return the
3556 equivalent to `this->*(&TYPE::NAME)'. */
3557 struct value *v = value_of_this_silent (current_language);
3558 if (v != NULL)
3559 {
3560 struct value *ptr, *this_v = v;
3561 long mem_offset;
3562 struct type *type, *tmp;
3563
3564 ptr = value_aggregate_elt (domain, name, NULL, 1, noside);
3565 type = check_typedef (value_type (ptr));
3566 gdb_assert (type != NULL
3567 && type->code () == TYPE_CODE_MEMBERPTR);
3568 tmp = lookup_pointer_type (TYPE_SELF_TYPE (type));
3569 v = value_cast_pointers (tmp, v, 1);
3570 mem_offset = value_as_long (ptr);
3571 if (domain != curtype)
3572 {
3573 /* Find class offset of type CURTYPE from either its
3574 parent type DOMAIN or the type of implied this. */
3575 int boff = 0;
3576 bool isvirt = false;
3577 if (get_baseclass_offset (domain, curtype, v, &boff,
3578 &isvirt))
3579 mem_offset += boff;
3580 else
3581 {
3582 struct type *p = check_typedef (value_type (this_v));
3583 p = check_typedef (TYPE_TARGET_TYPE (p));
3584 if (get_baseclass_offset (p, curtype, this_v,
3585 &boff, &isvirt))
3586 mem_offset += boff;
3587 }
3588 }
3589 tmp = lookup_pointer_type (TYPE_TARGET_TYPE (type));
3590 result = value_from_pointer (tmp,
3591 value_as_long (v) + mem_offset);
3592 return value_ind (result);
3593 }
3594
3595 error (_("Cannot reference non-static field \"%s\""), name);
3596 }
3597 }
3598 }
3599
3600 /* C++: If it was not found as a data field, then try to return it
3601 as a pointer to a method. */
3602
3603 /* Perform all necessary dereferencing. */
3604 while (intype && intype->code () == TYPE_CODE_PTR)
3605 intype = TYPE_TARGET_TYPE (intype);
3606
3607 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3608 {
3609 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3610
3611 if (t_field_name && strcmp (t_field_name, name) == 0)
3612 {
3613 int j;
3614 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3615 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3616
3617 check_stub_method_group (t, i);
3618
3619 if (intype)
3620 {
3621 for (j = 0; j < len; ++j)
3622 {
3623 if (TYPE_CONST (intype) != TYPE_FN_FIELD_CONST (f, j))
3624 continue;
3625 if (TYPE_VOLATILE (intype) != TYPE_FN_FIELD_VOLATILE (f, j))
3626 continue;
3627
3628 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3629 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3630 intype, 1))
3631 break;
3632 }
3633
3634 if (j == len)
3635 error (_("no member function matches "
3636 "that type instantiation"));
3637 }
3638 else
3639 {
3640 int ii;
3641
3642 j = -1;
3643 for (ii = 0; ii < len; ++ii)
3644 {
3645 /* Skip artificial methods. This is necessary if,
3646 for example, the user wants to "print
3647 subclass::subclass" with only one user-defined
3648 constructor. There is no ambiguity in this case.
3649 We are careful here to allow artificial methods
3650 if they are the unique result. */
3651 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3652 {
3653 if (j == -1)
3654 j = ii;
3655 continue;
3656 }
3657
3658 /* Desired method is ambiguous if more than one
3659 method is defined. */
3660 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3661 error (_("non-unique member `%s' requires "
3662 "type instantiation"), name);
3663
3664 j = ii;
3665 }
3666
3667 if (j == -1)
3668 error (_("no matching member function"));
3669 }
3670
3671 if (TYPE_FN_FIELD_STATIC_P (f, j))
3672 {
3673 struct symbol *s =
3674 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3675 0, VAR_DOMAIN, 0).symbol;
3676
3677 if (s == NULL)
3678 return NULL;
3679
3680 if (want_address)
3681 return value_addr (read_var_value (s, 0, 0));
3682 else
3683 return read_var_value (s, 0, 0);
3684 }
3685
3686 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3687 {
3688 if (want_address)
3689 {
3690 result = allocate_value
3691 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3692 cplus_make_method_ptr (value_type (result),
3693 value_contents_writeable (result).data (),
3694 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3695 }
3696 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3697 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3698 else
3699 error (_("Cannot reference virtual member function \"%s\""),
3700 name);
3701 }
3702 else
3703 {
3704 struct symbol *s =
3705 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3706 0, VAR_DOMAIN, 0).symbol;
3707
3708 if (s == NULL)
3709 return NULL;
3710
3711 struct value *v = read_var_value (s, 0, 0);
3712 if (!want_address)
3713 result = v;
3714 else
3715 {
3716 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3717 cplus_make_method_ptr (value_type (result),
3718 value_contents_writeable (result).data (),
3719 value_address (v), 0);
3720 }
3721 }
3722 return result;
3723 }
3724 }
3725 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3726 {
3727 struct value *v;
3728 int base_offset;
3729
3730 if (BASETYPE_VIA_VIRTUAL (t, i))
3731 base_offset = 0;
3732 else
3733 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3734 v = value_struct_elt_for_reference (domain,
3735 offset + base_offset,
3736 TYPE_BASECLASS (t, i),
3737 name, intype,
3738 want_address, noside);
3739 if (v)
3740 return v;
3741 }
3742
3743 /* As a last chance, pretend that CURTYPE is a namespace, and look
3744 it up that way; this (frequently) works for types nested inside
3745 classes. */
3746
3747 return value_maybe_namespace_elt (curtype, name,
3748 want_address, noside);
3749 }
3750
3751 /* C++: Return the member NAME of the namespace given by the type
3752 CURTYPE. */
3753
3754 static struct value *
3755 value_namespace_elt (const struct type *curtype,
3756 const char *name, int want_address,
3757 enum noside noside)
3758 {
3759 struct value *retval = value_maybe_namespace_elt (curtype, name,
3760 want_address,
3761 noside);
3762
3763 if (retval == NULL)
3764 error (_("No symbol \"%s\" in namespace \"%s\"."),
3765 name, curtype->name ());
3766
3767 return retval;
3768 }
3769
3770 /* A helper function used by value_namespace_elt and
3771 value_struct_elt_for_reference. It looks up NAME inside the
3772 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3773 is a class and NAME refers to a type in CURTYPE itself (as opposed
3774 to, say, some base class of CURTYPE). */
3775
3776 static struct value *
3777 value_maybe_namespace_elt (const struct type *curtype,
3778 const char *name, int want_address,
3779 enum noside noside)
3780 {
3781 const char *namespace_name = curtype->name ();
3782 struct block_symbol sym;
3783 struct value *result;
3784
3785 sym = cp_lookup_symbol_namespace (namespace_name, name,
3786 get_selected_block (0), VAR_DOMAIN);
3787
3788 if (sym.symbol == NULL)
3789 return NULL;
3790 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3791 && (SYMBOL_CLASS (sym.symbol) == LOC_TYPEDEF))
3792 result = allocate_value (SYMBOL_TYPE (sym.symbol));
3793 else
3794 result = value_of_variable (sym.symbol, sym.block);
3795
3796 if (want_address)
3797 result = value_addr (result);
3798
3799 return result;
3800 }
3801
3802 /* Given a pointer or a reference value V, find its real (RTTI) type.
3803
3804 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3805 and refer to the values computed for the object pointed to. */
3806
3807 struct type *
3808 value_rtti_indirect_type (struct value *v, int *full,
3809 LONGEST *top, int *using_enc)
3810 {
3811 struct value *target = NULL;
3812 struct type *type, *real_type, *target_type;
3813
3814 type = value_type (v);
3815 type = check_typedef (type);
3816 if (TYPE_IS_REFERENCE (type))
3817 target = coerce_ref (v);
3818 else if (type->code () == TYPE_CODE_PTR)
3819 {
3820
3821 try
3822 {
3823 target = value_ind (v);
3824 }
3825 catch (const gdb_exception_error &except)
3826 {
3827 if (except.error == MEMORY_ERROR)
3828 {
3829 /* value_ind threw a memory error. The pointer is NULL or
3830 contains an uninitialized value: we can't determine any
3831 type. */
3832 return NULL;
3833 }
3834 throw;
3835 }
3836 }
3837 else
3838 return NULL;
3839
3840 real_type = value_rtti_type (target, full, top, using_enc);
3841
3842 if (real_type)
3843 {
3844 /* Copy qualifiers to the referenced object. */
3845 target_type = value_type (target);
3846 real_type = make_cv_type (TYPE_CONST (target_type),
3847 TYPE_VOLATILE (target_type), real_type, NULL);
3848 if (TYPE_IS_REFERENCE (type))
3849 real_type = lookup_reference_type (real_type, type->code ());
3850 else if (type->code () == TYPE_CODE_PTR)
3851 real_type = lookup_pointer_type (real_type);
3852 else
3853 internal_error (__FILE__, __LINE__, _("Unexpected value type."));
3854
3855 /* Copy qualifiers to the pointer/reference. */
3856 real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type),
3857 real_type, NULL);
3858 }
3859
3860 return real_type;
3861 }
3862
3863 /* Given a value pointed to by ARGP, check its real run-time type, and
3864 if that is different from the enclosing type, create a new value
3865 using the real run-time type as the enclosing type (and of the same
3866 type as ARGP) and return it, with the embedded offset adjusted to
3867 be the correct offset to the enclosed object. RTYPE is the type,
3868 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3869 by value_rtti_type(). If these are available, they can be supplied
3870 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3871 NULL if they're not available. */
3872
3873 struct value *
3874 value_full_object (struct value *argp,
3875 struct type *rtype,
3876 int xfull, int xtop,
3877 int xusing_enc)
3878 {
3879 struct type *real_type;
3880 int full = 0;
3881 LONGEST top = -1;
3882 int using_enc = 0;
3883 struct value *new_val;
3884
3885 if (rtype)
3886 {
3887 real_type = rtype;
3888 full = xfull;
3889 top = xtop;
3890 using_enc = xusing_enc;
3891 }
3892 else
3893 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3894
3895 /* If no RTTI data, or if object is already complete, do nothing. */
3896 if (!real_type || real_type == value_enclosing_type (argp))
3897 return argp;
3898
3899 /* In a destructor we might see a real type that is a superclass of
3900 the object's type. In this case it is better to leave the object
3901 as-is. */
3902 if (full
3903 && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp)))
3904 return argp;
3905
3906 /* If we have the full object, but for some reason the enclosing
3907 type is wrong, set it. */
3908 /* pai: FIXME -- sounds iffy */
3909 if (full)
3910 {
3911 argp = value_copy (argp);
3912 set_value_enclosing_type (argp, real_type);
3913 return argp;
3914 }
3915
3916 /* Check if object is in memory. */
3917 if (VALUE_LVAL (argp) != lval_memory)
3918 {
3919 warning (_("Couldn't retrieve complete object of RTTI "
3920 "type %s; object may be in register(s)."),
3921 real_type->name ());
3922
3923 return argp;
3924 }
3925
3926 /* All other cases -- retrieve the complete object. */
3927 /* Go back by the computed top_offset from the beginning of the
3928 object, adjusting for the embedded offset of argp if that's what
3929 value_rtti_type used for its computation. */
3930 new_val = value_at_lazy (real_type, value_address (argp) - top +
3931 (using_enc ? 0 : value_embedded_offset (argp)));
3932 deprecated_set_value_type (new_val, value_type (argp));
3933 set_value_embedded_offset (new_val, (using_enc
3934 ? top + value_embedded_offset (argp)
3935 : top));
3936 return new_val;
3937 }
3938
3939
3940 /* Return the value of the local variable, if one exists. Throw error
3941 otherwise, such as if the request is made in an inappropriate context. */
3942
3943 struct value *
3944 value_of_this (const struct language_defn *lang)
3945 {
3946 struct block_symbol sym;
3947 const struct block *b;
3948 struct frame_info *frame;
3949
3950 if (lang->name_of_this () == NULL)
3951 error (_("no `this' in current language"));
3952
3953 frame = get_selected_frame (_("no frame selected"));
3954
3955 b = get_frame_block (frame, NULL);
3956
3957 sym = lookup_language_this (lang, b);
3958 if (sym.symbol == NULL)
3959 error (_("current stack frame does not contain a variable named `%s'"),
3960 lang->name_of_this ());
3961
3962 return read_var_value (sym.symbol, sym.block, frame);
3963 }
3964
3965 /* Return the value of the local variable, if one exists. Return NULL
3966 otherwise. Never throw error. */
3967
3968 struct value *
3969 value_of_this_silent (const struct language_defn *lang)
3970 {
3971 struct value *ret = NULL;
3972
3973 try
3974 {
3975 ret = value_of_this (lang);
3976 }
3977 catch (const gdb_exception_error &except)
3978 {
3979 }
3980
3981 return ret;
3982 }
3983
3984 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3985 elements long, starting at LOWBOUND. The result has the same lower
3986 bound as the original ARRAY. */
3987
3988 struct value *
3989 value_slice (struct value *array, int lowbound, int length)
3990 {
3991 struct type *slice_range_type, *slice_type, *range_type;
3992 LONGEST lowerbound, upperbound;
3993 struct value *slice;
3994 struct type *array_type;
3995
3996 array_type = check_typedef (value_type (array));
3997 if (array_type->code () != TYPE_CODE_ARRAY
3998 && array_type->code () != TYPE_CODE_STRING)
3999 error (_("cannot take slice of non-array"));
4000
4001 if (type_not_allocated (array_type))
4002 error (_("array not allocated"));
4003 if (type_not_associated (array_type))
4004 error (_("array not associated"));
4005
4006 range_type = array_type->index_type ();
4007 if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
4008 error (_("slice from bad array or bitstring"));
4009
4010 if (lowbound < lowerbound || length < 0
4011 || lowbound + length - 1 > upperbound)
4012 error (_("slice out of range"));
4013
4014 /* FIXME-type-allocation: need a way to free this type when we are
4015 done with it. */
4016 slice_range_type = create_static_range_type (NULL,
4017 TYPE_TARGET_TYPE (range_type),
4018 lowbound,
4019 lowbound + length - 1);
4020
4021 {
4022 struct type *element_type = TYPE_TARGET_TYPE (array_type);
4023 LONGEST offset
4024 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
4025
4026 slice_type = create_array_type (NULL,
4027 element_type,
4028 slice_range_type);
4029 slice_type->set_code (array_type->code ());
4030
4031 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
4032 slice = allocate_value_lazy (slice_type);
4033 else
4034 {
4035 slice = allocate_value (slice_type);
4036 value_contents_copy (slice, 0, array, offset,
4037 type_length_units (slice_type));
4038 }
4039
4040 set_value_component_location (slice, array);
4041 set_value_offset (slice, value_offset (array) + offset);
4042 }
4043
4044 return slice;
4045 }
4046
4047 /* See value.h. */
4048
4049 struct value *
4050 value_literal_complex (struct value *arg1,
4051 struct value *arg2,
4052 struct type *type)
4053 {
4054 struct value *val;
4055 struct type *real_type = TYPE_TARGET_TYPE (type);
4056
4057 val = allocate_value (type);
4058 arg1 = value_cast (real_type, arg1);
4059 arg2 = value_cast (real_type, arg2);
4060
4061 memcpy (value_contents_raw (val).data (),
4062 value_contents (arg1).data (), TYPE_LENGTH (real_type));
4063 memcpy (value_contents_raw (val).data () + TYPE_LENGTH (real_type),
4064 value_contents (arg2).data (), TYPE_LENGTH (real_type));
4065 return val;
4066 }
4067
4068 /* See value.h. */
4069
4070 struct value *
4071 value_real_part (struct value *value)
4072 {
4073 struct type *type = check_typedef (value_type (value));
4074 struct type *ttype = TYPE_TARGET_TYPE (type);
4075
4076 gdb_assert (type->code () == TYPE_CODE_COMPLEX);
4077 return value_from_component (value, ttype, 0);
4078 }
4079
4080 /* See value.h. */
4081
4082 struct value *
4083 value_imaginary_part (struct value *value)
4084 {
4085 struct type *type = check_typedef (value_type (value));
4086 struct type *ttype = TYPE_TARGET_TYPE (type);
4087
4088 gdb_assert (type->code () == TYPE_CODE_COMPLEX);
4089 return value_from_component (value, ttype,
4090 TYPE_LENGTH (check_typedef (ttype)));
4091 }
4092
4093 /* Cast a value into the appropriate complex data type. */
4094
4095 static struct value *
4096 cast_into_complex (struct type *type, struct value *val)
4097 {
4098 struct type *real_type = TYPE_TARGET_TYPE (type);
4099
4100 if (value_type (val)->code () == TYPE_CODE_COMPLEX)
4101 {
4102 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
4103 struct value *re_val = allocate_value (val_real_type);
4104 struct value *im_val = allocate_value (val_real_type);
4105
4106 memcpy (value_contents_raw (re_val).data (),
4107 value_contents (val).data (), TYPE_LENGTH (val_real_type));
4108 memcpy (value_contents_raw (im_val).data (),
4109 value_contents (val).data () + TYPE_LENGTH (val_real_type),
4110 TYPE_LENGTH (val_real_type));
4111
4112 return value_literal_complex (re_val, im_val, type);
4113 }
4114 else if (value_type (val)->code () == TYPE_CODE_FLT
4115 || value_type (val)->code () == TYPE_CODE_INT)
4116 return value_literal_complex (val,
4117 value_zero (real_type, not_lval),
4118 type);
4119 else
4120 error (_("cannot cast non-number to complex"));
4121 }
4122
4123 void _initialize_valops ();
4124 void
4125 _initialize_valops ()
4126 {
4127 add_setshow_boolean_cmd ("overload-resolution", class_support,
4128 &overload_resolution, _("\
4129 Set overload resolution in evaluating C++ functions."), _("\
4130 Show overload resolution in evaluating C++ functions."),
4131 NULL, NULL,
4132 show_overload_resolution,
4133 &setlist, &showlist);
4134 overload_resolution = 1;
4135 }