http://sourceware.org/ml/gdb-patches/2013-07/msg00056.html
[binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "demangle.h"
29 #include "language.h"
30 #include "gdbcmd.h"
31 #include "regcache.h"
32 #include "cp-abi.h"
33 #include "block.h"
34 #include "infcall.h"
35 #include "dictionary.h"
36 #include "cp-support.h"
37 #include "dfp.h"
38 #include "tracepoint.h"
39 #include <errno.h>
40 #include "gdb_string.h"
41 #include "gdb_assert.h"
42 #include "cp-support.h"
43 #include "observer.h"
44 #include "objfiles.h"
45 #include "symtab.h"
46 #include "exceptions.h"
47
48 extern unsigned int overload_debug;
49 /* Local functions. */
50
51 static int typecmp (int staticp, int varargs, int nargs,
52 struct field t1[], struct value *t2[]);
53
54 static struct value *search_struct_field (const char *, struct value *,
55 int, struct type *, int);
56
57 static struct value *search_struct_method (const char *, struct value **,
58 struct value **,
59 int, int *, struct type *);
60
61 static int find_oload_champ_namespace (struct value **, int,
62 const char *, const char *,
63 struct symbol ***,
64 struct badness_vector **,
65 const int no_adl);
66
67 static
68 int find_oload_champ_namespace_loop (struct value **, int,
69 const char *, const char *,
70 int, struct symbol ***,
71 struct badness_vector **, int *,
72 const int no_adl);
73
74 static int find_oload_champ (struct value **, int, int, int,
75 struct fn_field *, struct symbol **,
76 struct badness_vector **);
77
78 static int oload_method_static (int, struct fn_field *, int);
79
80 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
81
82 static enum
83 oload_classification classify_oload_match (struct badness_vector *,
84 int, int);
85
86 static struct value *value_struct_elt_for_reference (struct type *,
87 int, struct type *,
88 char *,
89 struct type *,
90 int, enum noside);
91
92 static struct value *value_namespace_elt (const struct type *,
93 char *, int , enum noside);
94
95 static struct value *value_maybe_namespace_elt (const struct type *,
96 char *, int,
97 enum noside);
98
99 static CORE_ADDR allocate_space_in_inferior (int);
100
101 static struct value *cast_into_complex (struct type *, struct value *);
102
103 static struct fn_field *find_method_list (struct value **, const char *,
104 int, struct type *, int *,
105 struct type **, int *);
106
107 void _initialize_valops (void);
108
109 #if 0
110 /* Flag for whether we want to abandon failed expression evals by
111 default. */
112
113 static int auto_abandon = 0;
114 #endif
115
116 int overload_resolution = 0;
117 static void
118 show_overload_resolution (struct ui_file *file, int from_tty,
119 struct cmd_list_element *c,
120 const char *value)
121 {
122 fprintf_filtered (file, _("Overload resolution in evaluating "
123 "C++ functions is %s.\n"),
124 value);
125 }
126
127 /* Find the address of function name NAME in the inferior. If OBJF_P
128 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
129 is defined. */
130
131 struct value *
132 find_function_in_inferior (const char *name, struct objfile **objf_p)
133 {
134 struct symbol *sym;
135
136 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
137 if (sym != NULL)
138 {
139 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
140 {
141 error (_("\"%s\" exists in this program but is not a function."),
142 name);
143 }
144
145 if (objf_p)
146 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
147
148 return value_of_variable (sym, NULL);
149 }
150 else
151 {
152 struct minimal_symbol *msymbol =
153 lookup_minimal_symbol (name, NULL, NULL);
154
155 if (msymbol != NULL)
156 {
157 struct objfile *objfile = msymbol_objfile (msymbol);
158 struct gdbarch *gdbarch = get_objfile_arch (objfile);
159
160 struct type *type;
161 CORE_ADDR maddr;
162 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
163 type = lookup_function_type (type);
164 type = lookup_pointer_type (type);
165 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
166
167 if (objf_p)
168 *objf_p = objfile;
169
170 return value_from_pointer (type, maddr);
171 }
172 else
173 {
174 if (!target_has_execution)
175 error (_("evaluation of this expression "
176 "requires the target program to be active"));
177 else
178 error (_("evaluation of this expression requires the "
179 "program to have a function \"%s\"."),
180 name);
181 }
182 }
183 }
184
185 /* Allocate NBYTES of space in the inferior using the inferior's
186 malloc and return a value that is a pointer to the allocated
187 space. */
188
189 struct value *
190 value_allocate_space_in_inferior (int len)
191 {
192 struct objfile *objf;
193 struct value *val = find_function_in_inferior ("malloc", &objf);
194 struct gdbarch *gdbarch = get_objfile_arch (objf);
195 struct value *blocklen;
196
197 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
198 val = call_function_by_hand (val, 1, &blocklen);
199 if (value_logical_not (val))
200 {
201 if (!target_has_execution)
202 error (_("No memory available to program now: "
203 "you need to start the target first"));
204 else
205 error (_("No memory available to program: call to malloc failed"));
206 }
207 return val;
208 }
209
210 static CORE_ADDR
211 allocate_space_in_inferior (int len)
212 {
213 return value_as_long (value_allocate_space_in_inferior (len));
214 }
215
216 /* Cast struct value VAL to type TYPE and return as a value.
217 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
218 for this to work. Typedef to one of the codes is permitted.
219 Returns NULL if the cast is neither an upcast nor a downcast. */
220
221 static struct value *
222 value_cast_structs (struct type *type, struct value *v2)
223 {
224 struct type *t1;
225 struct type *t2;
226 struct value *v;
227
228 gdb_assert (type != NULL && v2 != NULL);
229
230 t1 = check_typedef (type);
231 t2 = check_typedef (value_type (v2));
232
233 /* Check preconditions. */
234 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
235 || TYPE_CODE (t1) == TYPE_CODE_UNION)
236 && !!"Precondition is that type is of STRUCT or UNION kind.");
237 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
238 || TYPE_CODE (t2) == TYPE_CODE_UNION)
239 && !!"Precondition is that value is of STRUCT or UNION kind");
240
241 if (TYPE_NAME (t1) != NULL
242 && TYPE_NAME (t2) != NULL
243 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
244 return NULL;
245
246 /* Upcasting: look in the type of the source to see if it contains the
247 type of the target as a superclass. If so, we'll need to
248 offset the pointer rather than just change its type. */
249 if (TYPE_NAME (t1) != NULL)
250 {
251 v = search_struct_field (type_name_no_tag (t1),
252 v2, 0, t2, 1);
253 if (v)
254 return v;
255 }
256
257 /* Downcasting: look in the type of the target to see if it contains the
258 type of the source as a superclass. If so, we'll need to
259 offset the pointer rather than just change its type. */
260 if (TYPE_NAME (t2) != NULL)
261 {
262 /* Try downcasting using the run-time type of the value. */
263 int full, top, using_enc;
264 struct type *real_type;
265
266 real_type = value_rtti_type (v2, &full, &top, &using_enc);
267 if (real_type)
268 {
269 v = value_full_object (v2, real_type, full, top, using_enc);
270 v = value_at_lazy (real_type, value_address (v));
271
272 /* We might be trying to cast to the outermost enclosing
273 type, in which case search_struct_field won't work. */
274 if (TYPE_NAME (real_type) != NULL
275 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
276 return v;
277
278 v = search_struct_field (type_name_no_tag (t2), v, 0, real_type, 1);
279 if (v)
280 return v;
281 }
282
283 /* Try downcasting using information from the destination type
284 T2. This wouldn't work properly for classes with virtual
285 bases, but those were handled above. */
286 v = search_struct_field (type_name_no_tag (t2),
287 value_zero (t1, not_lval), 0, t1, 1);
288 if (v)
289 {
290 /* Downcasting is possible (t1 is superclass of v2). */
291 CORE_ADDR addr2 = value_address (v2);
292
293 addr2 -= value_address (v) + value_embedded_offset (v);
294 return value_at (type, addr2);
295 }
296 }
297
298 return NULL;
299 }
300
301 /* Cast one pointer or reference type to another. Both TYPE and
302 the type of ARG2 should be pointer types, or else both should be
303 reference types. If SUBCLASS_CHECK is non-zero, this will force a
304 check to see whether TYPE is a superclass of ARG2's type. If
305 SUBCLASS_CHECK is zero, then the subclass check is done only when
306 ARG2 is itself non-zero. Returns the new pointer or reference. */
307
308 struct value *
309 value_cast_pointers (struct type *type, struct value *arg2,
310 int subclass_check)
311 {
312 struct type *type1 = check_typedef (type);
313 struct type *type2 = check_typedef (value_type (arg2));
314 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
315 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
316
317 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
318 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
319 && (subclass_check || !value_logical_not (arg2)))
320 {
321 struct value *v2;
322
323 if (TYPE_CODE (type2) == TYPE_CODE_REF)
324 v2 = coerce_ref (arg2);
325 else
326 v2 = value_ind (arg2);
327 gdb_assert (TYPE_CODE (check_typedef (value_type (v2)))
328 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
329 v2 = value_cast_structs (t1, v2);
330 /* At this point we have what we can have, un-dereference if needed. */
331 if (v2)
332 {
333 struct value *v = value_addr (v2);
334
335 deprecated_set_value_type (v, type);
336 return v;
337 }
338 }
339
340 /* No superclass found, just change the pointer type. */
341 arg2 = value_copy (arg2);
342 deprecated_set_value_type (arg2, type);
343 set_value_enclosing_type (arg2, type);
344 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
345 return arg2;
346 }
347
348 /* Cast value ARG2 to type TYPE and return as a value.
349 More general than a C cast: accepts any two types of the same length,
350 and if ARG2 is an lvalue it can be cast into anything at all. */
351 /* In C++, casts may change pointer or object representations. */
352
353 struct value *
354 value_cast (struct type *type, struct value *arg2)
355 {
356 enum type_code code1;
357 enum type_code code2;
358 int scalar;
359 struct type *type2;
360
361 int convert_to_boolean = 0;
362
363 if (value_type (arg2) == type)
364 return arg2;
365
366 code1 = TYPE_CODE (check_typedef (type));
367
368 /* Check if we are casting struct reference to struct reference. */
369 if (code1 == TYPE_CODE_REF)
370 {
371 /* We dereference type; then we recurse and finally
372 we generate value of the given reference. Nothing wrong with
373 that. */
374 struct type *t1 = check_typedef (type);
375 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
376 struct value *val = value_cast (dereftype, arg2);
377
378 return value_ref (val);
379 }
380
381 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
382
383 if (code2 == TYPE_CODE_REF)
384 /* We deref the value and then do the cast. */
385 return value_cast (type, coerce_ref (arg2));
386
387 CHECK_TYPEDEF (type);
388 code1 = TYPE_CODE (type);
389 arg2 = coerce_ref (arg2);
390 type2 = check_typedef (value_type (arg2));
391
392 /* You can't cast to a reference type. See value_cast_pointers
393 instead. */
394 gdb_assert (code1 != TYPE_CODE_REF);
395
396 /* A cast to an undetermined-length array_type, such as
397 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
398 where N is sizeof(OBJECT)/sizeof(TYPE). */
399 if (code1 == TYPE_CODE_ARRAY)
400 {
401 struct type *element_type = TYPE_TARGET_TYPE (type);
402 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
403
404 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
405 {
406 struct type *range_type = TYPE_INDEX_TYPE (type);
407 int val_length = TYPE_LENGTH (type2);
408 LONGEST low_bound, high_bound, new_length;
409
410 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
411 low_bound = 0, high_bound = 0;
412 new_length = val_length / element_length;
413 if (val_length % element_length != 0)
414 warning (_("array element type size does not "
415 "divide object size in cast"));
416 /* FIXME-type-allocation: need a way to free this type when
417 we are done with it. */
418 range_type = create_range_type ((struct type *) NULL,
419 TYPE_TARGET_TYPE (range_type),
420 low_bound,
421 new_length + low_bound - 1);
422 deprecated_set_value_type (arg2,
423 create_array_type ((struct type *) NULL,
424 element_type,
425 range_type));
426 return arg2;
427 }
428 }
429
430 if (current_language->c_style_arrays
431 && TYPE_CODE (type2) == TYPE_CODE_ARRAY
432 && !TYPE_VECTOR (type2))
433 arg2 = value_coerce_array (arg2);
434
435 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
436 arg2 = value_coerce_function (arg2);
437
438 type2 = check_typedef (value_type (arg2));
439 code2 = TYPE_CODE (type2);
440
441 if (code1 == TYPE_CODE_COMPLEX)
442 return cast_into_complex (type, arg2);
443 if (code1 == TYPE_CODE_BOOL)
444 {
445 code1 = TYPE_CODE_INT;
446 convert_to_boolean = 1;
447 }
448 if (code1 == TYPE_CODE_CHAR)
449 code1 = TYPE_CODE_INT;
450 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
451 code2 = TYPE_CODE_INT;
452
453 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
454 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
455 || code2 == TYPE_CODE_RANGE);
456
457 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
458 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
459 && TYPE_NAME (type) != 0)
460 {
461 struct value *v = value_cast_structs (type, arg2);
462
463 if (v)
464 return v;
465 }
466
467 if (code1 == TYPE_CODE_FLT && scalar)
468 return value_from_double (type, value_as_double (arg2));
469 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
470 {
471 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
472 int dec_len = TYPE_LENGTH (type);
473 gdb_byte dec[16];
474
475 if (code2 == TYPE_CODE_FLT)
476 decimal_from_floating (arg2, dec, dec_len, byte_order);
477 else if (code2 == TYPE_CODE_DECFLOAT)
478 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
479 byte_order, dec, dec_len, byte_order);
480 else
481 /* The only option left is an integral type. */
482 decimal_from_integral (arg2, dec, dec_len, byte_order);
483
484 return value_from_decfloat (type, dec);
485 }
486 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
487 || code1 == TYPE_CODE_RANGE)
488 && (scalar || code2 == TYPE_CODE_PTR
489 || code2 == TYPE_CODE_MEMBERPTR))
490 {
491 LONGEST longest;
492
493 /* When we cast pointers to integers, we mustn't use
494 gdbarch_pointer_to_address to find the address the pointer
495 represents, as value_as_long would. GDB should evaluate
496 expressions just as the compiler would --- and the compiler
497 sees a cast as a simple reinterpretation of the pointer's
498 bits. */
499 if (code2 == TYPE_CODE_PTR)
500 longest = extract_unsigned_integer
501 (value_contents (arg2), TYPE_LENGTH (type2),
502 gdbarch_byte_order (get_type_arch (type2)));
503 else
504 longest = value_as_long (arg2);
505 return value_from_longest (type, convert_to_boolean ?
506 (LONGEST) (longest ? 1 : 0) : longest);
507 }
508 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
509 || code2 == TYPE_CODE_ENUM
510 || code2 == TYPE_CODE_RANGE))
511 {
512 /* TYPE_LENGTH (type) is the length of a pointer, but we really
513 want the length of an address! -- we are really dealing with
514 addresses (i.e., gdb representations) not pointers (i.e.,
515 target representations) here.
516
517 This allows things like "print *(int *)0x01000234" to work
518 without printing a misleading message -- which would
519 otherwise occur when dealing with a target having two byte
520 pointers and four byte addresses. */
521
522 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
523 LONGEST longest = value_as_long (arg2);
524
525 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
526 {
527 if (longest >= ((LONGEST) 1 << addr_bit)
528 || longest <= -((LONGEST) 1 << addr_bit))
529 warning (_("value truncated"));
530 }
531 return value_from_longest (type, longest);
532 }
533 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
534 && value_as_long (arg2) == 0)
535 {
536 struct value *result = allocate_value (type);
537
538 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
539 return result;
540 }
541 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
542 && value_as_long (arg2) == 0)
543 {
544 /* The Itanium C++ ABI represents NULL pointers to members as
545 minus one, instead of biasing the normal case. */
546 return value_from_longest (type, -1);
547 }
548 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
549 && code2 == TYPE_CODE_ARRAY && TYPE_VECTOR (type2)
550 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
551 error (_("Cannot convert between vector values of different sizes"));
552 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar
553 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
554 error (_("can only cast scalar to vector of same size"));
555 else if (code1 == TYPE_CODE_VOID)
556 {
557 return value_zero (type, not_lval);
558 }
559 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
560 {
561 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
562 return value_cast_pointers (type, arg2, 0);
563
564 arg2 = value_copy (arg2);
565 deprecated_set_value_type (arg2, type);
566 set_value_enclosing_type (arg2, type);
567 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
568 return arg2;
569 }
570 else if (VALUE_LVAL (arg2) == lval_memory)
571 return value_at_lazy (type, value_address (arg2));
572 else
573 {
574 error (_("Invalid cast."));
575 return 0;
576 }
577 }
578
579 /* The C++ reinterpret_cast operator. */
580
581 struct value *
582 value_reinterpret_cast (struct type *type, struct value *arg)
583 {
584 struct value *result;
585 struct type *real_type = check_typedef (type);
586 struct type *arg_type, *dest_type;
587 int is_ref = 0;
588 enum type_code dest_code, arg_code;
589
590 /* Do reference, function, and array conversion. */
591 arg = coerce_array (arg);
592
593 /* Attempt to preserve the type the user asked for. */
594 dest_type = type;
595
596 /* If we are casting to a reference type, transform
597 reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */
598 if (TYPE_CODE (real_type) == TYPE_CODE_REF)
599 {
600 is_ref = 1;
601 arg = value_addr (arg);
602 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
603 real_type = lookup_pointer_type (real_type);
604 }
605
606 arg_type = value_type (arg);
607
608 dest_code = TYPE_CODE (real_type);
609 arg_code = TYPE_CODE (arg_type);
610
611 /* We can convert pointer types, or any pointer type to int, or int
612 type to pointer. */
613 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
614 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
615 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
616 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
617 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
618 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
619 || (dest_code == arg_code
620 && (dest_code == TYPE_CODE_PTR
621 || dest_code == TYPE_CODE_METHODPTR
622 || dest_code == TYPE_CODE_MEMBERPTR)))
623 result = value_cast (dest_type, arg);
624 else
625 error (_("Invalid reinterpret_cast"));
626
627 if (is_ref)
628 result = value_cast (type, value_ref (value_ind (result)));
629
630 return result;
631 }
632
633 /* A helper for value_dynamic_cast. This implements the first of two
634 runtime checks: we iterate over all the base classes of the value's
635 class which are equal to the desired class; if only one of these
636 holds the value, then it is the answer. */
637
638 static int
639 dynamic_cast_check_1 (struct type *desired_type,
640 const gdb_byte *valaddr,
641 int embedded_offset,
642 CORE_ADDR address,
643 struct value *val,
644 struct type *search_type,
645 CORE_ADDR arg_addr,
646 struct type *arg_type,
647 struct value **result)
648 {
649 int i, result_count = 0;
650
651 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
652 {
653 int offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
654 address, val);
655
656 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
657 {
658 if (address + embedded_offset + offset >= arg_addr
659 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
660 {
661 ++result_count;
662 if (!*result)
663 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
664 address + embedded_offset + offset);
665 }
666 }
667 else
668 result_count += dynamic_cast_check_1 (desired_type,
669 valaddr,
670 embedded_offset + offset,
671 address, val,
672 TYPE_BASECLASS (search_type, i),
673 arg_addr,
674 arg_type,
675 result);
676 }
677
678 return result_count;
679 }
680
681 /* A helper for value_dynamic_cast. This implements the second of two
682 runtime checks: we look for a unique public sibling class of the
683 argument's declared class. */
684
685 static int
686 dynamic_cast_check_2 (struct type *desired_type,
687 const gdb_byte *valaddr,
688 int embedded_offset,
689 CORE_ADDR address,
690 struct value *val,
691 struct type *search_type,
692 struct value **result)
693 {
694 int i, result_count = 0;
695
696 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
697 {
698 int offset;
699
700 if (! BASETYPE_VIA_PUBLIC (search_type, i))
701 continue;
702
703 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
704 address, val);
705 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
706 {
707 ++result_count;
708 if (*result == NULL)
709 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
710 address + embedded_offset + offset);
711 }
712 else
713 result_count += dynamic_cast_check_2 (desired_type,
714 valaddr,
715 embedded_offset + offset,
716 address, val,
717 TYPE_BASECLASS (search_type, i),
718 result);
719 }
720
721 return result_count;
722 }
723
724 /* The C++ dynamic_cast operator. */
725
726 struct value *
727 value_dynamic_cast (struct type *type, struct value *arg)
728 {
729 int full, top, using_enc;
730 struct type *resolved_type = check_typedef (type);
731 struct type *arg_type = check_typedef (value_type (arg));
732 struct type *class_type, *rtti_type;
733 struct value *result, *tem, *original_arg = arg;
734 CORE_ADDR addr;
735 int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF;
736
737 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
738 && TYPE_CODE (resolved_type) != TYPE_CODE_REF)
739 error (_("Argument to dynamic_cast must be a pointer or reference type"));
740 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
741 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_CLASS)
742 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
743
744 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
745 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
746 {
747 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
748 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
749 && value_as_long (arg) == 0))
750 error (_("Argument to dynamic_cast does not have pointer type"));
751 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
752 {
753 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
754 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
755 error (_("Argument to dynamic_cast does "
756 "not have pointer to class type"));
757 }
758
759 /* Handle NULL pointers. */
760 if (value_as_long (arg) == 0)
761 return value_zero (type, not_lval);
762
763 arg = value_ind (arg);
764 }
765 else
766 {
767 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
768 error (_("Argument to dynamic_cast does not have class type"));
769 }
770
771 /* If the classes are the same, just return the argument. */
772 if (class_types_same_p (class_type, arg_type))
773 return value_cast (type, arg);
774
775 /* If the target type is a unique base class of the argument's
776 declared type, just cast it. */
777 if (is_ancestor (class_type, arg_type))
778 {
779 if (is_unique_ancestor (class_type, arg))
780 return value_cast (type, original_arg);
781 error (_("Ambiguous dynamic_cast"));
782 }
783
784 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
785 if (! rtti_type)
786 error (_("Couldn't determine value's most derived type for dynamic_cast"));
787
788 /* Compute the most derived object's address. */
789 addr = value_address (arg);
790 if (full)
791 {
792 /* Done. */
793 }
794 else if (using_enc)
795 addr += top;
796 else
797 addr += top + value_embedded_offset (arg);
798
799 /* dynamic_cast<void *> means to return a pointer to the
800 most-derived object. */
801 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
802 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
803 return value_at_lazy (type, addr);
804
805 tem = value_at (type, addr);
806
807 /* The first dynamic check specified in 5.2.7. */
808 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
809 {
810 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
811 return tem;
812 result = NULL;
813 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
814 value_contents_for_printing (tem),
815 value_embedded_offset (tem),
816 value_address (tem), tem,
817 rtti_type, addr,
818 arg_type,
819 &result) == 1)
820 return value_cast (type,
821 is_ref ? value_ref (result) : value_addr (result));
822 }
823
824 /* The second dynamic check specified in 5.2.7. */
825 result = NULL;
826 if (is_public_ancestor (arg_type, rtti_type)
827 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
828 value_contents_for_printing (tem),
829 value_embedded_offset (tem),
830 value_address (tem), tem,
831 rtti_type, &result) == 1)
832 return value_cast (type,
833 is_ref ? value_ref (result) : value_addr (result));
834
835 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
836 return value_zero (type, not_lval);
837
838 error (_("dynamic_cast failed"));
839 }
840
841 /* Create a value of type TYPE that is zero, and return it. */
842
843 struct value *
844 value_zero (struct type *type, enum lval_type lv)
845 {
846 struct value *val = allocate_value (type);
847
848 VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv);
849 return val;
850 }
851
852 /* Create a not_lval value of numeric type TYPE that is one, and return it. */
853
854 struct value *
855 value_one (struct type *type)
856 {
857 struct type *type1 = check_typedef (type);
858 struct value *val;
859
860 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
861 {
862 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
863 gdb_byte v[16];
864
865 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
866 val = value_from_decfloat (type, v);
867 }
868 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
869 {
870 val = value_from_double (type, (DOUBLEST) 1);
871 }
872 else if (is_integral_type (type1))
873 {
874 val = value_from_longest (type, (LONGEST) 1);
875 }
876 else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
877 {
878 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
879 int i;
880 LONGEST low_bound, high_bound;
881 struct value *tmp;
882
883 if (!get_array_bounds (type1, &low_bound, &high_bound))
884 error (_("Could not determine the vector bounds"));
885
886 val = allocate_value (type);
887 for (i = 0; i < high_bound - low_bound + 1; i++)
888 {
889 tmp = value_one (eltype);
890 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
891 value_contents_all (tmp), TYPE_LENGTH (eltype));
892 }
893 }
894 else
895 {
896 error (_("Not a numeric type."));
897 }
898
899 /* value_one result is never used for assignments to. */
900 gdb_assert (VALUE_LVAL (val) == not_lval);
901
902 return val;
903 }
904
905 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack. */
906
907 static struct value *
908 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
909 {
910 struct value *val;
911
912 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
913 error (_("Attempt to dereference a generic pointer."));
914
915 val = value_from_contents_and_address (type, NULL, addr);
916
917 if (!lazy)
918 value_fetch_lazy (val);
919
920 return val;
921 }
922
923 /* Return a value with type TYPE located at ADDR.
924
925 Call value_at only if the data needs to be fetched immediately;
926 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
927 value_at_lazy instead. value_at_lazy simply records the address of
928 the data and sets the lazy-evaluation-required flag. The lazy flag
929 is tested in the value_contents macro, which is used if and when
930 the contents are actually required.
931
932 Note: value_at does *NOT* handle embedded offsets; perform such
933 adjustments before or after calling it. */
934
935 struct value *
936 value_at (struct type *type, CORE_ADDR addr)
937 {
938 return get_value_at (type, addr, 0);
939 }
940
941 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
942
943 struct value *
944 value_at_lazy (struct type *type, CORE_ADDR addr)
945 {
946 return get_value_at (type, addr, 1);
947 }
948
949 void
950 read_value_memory (struct value *val, int embedded_offset,
951 int stack, CORE_ADDR memaddr,
952 gdb_byte *buffer, size_t length)
953 {
954 if (length)
955 {
956 VEC(mem_range_s) *available_memory;
957
958 if (get_traceframe_number () < 0
959 || !traceframe_available_memory (&available_memory, memaddr, length))
960 {
961 if (stack)
962 read_stack (memaddr, buffer, length);
963 else
964 read_memory (memaddr, buffer, length);
965 }
966 else
967 {
968 struct target_section_table *table;
969 struct cleanup *old_chain;
970 CORE_ADDR unavail;
971 mem_range_s *r;
972 int i;
973
974 /* Fallback to reading from read-only sections. */
975 table = target_get_section_table (&exec_ops);
976 available_memory =
977 section_table_available_memory (available_memory,
978 memaddr, length,
979 table->sections,
980 table->sections_end);
981
982 old_chain = make_cleanup (VEC_cleanup(mem_range_s),
983 &available_memory);
984
985 normalize_mem_ranges (available_memory);
986
987 /* Mark which bytes are unavailable, and read those which
988 are available. */
989
990 unavail = memaddr;
991
992 for (i = 0;
993 VEC_iterate (mem_range_s, available_memory, i, r);
994 i++)
995 {
996 if (mem_ranges_overlap (r->start, r->length,
997 memaddr, length))
998 {
999 CORE_ADDR lo1, hi1, lo2, hi2;
1000 CORE_ADDR start, end;
1001
1002 /* Get the intersection window. */
1003 lo1 = memaddr;
1004 hi1 = memaddr + length;
1005 lo2 = r->start;
1006 hi2 = r->start + r->length;
1007 start = max (lo1, lo2);
1008 end = min (hi1, hi2);
1009
1010 gdb_assert (end - memaddr <= length);
1011
1012 if (start > unavail)
1013 mark_value_bytes_unavailable (val,
1014 (embedded_offset
1015 + unavail - memaddr),
1016 start - unavail);
1017 unavail = end;
1018
1019 read_memory (start, buffer + start - memaddr, end - start);
1020 }
1021 }
1022
1023 if (unavail != memaddr + length)
1024 mark_value_bytes_unavailable (val,
1025 embedded_offset + unavail - memaddr,
1026 (memaddr + length) - unavail);
1027
1028 do_cleanups (old_chain);
1029 }
1030 }
1031 }
1032
1033 /* Store the contents of FROMVAL into the location of TOVAL.
1034 Return a new value with the location of TOVAL and contents of FROMVAL. */
1035
1036 struct value *
1037 value_assign (struct value *toval, struct value *fromval)
1038 {
1039 struct type *type;
1040 struct value *val;
1041 struct frame_id old_frame;
1042
1043 if (!deprecated_value_modifiable (toval))
1044 error (_("Left operand of assignment is not a modifiable lvalue."));
1045
1046 toval = coerce_ref (toval);
1047
1048 type = value_type (toval);
1049 if (VALUE_LVAL (toval) != lval_internalvar)
1050 fromval = value_cast (type, fromval);
1051 else
1052 {
1053 /* Coerce arrays and functions to pointers, except for arrays
1054 which only live in GDB's storage. */
1055 if (!value_must_coerce_to_target (fromval))
1056 fromval = coerce_array (fromval);
1057 }
1058
1059 CHECK_TYPEDEF (type);
1060
1061 /* Since modifying a register can trash the frame chain, and
1062 modifying memory can trash the frame cache, we save the old frame
1063 and then restore the new frame afterwards. */
1064 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1065
1066 switch (VALUE_LVAL (toval))
1067 {
1068 case lval_internalvar:
1069 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1070 return value_of_internalvar (get_type_arch (type),
1071 VALUE_INTERNALVAR (toval));
1072
1073 case lval_internalvar_component:
1074 {
1075 int offset = value_offset (toval);
1076
1077 /* Are we dealing with a bitfield?
1078
1079 It is important to mention that `value_parent (toval)' is
1080 non-NULL iff `value_bitsize (toval)' is non-zero. */
1081 if (value_bitsize (toval))
1082 {
1083 /* VALUE_INTERNALVAR below refers to the parent value, while
1084 the offset is relative to this parent value. */
1085 gdb_assert (value_parent (value_parent (toval)) == NULL);
1086 offset += value_offset (value_parent (toval));
1087 }
1088
1089 set_internalvar_component (VALUE_INTERNALVAR (toval),
1090 offset,
1091 value_bitpos (toval),
1092 value_bitsize (toval),
1093 fromval);
1094 }
1095 break;
1096
1097 case lval_memory:
1098 {
1099 const gdb_byte *dest_buffer;
1100 CORE_ADDR changed_addr;
1101 int changed_len;
1102 gdb_byte buffer[sizeof (LONGEST)];
1103
1104 if (value_bitsize (toval))
1105 {
1106 struct value *parent = value_parent (toval);
1107
1108 changed_addr = value_address (parent) + value_offset (toval);
1109 changed_len = (value_bitpos (toval)
1110 + value_bitsize (toval)
1111 + HOST_CHAR_BIT - 1)
1112 / HOST_CHAR_BIT;
1113
1114 /* If we can read-modify-write exactly the size of the
1115 containing type (e.g. short or int) then do so. This
1116 is safer for volatile bitfields mapped to hardware
1117 registers. */
1118 if (changed_len < TYPE_LENGTH (type)
1119 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1120 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1121 changed_len = TYPE_LENGTH (type);
1122
1123 if (changed_len > (int) sizeof (LONGEST))
1124 error (_("Can't handle bitfields which "
1125 "don't fit in a %d bit word."),
1126 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1127
1128 read_memory (changed_addr, buffer, changed_len);
1129 modify_field (type, buffer, value_as_long (fromval),
1130 value_bitpos (toval), value_bitsize (toval));
1131 dest_buffer = buffer;
1132 }
1133 else
1134 {
1135 changed_addr = value_address (toval);
1136 changed_len = TYPE_LENGTH (type);
1137 dest_buffer = value_contents (fromval);
1138 }
1139
1140 write_memory_with_notification (changed_addr, dest_buffer, changed_len);
1141 }
1142 break;
1143
1144 case lval_register:
1145 {
1146 struct frame_info *frame;
1147 struct gdbarch *gdbarch;
1148 int value_reg;
1149
1150 /* Figure out which frame this is in currently. */
1151 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1152 value_reg = VALUE_REGNUM (toval);
1153
1154 if (!frame)
1155 error (_("Value being assigned to is no longer active."));
1156
1157 gdbarch = get_frame_arch (frame);
1158 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
1159 {
1160 /* If TOVAL is a special machine register requiring
1161 conversion of program values to a special raw
1162 format. */
1163 gdbarch_value_to_register (gdbarch, frame,
1164 VALUE_REGNUM (toval), type,
1165 value_contents (fromval));
1166 }
1167 else
1168 {
1169 if (value_bitsize (toval))
1170 {
1171 struct value *parent = value_parent (toval);
1172 int offset = value_offset (parent) + value_offset (toval);
1173 int changed_len;
1174 gdb_byte buffer[sizeof (LONGEST)];
1175 int optim, unavail;
1176
1177 changed_len = (value_bitpos (toval)
1178 + value_bitsize (toval)
1179 + HOST_CHAR_BIT - 1)
1180 / HOST_CHAR_BIT;
1181
1182 if (changed_len > (int) sizeof (LONGEST))
1183 error (_("Can't handle bitfields which "
1184 "don't fit in a %d bit word."),
1185 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1186
1187 if (!get_frame_register_bytes (frame, value_reg, offset,
1188 changed_len, buffer,
1189 &optim, &unavail))
1190 {
1191 if (optim)
1192 error (_("value has been optimized out"));
1193 if (unavail)
1194 throw_error (NOT_AVAILABLE_ERROR,
1195 _("value is not available"));
1196 }
1197
1198 modify_field (type, buffer, value_as_long (fromval),
1199 value_bitpos (toval), value_bitsize (toval));
1200
1201 put_frame_register_bytes (frame, value_reg, offset,
1202 changed_len, buffer);
1203 }
1204 else
1205 {
1206 put_frame_register_bytes (frame, value_reg,
1207 value_offset (toval),
1208 TYPE_LENGTH (type),
1209 value_contents (fromval));
1210 }
1211 }
1212
1213 if (deprecated_register_changed_hook)
1214 deprecated_register_changed_hook (-1);
1215 break;
1216 }
1217
1218 case lval_computed:
1219 {
1220 const struct lval_funcs *funcs = value_computed_funcs (toval);
1221
1222 if (funcs->write != NULL)
1223 {
1224 funcs->write (toval, fromval);
1225 break;
1226 }
1227 }
1228 /* Fall through. */
1229
1230 default:
1231 error (_("Left operand of assignment is not an lvalue."));
1232 }
1233
1234 /* Assigning to the stack pointer, frame pointer, and other
1235 (architecture and calling convention specific) registers may
1236 cause the frame cache and regcache to be out of date. Assigning to memory
1237 also can. We just do this on all assignments to registers or
1238 memory, for simplicity's sake; I doubt the slowdown matters. */
1239 switch (VALUE_LVAL (toval))
1240 {
1241 case lval_memory:
1242 case lval_register:
1243 case lval_computed:
1244
1245 observer_notify_target_changed (&current_target);
1246
1247 /* Having destroyed the frame cache, restore the selected
1248 frame. */
1249
1250 /* FIXME: cagney/2002-11-02: There has to be a better way of
1251 doing this. Instead of constantly saving/restoring the
1252 frame. Why not create a get_selected_frame() function that,
1253 having saved the selected frame's ID can automatically
1254 re-find the previously selected frame automatically. */
1255
1256 {
1257 struct frame_info *fi = frame_find_by_id (old_frame);
1258
1259 if (fi != NULL)
1260 select_frame (fi);
1261 }
1262
1263 break;
1264 default:
1265 break;
1266 }
1267
1268 /* If the field does not entirely fill a LONGEST, then zero the sign
1269 bits. If the field is signed, and is negative, then sign
1270 extend. */
1271 if ((value_bitsize (toval) > 0)
1272 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1273 {
1274 LONGEST fieldval = value_as_long (fromval);
1275 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1276
1277 fieldval &= valmask;
1278 if (!TYPE_UNSIGNED (type)
1279 && (fieldval & (valmask ^ (valmask >> 1))))
1280 fieldval |= ~valmask;
1281
1282 fromval = value_from_longest (type, fieldval);
1283 }
1284
1285 /* The return value is a copy of TOVAL so it shares its location
1286 information, but its contents are updated from FROMVAL. This
1287 implies the returned value is not lazy, even if TOVAL was. */
1288 val = value_copy (toval);
1289 set_value_lazy (val, 0);
1290 memcpy (value_contents_raw (val), value_contents (fromval),
1291 TYPE_LENGTH (type));
1292
1293 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1294 in the case of pointer types. For object types, the enclosing type
1295 and embedded offset must *not* be copied: the target object refered
1296 to by TOVAL retains its original dynamic type after assignment. */
1297 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1298 {
1299 set_value_enclosing_type (val, value_enclosing_type (fromval));
1300 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1301 }
1302
1303 return val;
1304 }
1305
1306 /* Extend a value VAL to COUNT repetitions of its type. */
1307
1308 struct value *
1309 value_repeat (struct value *arg1, int count)
1310 {
1311 struct value *val;
1312
1313 if (VALUE_LVAL (arg1) != lval_memory)
1314 error (_("Only values in memory can be extended with '@'."));
1315 if (count < 1)
1316 error (_("Invalid number %d of repetitions."), count);
1317
1318 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1319
1320 VALUE_LVAL (val) = lval_memory;
1321 set_value_address (val, value_address (arg1));
1322
1323 read_value_memory (val, 0, value_stack (val), value_address (val),
1324 value_contents_all_raw (val),
1325 TYPE_LENGTH (value_enclosing_type (val)));
1326
1327 return val;
1328 }
1329
1330 struct value *
1331 value_of_variable (struct symbol *var, const struct block *b)
1332 {
1333 struct frame_info *frame;
1334
1335 if (!symbol_read_needs_frame (var))
1336 frame = NULL;
1337 else if (!b)
1338 frame = get_selected_frame (_("No frame selected."));
1339 else
1340 {
1341 frame = block_innermost_frame (b);
1342 if (!frame)
1343 {
1344 if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
1345 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1346 error (_("No frame is currently executing in block %s."),
1347 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1348 else
1349 error (_("No frame is currently executing in specified block"));
1350 }
1351 }
1352
1353 return read_var_value (var, frame);
1354 }
1355
1356 struct value *
1357 address_of_variable (struct symbol *var, const struct block *b)
1358 {
1359 struct type *type = SYMBOL_TYPE (var);
1360 struct value *val;
1361
1362 /* Evaluate it first; if the result is a memory address, we're fine.
1363 Lazy evaluation pays off here. */
1364
1365 val = value_of_variable (var, b);
1366
1367 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1368 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1369 {
1370 CORE_ADDR addr = value_address (val);
1371
1372 return value_from_pointer (lookup_pointer_type (type), addr);
1373 }
1374
1375 /* Not a memory address; check what the problem was. */
1376 switch (VALUE_LVAL (val))
1377 {
1378 case lval_register:
1379 {
1380 struct frame_info *frame;
1381 const char *regname;
1382
1383 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1384 gdb_assert (frame);
1385
1386 regname = gdbarch_register_name (get_frame_arch (frame),
1387 VALUE_REGNUM (val));
1388 gdb_assert (regname && *regname);
1389
1390 error (_("Address requested for identifier "
1391 "\"%s\" which is in register $%s"),
1392 SYMBOL_PRINT_NAME (var), regname);
1393 break;
1394 }
1395
1396 default:
1397 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1398 SYMBOL_PRINT_NAME (var));
1399 break;
1400 }
1401
1402 return val;
1403 }
1404
1405 /* Return one if VAL does not live in target memory, but should in order
1406 to operate on it. Otherwise return zero. */
1407
1408 int
1409 value_must_coerce_to_target (struct value *val)
1410 {
1411 struct type *valtype;
1412
1413 /* The only lval kinds which do not live in target memory. */
1414 if (VALUE_LVAL (val) != not_lval
1415 && VALUE_LVAL (val) != lval_internalvar)
1416 return 0;
1417
1418 valtype = check_typedef (value_type (val));
1419
1420 switch (TYPE_CODE (valtype))
1421 {
1422 case TYPE_CODE_ARRAY:
1423 return TYPE_VECTOR (valtype) ? 0 : 1;
1424 case TYPE_CODE_STRING:
1425 return 1;
1426 default:
1427 return 0;
1428 }
1429 }
1430
1431 /* Make sure that VAL lives in target memory if it's supposed to. For
1432 instance, strings are constructed as character arrays in GDB's
1433 storage, and this function copies them to the target. */
1434
1435 struct value *
1436 value_coerce_to_target (struct value *val)
1437 {
1438 LONGEST length;
1439 CORE_ADDR addr;
1440
1441 if (!value_must_coerce_to_target (val))
1442 return val;
1443
1444 length = TYPE_LENGTH (check_typedef (value_type (val)));
1445 addr = allocate_space_in_inferior (length);
1446 write_memory (addr, value_contents (val), length);
1447 return value_at_lazy (value_type (val), addr);
1448 }
1449
1450 /* Given a value which is an array, return a value which is a pointer
1451 to its first element, regardless of whether or not the array has a
1452 nonzero lower bound.
1453
1454 FIXME: A previous comment here indicated that this routine should
1455 be substracting the array's lower bound. It's not clear to me that
1456 this is correct. Given an array subscripting operation, it would
1457 certainly work to do the adjustment here, essentially computing:
1458
1459 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1460
1461 However I believe a more appropriate and logical place to account
1462 for the lower bound is to do so in value_subscript, essentially
1463 computing:
1464
1465 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1466
1467 As further evidence consider what would happen with operations
1468 other than array subscripting, where the caller would get back a
1469 value that had an address somewhere before the actual first element
1470 of the array, and the information about the lower bound would be
1471 lost because of the coercion to pointer type. */
1472
1473 struct value *
1474 value_coerce_array (struct value *arg1)
1475 {
1476 struct type *type = check_typedef (value_type (arg1));
1477
1478 /* If the user tries to do something requiring a pointer with an
1479 array that has not yet been pushed to the target, then this would
1480 be a good time to do so. */
1481 arg1 = value_coerce_to_target (arg1);
1482
1483 if (VALUE_LVAL (arg1) != lval_memory)
1484 error (_("Attempt to take address of value not located in memory."));
1485
1486 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1487 value_address (arg1));
1488 }
1489
1490 /* Given a value which is a function, return a value which is a pointer
1491 to it. */
1492
1493 struct value *
1494 value_coerce_function (struct value *arg1)
1495 {
1496 struct value *retval;
1497
1498 if (VALUE_LVAL (arg1) != lval_memory)
1499 error (_("Attempt to take address of value not located in memory."));
1500
1501 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1502 value_address (arg1));
1503 return retval;
1504 }
1505
1506 /* Return a pointer value for the object for which ARG1 is the
1507 contents. */
1508
1509 struct value *
1510 value_addr (struct value *arg1)
1511 {
1512 struct value *arg2;
1513 struct type *type = check_typedef (value_type (arg1));
1514
1515 if (TYPE_CODE (type) == TYPE_CODE_REF)
1516 {
1517 /* Copy the value, but change the type from (T&) to (T*). We
1518 keep the same location information, which is efficient, and
1519 allows &(&X) to get the location containing the reference. */
1520 arg2 = value_copy (arg1);
1521 deprecated_set_value_type (arg2,
1522 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1523 return arg2;
1524 }
1525 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1526 return value_coerce_function (arg1);
1527
1528 /* If this is an array that has not yet been pushed to the target,
1529 then this would be a good time to force it to memory. */
1530 arg1 = value_coerce_to_target (arg1);
1531
1532 if (VALUE_LVAL (arg1) != lval_memory)
1533 error (_("Attempt to take address of value not located in memory."));
1534
1535 /* Get target memory address. */
1536 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1537 (value_address (arg1)
1538 + value_embedded_offset (arg1)));
1539
1540 /* This may be a pointer to a base subobject; so remember the
1541 full derived object's type ... */
1542 set_value_enclosing_type (arg2,
1543 lookup_pointer_type (value_enclosing_type (arg1)));
1544 /* ... and also the relative position of the subobject in the full
1545 object. */
1546 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1547 return arg2;
1548 }
1549
1550 /* Return a reference value for the object for which ARG1 is the
1551 contents. */
1552
1553 struct value *
1554 value_ref (struct value *arg1)
1555 {
1556 struct value *arg2;
1557 struct type *type = check_typedef (value_type (arg1));
1558
1559 if (TYPE_CODE (type) == TYPE_CODE_REF)
1560 return arg1;
1561
1562 arg2 = value_addr (arg1);
1563 deprecated_set_value_type (arg2, lookup_reference_type (type));
1564 return arg2;
1565 }
1566
1567 /* Given a value of a pointer type, apply the C unary * operator to
1568 it. */
1569
1570 struct value *
1571 value_ind (struct value *arg1)
1572 {
1573 struct type *base_type;
1574 struct value *arg2;
1575
1576 arg1 = coerce_array (arg1);
1577
1578 base_type = check_typedef (value_type (arg1));
1579
1580 if (VALUE_LVAL (arg1) == lval_computed)
1581 {
1582 const struct lval_funcs *funcs = value_computed_funcs (arg1);
1583
1584 if (funcs->indirect)
1585 {
1586 struct value *result = funcs->indirect (arg1);
1587
1588 if (result)
1589 return result;
1590 }
1591 }
1592
1593 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1594 {
1595 struct type *enc_type;
1596
1597 /* We may be pointing to something embedded in a larger object.
1598 Get the real type of the enclosing object. */
1599 enc_type = check_typedef (value_enclosing_type (arg1));
1600 enc_type = TYPE_TARGET_TYPE (enc_type);
1601
1602 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1603 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1604 /* For functions, go through find_function_addr, which knows
1605 how to handle function descriptors. */
1606 arg2 = value_at_lazy (enc_type,
1607 find_function_addr (arg1, NULL));
1608 else
1609 /* Retrieve the enclosing object pointed to. */
1610 arg2 = value_at_lazy (enc_type,
1611 (value_as_address (arg1)
1612 - value_pointed_to_offset (arg1)));
1613
1614 return readjust_indirect_value_type (arg2, enc_type, base_type, arg1);
1615 }
1616
1617 error (_("Attempt to take contents of a non-pointer value."));
1618 return 0; /* For lint -- never reached. */
1619 }
1620 \f
1621 /* Create a value for an array by allocating space in GDB, copying the
1622 data into that space, and then setting up an array value.
1623
1624 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1625 is populated from the values passed in ELEMVEC.
1626
1627 The element type of the array is inherited from the type of the
1628 first element, and all elements must have the same size (though we
1629 don't currently enforce any restriction on their types). */
1630
1631 struct value *
1632 value_array (int lowbound, int highbound, struct value **elemvec)
1633 {
1634 int nelem;
1635 int idx;
1636 unsigned int typelength;
1637 struct value *val;
1638 struct type *arraytype;
1639
1640 /* Validate that the bounds are reasonable and that each of the
1641 elements have the same size. */
1642
1643 nelem = highbound - lowbound + 1;
1644 if (nelem <= 0)
1645 {
1646 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1647 }
1648 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1649 for (idx = 1; idx < nelem; idx++)
1650 {
1651 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1652 {
1653 error (_("array elements must all be the same size"));
1654 }
1655 }
1656
1657 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1658 lowbound, highbound);
1659
1660 if (!current_language->c_style_arrays)
1661 {
1662 val = allocate_value (arraytype);
1663 for (idx = 0; idx < nelem; idx++)
1664 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1665 typelength);
1666 return val;
1667 }
1668
1669 /* Allocate space to store the array, and then initialize it by
1670 copying in each element. */
1671
1672 val = allocate_value (arraytype);
1673 for (idx = 0; idx < nelem; idx++)
1674 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1675 return val;
1676 }
1677
1678 struct value *
1679 value_cstring (char *ptr, ssize_t len, struct type *char_type)
1680 {
1681 struct value *val;
1682 int lowbound = current_language->string_lower_bound;
1683 ssize_t highbound = len / TYPE_LENGTH (char_type);
1684 struct type *stringtype
1685 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1686
1687 val = allocate_value (stringtype);
1688 memcpy (value_contents_raw (val), ptr, len);
1689 return val;
1690 }
1691
1692 /* Create a value for a string constant by allocating space in the
1693 inferior, copying the data into that space, and returning the
1694 address with type TYPE_CODE_STRING. PTR points to the string
1695 constant data; LEN is number of characters.
1696
1697 Note that string types are like array of char types with a lower
1698 bound of zero and an upper bound of LEN - 1. Also note that the
1699 string may contain embedded null bytes. */
1700
1701 struct value *
1702 value_string (char *ptr, ssize_t len, struct type *char_type)
1703 {
1704 struct value *val;
1705 int lowbound = current_language->string_lower_bound;
1706 ssize_t highbound = len / TYPE_LENGTH (char_type);
1707 struct type *stringtype
1708 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1709
1710 val = allocate_value (stringtype);
1711 memcpy (value_contents_raw (val), ptr, len);
1712 return val;
1713 }
1714
1715 \f
1716 /* See if we can pass arguments in T2 to a function which takes
1717 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1718 a NULL-terminated vector. If some arguments need coercion of some
1719 sort, then the coerced values are written into T2. Return value is
1720 0 if the arguments could be matched, or the position at which they
1721 differ if not.
1722
1723 STATICP is nonzero if the T1 argument list came from a static
1724 member function. T2 will still include the ``this'' pointer, but
1725 it will be skipped.
1726
1727 For non-static member functions, we ignore the first argument,
1728 which is the type of the instance variable. This is because we
1729 want to handle calls with objects from derived classes. This is
1730 not entirely correct: we should actually check to make sure that a
1731 requested operation is type secure, shouldn't we? FIXME. */
1732
1733 static int
1734 typecmp (int staticp, int varargs, int nargs,
1735 struct field t1[], struct value *t2[])
1736 {
1737 int i;
1738
1739 if (t2 == 0)
1740 internal_error (__FILE__, __LINE__,
1741 _("typecmp: no argument list"));
1742
1743 /* Skip ``this'' argument if applicable. T2 will always include
1744 THIS. */
1745 if (staticp)
1746 t2 ++;
1747
1748 for (i = 0;
1749 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1750 i++)
1751 {
1752 struct type *tt1, *tt2;
1753
1754 if (!t2[i])
1755 return i + 1;
1756
1757 tt1 = check_typedef (t1[i].type);
1758 tt2 = check_typedef (value_type (t2[i]));
1759
1760 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1761 /* We should be doing hairy argument matching, as below. */
1762 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1)))
1763 == TYPE_CODE (tt2)))
1764 {
1765 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1766 t2[i] = value_coerce_array (t2[i]);
1767 else
1768 t2[i] = value_ref (t2[i]);
1769 continue;
1770 }
1771
1772 /* djb - 20000715 - Until the new type structure is in the
1773 place, and we can attempt things like implicit conversions,
1774 we need to do this so you can take something like a map<const
1775 char *>, and properly access map["hello"], because the
1776 argument to [] will be a reference to a pointer to a char,
1777 and the argument will be a pointer to a char. */
1778 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1779 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1780 {
1781 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1782 }
1783 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1784 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1785 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1786 {
1787 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1788 }
1789 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1790 continue;
1791 /* Array to pointer is a `trivial conversion' according to the
1792 ARM. */
1793
1794 /* We should be doing much hairier argument matching (see
1795 section 13.2 of the ARM), but as a quick kludge, just check
1796 for the same type code. */
1797 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1798 return i + 1;
1799 }
1800 if (varargs || t2[i] == NULL)
1801 return 0;
1802 return i + 1;
1803 }
1804
1805 /* Helper class for do_search_struct_field that updates *RESULT_PTR
1806 and *LAST_BOFFSET, and possibly throws an exception if the field
1807 search has yielded ambiguous results. */
1808
1809 static void
1810 update_search_result (struct value **result_ptr, struct value *v,
1811 int *last_boffset, int boffset,
1812 const char *name, struct type *type)
1813 {
1814 if (v != NULL)
1815 {
1816 if (*result_ptr != NULL
1817 /* The result is not ambiguous if all the classes that are
1818 found occupy the same space. */
1819 && *last_boffset != boffset)
1820 error (_("base class '%s' is ambiguous in type '%s'"),
1821 name, TYPE_SAFE_NAME (type));
1822 *result_ptr = v;
1823 *last_boffset = boffset;
1824 }
1825 }
1826
1827 /* A helper for search_struct_field. This does all the work; most
1828 arguments are as passed to search_struct_field. The result is
1829 stored in *RESULT_PTR, which must be initialized to NULL.
1830 OUTERMOST_TYPE is the type of the initial type passed to
1831 search_struct_field; this is used for error reporting when the
1832 lookup is ambiguous. */
1833
1834 static void
1835 do_search_struct_field (const char *name, struct value *arg1, int offset,
1836 struct type *type, int looking_for_baseclass,
1837 struct value **result_ptr,
1838 int *last_boffset,
1839 struct type *outermost_type)
1840 {
1841 int i;
1842 int nbases;
1843
1844 CHECK_TYPEDEF (type);
1845 nbases = TYPE_N_BASECLASSES (type);
1846
1847 if (!looking_for_baseclass)
1848 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1849 {
1850 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1851
1852 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1853 {
1854 struct value *v;
1855
1856 if (field_is_static (&TYPE_FIELD (type, i)))
1857 {
1858 v = value_static_field (type, i);
1859 if (v == 0)
1860 error (_("field %s is nonexistent or "
1861 "has been optimized out"),
1862 name);
1863 }
1864 else
1865 v = value_primitive_field (arg1, offset, i, type);
1866 *result_ptr = v;
1867 return;
1868 }
1869
1870 if (t_field_name
1871 && (t_field_name[0] == '\0'
1872 || (TYPE_CODE (type) == TYPE_CODE_UNION
1873 && (strcmp_iw (t_field_name, "else") == 0))))
1874 {
1875 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1876
1877 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1878 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1879 {
1880 /* Look for a match through the fields of an anonymous
1881 union, or anonymous struct. C++ provides anonymous
1882 unions.
1883
1884 In the GNU Chill (now deleted from GDB)
1885 implementation of variant record types, each
1886 <alternative field> has an (anonymous) union type,
1887 each member of the union represents a <variant
1888 alternative>. Each <variant alternative> is
1889 represented as a struct, with a member for each
1890 <variant field>. */
1891
1892 struct value *v = NULL;
1893 int new_offset = offset;
1894
1895 /* This is pretty gross. In G++, the offset in an
1896 anonymous union is relative to the beginning of the
1897 enclosing struct. In the GNU Chill (now deleted
1898 from GDB) implementation of variant records, the
1899 bitpos is zero in an anonymous union field, so we
1900 have to add the offset of the union here. */
1901 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1902 || (TYPE_NFIELDS (field_type) > 0
1903 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1904 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1905
1906 do_search_struct_field (name, arg1, new_offset,
1907 field_type,
1908 looking_for_baseclass, &v,
1909 last_boffset,
1910 outermost_type);
1911 if (v)
1912 {
1913 *result_ptr = v;
1914 return;
1915 }
1916 }
1917 }
1918 }
1919
1920 for (i = 0; i < nbases; i++)
1921 {
1922 struct value *v = NULL;
1923 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1924 /* If we are looking for baseclasses, this is what we get when
1925 we hit them. But it could happen that the base part's member
1926 name is not yet filled in. */
1927 int found_baseclass = (looking_for_baseclass
1928 && TYPE_BASECLASS_NAME (type, i) != NULL
1929 && (strcmp_iw (name,
1930 TYPE_BASECLASS_NAME (type,
1931 i)) == 0));
1932 int boffset = value_embedded_offset (arg1) + offset;
1933
1934 if (BASETYPE_VIA_VIRTUAL (type, i))
1935 {
1936 struct value *v2;
1937
1938 boffset = baseclass_offset (type, i,
1939 value_contents_for_printing (arg1),
1940 value_embedded_offset (arg1) + offset,
1941 value_address (arg1),
1942 arg1);
1943
1944 /* The virtual base class pointer might have been clobbered
1945 by the user program. Make sure that it still points to a
1946 valid memory location. */
1947
1948 boffset += value_embedded_offset (arg1) + offset;
1949 if (boffset < 0
1950 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
1951 {
1952 CORE_ADDR base_addr;
1953
1954 v2 = allocate_value (basetype);
1955 base_addr = value_address (arg1) + boffset;
1956 if (target_read_memory (base_addr,
1957 value_contents_raw (v2),
1958 TYPE_LENGTH (basetype)) != 0)
1959 error (_("virtual baseclass botch"));
1960 VALUE_LVAL (v2) = lval_memory;
1961 set_value_address (v2, base_addr);
1962 }
1963 else
1964 {
1965 v2 = value_copy (arg1);
1966 deprecated_set_value_type (v2, basetype);
1967 set_value_embedded_offset (v2, boffset);
1968 }
1969
1970 if (found_baseclass)
1971 v = v2;
1972 else
1973 {
1974 do_search_struct_field (name, v2, 0,
1975 TYPE_BASECLASS (type, i),
1976 looking_for_baseclass,
1977 result_ptr, last_boffset,
1978 outermost_type);
1979 }
1980 }
1981 else if (found_baseclass)
1982 v = value_primitive_field (arg1, offset, i, type);
1983 else
1984 {
1985 do_search_struct_field (name, arg1,
1986 offset + TYPE_BASECLASS_BITPOS (type,
1987 i) / 8,
1988 basetype, looking_for_baseclass,
1989 result_ptr, last_boffset,
1990 outermost_type);
1991 }
1992
1993 update_search_result (result_ptr, v, last_boffset,
1994 boffset, name, outermost_type);
1995 }
1996 }
1997
1998 /* Helper function used by value_struct_elt to recurse through
1999 baseclasses. Look for a field NAME in ARG1. Adjust the address of
2000 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2001 TYPE. If found, return value, else return NULL.
2002
2003 If LOOKING_FOR_BASECLASS, then instead of looking for struct
2004 fields, look for a baseclass named NAME. */
2005
2006 static struct value *
2007 search_struct_field (const char *name, struct value *arg1, int offset,
2008 struct type *type, int looking_for_baseclass)
2009 {
2010 struct value *result = NULL;
2011 int boffset = 0;
2012
2013 do_search_struct_field (name, arg1, offset, type, looking_for_baseclass,
2014 &result, &boffset, type);
2015 return result;
2016 }
2017
2018 /* Helper function used by value_struct_elt to recurse through
2019 baseclasses. Look for a field NAME in ARG1. Adjust the address of
2020 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2021 TYPE.
2022
2023 If found, return value, else if name matched and args not return
2024 (value) -1, else return NULL. */
2025
2026 static struct value *
2027 search_struct_method (const char *name, struct value **arg1p,
2028 struct value **args, int offset,
2029 int *static_memfuncp, struct type *type)
2030 {
2031 int i;
2032 struct value *v;
2033 int name_matched = 0;
2034 char dem_opname[64];
2035
2036 CHECK_TYPEDEF (type);
2037 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2038 {
2039 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2040
2041 /* FIXME! May need to check for ARM demangling here. */
2042 if (strncmp (t_field_name, "__", 2) == 0 ||
2043 strncmp (t_field_name, "op", 2) == 0 ||
2044 strncmp (t_field_name, "type", 4) == 0)
2045 {
2046 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2047 t_field_name = dem_opname;
2048 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2049 t_field_name = dem_opname;
2050 }
2051 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2052 {
2053 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2054 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2055
2056 name_matched = 1;
2057 check_stub_method_group (type, i);
2058 if (j > 0 && args == 0)
2059 error (_("cannot resolve overloaded method "
2060 "`%s': no arguments supplied"), name);
2061 else if (j == 0 && args == 0)
2062 {
2063 v = value_fn_field (arg1p, f, j, type, offset);
2064 if (v != NULL)
2065 return v;
2066 }
2067 else
2068 while (j >= 0)
2069 {
2070 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2071 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2072 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2073 TYPE_FN_FIELD_ARGS (f, j), args))
2074 {
2075 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2076 return value_virtual_fn_field (arg1p, f, j,
2077 type, offset);
2078 if (TYPE_FN_FIELD_STATIC_P (f, j)
2079 && static_memfuncp)
2080 *static_memfuncp = 1;
2081 v = value_fn_field (arg1p, f, j, type, offset);
2082 if (v != NULL)
2083 return v;
2084 }
2085 j--;
2086 }
2087 }
2088 }
2089
2090 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2091 {
2092 int base_offset;
2093 int this_offset;
2094
2095 if (BASETYPE_VIA_VIRTUAL (type, i))
2096 {
2097 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2098 struct value *base_val;
2099 const gdb_byte *base_valaddr;
2100
2101 /* The virtual base class pointer might have been
2102 clobbered by the user program. Make sure that it
2103 still points to a valid memory location. */
2104
2105 if (offset < 0 || offset >= TYPE_LENGTH (type))
2106 {
2107 gdb_byte *tmp;
2108 struct cleanup *back_to;
2109 CORE_ADDR address;
2110
2111 tmp = xmalloc (TYPE_LENGTH (baseclass));
2112 back_to = make_cleanup (xfree, tmp);
2113 address = value_address (*arg1p);
2114
2115 if (target_read_memory (address + offset,
2116 tmp, TYPE_LENGTH (baseclass)) != 0)
2117 error (_("virtual baseclass botch"));
2118
2119 base_val = value_from_contents_and_address (baseclass,
2120 tmp,
2121 address + offset);
2122 base_valaddr = value_contents_for_printing (base_val);
2123 this_offset = 0;
2124 do_cleanups (back_to);
2125 }
2126 else
2127 {
2128 base_val = *arg1p;
2129 base_valaddr = value_contents_for_printing (*arg1p);
2130 this_offset = offset;
2131 }
2132
2133 base_offset = baseclass_offset (type, i, base_valaddr,
2134 this_offset, value_address (base_val),
2135 base_val);
2136 }
2137 else
2138 {
2139 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2140 }
2141 v = search_struct_method (name, arg1p, args, base_offset + offset,
2142 static_memfuncp, TYPE_BASECLASS (type, i));
2143 if (v == (struct value *) - 1)
2144 {
2145 name_matched = 1;
2146 }
2147 else if (v)
2148 {
2149 /* FIXME-bothner: Why is this commented out? Why is it here? */
2150 /* *arg1p = arg1_tmp; */
2151 return v;
2152 }
2153 }
2154 if (name_matched)
2155 return (struct value *) - 1;
2156 else
2157 return NULL;
2158 }
2159
2160 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2161 extract the component named NAME from the ultimate target
2162 structure/union and return it as a value with its appropriate type.
2163 ERR is used in the error message if *ARGP's type is wrong.
2164
2165 C++: ARGS is a list of argument types to aid in the selection of
2166 an appropriate method. Also, handle derived types.
2167
2168 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2169 where the truthvalue of whether the function that was resolved was
2170 a static member function or not is stored.
2171
2172 ERR is an error message to be printed in case the field is not
2173 found. */
2174
2175 struct value *
2176 value_struct_elt (struct value **argp, struct value **args,
2177 const char *name, int *static_memfuncp, const char *err)
2178 {
2179 struct type *t;
2180 struct value *v;
2181
2182 *argp = coerce_array (*argp);
2183
2184 t = check_typedef (value_type (*argp));
2185
2186 /* Follow pointers until we get to a non-pointer. */
2187
2188 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2189 {
2190 *argp = value_ind (*argp);
2191 /* Don't coerce fn pointer to fn and then back again! */
2192 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2193 *argp = coerce_array (*argp);
2194 t = check_typedef (value_type (*argp));
2195 }
2196
2197 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2198 && TYPE_CODE (t) != TYPE_CODE_UNION)
2199 error (_("Attempt to extract a component of a value that is not a %s."),
2200 err);
2201
2202 /* Assume it's not, unless we see that it is. */
2203 if (static_memfuncp)
2204 *static_memfuncp = 0;
2205
2206 if (!args)
2207 {
2208 /* if there are no arguments ...do this... */
2209
2210 /* Try as a field first, because if we succeed, there is less
2211 work to be done. */
2212 v = search_struct_field (name, *argp, 0, t, 0);
2213 if (v)
2214 return v;
2215
2216 /* C++: If it was not found as a data field, then try to
2217 return it as a pointer to a method. */
2218 v = search_struct_method (name, argp, args, 0,
2219 static_memfuncp, t);
2220
2221 if (v == (struct value *) - 1)
2222 error (_("Cannot take address of method %s."), name);
2223 else if (v == 0)
2224 {
2225 if (TYPE_NFN_FIELDS (t))
2226 error (_("There is no member or method named %s."), name);
2227 else
2228 error (_("There is no member named %s."), name);
2229 }
2230 return v;
2231 }
2232
2233 v = search_struct_method (name, argp, args, 0,
2234 static_memfuncp, t);
2235
2236 if (v == (struct value *) - 1)
2237 {
2238 error (_("One of the arguments you tried to pass to %s could not "
2239 "be converted to what the function wants."), name);
2240 }
2241 else if (v == 0)
2242 {
2243 /* See if user tried to invoke data as function. If so, hand it
2244 back. If it's not callable (i.e., a pointer to function),
2245 gdb should give an error. */
2246 v = search_struct_field (name, *argp, 0, t, 0);
2247 /* If we found an ordinary field, then it is not a method call.
2248 So, treat it as if it were a static member function. */
2249 if (v && static_memfuncp)
2250 *static_memfuncp = 1;
2251 }
2252
2253 if (!v)
2254 throw_error (NOT_FOUND_ERROR,
2255 _("Structure has no component named %s."), name);
2256 return v;
2257 }
2258
2259 /* Search through the methods of an object (and its bases) to find a
2260 specified method. Return the pointer to the fn_field list of
2261 overloaded instances.
2262
2263 Helper function for value_find_oload_list.
2264 ARGP is a pointer to a pointer to a value (the object).
2265 METHOD is a string containing the method name.
2266 OFFSET is the offset within the value.
2267 TYPE is the assumed type of the object.
2268 NUM_FNS is the number of overloaded instances.
2269 BASETYPE is set to the actual type of the subobject where the
2270 method is found.
2271 BOFFSET is the offset of the base subobject where the method is found. */
2272
2273 static struct fn_field *
2274 find_method_list (struct value **argp, const char *method,
2275 int offset, struct type *type, int *num_fns,
2276 struct type **basetype, int *boffset)
2277 {
2278 int i;
2279 struct fn_field *f;
2280 CHECK_TYPEDEF (type);
2281
2282 *num_fns = 0;
2283
2284 /* First check in object itself. */
2285 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2286 {
2287 /* pai: FIXME What about operators and type conversions? */
2288 const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2289
2290 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2291 {
2292 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2293 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2294
2295 *num_fns = len;
2296 *basetype = type;
2297 *boffset = offset;
2298
2299 /* Resolve any stub methods. */
2300 check_stub_method_group (type, i);
2301
2302 return f;
2303 }
2304 }
2305
2306 /* Not found in object, check in base subobjects. */
2307 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2308 {
2309 int base_offset;
2310
2311 if (BASETYPE_VIA_VIRTUAL (type, i))
2312 {
2313 base_offset = baseclass_offset (type, i,
2314 value_contents_for_printing (*argp),
2315 value_offset (*argp) + offset,
2316 value_address (*argp), *argp);
2317 }
2318 else /* Non-virtual base, simply use bit position from debug
2319 info. */
2320 {
2321 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2322 }
2323 f = find_method_list (argp, method, base_offset + offset,
2324 TYPE_BASECLASS (type, i), num_fns,
2325 basetype, boffset);
2326 if (f)
2327 return f;
2328 }
2329 return NULL;
2330 }
2331
2332 /* Return the list of overloaded methods of a specified name.
2333
2334 ARGP is a pointer to a pointer to a value (the object).
2335 METHOD is the method name.
2336 OFFSET is the offset within the value contents.
2337 NUM_FNS is the number of overloaded instances.
2338 BASETYPE is set to the type of the base subobject that defines the
2339 method.
2340 BOFFSET is the offset of the base subobject which defines the method. */
2341
2342 static struct fn_field *
2343 value_find_oload_method_list (struct value **argp, const char *method,
2344 int offset, int *num_fns,
2345 struct type **basetype, int *boffset)
2346 {
2347 struct type *t;
2348
2349 t = check_typedef (value_type (*argp));
2350
2351 /* Code snarfed from value_struct_elt. */
2352 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2353 {
2354 *argp = value_ind (*argp);
2355 /* Don't coerce fn pointer to fn and then back again! */
2356 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2357 *argp = coerce_array (*argp);
2358 t = check_typedef (value_type (*argp));
2359 }
2360
2361 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2362 && TYPE_CODE (t) != TYPE_CODE_UNION)
2363 error (_("Attempt to extract a component of a "
2364 "value that is not a struct or union"));
2365
2366 return find_method_list (argp, method, 0, t, num_fns,
2367 basetype, boffset);
2368 }
2369
2370 /* Given an array of arguments (ARGS) (which includes an
2371 entry for "this" in the case of C++ methods), the number of
2372 arguments NARGS, the NAME of a function, and whether it's a method or
2373 not (METHOD), find the best function that matches on the argument types
2374 according to the overload resolution rules.
2375
2376 METHOD can be one of three values:
2377 NON_METHOD for non-member functions.
2378 METHOD: for member functions.
2379 BOTH: used for overload resolution of operators where the
2380 candidates are expected to be either member or non member
2381 functions. In this case the first argument ARGTYPES
2382 (representing 'this') is expected to be a reference to the
2383 target object, and will be dereferenced when attempting the
2384 non-member search.
2385
2386 In the case of class methods, the parameter OBJ is an object value
2387 in which to search for overloaded methods.
2388
2389 In the case of non-method functions, the parameter FSYM is a symbol
2390 corresponding to one of the overloaded functions.
2391
2392 Return value is an integer: 0 -> good match, 10 -> debugger applied
2393 non-standard coercions, 100 -> incompatible.
2394
2395 If a method is being searched for, VALP will hold the value.
2396 If a non-method is being searched for, SYMP will hold the symbol
2397 for it.
2398
2399 If a method is being searched for, and it is a static method,
2400 then STATICP will point to a non-zero value.
2401
2402 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2403 ADL overload candidates when performing overload resolution for a fully
2404 qualified name.
2405
2406 Note: This function does *not* check the value of
2407 overload_resolution. Caller must check it to see whether overload
2408 resolution is permitted. */
2409
2410 int
2411 find_overload_match (struct value **args, int nargs,
2412 const char *name, enum oload_search_type method,
2413 struct value **objp, struct symbol *fsym,
2414 struct value **valp, struct symbol **symp,
2415 int *staticp, const int no_adl)
2416 {
2417 struct value *obj = (objp ? *objp : NULL);
2418 struct type *obj_type = obj ? value_type (obj) : NULL;
2419 /* Index of best overloaded function. */
2420 int func_oload_champ = -1;
2421 int method_oload_champ = -1;
2422
2423 /* The measure for the current best match. */
2424 struct badness_vector *method_badness = NULL;
2425 struct badness_vector *func_badness = NULL;
2426
2427 struct value *temp = obj;
2428 /* For methods, the list of overloaded methods. */
2429 struct fn_field *fns_ptr = NULL;
2430 /* For non-methods, the list of overloaded function symbols. */
2431 struct symbol **oload_syms = NULL;
2432 /* Number of overloaded instances being considered. */
2433 int num_fns = 0;
2434 struct type *basetype = NULL;
2435 int boffset;
2436
2437 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2438
2439 const char *obj_type_name = NULL;
2440 const char *func_name = NULL;
2441 enum oload_classification match_quality;
2442 enum oload_classification method_match_quality = INCOMPATIBLE;
2443 enum oload_classification func_match_quality = INCOMPATIBLE;
2444
2445 /* Get the list of overloaded methods or functions. */
2446 if (method == METHOD || method == BOTH)
2447 {
2448 gdb_assert (obj);
2449
2450 /* OBJ may be a pointer value rather than the object itself. */
2451 obj = coerce_ref (obj);
2452 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2453 obj = coerce_ref (value_ind (obj));
2454 obj_type_name = TYPE_NAME (value_type (obj));
2455
2456 /* First check whether this is a data member, e.g. a pointer to
2457 a function. */
2458 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2459 {
2460 *valp = search_struct_field (name, obj, 0,
2461 check_typedef (value_type (obj)), 0);
2462 if (*valp)
2463 {
2464 *staticp = 1;
2465 do_cleanups (all_cleanups);
2466 return 0;
2467 }
2468 }
2469
2470 /* Retrieve the list of methods with the name NAME. */
2471 fns_ptr = value_find_oload_method_list (&temp, name,
2472 0, &num_fns,
2473 &basetype, &boffset);
2474 /* If this is a method only search, and no methods were found
2475 the search has faild. */
2476 if (method == METHOD && (!fns_ptr || !num_fns))
2477 error (_("Couldn't find method %s%s%s"),
2478 obj_type_name,
2479 (obj_type_name && *obj_type_name) ? "::" : "",
2480 name);
2481 /* If we are dealing with stub method types, they should have
2482 been resolved by find_method_list via
2483 value_find_oload_method_list above. */
2484 if (fns_ptr)
2485 {
2486 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2487 method_oload_champ = find_oload_champ (args, nargs, method,
2488 num_fns, fns_ptr,
2489 oload_syms, &method_badness);
2490
2491 method_match_quality =
2492 classify_oload_match (method_badness, nargs,
2493 oload_method_static (method, fns_ptr,
2494 method_oload_champ));
2495
2496 make_cleanup (xfree, method_badness);
2497 }
2498
2499 }
2500
2501 if (method == NON_METHOD || method == BOTH)
2502 {
2503 const char *qualified_name = NULL;
2504
2505 /* If the overload match is being search for both as a method
2506 and non member function, the first argument must now be
2507 dereferenced. */
2508 if (method == BOTH)
2509 args[0] = value_ind (args[0]);
2510
2511 if (fsym)
2512 {
2513 qualified_name = SYMBOL_NATURAL_NAME (fsym);
2514
2515 /* If we have a function with a C++ name, try to extract just
2516 the function part. Do not try this for non-functions (e.g.
2517 function pointers). */
2518 if (qualified_name
2519 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym)))
2520 == TYPE_CODE_FUNC)
2521 {
2522 char *temp;
2523
2524 temp = cp_func_name (qualified_name);
2525
2526 /* If cp_func_name did not remove anything, the name of the
2527 symbol did not include scope or argument types - it was
2528 probably a C-style function. */
2529 if (temp)
2530 {
2531 make_cleanup (xfree, temp);
2532 if (strcmp (temp, qualified_name) == 0)
2533 func_name = NULL;
2534 else
2535 func_name = temp;
2536 }
2537 }
2538 }
2539 else
2540 {
2541 func_name = name;
2542 qualified_name = name;
2543 }
2544
2545 /* If there was no C++ name, this must be a C-style function or
2546 not a function at all. Just return the same symbol. Do the
2547 same if cp_func_name fails for some reason. */
2548 if (func_name == NULL)
2549 {
2550 *symp = fsym;
2551 do_cleanups (all_cleanups);
2552 return 0;
2553 }
2554
2555 func_oload_champ = find_oload_champ_namespace (args, nargs,
2556 func_name,
2557 qualified_name,
2558 &oload_syms,
2559 &func_badness,
2560 no_adl);
2561
2562 if (func_oload_champ >= 0)
2563 func_match_quality = classify_oload_match (func_badness, nargs, 0);
2564
2565 make_cleanup (xfree, oload_syms);
2566 make_cleanup (xfree, func_badness);
2567 }
2568
2569 /* Did we find a match ? */
2570 if (method_oload_champ == -1 && func_oload_champ == -1)
2571 throw_error (NOT_FOUND_ERROR,
2572 _("No symbol \"%s\" in current context."),
2573 name);
2574
2575 /* If we have found both a method match and a function
2576 match, find out which one is better, and calculate match
2577 quality. */
2578 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2579 {
2580 switch (compare_badness (func_badness, method_badness))
2581 {
2582 case 0: /* Top two contenders are equally good. */
2583 /* FIXME: GDB does not support the general ambiguous case.
2584 All candidates should be collected and presented the
2585 user. */
2586 error (_("Ambiguous overload resolution"));
2587 break;
2588 case 1: /* Incomparable top contenders. */
2589 /* This is an error incompatible candidates
2590 should not have been proposed. */
2591 error (_("Internal error: incompatible "
2592 "overload candidates proposed"));
2593 break;
2594 case 2: /* Function champion. */
2595 method_oload_champ = -1;
2596 match_quality = func_match_quality;
2597 break;
2598 case 3: /* Method champion. */
2599 func_oload_champ = -1;
2600 match_quality = method_match_quality;
2601 break;
2602 default:
2603 error (_("Internal error: unexpected overload comparison result"));
2604 break;
2605 }
2606 }
2607 else
2608 {
2609 /* We have either a method match or a function match. */
2610 if (method_oload_champ >= 0)
2611 match_quality = method_match_quality;
2612 else
2613 match_quality = func_match_quality;
2614 }
2615
2616 if (match_quality == INCOMPATIBLE)
2617 {
2618 if (method == METHOD)
2619 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2620 obj_type_name,
2621 (obj_type_name && *obj_type_name) ? "::" : "",
2622 name);
2623 else
2624 error (_("Cannot resolve function %s to any overloaded instance"),
2625 func_name);
2626 }
2627 else if (match_quality == NON_STANDARD)
2628 {
2629 if (method == METHOD)
2630 warning (_("Using non-standard conversion to match "
2631 "method %s%s%s to supplied arguments"),
2632 obj_type_name,
2633 (obj_type_name && *obj_type_name) ? "::" : "",
2634 name);
2635 else
2636 warning (_("Using non-standard conversion to match "
2637 "function %s to supplied arguments"),
2638 func_name);
2639 }
2640
2641 if (staticp != NULL)
2642 *staticp = oload_method_static (method, fns_ptr, method_oload_champ);
2643
2644 if (method_oload_champ >= 0)
2645 {
2646 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ))
2647 *valp = value_virtual_fn_field (&temp, fns_ptr, method_oload_champ,
2648 basetype, boffset);
2649 else
2650 *valp = value_fn_field (&temp, fns_ptr, method_oload_champ,
2651 basetype, boffset);
2652 }
2653 else
2654 *symp = oload_syms[func_oload_champ];
2655
2656 if (objp)
2657 {
2658 struct type *temp_type = check_typedef (value_type (temp));
2659 struct type *objtype = check_typedef (obj_type);
2660
2661 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2662 && (TYPE_CODE (objtype) == TYPE_CODE_PTR
2663 || TYPE_CODE (objtype) == TYPE_CODE_REF))
2664 {
2665 temp = value_addr (temp);
2666 }
2667 *objp = temp;
2668 }
2669
2670 do_cleanups (all_cleanups);
2671
2672 switch (match_quality)
2673 {
2674 case INCOMPATIBLE:
2675 return 100;
2676 case NON_STANDARD:
2677 return 10;
2678 default: /* STANDARD */
2679 return 0;
2680 }
2681 }
2682
2683 /* Find the best overload match, searching for FUNC_NAME in namespaces
2684 contained in QUALIFIED_NAME until it either finds a good match or
2685 runs out of namespaces. It stores the overloaded functions in
2686 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2687 calling function is responsible for freeing *OLOAD_SYMS and
2688 *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not
2689 performned. */
2690
2691 static int
2692 find_oload_champ_namespace (struct value **args, int nargs,
2693 const char *func_name,
2694 const char *qualified_name,
2695 struct symbol ***oload_syms,
2696 struct badness_vector **oload_champ_bv,
2697 const int no_adl)
2698 {
2699 int oload_champ;
2700
2701 find_oload_champ_namespace_loop (args, nargs,
2702 func_name,
2703 qualified_name, 0,
2704 oload_syms, oload_champ_bv,
2705 &oload_champ,
2706 no_adl);
2707
2708 return oload_champ;
2709 }
2710
2711 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2712 how deep we've looked for namespaces, and the champ is stored in
2713 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2714 if it isn't. Other arguments are the same as in
2715 find_oload_champ_namespace
2716
2717 It is the caller's responsibility to free *OLOAD_SYMS and
2718 *OLOAD_CHAMP_BV. */
2719
2720 static int
2721 find_oload_champ_namespace_loop (struct value **args, int nargs,
2722 const char *func_name,
2723 const char *qualified_name,
2724 int namespace_len,
2725 struct symbol ***oload_syms,
2726 struct badness_vector **oload_champ_bv,
2727 int *oload_champ,
2728 const int no_adl)
2729 {
2730 int next_namespace_len = namespace_len;
2731 int searched_deeper = 0;
2732 int num_fns = 0;
2733 struct cleanup *old_cleanups;
2734 int new_oload_champ;
2735 struct symbol **new_oload_syms;
2736 struct badness_vector *new_oload_champ_bv;
2737 char *new_namespace;
2738
2739 if (next_namespace_len != 0)
2740 {
2741 gdb_assert (qualified_name[next_namespace_len] == ':');
2742 next_namespace_len += 2;
2743 }
2744 next_namespace_len +=
2745 cp_find_first_component (qualified_name + next_namespace_len);
2746
2747 /* Initialize these to values that can safely be xfree'd. */
2748 *oload_syms = NULL;
2749 *oload_champ_bv = NULL;
2750
2751 /* First, see if we have a deeper namespace we can search in.
2752 If we get a good match there, use it. */
2753
2754 if (qualified_name[next_namespace_len] == ':')
2755 {
2756 searched_deeper = 1;
2757
2758 if (find_oload_champ_namespace_loop (args, nargs,
2759 func_name, qualified_name,
2760 next_namespace_len,
2761 oload_syms, oload_champ_bv,
2762 oload_champ, no_adl))
2763 {
2764 return 1;
2765 }
2766 };
2767
2768 /* If we reach here, either we're in the deepest namespace or we
2769 didn't find a good match in a deeper namespace. But, in the
2770 latter case, we still have a bad match in a deeper namespace;
2771 note that we might not find any match at all in the current
2772 namespace. (There's always a match in the deepest namespace,
2773 because this overload mechanism only gets called if there's a
2774 function symbol to start off with.) */
2775
2776 old_cleanups = make_cleanup (xfree, *oload_syms);
2777 make_cleanup (xfree, *oload_champ_bv);
2778 new_namespace = alloca (namespace_len + 1);
2779 strncpy (new_namespace, qualified_name, namespace_len);
2780 new_namespace[namespace_len] = '\0';
2781 new_oload_syms = make_symbol_overload_list (func_name,
2782 new_namespace);
2783
2784 /* If we have reached the deepest level perform argument
2785 determined lookup. */
2786 if (!searched_deeper && !no_adl)
2787 {
2788 int ix;
2789 struct type **arg_types;
2790
2791 /* Prepare list of argument types for overload resolution. */
2792 arg_types = (struct type **)
2793 alloca (nargs * (sizeof (struct type *)));
2794 for (ix = 0; ix < nargs; ix++)
2795 arg_types[ix] = value_type (args[ix]);
2796 make_symbol_overload_list_adl (arg_types, nargs, func_name);
2797 }
2798
2799 while (new_oload_syms[num_fns])
2800 ++num_fns;
2801
2802 new_oload_champ = find_oload_champ (args, nargs, 0, num_fns,
2803 NULL, new_oload_syms,
2804 &new_oload_champ_bv);
2805
2806 /* Case 1: We found a good match. Free earlier matches (if any),
2807 and return it. Case 2: We didn't find a good match, but we're
2808 not the deepest function. Then go with the bad match that the
2809 deeper function found. Case 3: We found a bad match, and we're
2810 the deepest function. Then return what we found, even though
2811 it's a bad match. */
2812
2813 if (new_oload_champ != -1
2814 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2815 {
2816 *oload_syms = new_oload_syms;
2817 *oload_champ = new_oload_champ;
2818 *oload_champ_bv = new_oload_champ_bv;
2819 do_cleanups (old_cleanups);
2820 return 1;
2821 }
2822 else if (searched_deeper)
2823 {
2824 xfree (new_oload_syms);
2825 xfree (new_oload_champ_bv);
2826 discard_cleanups (old_cleanups);
2827 return 0;
2828 }
2829 else
2830 {
2831 *oload_syms = new_oload_syms;
2832 *oload_champ = new_oload_champ;
2833 *oload_champ_bv = new_oload_champ_bv;
2834 do_cleanups (old_cleanups);
2835 return 0;
2836 }
2837 }
2838
2839 /* Look for a function to take NARGS args of ARGS. Find
2840 the best match from among the overloaded methods or functions
2841 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2842 The number of methods/functions in the list is given by NUM_FNS.
2843 Return the index of the best match; store an indication of the
2844 quality of the match in OLOAD_CHAMP_BV.
2845
2846 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2847
2848 static int
2849 find_oload_champ (struct value **args, int nargs, int method,
2850 int num_fns, struct fn_field *fns_ptr,
2851 struct symbol **oload_syms,
2852 struct badness_vector **oload_champ_bv)
2853 {
2854 int ix;
2855 /* A measure of how good an overloaded instance is. */
2856 struct badness_vector *bv;
2857 /* Index of best overloaded function. */
2858 int oload_champ = -1;
2859 /* Current ambiguity state for overload resolution. */
2860 int oload_ambiguous = 0;
2861 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
2862
2863 *oload_champ_bv = NULL;
2864
2865 /* Consider each candidate in turn. */
2866 for (ix = 0; ix < num_fns; ix++)
2867 {
2868 int jj;
2869 int static_offset = oload_method_static (method, fns_ptr, ix);
2870 int nparms;
2871 struct type **parm_types;
2872
2873 if (method)
2874 {
2875 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2876 }
2877 else
2878 {
2879 /* If it's not a method, this is the proper place. */
2880 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
2881 }
2882
2883 /* Prepare array of parameter types. */
2884 parm_types = (struct type **)
2885 xmalloc (nparms * (sizeof (struct type *)));
2886 for (jj = 0; jj < nparms; jj++)
2887 parm_types[jj] = (method
2888 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2889 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
2890 jj));
2891
2892 /* Compare parameter types to supplied argument types. Skip
2893 THIS for static methods. */
2894 bv = rank_function (parm_types, nparms,
2895 args + static_offset,
2896 nargs - static_offset);
2897
2898 if (!*oload_champ_bv)
2899 {
2900 *oload_champ_bv = bv;
2901 oload_champ = 0;
2902 }
2903 else /* See whether current candidate is better or worse than
2904 previous best. */
2905 switch (compare_badness (bv, *oload_champ_bv))
2906 {
2907 case 0: /* Top two contenders are equally good. */
2908 oload_ambiguous = 1;
2909 break;
2910 case 1: /* Incomparable top contenders. */
2911 oload_ambiguous = 2;
2912 break;
2913 case 2: /* New champion, record details. */
2914 *oload_champ_bv = bv;
2915 oload_ambiguous = 0;
2916 oload_champ = ix;
2917 break;
2918 case 3:
2919 default:
2920 break;
2921 }
2922 xfree (parm_types);
2923 if (overload_debug)
2924 {
2925 if (method)
2926 fprintf_filtered (gdb_stderr,
2927 "Overloaded method instance %s, # of parms %d\n",
2928 fns_ptr[ix].physname, nparms);
2929 else
2930 fprintf_filtered (gdb_stderr,
2931 "Overloaded function instance "
2932 "%s # of parms %d\n",
2933 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
2934 nparms);
2935 for (jj = 0; jj < nargs - static_offset; jj++)
2936 fprintf_filtered (gdb_stderr,
2937 "...Badness @ %d : %d\n",
2938 jj, bv->rank[jj].rank);
2939 fprintf_filtered (gdb_stderr, "Overload resolution "
2940 "champion is %d, ambiguous? %d\n",
2941 oload_champ, oload_ambiguous);
2942 }
2943 }
2944
2945 return oload_champ;
2946 }
2947
2948 /* Return 1 if we're looking at a static method, 0 if we're looking at
2949 a non-static method or a function that isn't a method. */
2950
2951 static int
2952 oload_method_static (int method, struct fn_field *fns_ptr, int index)
2953 {
2954 if (method && fns_ptr && index >= 0
2955 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
2956 return 1;
2957 else
2958 return 0;
2959 }
2960
2961 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
2962
2963 static enum oload_classification
2964 classify_oload_match (struct badness_vector *oload_champ_bv,
2965 int nargs,
2966 int static_offset)
2967 {
2968 int ix;
2969 enum oload_classification worst = STANDARD;
2970
2971 for (ix = 1; ix <= nargs - static_offset; ix++)
2972 {
2973 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
2974 or worse return INCOMPATIBLE. */
2975 if (compare_ranks (oload_champ_bv->rank[ix],
2976 INCOMPATIBLE_TYPE_BADNESS) <= 0)
2977 return INCOMPATIBLE; /* Truly mismatched types. */
2978 /* Otherwise If this conversion is as bad as
2979 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
2980 else if (compare_ranks (oload_champ_bv->rank[ix],
2981 NS_POINTER_CONVERSION_BADNESS) <= 0)
2982 worst = NON_STANDARD; /* Non-standard type conversions
2983 needed. */
2984 }
2985
2986 /* If no INCOMPATIBLE classification was found, return the worst one
2987 that was found (if any). */
2988 return worst;
2989 }
2990
2991 /* C++: return 1 is NAME is a legitimate name for the destructor of
2992 type TYPE. If TYPE does not have a destructor, or if NAME is
2993 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
2994 have CHECK_TYPEDEF applied, this function will apply it itself. */
2995
2996 int
2997 destructor_name_p (const char *name, struct type *type)
2998 {
2999 if (name[0] == '~')
3000 {
3001 const char *dname = type_name_no_tag_or_error (type);
3002 const char *cp = strchr (dname, '<');
3003 unsigned int len;
3004
3005 /* Do not compare the template part for template classes. */
3006 if (cp == NULL)
3007 len = strlen (dname);
3008 else
3009 len = cp - dname;
3010 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3011 error (_("name of destructor must equal name of class"));
3012 else
3013 return 1;
3014 }
3015 return 0;
3016 }
3017
3018 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3019 return the appropriate member (or the address of the member, if
3020 WANT_ADDRESS). This function is used to resolve user expressions
3021 of the form "DOMAIN::NAME". For more details on what happens, see
3022 the comment before value_struct_elt_for_reference. */
3023
3024 struct value *
3025 value_aggregate_elt (struct type *curtype, char *name,
3026 struct type *expect_type, int want_address,
3027 enum noside noside)
3028 {
3029 switch (TYPE_CODE (curtype))
3030 {
3031 case TYPE_CODE_STRUCT:
3032 case TYPE_CODE_UNION:
3033 return value_struct_elt_for_reference (curtype, 0, curtype,
3034 name, expect_type,
3035 want_address, noside);
3036 case TYPE_CODE_NAMESPACE:
3037 return value_namespace_elt (curtype, name,
3038 want_address, noside);
3039 default:
3040 internal_error (__FILE__, __LINE__,
3041 _("non-aggregate type in value_aggregate_elt"));
3042 }
3043 }
3044
3045 /* Compares the two method/function types T1 and T2 for "equality"
3046 with respect to the methods' parameters. If the types of the
3047 two parameter lists are the same, returns 1; 0 otherwise. This
3048 comparison may ignore any artificial parameters in T1 if
3049 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3050 the first artificial parameter in T1, assumed to be a 'this' pointer.
3051
3052 The type T2 is expected to have come from make_params (in eval.c). */
3053
3054 static int
3055 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3056 {
3057 int start = 0;
3058
3059 if (TYPE_NFIELDS (t1) > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3060 ++start;
3061
3062 /* If skipping artificial fields, find the first real field
3063 in T1. */
3064 if (skip_artificial)
3065 {
3066 while (start < TYPE_NFIELDS (t1)
3067 && TYPE_FIELD_ARTIFICIAL (t1, start))
3068 ++start;
3069 }
3070
3071 /* Now compare parameters. */
3072
3073 /* Special case: a method taking void. T1 will contain no
3074 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3075 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
3076 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
3077 return 1;
3078
3079 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
3080 {
3081 int i;
3082
3083 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
3084 {
3085 if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3086 TYPE_FIELD_TYPE (t2, i), NULL),
3087 EXACT_MATCH_BADNESS) != 0)
3088 return 0;
3089 }
3090
3091 return 1;
3092 }
3093
3094 return 0;
3095 }
3096
3097 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3098 return the address of this member as a "pointer to member" type.
3099 If INTYPE is non-null, then it will be the type of the member we
3100 are looking for. This will help us resolve "pointers to member
3101 functions". This function is used to resolve user expressions of
3102 the form "DOMAIN::NAME". */
3103
3104 static struct value *
3105 value_struct_elt_for_reference (struct type *domain, int offset,
3106 struct type *curtype, char *name,
3107 struct type *intype,
3108 int want_address,
3109 enum noside noside)
3110 {
3111 struct type *t = curtype;
3112 int i;
3113 struct value *v, *result;
3114
3115 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3116 && TYPE_CODE (t) != TYPE_CODE_UNION)
3117 error (_("Internal error: non-aggregate type "
3118 "to value_struct_elt_for_reference"));
3119
3120 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3121 {
3122 const char *t_field_name = TYPE_FIELD_NAME (t, i);
3123
3124 if (t_field_name && strcmp (t_field_name, name) == 0)
3125 {
3126 if (field_is_static (&TYPE_FIELD (t, i)))
3127 {
3128 v = value_static_field (t, i);
3129 if (v == NULL)
3130 error (_("static field %s has been optimized out"),
3131 name);
3132 if (want_address)
3133 v = value_addr (v);
3134 return v;
3135 }
3136 if (TYPE_FIELD_PACKED (t, i))
3137 error (_("pointers to bitfield members not allowed"));
3138
3139 if (want_address)
3140 return value_from_longest
3141 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3142 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3143 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3144 return allocate_value (TYPE_FIELD_TYPE (t, i));
3145 else
3146 error (_("Cannot reference non-static field \"%s\""), name);
3147 }
3148 }
3149
3150 /* C++: If it was not found as a data field, then try to return it
3151 as a pointer to a method. */
3152
3153 /* Perform all necessary dereferencing. */
3154 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3155 intype = TYPE_TARGET_TYPE (intype);
3156
3157 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3158 {
3159 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3160 char dem_opname[64];
3161
3162 if (strncmp (t_field_name, "__", 2) == 0
3163 || strncmp (t_field_name, "op", 2) == 0
3164 || strncmp (t_field_name, "type", 4) == 0)
3165 {
3166 if (cplus_demangle_opname (t_field_name,
3167 dem_opname, DMGL_ANSI))
3168 t_field_name = dem_opname;
3169 else if (cplus_demangle_opname (t_field_name,
3170 dem_opname, 0))
3171 t_field_name = dem_opname;
3172 }
3173 if (t_field_name && strcmp (t_field_name, name) == 0)
3174 {
3175 int j;
3176 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3177 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3178
3179 check_stub_method_group (t, i);
3180
3181 if (intype)
3182 {
3183 for (j = 0; j < len; ++j)
3184 {
3185 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3186 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3187 intype, 1))
3188 break;
3189 }
3190
3191 if (j == len)
3192 error (_("no member function matches "
3193 "that type instantiation"));
3194 }
3195 else
3196 {
3197 int ii;
3198
3199 j = -1;
3200 for (ii = 0; ii < len; ++ii)
3201 {
3202 /* Skip artificial methods. This is necessary if,
3203 for example, the user wants to "print
3204 subclass::subclass" with only one user-defined
3205 constructor. There is no ambiguity in this case.
3206 We are careful here to allow artificial methods
3207 if they are the unique result. */
3208 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3209 {
3210 if (j == -1)
3211 j = ii;
3212 continue;
3213 }
3214
3215 /* Desired method is ambiguous if more than one
3216 method is defined. */
3217 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3218 error (_("non-unique member `%s' requires "
3219 "type instantiation"), name);
3220
3221 j = ii;
3222 }
3223
3224 if (j == -1)
3225 error (_("no matching member function"));
3226 }
3227
3228 if (TYPE_FN_FIELD_STATIC_P (f, j))
3229 {
3230 struct symbol *s =
3231 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3232 0, VAR_DOMAIN, 0);
3233
3234 if (s == NULL)
3235 return NULL;
3236
3237 if (want_address)
3238 return value_addr (read_var_value (s, 0));
3239 else
3240 return read_var_value (s, 0);
3241 }
3242
3243 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3244 {
3245 if (want_address)
3246 {
3247 result = allocate_value
3248 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3249 cplus_make_method_ptr (value_type (result),
3250 value_contents_writeable (result),
3251 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3252 }
3253 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3254 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3255 else
3256 error (_("Cannot reference virtual member function \"%s\""),
3257 name);
3258 }
3259 else
3260 {
3261 struct symbol *s =
3262 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3263 0, VAR_DOMAIN, 0);
3264
3265 if (s == NULL)
3266 return NULL;
3267
3268 v = read_var_value (s, 0);
3269 if (!want_address)
3270 result = v;
3271 else
3272 {
3273 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3274 cplus_make_method_ptr (value_type (result),
3275 value_contents_writeable (result),
3276 value_address (v), 0);
3277 }
3278 }
3279 return result;
3280 }
3281 }
3282 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3283 {
3284 struct value *v;
3285 int base_offset;
3286
3287 if (BASETYPE_VIA_VIRTUAL (t, i))
3288 base_offset = 0;
3289 else
3290 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3291 v = value_struct_elt_for_reference (domain,
3292 offset + base_offset,
3293 TYPE_BASECLASS (t, i),
3294 name, intype,
3295 want_address, noside);
3296 if (v)
3297 return v;
3298 }
3299
3300 /* As a last chance, pretend that CURTYPE is a namespace, and look
3301 it up that way; this (frequently) works for types nested inside
3302 classes. */
3303
3304 return value_maybe_namespace_elt (curtype, name,
3305 want_address, noside);
3306 }
3307
3308 /* C++: Return the member NAME of the namespace given by the type
3309 CURTYPE. */
3310
3311 static struct value *
3312 value_namespace_elt (const struct type *curtype,
3313 char *name, int want_address,
3314 enum noside noside)
3315 {
3316 struct value *retval = value_maybe_namespace_elt (curtype, name,
3317 want_address,
3318 noside);
3319
3320 if (retval == NULL)
3321 error (_("No symbol \"%s\" in namespace \"%s\"."),
3322 name, TYPE_TAG_NAME (curtype));
3323
3324 return retval;
3325 }
3326
3327 /* A helper function used by value_namespace_elt and
3328 value_struct_elt_for_reference. It looks up NAME inside the
3329 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3330 is a class and NAME refers to a type in CURTYPE itself (as opposed
3331 to, say, some base class of CURTYPE). */
3332
3333 static struct value *
3334 value_maybe_namespace_elt (const struct type *curtype,
3335 char *name, int want_address,
3336 enum noside noside)
3337 {
3338 const char *namespace_name = TYPE_TAG_NAME (curtype);
3339 struct symbol *sym;
3340 struct value *result;
3341
3342 sym = cp_lookup_symbol_namespace (namespace_name, name,
3343 get_selected_block (0), VAR_DOMAIN);
3344
3345 if (sym == NULL)
3346 {
3347 char *concatenated_name = alloca (strlen (namespace_name) + 2
3348 + strlen (name) + 1);
3349
3350 sprintf (concatenated_name, "%s::%s", namespace_name, name);
3351 sym = lookup_static_symbol_aux (concatenated_name, VAR_DOMAIN);
3352 }
3353
3354 if (sym == NULL)
3355 return NULL;
3356 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3357 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
3358 result = allocate_value (SYMBOL_TYPE (sym));
3359 else
3360 result = value_of_variable (sym, get_selected_block (0));
3361
3362 if (result && want_address)
3363 result = value_addr (result);
3364
3365 return result;
3366 }
3367
3368 /* Given a pointer or a reference value V, find its real (RTTI) type.
3369
3370 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3371 and refer to the values computed for the object pointed to. */
3372
3373 struct type *
3374 value_rtti_indirect_type (struct value *v, int *full,
3375 int *top, int *using_enc)
3376 {
3377 struct value *target;
3378 struct type *type, *real_type, *target_type;
3379
3380 type = value_type (v);
3381 type = check_typedef (type);
3382 if (TYPE_CODE (type) == TYPE_CODE_REF)
3383 target = coerce_ref (v);
3384 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3385 target = value_ind (v);
3386 else
3387 return NULL;
3388
3389 real_type = value_rtti_type (target, full, top, using_enc);
3390
3391 if (real_type)
3392 {
3393 /* Copy qualifiers to the referenced object. */
3394 target_type = value_type (target);
3395 real_type = make_cv_type (TYPE_CONST (target_type),
3396 TYPE_VOLATILE (target_type), real_type, NULL);
3397 if (TYPE_CODE (type) == TYPE_CODE_REF)
3398 real_type = lookup_reference_type (real_type);
3399 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3400 real_type = lookup_pointer_type (real_type);
3401 else
3402 internal_error (__FILE__, __LINE__, _("Unexpected value type."));
3403
3404 /* Copy qualifiers to the pointer/reference. */
3405 real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type),
3406 real_type, NULL);
3407 }
3408
3409 return real_type;
3410 }
3411
3412 /* Given a value pointed to by ARGP, check its real run-time type, and
3413 if that is different from the enclosing type, create a new value
3414 using the real run-time type as the enclosing type (and of the same
3415 type as ARGP) and return it, with the embedded offset adjusted to
3416 be the correct offset to the enclosed object. RTYPE is the type,
3417 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3418 by value_rtti_type(). If these are available, they can be supplied
3419 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3420 NULL if they're not available. */
3421
3422 struct value *
3423 value_full_object (struct value *argp,
3424 struct type *rtype,
3425 int xfull, int xtop,
3426 int xusing_enc)
3427 {
3428 struct type *real_type;
3429 int full = 0;
3430 int top = -1;
3431 int using_enc = 0;
3432 struct value *new_val;
3433
3434 if (rtype)
3435 {
3436 real_type = rtype;
3437 full = xfull;
3438 top = xtop;
3439 using_enc = xusing_enc;
3440 }
3441 else
3442 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3443
3444 /* If no RTTI data, or if object is already complete, do nothing. */
3445 if (!real_type || real_type == value_enclosing_type (argp))
3446 return argp;
3447
3448 /* In a destructor we might see a real type that is a superclass of
3449 the object's type. In this case it is better to leave the object
3450 as-is. */
3451 if (full
3452 && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp)))
3453 return argp;
3454
3455 /* If we have the full object, but for some reason the enclosing
3456 type is wrong, set it. */
3457 /* pai: FIXME -- sounds iffy */
3458 if (full)
3459 {
3460 argp = value_copy (argp);
3461 set_value_enclosing_type (argp, real_type);
3462 return argp;
3463 }
3464
3465 /* Check if object is in memory. */
3466 if (VALUE_LVAL (argp) != lval_memory)
3467 {
3468 warning (_("Couldn't retrieve complete object of RTTI "
3469 "type %s; object may be in register(s)."),
3470 TYPE_NAME (real_type));
3471
3472 return argp;
3473 }
3474
3475 /* All other cases -- retrieve the complete object. */
3476 /* Go back by the computed top_offset from the beginning of the
3477 object, adjusting for the embedded offset of argp if that's what
3478 value_rtti_type used for its computation. */
3479 new_val = value_at_lazy (real_type, value_address (argp) - top +
3480 (using_enc ? 0 : value_embedded_offset (argp)));
3481 deprecated_set_value_type (new_val, value_type (argp));
3482 set_value_embedded_offset (new_val, (using_enc
3483 ? top + value_embedded_offset (argp)
3484 : top));
3485 return new_val;
3486 }
3487
3488
3489 /* Return the value of the local variable, if one exists. Throw error
3490 otherwise, such as if the request is made in an inappropriate context. */
3491
3492 struct value *
3493 value_of_this (const struct language_defn *lang)
3494 {
3495 struct symbol *sym;
3496 struct block *b;
3497 struct frame_info *frame;
3498
3499 if (!lang->la_name_of_this)
3500 error (_("no `this' in current language"));
3501
3502 frame = get_selected_frame (_("no frame selected"));
3503
3504 b = get_frame_block (frame, NULL);
3505
3506 sym = lookup_language_this (lang, b);
3507 if (sym == NULL)
3508 error (_("current stack frame does not contain a variable named `%s'"),
3509 lang->la_name_of_this);
3510
3511 return read_var_value (sym, frame);
3512 }
3513
3514 /* Return the value of the local variable, if one exists. Return NULL
3515 otherwise. Never throw error. */
3516
3517 struct value *
3518 value_of_this_silent (const struct language_defn *lang)
3519 {
3520 struct value *ret = NULL;
3521 volatile struct gdb_exception except;
3522
3523 TRY_CATCH (except, RETURN_MASK_ERROR)
3524 {
3525 ret = value_of_this (lang);
3526 }
3527
3528 return ret;
3529 }
3530
3531 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3532 elements long, starting at LOWBOUND. The result has the same lower
3533 bound as the original ARRAY. */
3534
3535 struct value *
3536 value_slice (struct value *array, int lowbound, int length)
3537 {
3538 struct type *slice_range_type, *slice_type, *range_type;
3539 LONGEST lowerbound, upperbound;
3540 struct value *slice;
3541 struct type *array_type;
3542
3543 array_type = check_typedef (value_type (array));
3544 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3545 && TYPE_CODE (array_type) != TYPE_CODE_STRING)
3546 error (_("cannot take slice of non-array"));
3547
3548 range_type = TYPE_INDEX_TYPE (array_type);
3549 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3550 error (_("slice from bad array or bitstring"));
3551
3552 if (lowbound < lowerbound || length < 0
3553 || lowbound + length - 1 > upperbound)
3554 error (_("slice out of range"));
3555
3556 /* FIXME-type-allocation: need a way to free this type when we are
3557 done with it. */
3558 slice_range_type = create_range_type ((struct type *) NULL,
3559 TYPE_TARGET_TYPE (range_type),
3560 lowbound,
3561 lowbound + length - 1);
3562
3563 {
3564 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3565 LONGEST offset =
3566 (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3567
3568 slice_type = create_array_type ((struct type *) NULL,
3569 element_type,
3570 slice_range_type);
3571 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3572
3573 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3574 slice = allocate_value_lazy (slice_type);
3575 else
3576 {
3577 slice = allocate_value (slice_type);
3578 value_contents_copy (slice, 0, array, offset,
3579 TYPE_LENGTH (slice_type));
3580 }
3581
3582 set_value_component_location (slice, array);
3583 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3584 set_value_offset (slice, value_offset (array) + offset);
3585 }
3586 return slice;
3587 }
3588
3589 /* Create a value for a FORTRAN complex number. Currently most of the
3590 time values are coerced to COMPLEX*16 (i.e. a complex number
3591 composed of 2 doubles. This really should be a smarter routine
3592 that figures out precision inteligently as opposed to assuming
3593 doubles. FIXME: fmb */
3594
3595 struct value *
3596 value_literal_complex (struct value *arg1,
3597 struct value *arg2,
3598 struct type *type)
3599 {
3600 struct value *val;
3601 struct type *real_type = TYPE_TARGET_TYPE (type);
3602
3603 val = allocate_value (type);
3604 arg1 = value_cast (real_type, arg1);
3605 arg2 = value_cast (real_type, arg2);
3606
3607 memcpy (value_contents_raw (val),
3608 value_contents (arg1), TYPE_LENGTH (real_type));
3609 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3610 value_contents (arg2), TYPE_LENGTH (real_type));
3611 return val;
3612 }
3613
3614 /* Cast a value into the appropriate complex data type. */
3615
3616 static struct value *
3617 cast_into_complex (struct type *type, struct value *val)
3618 {
3619 struct type *real_type = TYPE_TARGET_TYPE (type);
3620
3621 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3622 {
3623 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3624 struct value *re_val = allocate_value (val_real_type);
3625 struct value *im_val = allocate_value (val_real_type);
3626
3627 memcpy (value_contents_raw (re_val),
3628 value_contents (val), TYPE_LENGTH (val_real_type));
3629 memcpy (value_contents_raw (im_val),
3630 value_contents (val) + TYPE_LENGTH (val_real_type),
3631 TYPE_LENGTH (val_real_type));
3632
3633 return value_literal_complex (re_val, im_val, type);
3634 }
3635 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3636 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3637 return value_literal_complex (val,
3638 value_zero (real_type, not_lval),
3639 type);
3640 else
3641 error (_("cannot cast non-number to complex"));
3642 }
3643
3644 void
3645 _initialize_valops (void)
3646 {
3647 add_setshow_boolean_cmd ("overload-resolution", class_support,
3648 &overload_resolution, _("\
3649 Set overload resolution in evaluating C++ functions."), _("\
3650 Show overload resolution in evaluating C++ functions."),
3651 NULL, NULL,
3652 show_overload_resolution,
3653 &setlist, &showlist);
3654 overload_resolution = 1;
3655 }