2007-06-09 Markus Deuling <deuling@de.ibm.com>
[binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "value.h"
28 #include "frame.h"
29 #include "inferior.h"
30 #include "gdbcore.h"
31 #include "target.h"
32 #include "demangle.h"
33 #include "language.h"
34 #include "gdbcmd.h"
35 #include "regcache.h"
36 #include "cp-abi.h"
37 #include "block.h"
38 #include "infcall.h"
39 #include "dictionary.h"
40 #include "cp-support.h"
41
42 #include <errno.h>
43 #include "gdb_string.h"
44 #include "gdb_assert.h"
45 #include "cp-support.h"
46 #include "observer.h"
47
48 extern int overload_debug;
49 /* Local functions. */
50
51 static int typecmp (int staticp, int varargs, int nargs,
52 struct field t1[], struct value *t2[]);
53
54 static struct value *search_struct_field (char *, struct value *, int,
55 struct type *, int);
56
57 static struct value *search_struct_method (char *, struct value **,
58 struct value **,
59 int, int *, struct type *);
60
61 static int find_oload_champ_namespace (struct type **arg_types, int nargs,
62 const char *func_name,
63 const char *qualified_name,
64 struct symbol ***oload_syms,
65 struct badness_vector **oload_champ_bv);
66
67 static
68 int find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
69 const char *func_name,
70 const char *qualified_name,
71 int namespace_len,
72 struct symbol ***oload_syms,
73 struct badness_vector **oload_champ_bv,
74 int *oload_champ);
75
76 static int find_oload_champ (struct type **arg_types, int nargs, int method,
77 int num_fns,
78 struct fn_field *fns_ptr,
79 struct symbol **oload_syms,
80 struct badness_vector **oload_champ_bv);
81
82 static int oload_method_static (int method, struct fn_field *fns_ptr,
83 int index);
84
85 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
86
87 static enum
88 oload_classification classify_oload_match (struct badness_vector
89 * oload_champ_bv,
90 int nargs,
91 int static_offset);
92
93 static int check_field_in (struct type *, const char *);
94
95 static struct value *value_struct_elt_for_reference (struct type *domain,
96 int offset,
97 struct type *curtype,
98 char *name,
99 struct type *intype,
100 int want_address,
101 enum noside noside);
102
103 static struct value *value_namespace_elt (const struct type *curtype,
104 char *name, int want_address,
105 enum noside noside);
106
107 static struct value *value_maybe_namespace_elt (const struct type *curtype,
108 char *name, int want_address,
109 enum noside noside);
110
111 static CORE_ADDR allocate_space_in_inferior (int);
112
113 static struct value *cast_into_complex (struct type *, struct value *);
114
115 static struct fn_field *find_method_list (struct value ** argp, char *method,
116 int offset,
117 struct type *type, int *num_fns,
118 struct type **basetype,
119 int *boffset);
120
121 void _initialize_valops (void);
122
123 /* Flag for whether we want to abandon failed expression evals by default. */
124
125 #if 0
126 static int auto_abandon = 0;
127 #endif
128
129 int overload_resolution = 0;
130 static void
131 show_overload_resolution (struct ui_file *file, int from_tty,
132 struct cmd_list_element *c, const char *value)
133 {
134 fprintf_filtered (file, _("\
135 Overload resolution in evaluating C++ functions is %s.\n"),
136 value);
137 }
138
139 /* Find the address of function name NAME in the inferior. */
140
141 struct value *
142 find_function_in_inferior (const char *name)
143 {
144 struct symbol *sym;
145 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0, NULL);
146 if (sym != NULL)
147 {
148 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
149 {
150 error (_("\"%s\" exists in this program but is not a function."),
151 name);
152 }
153 return value_of_variable (sym, NULL);
154 }
155 else
156 {
157 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
158 if (msymbol != NULL)
159 {
160 struct type *type;
161 CORE_ADDR maddr;
162 type = lookup_pointer_type (builtin_type_char);
163 type = lookup_function_type (type);
164 type = lookup_pointer_type (type);
165 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
166 return value_from_pointer (type, maddr);
167 }
168 else
169 {
170 if (!target_has_execution)
171 error (_("evaluation of this expression requires the target program to be active"));
172 else
173 error (_("evaluation of this expression requires the program to have a function \"%s\"."), name);
174 }
175 }
176 }
177
178 /* Allocate NBYTES of space in the inferior using the inferior's malloc
179 and return a value that is a pointer to the allocated space. */
180
181 struct value *
182 value_allocate_space_in_inferior (int len)
183 {
184 struct value *blocklen;
185 struct value *val = find_function_in_inferior
186 (gdbarch_name_of_malloc (current_gdbarch));
187
188 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
189 val = call_function_by_hand (val, 1, &blocklen);
190 if (value_logical_not (val))
191 {
192 if (!target_has_execution)
193 error (_("No memory available to program now: you need to start the target first"));
194 else
195 error (_("No memory available to program: call to malloc failed"));
196 }
197 return val;
198 }
199
200 static CORE_ADDR
201 allocate_space_in_inferior (int len)
202 {
203 return value_as_long (value_allocate_space_in_inferior (len));
204 }
205
206 /* Cast one pointer or reference type to another. Both TYPE and
207 the type of ARG2 should be pointer types, or else both should be
208 reference types. Returns the new pointer or reference. */
209
210 struct value *
211 value_cast_pointers (struct type *type, struct value *arg2)
212 {
213 struct type *type2 = check_typedef (value_type (arg2));
214 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
215 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
216
217 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
218 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
219 && !value_logical_not (arg2))
220 {
221 struct value *v;
222
223 /* Look in the type of the source to see if it contains the
224 type of the target as a superclass. If so, we'll need to
225 offset the pointer rather than just change its type. */
226 if (TYPE_NAME (t1) != NULL)
227 {
228 struct value *v2;
229
230 if (TYPE_CODE (type2) == TYPE_CODE_REF)
231 v2 = coerce_ref (arg2);
232 else
233 v2 = value_ind (arg2);
234 v = search_struct_field (type_name_no_tag (t1),
235 v2, 0, t2, 1);
236 if (v)
237 {
238 v = value_addr (v);
239 deprecated_set_value_type (v, type);
240 return v;
241 }
242 }
243
244 /* Look in the type of the target to see if it contains the
245 type of the source as a superclass. If so, we'll need to
246 offset the pointer rather than just change its type.
247 FIXME: This fails silently with virtual inheritance. */
248 if (TYPE_NAME (t2) != NULL)
249 {
250 v = search_struct_field (type_name_no_tag (t2),
251 value_zero (t1, not_lval), 0, t1, 1);
252 if (v)
253 {
254 CORE_ADDR addr2 = value_as_address (arg2);
255 addr2 -= (VALUE_ADDRESS (v)
256 + value_offset (v)
257 + value_embedded_offset (v));
258 return value_from_pointer (type, addr2);
259 }
260 }
261 }
262
263 /* No superclass found, just change the pointer type. */
264 arg2 = value_copy (arg2);
265 deprecated_set_value_type (arg2, type);
266 arg2 = value_change_enclosing_type (arg2, type);
267 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
268 return arg2;
269 }
270
271 /* Cast value ARG2 to type TYPE and return as a value.
272 More general than a C cast: accepts any two types of the same length,
273 and if ARG2 is an lvalue it can be cast into anything at all. */
274 /* In C++, casts may change pointer or object representations. */
275
276 struct value *
277 value_cast (struct type *type, struct value *arg2)
278 {
279 enum type_code code1;
280 enum type_code code2;
281 int scalar;
282 struct type *type2;
283
284 int convert_to_boolean = 0;
285
286 if (value_type (arg2) == type)
287 return arg2;
288
289 CHECK_TYPEDEF (type);
290 code1 = TYPE_CODE (type);
291 arg2 = coerce_ref (arg2);
292 type2 = check_typedef (value_type (arg2));
293
294 /* You can't cast to a reference type. See value_cast_pointers
295 instead. */
296 gdb_assert (code1 != TYPE_CODE_REF);
297
298 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
299 is treated like a cast to (TYPE [N])OBJECT,
300 where N is sizeof(OBJECT)/sizeof(TYPE). */
301 if (code1 == TYPE_CODE_ARRAY)
302 {
303 struct type *element_type = TYPE_TARGET_TYPE (type);
304 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
305 if (element_length > 0
306 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
307 {
308 struct type *range_type = TYPE_INDEX_TYPE (type);
309 int val_length = TYPE_LENGTH (type2);
310 LONGEST low_bound, high_bound, new_length;
311 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
312 low_bound = 0, high_bound = 0;
313 new_length = val_length / element_length;
314 if (val_length % element_length != 0)
315 warning (_("array element type size does not divide object size in cast"));
316 /* FIXME-type-allocation: need a way to free this type when we are
317 done with it. */
318 range_type = create_range_type ((struct type *) NULL,
319 TYPE_TARGET_TYPE (range_type),
320 low_bound,
321 new_length + low_bound - 1);
322 deprecated_set_value_type (arg2, create_array_type ((struct type *) NULL,
323 element_type, range_type));
324 return arg2;
325 }
326 }
327
328 if (current_language->c_style_arrays
329 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
330 arg2 = value_coerce_array (arg2);
331
332 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
333 arg2 = value_coerce_function (arg2);
334
335 type2 = check_typedef (value_type (arg2));
336 code2 = TYPE_CODE (type2);
337
338 if (code1 == TYPE_CODE_COMPLEX)
339 return cast_into_complex (type, arg2);
340 if (code1 == TYPE_CODE_BOOL)
341 {
342 code1 = TYPE_CODE_INT;
343 convert_to_boolean = 1;
344 }
345 if (code1 == TYPE_CODE_CHAR)
346 code1 = TYPE_CODE_INT;
347 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
348 code2 = TYPE_CODE_INT;
349
350 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
351 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
352
353 if (code1 == TYPE_CODE_STRUCT
354 && code2 == TYPE_CODE_STRUCT
355 && TYPE_NAME (type) != 0)
356 {
357 /* Look in the type of the source to see if it contains the
358 type of the target as a superclass. If so, we'll need to
359 offset the object in addition to changing its type. */
360 struct value *v = search_struct_field (type_name_no_tag (type),
361 arg2, 0, type2, 1);
362 if (v)
363 {
364 deprecated_set_value_type (v, type);
365 return v;
366 }
367 }
368 if (code1 == TYPE_CODE_FLT && scalar)
369 return value_from_double (type, value_as_double (arg2));
370 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
371 || code1 == TYPE_CODE_RANGE)
372 && (scalar || code2 == TYPE_CODE_PTR
373 || code2 == TYPE_CODE_MEMBERPTR))
374 {
375 LONGEST longest;
376
377 /* When we cast pointers to integers, we mustn't use
378 gdbarch_pointer_to_address to find the address the pointer
379 represents, as value_as_long would. GDB should evaluate
380 expressions just as the compiler would --- and the compiler
381 sees a cast as a simple reinterpretation of the pointer's
382 bits. */
383 if (code2 == TYPE_CODE_PTR)
384 longest = extract_unsigned_integer (value_contents (arg2),
385 TYPE_LENGTH (type2));
386 else
387 longest = value_as_long (arg2);
388 return value_from_longest (type, convert_to_boolean ?
389 (LONGEST) (longest ? 1 : 0) : longest);
390 }
391 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT ||
392 code2 == TYPE_CODE_ENUM ||
393 code2 == TYPE_CODE_RANGE))
394 {
395 /* TYPE_LENGTH (type) is the length of a pointer, but we really
396 want the length of an address! -- we are really dealing with
397 addresses (i.e., gdb representations) not pointers (i.e.,
398 target representations) here.
399
400 This allows things like "print *(int *)0x01000234" to work
401 without printing a misleading message -- which would
402 otherwise occur when dealing with a target having two byte
403 pointers and four byte addresses. */
404
405 int addr_bit = TARGET_ADDR_BIT;
406
407 LONGEST longest = value_as_long (arg2);
408 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
409 {
410 if (longest >= ((LONGEST) 1 << addr_bit)
411 || longest <= -((LONGEST) 1 << addr_bit))
412 warning (_("value truncated"));
413 }
414 return value_from_longest (type, longest);
415 }
416 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
417 && value_as_long (arg2) == 0)
418 {
419 struct value *result = allocate_value (type);
420 cplus_make_method_ptr (value_contents_writeable (result), 0, 0);
421 return result;
422 }
423 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
424 && value_as_long (arg2) == 0)
425 {
426 /* The Itanium C++ ABI represents NULL pointers to members as
427 minus one, instead of biasing the normal case. */
428 return value_from_longest (type, -1);
429 }
430 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
431 {
432 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
433 return value_cast_pointers (type, arg2);
434
435 arg2 = value_copy (arg2);
436 deprecated_set_value_type (arg2, type);
437 arg2 = value_change_enclosing_type (arg2, type);
438 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
439 return arg2;
440 }
441 else if (VALUE_LVAL (arg2) == lval_memory)
442 return value_at_lazy (type, VALUE_ADDRESS (arg2) + value_offset (arg2));
443 else if (code1 == TYPE_CODE_VOID)
444 {
445 return value_zero (builtin_type_void, not_lval);
446 }
447 else
448 {
449 error (_("Invalid cast."));
450 return 0;
451 }
452 }
453
454 /* Create a value of type TYPE that is zero, and return it. */
455
456 struct value *
457 value_zero (struct type *type, enum lval_type lv)
458 {
459 struct value *val = allocate_value (type);
460 VALUE_LVAL (val) = lv;
461
462 return val;
463 }
464
465 /* Return a value with type TYPE located at ADDR.
466
467 Call value_at only if the data needs to be fetched immediately;
468 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
469 value_at_lazy instead. value_at_lazy simply records the address of
470 the data and sets the lazy-evaluation-required flag. The lazy flag
471 is tested in the value_contents macro, which is used if and when
472 the contents are actually required.
473
474 Note: value_at does *NOT* handle embedded offsets; perform such
475 adjustments before or after calling it. */
476
477 struct value *
478 value_at (struct type *type, CORE_ADDR addr)
479 {
480 struct value *val;
481
482 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
483 error (_("Attempt to dereference a generic pointer."));
484
485 val = allocate_value (type);
486
487 read_memory (addr, value_contents_all_raw (val), TYPE_LENGTH (type));
488
489 VALUE_LVAL (val) = lval_memory;
490 VALUE_ADDRESS (val) = addr;
491
492 return val;
493 }
494
495 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
496
497 struct value *
498 value_at_lazy (struct type *type, CORE_ADDR addr)
499 {
500 struct value *val;
501
502 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
503 error (_("Attempt to dereference a generic pointer."));
504
505 val = allocate_value (type);
506
507 VALUE_LVAL (val) = lval_memory;
508 VALUE_ADDRESS (val) = addr;
509 set_value_lazy (val, 1);
510
511 return val;
512 }
513
514 /* Called only from the value_contents and value_contents_all()
515 macros, if the current data for a variable needs to be loaded into
516 value_contents(VAL). Fetches the data from the user's process, and
517 clears the lazy flag to indicate that the data in the buffer is
518 valid.
519
520 If the value is zero-length, we avoid calling read_memory, which would
521 abort. We mark the value as fetched anyway -- all 0 bytes of it.
522
523 This function returns a value because it is used in the value_contents
524 macro as part of an expression, where a void would not work. The
525 value is ignored. */
526
527 int
528 value_fetch_lazy (struct value *val)
529 {
530 CORE_ADDR addr = VALUE_ADDRESS (val) + value_offset (val);
531 int length = TYPE_LENGTH (value_enclosing_type (val));
532
533 struct type *type = value_type (val);
534 if (length)
535 read_memory (addr, value_contents_all_raw (val), length);
536
537 set_value_lazy (val, 0);
538 return 0;
539 }
540
541
542 /* Store the contents of FROMVAL into the location of TOVAL.
543 Return a new value with the location of TOVAL and contents of FROMVAL. */
544
545 struct value *
546 value_assign (struct value *toval, struct value *fromval)
547 {
548 struct type *type;
549 struct value *val;
550 struct frame_id old_frame;
551
552 if (!deprecated_value_modifiable (toval))
553 error (_("Left operand of assignment is not a modifiable lvalue."));
554
555 toval = coerce_ref (toval);
556
557 type = value_type (toval);
558 if (VALUE_LVAL (toval) != lval_internalvar)
559 fromval = value_cast (type, fromval);
560 else
561 fromval = coerce_array (fromval);
562 CHECK_TYPEDEF (type);
563
564 /* Since modifying a register can trash the frame chain, and modifying memory
565 can trash the frame cache, we save the old frame and then restore the new
566 frame afterwards. */
567 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
568
569 switch (VALUE_LVAL (toval))
570 {
571 case lval_internalvar:
572 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
573 val = value_copy (VALUE_INTERNALVAR (toval)->value);
574 val = value_change_enclosing_type (val, value_enclosing_type (fromval));
575 set_value_embedded_offset (val, value_embedded_offset (fromval));
576 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
577 return val;
578
579 case lval_internalvar_component:
580 set_internalvar_component (VALUE_INTERNALVAR (toval),
581 value_offset (toval),
582 value_bitpos (toval),
583 value_bitsize (toval),
584 fromval);
585 break;
586
587 case lval_memory:
588 {
589 const gdb_byte *dest_buffer;
590 CORE_ADDR changed_addr;
591 int changed_len;
592 gdb_byte buffer[sizeof (LONGEST)];
593
594 if (value_bitsize (toval))
595 {
596 /* We assume that the argument to read_memory is in units of
597 host chars. FIXME: Is that correct? */
598 changed_len = (value_bitpos (toval)
599 + value_bitsize (toval)
600 + HOST_CHAR_BIT - 1)
601 / HOST_CHAR_BIT;
602
603 if (changed_len > (int) sizeof (LONGEST))
604 error (_("Can't handle bitfields which don't fit in a %d bit word."),
605 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
606
607 read_memory (VALUE_ADDRESS (toval) + value_offset (toval),
608 buffer, changed_len);
609 modify_field (buffer, value_as_long (fromval),
610 value_bitpos (toval), value_bitsize (toval));
611 changed_addr = VALUE_ADDRESS (toval) + value_offset (toval);
612 dest_buffer = buffer;
613 }
614 else
615 {
616 changed_addr = VALUE_ADDRESS (toval) + value_offset (toval);
617 changed_len = TYPE_LENGTH (type);
618 dest_buffer = value_contents (fromval);
619 }
620
621 write_memory (changed_addr, dest_buffer, changed_len);
622 if (deprecated_memory_changed_hook)
623 deprecated_memory_changed_hook (changed_addr, changed_len);
624 }
625 break;
626
627 case lval_register:
628 {
629 struct frame_info *frame;
630 int value_reg;
631
632 /* Figure out which frame this is in currently. */
633 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
634 value_reg = VALUE_REGNUM (toval);
635
636 if (!frame)
637 error (_("Value being assigned to is no longer active."));
638
639 if (CONVERT_REGISTER_P (VALUE_REGNUM (toval), type))
640 {
641 /* If TOVAL is a special machine register requiring
642 conversion of program values to a special raw format. */
643 VALUE_TO_REGISTER (frame, VALUE_REGNUM (toval),
644 type, value_contents (fromval));
645 }
646 else
647 {
648 if (value_bitsize (toval))
649 {
650 int changed_len;
651 gdb_byte buffer[sizeof (LONGEST)];
652
653 changed_len = (value_bitpos (toval)
654 + value_bitsize (toval)
655 + HOST_CHAR_BIT - 1)
656 / HOST_CHAR_BIT;
657
658 if (changed_len > (int) sizeof (LONGEST))
659 error (_("Can't handle bitfields which don't fit in a %d bit word."),
660 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
661
662 get_frame_register_bytes (frame, value_reg,
663 value_offset (toval),
664 changed_len, buffer);
665
666 modify_field (buffer, value_as_long (fromval),
667 value_bitpos (toval), value_bitsize (toval));
668
669 put_frame_register_bytes (frame, value_reg,
670 value_offset (toval),
671 changed_len, buffer);
672 }
673 else
674 {
675 put_frame_register_bytes (frame, value_reg,
676 value_offset (toval),
677 TYPE_LENGTH (type),
678 value_contents (fromval));
679 }
680 }
681
682 if (deprecated_register_changed_hook)
683 deprecated_register_changed_hook (-1);
684 observer_notify_target_changed (&current_target);
685 break;
686 }
687
688 default:
689 error (_("Left operand of assignment is not an lvalue."));
690 }
691
692 /* Assigning to the stack pointer, frame pointer, and other
693 (architecture and calling convention specific) registers may
694 cause the frame cache to be out of date. Assigning to memory
695 also can. We just do this on all assignments to registers or
696 memory, for simplicity's sake; I doubt the slowdown matters. */
697 switch (VALUE_LVAL (toval))
698 {
699 case lval_memory:
700 case lval_register:
701
702 reinit_frame_cache ();
703
704 /* Having destoroyed the frame cache, restore the selected frame. */
705
706 /* FIXME: cagney/2002-11-02: There has to be a better way of
707 doing this. Instead of constantly saving/restoring the
708 frame. Why not create a get_selected_frame() function that,
709 having saved the selected frame's ID can automatically
710 re-find the previously selected frame automatically. */
711
712 {
713 struct frame_info *fi = frame_find_by_id (old_frame);
714 if (fi != NULL)
715 select_frame (fi);
716 }
717
718 break;
719 default:
720 break;
721 }
722
723 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
724 If the field is signed, and is negative, then sign extend. */
725 if ((value_bitsize (toval) > 0)
726 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
727 {
728 LONGEST fieldval = value_as_long (fromval);
729 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
730
731 fieldval &= valmask;
732 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
733 fieldval |= ~valmask;
734
735 fromval = value_from_longest (type, fieldval);
736 }
737
738 val = value_copy (toval);
739 memcpy (value_contents_raw (val), value_contents (fromval),
740 TYPE_LENGTH (type));
741 deprecated_set_value_type (val, type);
742 val = value_change_enclosing_type (val, value_enclosing_type (fromval));
743 set_value_embedded_offset (val, value_embedded_offset (fromval));
744 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
745
746 return val;
747 }
748
749 /* Extend a value VAL to COUNT repetitions of its type. */
750
751 struct value *
752 value_repeat (struct value *arg1, int count)
753 {
754 struct value *val;
755
756 if (VALUE_LVAL (arg1) != lval_memory)
757 error (_("Only values in memory can be extended with '@'."));
758 if (count < 1)
759 error (_("Invalid number %d of repetitions."), count);
760
761 val = allocate_repeat_value (value_enclosing_type (arg1), count);
762
763 read_memory (VALUE_ADDRESS (arg1) + value_offset (arg1),
764 value_contents_all_raw (val),
765 TYPE_LENGTH (value_enclosing_type (val)));
766 VALUE_LVAL (val) = lval_memory;
767 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + value_offset (arg1);
768
769 return val;
770 }
771
772 struct value *
773 value_of_variable (struct symbol *var, struct block *b)
774 {
775 struct value *val;
776 struct frame_info *frame = NULL;
777
778 if (!b)
779 frame = NULL; /* Use selected frame. */
780 else if (symbol_read_needs_frame (var))
781 {
782 frame = block_innermost_frame (b);
783 if (!frame)
784 {
785 if (BLOCK_FUNCTION (b)
786 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
787 error (_("No frame is currently executing in block %s."),
788 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
789 else
790 error (_("No frame is currently executing in specified block"));
791 }
792 }
793
794 val = read_var_value (var, frame);
795 if (!val)
796 error (_("Address of symbol \"%s\" is unknown."), SYMBOL_PRINT_NAME (var));
797
798 return val;
799 }
800
801 /* Given a value which is an array, return a value which is a pointer to its
802 first element, regardless of whether or not the array has a nonzero lower
803 bound.
804
805 FIXME: A previous comment here indicated that this routine should be
806 substracting the array's lower bound. It's not clear to me that this
807 is correct. Given an array subscripting operation, it would certainly
808 work to do the adjustment here, essentially computing:
809
810 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
811
812 However I believe a more appropriate and logical place to account for
813 the lower bound is to do so in value_subscript, essentially computing:
814
815 (&array[0] + ((index - lowerbound) * sizeof array[0]))
816
817 As further evidence consider what would happen with operations other
818 than array subscripting, where the caller would get back a value that
819 had an address somewhere before the actual first element of the array,
820 and the information about the lower bound would be lost because of
821 the coercion to pointer type.
822 */
823
824 struct value *
825 value_coerce_array (struct value *arg1)
826 {
827 struct type *type = check_typedef (value_type (arg1));
828
829 if (VALUE_LVAL (arg1) != lval_memory)
830 error (_("Attempt to take address of value not located in memory."));
831
832 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
833 (VALUE_ADDRESS (arg1) + value_offset (arg1)));
834 }
835
836 /* Given a value which is a function, return a value which is a pointer
837 to it. */
838
839 struct value *
840 value_coerce_function (struct value *arg1)
841 {
842 struct value *retval;
843
844 if (VALUE_LVAL (arg1) != lval_memory)
845 error (_("Attempt to take address of value not located in memory."));
846
847 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
848 (VALUE_ADDRESS (arg1) + value_offset (arg1)));
849 return retval;
850 }
851
852 /* Return a pointer value for the object for which ARG1 is the contents. */
853
854 struct value *
855 value_addr (struct value *arg1)
856 {
857 struct value *arg2;
858
859 struct type *type = check_typedef (value_type (arg1));
860 if (TYPE_CODE (type) == TYPE_CODE_REF)
861 {
862 /* Copy the value, but change the type from (T&) to (T*).
863 We keep the same location information, which is efficient,
864 and allows &(&X) to get the location containing the reference. */
865 arg2 = value_copy (arg1);
866 deprecated_set_value_type (arg2, lookup_pointer_type (TYPE_TARGET_TYPE (type)));
867 return arg2;
868 }
869 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
870 return value_coerce_function (arg1);
871
872 if (VALUE_LVAL (arg1) != lval_memory)
873 error (_("Attempt to take address of value not located in memory."));
874
875 /* Get target memory address */
876 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
877 (VALUE_ADDRESS (arg1)
878 + value_offset (arg1)
879 + value_embedded_offset (arg1)));
880
881 /* This may be a pointer to a base subobject; so remember the
882 full derived object's type ... */
883 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (value_enclosing_type (arg1)));
884 /* ... and also the relative position of the subobject in the full object */
885 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
886 return arg2;
887 }
888
889 /* Return a reference value for the object for which ARG1 is the contents. */
890
891 struct value *
892 value_ref (struct value *arg1)
893 {
894 struct value *arg2;
895
896 struct type *type = check_typedef (value_type (arg1));
897 if (TYPE_CODE (type) == TYPE_CODE_REF)
898 return arg1;
899
900 arg2 = value_addr (arg1);
901 deprecated_set_value_type (arg2, lookup_reference_type (type));
902 return arg2;
903 }
904
905 /* Given a value of a pointer type, apply the C unary * operator to it. */
906
907 struct value *
908 value_ind (struct value *arg1)
909 {
910 struct type *base_type;
911 struct value *arg2;
912
913 arg1 = coerce_array (arg1);
914
915 base_type = check_typedef (value_type (arg1));
916
917 /* Allow * on an integer so we can cast it to whatever we want.
918 This returns an int, which seems like the most C-like thing
919 to do. "long long" variables are rare enough that
920 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
921 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
922 return value_at_lazy (builtin_type_int,
923 (CORE_ADDR) value_as_address (arg1));
924 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
925 {
926 struct type *enc_type;
927 /* We may be pointing to something embedded in a larger object */
928 /* Get the real type of the enclosing object */
929 enc_type = check_typedef (value_enclosing_type (arg1));
930 enc_type = TYPE_TARGET_TYPE (enc_type);
931
932 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
933 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
934 /* For functions, go through find_function_addr, which knows
935 how to handle function descriptors. */
936 arg2 = value_at_lazy (enc_type, find_function_addr (arg1, NULL));
937 else
938 /* Retrieve the enclosing object pointed to */
939 arg2 = value_at_lazy (enc_type, (value_as_address (arg1)
940 - value_pointed_to_offset (arg1)));
941
942 /* Re-adjust type */
943 deprecated_set_value_type (arg2, TYPE_TARGET_TYPE (base_type));
944 /* Add embedding info */
945 arg2 = value_change_enclosing_type (arg2, enc_type);
946 set_value_embedded_offset (arg2, value_pointed_to_offset (arg1));
947
948 /* We may be pointing to an object of some derived type */
949 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
950 return arg2;
951 }
952
953 error (_("Attempt to take contents of a non-pointer value."));
954 return 0; /* For lint -- never reached */
955 }
956 \f
957 /* Create a value for an array by allocating space in the inferior, copying
958 the data into that space, and then setting up an array value.
959
960 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
961 populated from the values passed in ELEMVEC.
962
963 The element type of the array is inherited from the type of the
964 first element, and all elements must have the same size (though we
965 don't currently enforce any restriction on their types). */
966
967 struct value *
968 value_array (int lowbound, int highbound, struct value **elemvec)
969 {
970 int nelem;
971 int idx;
972 unsigned int typelength;
973 struct value *val;
974 struct type *rangetype;
975 struct type *arraytype;
976 CORE_ADDR addr;
977
978 /* Validate that the bounds are reasonable and that each of the elements
979 have the same size. */
980
981 nelem = highbound - lowbound + 1;
982 if (nelem <= 0)
983 {
984 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
985 }
986 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
987 for (idx = 1; idx < nelem; idx++)
988 {
989 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
990 {
991 error (_("array elements must all be the same size"));
992 }
993 }
994
995 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
996 lowbound, highbound);
997 arraytype = create_array_type ((struct type *) NULL,
998 value_enclosing_type (elemvec[0]), rangetype);
999
1000 if (!current_language->c_style_arrays)
1001 {
1002 val = allocate_value (arraytype);
1003 for (idx = 0; idx < nelem; idx++)
1004 {
1005 memcpy (value_contents_all_raw (val) + (idx * typelength),
1006 value_contents_all (elemvec[idx]),
1007 typelength);
1008 }
1009 return val;
1010 }
1011
1012 /* Allocate space to store the array in the inferior, and then initialize
1013 it by copying in each element. FIXME: Is it worth it to create a
1014 local buffer in which to collect each value and then write all the
1015 bytes in one operation? */
1016
1017 addr = allocate_space_in_inferior (nelem * typelength);
1018 for (idx = 0; idx < nelem; idx++)
1019 {
1020 write_memory (addr + (idx * typelength),
1021 value_contents_all (elemvec[idx]),
1022 typelength);
1023 }
1024
1025 /* Create the array type and set up an array value to be evaluated lazily. */
1026
1027 val = value_at_lazy (arraytype, addr);
1028 return (val);
1029 }
1030
1031 /* Create a value for a string constant by allocating space in the inferior,
1032 copying the data into that space, and returning the address with type
1033 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1034 of characters.
1035 Note that string types are like array of char types with a lower bound of
1036 zero and an upper bound of LEN - 1. Also note that the string may contain
1037 embedded null bytes. */
1038
1039 struct value *
1040 value_string (char *ptr, int len)
1041 {
1042 struct value *val;
1043 int lowbound = current_language->string_lower_bound;
1044 struct type *rangetype = create_range_type ((struct type *) NULL,
1045 builtin_type_int,
1046 lowbound, len + lowbound - 1);
1047 struct type *stringtype
1048 = create_string_type ((struct type *) NULL, rangetype);
1049 CORE_ADDR addr;
1050
1051 if (current_language->c_style_arrays == 0)
1052 {
1053 val = allocate_value (stringtype);
1054 memcpy (value_contents_raw (val), ptr, len);
1055 return val;
1056 }
1057
1058
1059 /* Allocate space to store the string in the inferior, and then
1060 copy LEN bytes from PTR in gdb to that address in the inferior. */
1061
1062 addr = allocate_space_in_inferior (len);
1063 write_memory (addr, (gdb_byte *) ptr, len);
1064
1065 val = value_at_lazy (stringtype, addr);
1066 return (val);
1067 }
1068
1069 struct value *
1070 value_bitstring (char *ptr, int len)
1071 {
1072 struct value *val;
1073 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1074 0, len - 1);
1075 struct type *type = create_set_type ((struct type *) NULL, domain_type);
1076 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1077 val = allocate_value (type);
1078 memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type));
1079 return val;
1080 }
1081 \f
1082 /* See if we can pass arguments in T2 to a function which takes arguments
1083 of types T1. T1 is a list of NARGS arguments, and T2 is a NULL-terminated
1084 vector. If some arguments need coercion of some sort, then the coerced
1085 values are written into T2. Return value is 0 if the arguments could be
1086 matched, or the position at which they differ if not.
1087
1088 STATICP is nonzero if the T1 argument list came from a
1089 static member function. T2 will still include the ``this'' pointer,
1090 but it will be skipped.
1091
1092 For non-static member functions, we ignore the first argument,
1093 which is the type of the instance variable. This is because we want
1094 to handle calls with objects from derived classes. This is not
1095 entirely correct: we should actually check to make sure that a
1096 requested operation is type secure, shouldn't we? FIXME. */
1097
1098 static int
1099 typecmp (int staticp, int varargs, int nargs,
1100 struct field t1[], struct value *t2[])
1101 {
1102 int i;
1103
1104 if (t2 == 0)
1105 internal_error (__FILE__, __LINE__, _("typecmp: no argument list"));
1106
1107 /* Skip ``this'' argument if applicable. T2 will always include THIS. */
1108 if (staticp)
1109 t2 ++;
1110
1111 for (i = 0;
1112 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1113 i++)
1114 {
1115 struct type *tt1, *tt2;
1116
1117 if (!t2[i])
1118 return i + 1;
1119
1120 tt1 = check_typedef (t1[i].type);
1121 tt2 = check_typedef (value_type (t2[i]));
1122
1123 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1124 /* We should be doing hairy argument matching, as below. */
1125 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1126 {
1127 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1128 t2[i] = value_coerce_array (t2[i]);
1129 else
1130 t2[i] = value_ref (t2[i]);
1131 continue;
1132 }
1133
1134 /* djb - 20000715 - Until the new type structure is in the
1135 place, and we can attempt things like implicit conversions,
1136 we need to do this so you can take something like a map<const
1137 char *>, and properly access map["hello"], because the
1138 argument to [] will be a reference to a pointer to a char,
1139 and the argument will be a pointer to a char. */
1140 while ( TYPE_CODE(tt1) == TYPE_CODE_REF ||
1141 TYPE_CODE (tt1) == TYPE_CODE_PTR)
1142 {
1143 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1144 }
1145 while ( TYPE_CODE(tt2) == TYPE_CODE_ARRAY ||
1146 TYPE_CODE(tt2) == TYPE_CODE_PTR ||
1147 TYPE_CODE(tt2) == TYPE_CODE_REF)
1148 {
1149 tt2 = check_typedef( TYPE_TARGET_TYPE(tt2) );
1150 }
1151 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1152 continue;
1153 /* Array to pointer is a `trivial conversion' according to the ARM. */
1154
1155 /* We should be doing much hairier argument matching (see section 13.2
1156 of the ARM), but as a quick kludge, just check for the same type
1157 code. */
1158 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1159 return i + 1;
1160 }
1161 if (varargs || t2[i] == NULL)
1162 return 0;
1163 return i + 1;
1164 }
1165
1166 /* Helper function used by value_struct_elt to recurse through baseclasses.
1167 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1168 and search in it assuming it has (class) type TYPE.
1169 If found, return value, else return NULL.
1170
1171 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
1172 look for a baseclass named NAME. */
1173
1174 static struct value *
1175 search_struct_field (char *name, struct value *arg1, int offset,
1176 struct type *type, int looking_for_baseclass)
1177 {
1178 int i;
1179 int nbases = TYPE_N_BASECLASSES (type);
1180
1181 CHECK_TYPEDEF (type);
1182
1183 if (!looking_for_baseclass)
1184 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1185 {
1186 char *t_field_name = TYPE_FIELD_NAME (type, i);
1187
1188 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1189 {
1190 struct value *v;
1191 if (TYPE_FIELD_STATIC (type, i))
1192 {
1193 v = value_static_field (type, i);
1194 if (v == 0)
1195 error (_("field %s is nonexistent or has been optimised out"),
1196 name);
1197 }
1198 else
1199 {
1200 v = value_primitive_field (arg1, offset, i, type);
1201 if (v == 0)
1202 error (_("there is no field named %s"), name);
1203 }
1204 return v;
1205 }
1206
1207 if (t_field_name
1208 && (t_field_name[0] == '\0'
1209 || (TYPE_CODE (type) == TYPE_CODE_UNION
1210 && (strcmp_iw (t_field_name, "else") == 0))))
1211 {
1212 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1213 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1214 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1215 {
1216 /* Look for a match through the fields of an anonymous union,
1217 or anonymous struct. C++ provides anonymous unions.
1218
1219 In the GNU Chill (now deleted from GDB)
1220 implementation of variant record types, each
1221 <alternative field> has an (anonymous) union type,
1222 each member of the union represents a <variant
1223 alternative>. Each <variant alternative> is
1224 represented as a struct, with a member for each
1225 <variant field>. */
1226
1227 struct value *v;
1228 int new_offset = offset;
1229
1230 /* This is pretty gross. In G++, the offset in an
1231 anonymous union is relative to the beginning of the
1232 enclosing struct. In the GNU Chill (now deleted
1233 from GDB) implementation of variant records, the
1234 bitpos is zero in an anonymous union field, so we
1235 have to add the offset of the union here. */
1236 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1237 || (TYPE_NFIELDS (field_type) > 0
1238 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1239 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1240
1241 v = search_struct_field (name, arg1, new_offset, field_type,
1242 looking_for_baseclass);
1243 if (v)
1244 return v;
1245 }
1246 }
1247 }
1248
1249 for (i = 0; i < nbases; i++)
1250 {
1251 struct value *v;
1252 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1253 /* If we are looking for baseclasses, this is what we get when we
1254 hit them. But it could happen that the base part's member name
1255 is not yet filled in. */
1256 int found_baseclass = (looking_for_baseclass
1257 && TYPE_BASECLASS_NAME (type, i) != NULL
1258 && (strcmp_iw (name, TYPE_BASECLASS_NAME (type, i)) == 0));
1259
1260 if (BASETYPE_VIA_VIRTUAL (type, i))
1261 {
1262 int boffset;
1263 struct value *v2 = allocate_value (basetype);
1264
1265 boffset = baseclass_offset (type, i,
1266 value_contents (arg1) + offset,
1267 VALUE_ADDRESS (arg1)
1268 + value_offset (arg1) + offset);
1269 if (boffset == -1)
1270 error (_("virtual baseclass botch"));
1271
1272 /* The virtual base class pointer might have been clobbered by the
1273 user program. Make sure that it still points to a valid memory
1274 location. */
1275
1276 boffset += offset;
1277 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
1278 {
1279 CORE_ADDR base_addr;
1280
1281 base_addr = VALUE_ADDRESS (arg1) + value_offset (arg1) + boffset;
1282 if (target_read_memory (base_addr, value_contents_raw (v2),
1283 TYPE_LENGTH (basetype)) != 0)
1284 error (_("virtual baseclass botch"));
1285 VALUE_LVAL (v2) = lval_memory;
1286 VALUE_ADDRESS (v2) = base_addr;
1287 }
1288 else
1289 {
1290 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
1291 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
1292 VALUE_FRAME_ID (v2) = VALUE_FRAME_ID (arg1);
1293 set_value_offset (v2, value_offset (arg1) + boffset);
1294 if (value_lazy (arg1))
1295 set_value_lazy (v2, 1);
1296 else
1297 memcpy (value_contents_raw (v2),
1298 value_contents_raw (arg1) + boffset,
1299 TYPE_LENGTH (basetype));
1300 }
1301
1302 if (found_baseclass)
1303 return v2;
1304 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
1305 looking_for_baseclass);
1306 }
1307 else if (found_baseclass)
1308 v = value_primitive_field (arg1, offset, i, type);
1309 else
1310 v = search_struct_field (name, arg1,
1311 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
1312 basetype, looking_for_baseclass);
1313 if (v)
1314 return v;
1315 }
1316 return NULL;
1317 }
1318
1319
1320 /* Return the offset (in bytes) of the virtual base of type BASETYPE
1321 * in an object pointed to by VALADDR (on the host), assumed to be of
1322 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
1323 * looking (in case VALADDR is the contents of an enclosing object).
1324 *
1325 * This routine recurses on the primary base of the derived class because
1326 * the virtual base entries of the primary base appear before the other
1327 * virtual base entries.
1328 *
1329 * If the virtual base is not found, a negative integer is returned.
1330 * The magnitude of the negative integer is the number of entries in
1331 * the virtual table to skip over (entries corresponding to various
1332 * ancestral classes in the chain of primary bases).
1333 *
1334 * Important: This assumes the HP / Taligent C++ runtime
1335 * conventions. Use baseclass_offset() instead to deal with g++
1336 * conventions. */
1337
1338 void
1339 find_rt_vbase_offset (struct type *type, struct type *basetype,
1340 const gdb_byte *valaddr, int offset, int *boffset_p,
1341 int *skip_p)
1342 {
1343 int boffset; /* offset of virtual base */
1344 int index; /* displacement to use in virtual table */
1345 int skip;
1346
1347 struct value *vp;
1348 CORE_ADDR vtbl; /* the virtual table pointer */
1349 struct type *pbc; /* the primary base class */
1350
1351 /* Look for the virtual base recursively in the primary base, first.
1352 * This is because the derived class object and its primary base
1353 * subobject share the primary virtual table. */
1354
1355 boffset = 0;
1356 pbc = TYPE_PRIMARY_BASE (type);
1357 if (pbc)
1358 {
1359 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
1360 if (skip < 0)
1361 {
1362 *boffset_p = boffset;
1363 *skip_p = -1;
1364 return;
1365 }
1366 }
1367 else
1368 skip = 0;
1369
1370
1371 /* Find the index of the virtual base according to HP/Taligent
1372 runtime spec. (Depth-first, left-to-right.) */
1373 index = virtual_base_index_skip_primaries (basetype, type);
1374
1375 if (index < 0)
1376 {
1377 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
1378 *boffset_p = 0;
1379 return;
1380 }
1381
1382 /* pai: FIXME -- 32x64 possible problem */
1383 /* First word (4 bytes) in object layout is the vtable pointer */
1384 vtbl = *(CORE_ADDR *) (valaddr + offset);
1385
1386 /* Before the constructor is invoked, things are usually zero'd out. */
1387 if (vtbl == 0)
1388 error (_("Couldn't find virtual table -- object may not be constructed yet."));
1389
1390
1391 /* Find virtual base's offset -- jump over entries for primary base
1392 * ancestors, then use the index computed above. But also adjust by
1393 * HP_ACC_VBASE_START for the vtable slots before the start of the
1394 * virtual base entries. Offset is negative -- virtual base entries
1395 * appear _before_ the address point of the virtual table. */
1396
1397 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
1398 & use long type */
1399
1400 /* epstein : FIXME -- added param for overlay section. May not be correct */
1401 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START));
1402 boffset = value_as_long (vp);
1403 *skip_p = -1;
1404 *boffset_p = boffset;
1405 return;
1406 }
1407
1408
1409 /* Helper function used by value_struct_elt to recurse through baseclasses.
1410 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1411 and search in it assuming it has (class) type TYPE.
1412 If found, return value, else if name matched and args not return (value)-1,
1413 else return NULL. */
1414
1415 static struct value *
1416 search_struct_method (char *name, struct value **arg1p,
1417 struct value **args, int offset,
1418 int *static_memfuncp, struct type *type)
1419 {
1420 int i;
1421 struct value *v;
1422 int name_matched = 0;
1423 char dem_opname[64];
1424
1425 CHECK_TYPEDEF (type);
1426 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1427 {
1428 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1429 /* FIXME! May need to check for ARM demangling here */
1430 if (strncmp (t_field_name, "__", 2) == 0 ||
1431 strncmp (t_field_name, "op", 2) == 0 ||
1432 strncmp (t_field_name, "type", 4) == 0)
1433 {
1434 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
1435 t_field_name = dem_opname;
1436 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
1437 t_field_name = dem_opname;
1438 }
1439 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1440 {
1441 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
1442 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1443 name_matched = 1;
1444
1445 check_stub_method_group (type, i);
1446 if (j > 0 && args == 0)
1447 error (_("cannot resolve overloaded method `%s': no arguments supplied"), name);
1448 else if (j == 0 && args == 0)
1449 {
1450 v = value_fn_field (arg1p, f, j, type, offset);
1451 if (v != NULL)
1452 return v;
1453 }
1454 else
1455 while (j >= 0)
1456 {
1457 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
1458 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
1459 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
1460 TYPE_FN_FIELD_ARGS (f, j), args))
1461 {
1462 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
1463 return value_virtual_fn_field (arg1p, f, j, type, offset);
1464 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
1465 *static_memfuncp = 1;
1466 v = value_fn_field (arg1p, f, j, type, offset);
1467 if (v != NULL)
1468 return v;
1469 }
1470 j--;
1471 }
1472 }
1473 }
1474
1475 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1476 {
1477 int base_offset;
1478
1479 if (BASETYPE_VIA_VIRTUAL (type, i))
1480 {
1481 if (TYPE_HAS_VTABLE (type))
1482 {
1483 /* HP aCC compiled type, search for virtual base offset
1484 according to HP/Taligent runtime spec. */
1485 int skip;
1486 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
1487 value_contents_all (*arg1p),
1488 offset + value_embedded_offset (*arg1p),
1489 &base_offset, &skip);
1490 if (skip >= 0)
1491 error (_("Virtual base class offset not found in vtable"));
1492 }
1493 else
1494 {
1495 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1496 const gdb_byte *base_valaddr;
1497
1498 /* The virtual base class pointer might have been clobbered by the
1499 user program. Make sure that it still points to a valid memory
1500 location. */
1501
1502 if (offset < 0 || offset >= TYPE_LENGTH (type))
1503 {
1504 gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass));
1505 if (target_read_memory (VALUE_ADDRESS (*arg1p)
1506 + value_offset (*arg1p) + offset,
1507 tmp, TYPE_LENGTH (baseclass)) != 0)
1508 error (_("virtual baseclass botch"));
1509 base_valaddr = tmp;
1510 }
1511 else
1512 base_valaddr = value_contents (*arg1p) + offset;
1513
1514 base_offset =
1515 baseclass_offset (type, i, base_valaddr,
1516 VALUE_ADDRESS (*arg1p)
1517 + value_offset (*arg1p) + offset);
1518 if (base_offset == -1)
1519 error (_("virtual baseclass botch"));
1520 }
1521 }
1522 else
1523 {
1524 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1525 }
1526 v = search_struct_method (name, arg1p, args, base_offset + offset,
1527 static_memfuncp, TYPE_BASECLASS (type, i));
1528 if (v == (struct value *) - 1)
1529 {
1530 name_matched = 1;
1531 }
1532 else if (v)
1533 {
1534 /* FIXME-bothner: Why is this commented out? Why is it here? */
1535 /* *arg1p = arg1_tmp; */
1536 return v;
1537 }
1538 }
1539 if (name_matched)
1540 return (struct value *) - 1;
1541 else
1542 return NULL;
1543 }
1544
1545 /* Given *ARGP, a value of type (pointer to a)* structure/union,
1546 extract the component named NAME from the ultimate target structure/union
1547 and return it as a value with its appropriate type.
1548 ERR is used in the error message if *ARGP's type is wrong.
1549
1550 C++: ARGS is a list of argument types to aid in the selection of
1551 an appropriate method. Also, handle derived types.
1552
1553 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
1554 where the truthvalue of whether the function that was resolved was
1555 a static member function or not is stored.
1556
1557 ERR is an error message to be printed in case the field is not found. */
1558
1559 struct value *
1560 value_struct_elt (struct value **argp, struct value **args,
1561 char *name, int *static_memfuncp, char *err)
1562 {
1563 struct type *t;
1564 struct value *v;
1565
1566 *argp = coerce_array (*argp);
1567
1568 t = check_typedef (value_type (*argp));
1569
1570 /* Follow pointers until we get to a non-pointer. */
1571
1572 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1573 {
1574 *argp = value_ind (*argp);
1575 /* Don't coerce fn pointer to fn and then back again! */
1576 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
1577 *argp = coerce_array (*argp);
1578 t = check_typedef (value_type (*argp));
1579 }
1580
1581 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1582 && TYPE_CODE (t) != TYPE_CODE_UNION)
1583 error (_("Attempt to extract a component of a value that is not a %s."), err);
1584
1585 /* Assume it's not, unless we see that it is. */
1586 if (static_memfuncp)
1587 *static_memfuncp = 0;
1588
1589 if (!args)
1590 {
1591 /* if there are no arguments ...do this... */
1592
1593 /* Try as a field first, because if we succeed, there
1594 is less work to be done. */
1595 v = search_struct_field (name, *argp, 0, t, 0);
1596 if (v)
1597 return v;
1598
1599 /* C++: If it was not found as a data field, then try to
1600 return it as a pointer to a method. */
1601
1602 if (destructor_name_p (name, t))
1603 error (_("Cannot get value of destructor"));
1604
1605 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
1606
1607 if (v == (struct value *) - 1)
1608 error (_("Cannot take address of method %s."), name);
1609 else if (v == 0)
1610 {
1611 if (TYPE_NFN_FIELDS (t))
1612 error (_("There is no member or method named %s."), name);
1613 else
1614 error (_("There is no member named %s."), name);
1615 }
1616 return v;
1617 }
1618
1619 if (destructor_name_p (name, t))
1620 {
1621 if (!args[1])
1622 {
1623 /* Destructors are a special case. */
1624 int m_index, f_index;
1625
1626 v = NULL;
1627 if (get_destructor_fn_field (t, &m_index, &f_index))
1628 {
1629 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
1630 f_index, NULL, 0);
1631 }
1632 if (v == NULL)
1633 error (_("could not find destructor function named %s."), name);
1634 else
1635 return v;
1636 }
1637 else
1638 {
1639 error (_("destructor should not have any argument"));
1640 }
1641 }
1642 else
1643 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
1644
1645 if (v == (struct value *) - 1)
1646 {
1647 error (_("One of the arguments you tried to pass to %s could not be converted to what the function wants."), name);
1648 }
1649 else if (v == 0)
1650 {
1651 /* See if user tried to invoke data as function. If so,
1652 hand it back. If it's not callable (i.e., a pointer to function),
1653 gdb should give an error. */
1654 v = search_struct_field (name, *argp, 0, t, 0);
1655 }
1656
1657 if (!v)
1658 error (_("Structure has no component named %s."), name);
1659 return v;
1660 }
1661
1662 /* Search through the methods of an object (and its bases)
1663 * to find a specified method. Return the pointer to the
1664 * fn_field list of overloaded instances.
1665 * Helper function for value_find_oload_list.
1666 * ARGP is a pointer to a pointer to a value (the object)
1667 * METHOD is a string containing the method name
1668 * OFFSET is the offset within the value
1669 * TYPE is the assumed type of the object
1670 * NUM_FNS is the number of overloaded instances
1671 * BASETYPE is set to the actual type of the subobject where the method is found
1672 * BOFFSET is the offset of the base subobject where the method is found */
1673
1674 static struct fn_field *
1675 find_method_list (struct value **argp, char *method, int offset,
1676 struct type *type, int *num_fns,
1677 struct type **basetype, int *boffset)
1678 {
1679 int i;
1680 struct fn_field *f;
1681 CHECK_TYPEDEF (type);
1682
1683 *num_fns = 0;
1684
1685 /* First check in object itself */
1686 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1687 {
1688 /* pai: FIXME What about operators and type conversions? */
1689 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1690 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
1691 {
1692 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
1693 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1694
1695 *num_fns = len;
1696 *basetype = type;
1697 *boffset = offset;
1698
1699 /* Resolve any stub methods. */
1700 check_stub_method_group (type, i);
1701
1702 return f;
1703 }
1704 }
1705
1706 /* Not found in object, check in base subobjects */
1707 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1708 {
1709 int base_offset;
1710 if (BASETYPE_VIA_VIRTUAL (type, i))
1711 {
1712 if (TYPE_HAS_VTABLE (type))
1713 {
1714 /* HP aCC compiled type, search for virtual base offset
1715 * according to HP/Taligent runtime spec. */
1716 int skip;
1717 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
1718 value_contents_all (*argp),
1719 offset + value_embedded_offset (*argp),
1720 &base_offset, &skip);
1721 if (skip >= 0)
1722 error (_("Virtual base class offset not found in vtable"));
1723 }
1724 else
1725 {
1726 /* probably g++ runtime model */
1727 base_offset = value_offset (*argp) + offset;
1728 base_offset =
1729 baseclass_offset (type, i,
1730 value_contents (*argp) + base_offset,
1731 VALUE_ADDRESS (*argp) + base_offset);
1732 if (base_offset == -1)
1733 error (_("virtual baseclass botch"));
1734 }
1735 }
1736 else
1737 /* non-virtual base, simply use bit position from debug info */
1738 {
1739 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1740 }
1741 f = find_method_list (argp, method, base_offset + offset,
1742 TYPE_BASECLASS (type, i), num_fns, basetype,
1743 boffset);
1744 if (f)
1745 return f;
1746 }
1747 return NULL;
1748 }
1749
1750 /* Return the list of overloaded methods of a specified name.
1751 * ARGP is a pointer to a pointer to a value (the object)
1752 * METHOD is the method name
1753 * OFFSET is the offset within the value contents
1754 * NUM_FNS is the number of overloaded instances
1755 * BASETYPE is set to the type of the base subobject that defines the method
1756 * BOFFSET is the offset of the base subobject which defines the method */
1757
1758 struct fn_field *
1759 value_find_oload_method_list (struct value **argp, char *method, int offset,
1760 int *num_fns, struct type **basetype,
1761 int *boffset)
1762 {
1763 struct type *t;
1764
1765 t = check_typedef (value_type (*argp));
1766
1767 /* code snarfed from value_struct_elt */
1768 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1769 {
1770 *argp = value_ind (*argp);
1771 /* Don't coerce fn pointer to fn and then back again! */
1772 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
1773 *argp = coerce_array (*argp);
1774 t = check_typedef (value_type (*argp));
1775 }
1776
1777 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1778 && TYPE_CODE (t) != TYPE_CODE_UNION)
1779 error (_("Attempt to extract a component of a value that is not a struct or union"));
1780
1781 return find_method_list (argp, method, 0, t, num_fns, basetype, boffset);
1782 }
1783
1784 /* Given an array of argument types (ARGTYPES) (which includes an
1785 entry for "this" in the case of C++ methods), the number of
1786 arguments NARGS, the NAME of a function whether it's a method or
1787 not (METHOD), and the degree of laxness (LAX) in conforming to
1788 overload resolution rules in ANSI C++, find the best function that
1789 matches on the argument types according to the overload resolution
1790 rules.
1791
1792 In the case of class methods, the parameter OBJ is an object value
1793 in which to search for overloaded methods.
1794
1795 In the case of non-method functions, the parameter FSYM is a symbol
1796 corresponding to one of the overloaded functions.
1797
1798 Return value is an integer: 0 -> good match, 10 -> debugger applied
1799 non-standard coercions, 100 -> incompatible.
1800
1801 If a method is being searched for, VALP will hold the value.
1802 If a non-method is being searched for, SYMP will hold the symbol for it.
1803
1804 If a method is being searched for, and it is a static method,
1805 then STATICP will point to a non-zero value.
1806
1807 Note: This function does *not* check the value of
1808 overload_resolution. Caller must check it to see whether overload
1809 resolution is permitted.
1810 */
1811
1812 int
1813 find_overload_match (struct type **arg_types, int nargs, char *name, int method,
1814 int lax, struct value **objp, struct symbol *fsym,
1815 struct value **valp, struct symbol **symp, int *staticp)
1816 {
1817 struct value *obj = (objp ? *objp : NULL);
1818
1819 int oload_champ; /* Index of best overloaded function */
1820
1821 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
1822
1823 struct value *temp = obj;
1824 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
1825 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
1826 int num_fns = 0; /* Number of overloaded instances being considered */
1827 struct type *basetype = NULL;
1828 int boffset;
1829 int ix;
1830 int static_offset;
1831 struct cleanup *old_cleanups = NULL;
1832
1833 const char *obj_type_name = NULL;
1834 char *func_name = NULL;
1835 enum oload_classification match_quality;
1836
1837 /* Get the list of overloaded methods or functions */
1838 if (method)
1839 {
1840 obj_type_name = TYPE_NAME (value_type (obj));
1841 /* Hack: evaluate_subexp_standard often passes in a pointer
1842 value rather than the object itself, so try again */
1843 if ((!obj_type_name || !*obj_type_name) &&
1844 (TYPE_CODE (value_type (obj)) == TYPE_CODE_PTR))
1845 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (value_type (obj)));
1846
1847 fns_ptr = value_find_oload_method_list (&temp, name, 0,
1848 &num_fns,
1849 &basetype, &boffset);
1850 if (!fns_ptr || !num_fns)
1851 error (_("Couldn't find method %s%s%s"),
1852 obj_type_name,
1853 (obj_type_name && *obj_type_name) ? "::" : "",
1854 name);
1855 /* If we are dealing with stub method types, they should have
1856 been resolved by find_method_list via value_find_oload_method_list
1857 above. */
1858 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
1859 oload_champ = find_oload_champ (arg_types, nargs, method, num_fns,
1860 fns_ptr, oload_syms, &oload_champ_bv);
1861 }
1862 else
1863 {
1864 const char *qualified_name = SYMBOL_CPLUS_DEMANGLED_NAME (fsym);
1865
1866 /* If we have a C++ name, try to extract just the function
1867 part. */
1868 if (qualified_name)
1869 func_name = cp_func_name (qualified_name);
1870
1871 /* If there was no C++ name, this must be a C-style function.
1872 Just return the same symbol. Do the same if cp_func_name
1873 fails for some reason. */
1874 if (func_name == NULL)
1875 {
1876 *symp = fsym;
1877 return 0;
1878 }
1879
1880 old_cleanups = make_cleanup (xfree, func_name);
1881 make_cleanup (xfree, oload_syms);
1882 make_cleanup (xfree, oload_champ_bv);
1883
1884 oload_champ = find_oload_champ_namespace (arg_types, nargs,
1885 func_name,
1886 qualified_name,
1887 &oload_syms,
1888 &oload_champ_bv);
1889 }
1890
1891 /* Check how bad the best match is. */
1892
1893 match_quality
1894 = classify_oload_match (oload_champ_bv, nargs,
1895 oload_method_static (method, fns_ptr,
1896 oload_champ));
1897
1898 if (match_quality == INCOMPATIBLE)
1899 {
1900 if (method)
1901 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
1902 obj_type_name,
1903 (obj_type_name && *obj_type_name) ? "::" : "",
1904 name);
1905 else
1906 error (_("Cannot resolve function %s to any overloaded instance"),
1907 func_name);
1908 }
1909 else if (match_quality == NON_STANDARD)
1910 {
1911 if (method)
1912 warning (_("Using non-standard conversion to match method %s%s%s to supplied arguments"),
1913 obj_type_name,
1914 (obj_type_name && *obj_type_name) ? "::" : "",
1915 name);
1916 else
1917 warning (_("Using non-standard conversion to match function %s to supplied arguments"),
1918 func_name);
1919 }
1920
1921 if (method)
1922 {
1923 if (staticp != NULL)
1924 *staticp = oload_method_static (method, fns_ptr, oload_champ);
1925 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
1926 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
1927 else
1928 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
1929 }
1930 else
1931 {
1932 *symp = oload_syms[oload_champ];
1933 }
1934
1935 if (objp)
1936 {
1937 if (TYPE_CODE (value_type (temp)) != TYPE_CODE_PTR
1938 && TYPE_CODE (value_type (*objp)) == TYPE_CODE_PTR)
1939 {
1940 temp = value_addr (temp);
1941 }
1942 *objp = temp;
1943 }
1944 if (old_cleanups != NULL)
1945 do_cleanups (old_cleanups);
1946
1947 switch (match_quality)
1948 {
1949 case INCOMPATIBLE:
1950 return 100;
1951 case NON_STANDARD:
1952 return 10;
1953 default: /* STANDARD */
1954 return 0;
1955 }
1956 }
1957
1958 /* Find the best overload match, searching for FUNC_NAME in namespaces
1959 contained in QUALIFIED_NAME until it either finds a good match or
1960 runs out of namespaces. It stores the overloaded functions in
1961 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
1962 calling function is responsible for freeing *OLOAD_SYMS and
1963 *OLOAD_CHAMP_BV. */
1964
1965 static int
1966 find_oload_champ_namespace (struct type **arg_types, int nargs,
1967 const char *func_name,
1968 const char *qualified_name,
1969 struct symbol ***oload_syms,
1970 struct badness_vector **oload_champ_bv)
1971 {
1972 int oload_champ;
1973
1974 find_oload_champ_namespace_loop (arg_types, nargs,
1975 func_name,
1976 qualified_name, 0,
1977 oload_syms, oload_champ_bv,
1978 &oload_champ);
1979
1980 return oload_champ;
1981 }
1982
1983 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
1984 how deep we've looked for namespaces, and the champ is stored in
1985 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
1986 if it isn't.
1987
1988 It is the caller's responsibility to free *OLOAD_SYMS and
1989 *OLOAD_CHAMP_BV. */
1990
1991 static int
1992 find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
1993 const char *func_name,
1994 const char *qualified_name,
1995 int namespace_len,
1996 struct symbol ***oload_syms,
1997 struct badness_vector **oload_champ_bv,
1998 int *oload_champ)
1999 {
2000 int next_namespace_len = namespace_len;
2001 int searched_deeper = 0;
2002 int num_fns = 0;
2003 struct cleanup *old_cleanups;
2004 int new_oload_champ;
2005 struct symbol **new_oload_syms;
2006 struct badness_vector *new_oload_champ_bv;
2007 char *new_namespace;
2008
2009 if (next_namespace_len != 0)
2010 {
2011 gdb_assert (qualified_name[next_namespace_len] == ':');
2012 next_namespace_len += 2;
2013 }
2014 next_namespace_len
2015 += cp_find_first_component (qualified_name + next_namespace_len);
2016
2017 /* Initialize these to values that can safely be xfree'd. */
2018 *oload_syms = NULL;
2019 *oload_champ_bv = NULL;
2020
2021 /* First, see if we have a deeper namespace we can search in. If we
2022 get a good match there, use it. */
2023
2024 if (qualified_name[next_namespace_len] == ':')
2025 {
2026 searched_deeper = 1;
2027
2028 if (find_oload_champ_namespace_loop (arg_types, nargs,
2029 func_name, qualified_name,
2030 next_namespace_len,
2031 oload_syms, oload_champ_bv,
2032 oload_champ))
2033 {
2034 return 1;
2035 }
2036 };
2037
2038 /* If we reach here, either we're in the deepest namespace or we
2039 didn't find a good match in a deeper namespace. But, in the
2040 latter case, we still have a bad match in a deeper namespace;
2041 note that we might not find any match at all in the current
2042 namespace. (There's always a match in the deepest namespace,
2043 because this overload mechanism only gets called if there's a
2044 function symbol to start off with.) */
2045
2046 old_cleanups = make_cleanup (xfree, *oload_syms);
2047 old_cleanups = make_cleanup (xfree, *oload_champ_bv);
2048 new_namespace = alloca (namespace_len + 1);
2049 strncpy (new_namespace, qualified_name, namespace_len);
2050 new_namespace[namespace_len] = '\0';
2051 new_oload_syms = make_symbol_overload_list (func_name,
2052 new_namespace);
2053 while (new_oload_syms[num_fns])
2054 ++num_fns;
2055
2056 new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns,
2057 NULL, new_oload_syms,
2058 &new_oload_champ_bv);
2059
2060 /* Case 1: We found a good match. Free earlier matches (if any),
2061 and return it. Case 2: We didn't find a good match, but we're
2062 not the deepest function. Then go with the bad match that the
2063 deeper function found. Case 3: We found a bad match, and we're
2064 the deepest function. Then return what we found, even though
2065 it's a bad match. */
2066
2067 if (new_oload_champ != -1
2068 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2069 {
2070 *oload_syms = new_oload_syms;
2071 *oload_champ = new_oload_champ;
2072 *oload_champ_bv = new_oload_champ_bv;
2073 do_cleanups (old_cleanups);
2074 return 1;
2075 }
2076 else if (searched_deeper)
2077 {
2078 xfree (new_oload_syms);
2079 xfree (new_oload_champ_bv);
2080 discard_cleanups (old_cleanups);
2081 return 0;
2082 }
2083 else
2084 {
2085 gdb_assert (new_oload_champ != -1);
2086 *oload_syms = new_oload_syms;
2087 *oload_champ = new_oload_champ;
2088 *oload_champ_bv = new_oload_champ_bv;
2089 discard_cleanups (old_cleanups);
2090 return 0;
2091 }
2092 }
2093
2094 /* Look for a function to take NARGS args of types ARG_TYPES. Find
2095 the best match from among the overloaded methods or functions
2096 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2097 The number of methods/functions in the list is given by NUM_FNS.
2098 Return the index of the best match; store an indication of the
2099 quality of the match in OLOAD_CHAMP_BV.
2100
2101 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2102
2103 static int
2104 find_oload_champ (struct type **arg_types, int nargs, int method,
2105 int num_fns, struct fn_field *fns_ptr,
2106 struct symbol **oload_syms,
2107 struct badness_vector **oload_champ_bv)
2108 {
2109 int ix;
2110 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2111 int oload_champ = -1; /* Index of best overloaded function */
2112 int oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2113 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2114
2115 *oload_champ_bv = NULL;
2116
2117 /* Consider each candidate in turn */
2118 for (ix = 0; ix < num_fns; ix++)
2119 {
2120 int jj;
2121 int static_offset = oload_method_static (method, fns_ptr, ix);
2122 int nparms;
2123 struct type **parm_types;
2124
2125 if (method)
2126 {
2127 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2128 }
2129 else
2130 {
2131 /* If it's not a method, this is the proper place */
2132 nparms=TYPE_NFIELDS(SYMBOL_TYPE(oload_syms[ix]));
2133 }
2134
2135 /* Prepare array of parameter types */
2136 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2137 for (jj = 0; jj < nparms; jj++)
2138 parm_types[jj] = (method
2139 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2140 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj));
2141
2142 /* Compare parameter types to supplied argument types. Skip THIS for
2143 static methods. */
2144 bv = rank_function (parm_types, nparms, arg_types + static_offset,
2145 nargs - static_offset);
2146
2147 if (!*oload_champ_bv)
2148 {
2149 *oload_champ_bv = bv;
2150 oload_champ = 0;
2151 }
2152 else
2153 /* See whether current candidate is better or worse than previous best */
2154 switch (compare_badness (bv, *oload_champ_bv))
2155 {
2156 case 0:
2157 oload_ambiguous = 1; /* top two contenders are equally good */
2158 break;
2159 case 1:
2160 oload_ambiguous = 2; /* incomparable top contenders */
2161 break;
2162 case 2:
2163 *oload_champ_bv = bv; /* new champion, record details */
2164 oload_ambiguous = 0;
2165 oload_champ = ix;
2166 break;
2167 case 3:
2168 default:
2169 break;
2170 }
2171 xfree (parm_types);
2172 if (overload_debug)
2173 {
2174 if (method)
2175 fprintf_filtered (gdb_stderr,"Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2176 else
2177 fprintf_filtered (gdb_stderr,"Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
2178 for (jj = 0; jj < nargs - static_offset; jj++)
2179 fprintf_filtered (gdb_stderr,"...Badness @ %d : %d\n", jj, bv->rank[jj]);
2180 fprintf_filtered (gdb_stderr,"Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2181 }
2182 }
2183
2184 return oload_champ;
2185 }
2186
2187 /* Return 1 if we're looking at a static method, 0 if we're looking at
2188 a non-static method or a function that isn't a method. */
2189
2190 static int
2191 oload_method_static (int method, struct fn_field *fns_ptr, int index)
2192 {
2193 if (method && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
2194 return 1;
2195 else
2196 return 0;
2197 }
2198
2199 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
2200
2201 static enum oload_classification
2202 classify_oload_match (struct badness_vector *oload_champ_bv,
2203 int nargs,
2204 int static_offset)
2205 {
2206 int ix;
2207
2208 for (ix = 1; ix <= nargs - static_offset; ix++)
2209 {
2210 if (oload_champ_bv->rank[ix] >= 100)
2211 return INCOMPATIBLE; /* truly mismatched types */
2212 else if (oload_champ_bv->rank[ix] >= 10)
2213 return NON_STANDARD; /* non-standard type conversions needed */
2214 }
2215
2216 return STANDARD; /* Only standard conversions needed. */
2217 }
2218
2219 /* C++: return 1 is NAME is a legitimate name for the destructor
2220 of type TYPE. If TYPE does not have a destructor, or
2221 if NAME is inappropriate for TYPE, an error is signaled. */
2222 int
2223 destructor_name_p (const char *name, const struct type *type)
2224 {
2225 /* destructors are a special case. */
2226
2227 if (name[0] == '~')
2228 {
2229 char *dname = type_name_no_tag (type);
2230 char *cp = strchr (dname, '<');
2231 unsigned int len;
2232
2233 /* Do not compare the template part for template classes. */
2234 if (cp == NULL)
2235 len = strlen (dname);
2236 else
2237 len = cp - dname;
2238 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
2239 error (_("name of destructor must equal name of class"));
2240 else
2241 return 1;
2242 }
2243 return 0;
2244 }
2245
2246 /* Helper function for check_field: Given TYPE, a structure/union,
2247 return 1 if the component named NAME from the ultimate
2248 target structure/union is defined, otherwise, return 0. */
2249
2250 static int
2251 check_field_in (struct type *type, const char *name)
2252 {
2253 int i;
2254
2255 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2256 {
2257 char *t_field_name = TYPE_FIELD_NAME (type, i);
2258 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2259 return 1;
2260 }
2261
2262 /* C++: If it was not found as a data field, then try to
2263 return it as a pointer to a method. */
2264
2265 /* Destructors are a special case. */
2266 if (destructor_name_p (name, type))
2267 {
2268 int m_index, f_index;
2269
2270 return get_destructor_fn_field (type, &m_index, &f_index);
2271 }
2272
2273 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2274 {
2275 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2276 return 1;
2277 }
2278
2279 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2280 if (check_field_in (TYPE_BASECLASS (type, i), name))
2281 return 1;
2282
2283 return 0;
2284 }
2285
2286
2287 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
2288 return 1 if the component named NAME from the ultimate
2289 target structure/union is defined, otherwise, return 0. */
2290
2291 int
2292 check_field (struct value *arg1, const char *name)
2293 {
2294 struct type *t;
2295
2296 arg1 = coerce_array (arg1);
2297
2298 t = value_type (arg1);
2299
2300 /* Follow pointers until we get to a non-pointer. */
2301
2302 for (;;)
2303 {
2304 CHECK_TYPEDEF (t);
2305 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
2306 break;
2307 t = TYPE_TARGET_TYPE (t);
2308 }
2309
2310 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2311 && TYPE_CODE (t) != TYPE_CODE_UNION)
2312 error (_("Internal error: `this' is not an aggregate"));
2313
2314 return check_field_in (t, name);
2315 }
2316
2317 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2318 return the appropriate member (or the address of the member, if
2319 WANT_ADDRESS). This function is used to resolve user expressions
2320 of the form "DOMAIN::NAME". For more details on what happens, see
2321 the comment before value_struct_elt_for_reference. */
2322
2323 struct value *
2324 value_aggregate_elt (struct type *curtype,
2325 char *name, int want_address,
2326 enum noside noside)
2327 {
2328 switch (TYPE_CODE (curtype))
2329 {
2330 case TYPE_CODE_STRUCT:
2331 case TYPE_CODE_UNION:
2332 return value_struct_elt_for_reference (curtype, 0, curtype, name, NULL,
2333 want_address, noside);
2334 case TYPE_CODE_NAMESPACE:
2335 return value_namespace_elt (curtype, name, want_address, noside);
2336 default:
2337 internal_error (__FILE__, __LINE__,
2338 _("non-aggregate type in value_aggregate_elt"));
2339 }
2340 }
2341
2342 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2343 return the address of this member as a "pointer to member"
2344 type. If INTYPE is non-null, then it will be the type
2345 of the member we are looking for. This will help us resolve
2346 "pointers to member functions". This function is used
2347 to resolve user expressions of the form "DOMAIN::NAME". */
2348
2349 static struct value *
2350 value_struct_elt_for_reference (struct type *domain, int offset,
2351 struct type *curtype, char *name,
2352 struct type *intype, int want_address,
2353 enum noside noside)
2354 {
2355 struct type *t = curtype;
2356 int i;
2357 struct value *v, *result;
2358
2359 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2360 && TYPE_CODE (t) != TYPE_CODE_UNION)
2361 error (_("Internal error: non-aggregate type to value_struct_elt_for_reference"));
2362
2363 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
2364 {
2365 char *t_field_name = TYPE_FIELD_NAME (t, i);
2366
2367 if (t_field_name && strcmp (t_field_name, name) == 0)
2368 {
2369 if (TYPE_FIELD_STATIC (t, i))
2370 {
2371 v = value_static_field (t, i);
2372 if (v == NULL)
2373 error (_("static field %s has been optimized out"),
2374 name);
2375 if (want_address)
2376 v = value_addr (v);
2377 return v;
2378 }
2379 if (TYPE_FIELD_PACKED (t, i))
2380 error (_("pointers to bitfield members not allowed"));
2381
2382 if (want_address)
2383 return value_from_longest
2384 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
2385 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
2386 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2387 return allocate_value (TYPE_FIELD_TYPE (t, i));
2388 else
2389 error (_("Cannot reference non-static field \"%s\""), name);
2390 }
2391 }
2392
2393 /* C++: If it was not found as a data field, then try to
2394 return it as a pointer to a method. */
2395
2396 /* Destructors are a special case. */
2397 if (destructor_name_p (name, t))
2398 {
2399 error (_("member pointers to destructors not implemented yet"));
2400 }
2401
2402 /* Perform all necessary dereferencing. */
2403 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
2404 intype = TYPE_TARGET_TYPE (intype);
2405
2406 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
2407 {
2408 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
2409 char dem_opname[64];
2410
2411 if (strncmp (t_field_name, "__", 2) == 0 ||
2412 strncmp (t_field_name, "op", 2) == 0 ||
2413 strncmp (t_field_name, "type", 4) == 0)
2414 {
2415 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2416 t_field_name = dem_opname;
2417 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2418 t_field_name = dem_opname;
2419 }
2420 if (t_field_name && strcmp (t_field_name, name) == 0)
2421 {
2422 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
2423 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
2424
2425 check_stub_method_group (t, i);
2426
2427 if (intype == 0 && j > 1)
2428 error (_("non-unique member `%s' requires type instantiation"), name);
2429 if (intype)
2430 {
2431 while (j--)
2432 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
2433 break;
2434 if (j < 0)
2435 error (_("no member function matches that type instantiation"));
2436 }
2437 else
2438 j = 0;
2439
2440 if (TYPE_FN_FIELD_STATIC_P (f, j))
2441 {
2442 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2443 0, VAR_DOMAIN, 0, NULL);
2444 if (s == NULL)
2445 return NULL;
2446
2447 if (want_address)
2448 return value_addr (read_var_value (s, 0));
2449 else
2450 return read_var_value (s, 0);
2451 }
2452
2453 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2454 {
2455 if (want_address)
2456 {
2457 result = allocate_value
2458 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
2459 cplus_make_method_ptr (value_contents_writeable (result),
2460 TYPE_FN_FIELD_VOFFSET (f, j), 1);
2461 }
2462 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2463 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
2464 else
2465 error (_("Cannot reference virtual member function \"%s\""),
2466 name);
2467 }
2468 else
2469 {
2470 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2471 0, VAR_DOMAIN, 0, NULL);
2472 if (s == NULL)
2473 return NULL;
2474
2475 v = read_var_value (s, 0);
2476 if (!want_address)
2477 result = v;
2478 else
2479 {
2480 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
2481 cplus_make_method_ptr (value_contents_writeable (result),
2482 VALUE_ADDRESS (v), 0);
2483 }
2484 }
2485 return result;
2486 }
2487 }
2488 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
2489 {
2490 struct value *v;
2491 int base_offset;
2492
2493 if (BASETYPE_VIA_VIRTUAL (t, i))
2494 base_offset = 0;
2495 else
2496 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
2497 v = value_struct_elt_for_reference (domain,
2498 offset + base_offset,
2499 TYPE_BASECLASS (t, i),
2500 name,
2501 intype, want_address,
2502 noside);
2503 if (v)
2504 return v;
2505 }
2506
2507 /* As a last chance, pretend that CURTYPE is a namespace, and look
2508 it up that way; this (frequently) works for types nested inside
2509 classes. */
2510
2511 return value_maybe_namespace_elt (curtype, name, want_address, noside);
2512 }
2513
2514 /* C++: Return the member NAME of the namespace given by the type
2515 CURTYPE. */
2516
2517 static struct value *
2518 value_namespace_elt (const struct type *curtype,
2519 char *name, int want_address,
2520 enum noside noside)
2521 {
2522 struct value *retval = value_maybe_namespace_elt (curtype, name,
2523 want_address, noside);
2524
2525 if (retval == NULL)
2526 error (_("No symbol \"%s\" in namespace \"%s\"."), name,
2527 TYPE_TAG_NAME (curtype));
2528
2529 return retval;
2530 }
2531
2532 /* A helper function used by value_namespace_elt and
2533 value_struct_elt_for_reference. It looks up NAME inside the
2534 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
2535 is a class and NAME refers to a type in CURTYPE itself (as opposed
2536 to, say, some base class of CURTYPE). */
2537
2538 static struct value *
2539 value_maybe_namespace_elt (const struct type *curtype,
2540 char *name, int want_address,
2541 enum noside noside)
2542 {
2543 const char *namespace_name = TYPE_TAG_NAME (curtype);
2544 struct symbol *sym;
2545 struct value *result;
2546
2547 sym = cp_lookup_symbol_namespace (namespace_name, name, NULL,
2548 get_selected_block (0), VAR_DOMAIN,
2549 NULL);
2550
2551 if (sym == NULL)
2552 return NULL;
2553 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
2554 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
2555 result = allocate_value (SYMBOL_TYPE (sym));
2556 else
2557 result = value_of_variable (sym, get_selected_block (0));
2558
2559 if (result && want_address)
2560 result = value_addr (result);
2561
2562 return result;
2563 }
2564
2565 /* Given a pointer value V, find the real (RTTI) type
2566 of the object it points to.
2567 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
2568 and refer to the values computed for the object pointed to. */
2569
2570 struct type *
2571 value_rtti_target_type (struct value *v, int *full, int *top, int *using_enc)
2572 {
2573 struct value *target;
2574
2575 target = value_ind (v);
2576
2577 return value_rtti_type (target, full, top, using_enc);
2578 }
2579
2580 /* Given a value pointed to by ARGP, check its real run-time type, and
2581 if that is different from the enclosing type, create a new value
2582 using the real run-time type as the enclosing type (and of the same
2583 type as ARGP) and return it, with the embedded offset adjusted to
2584 be the correct offset to the enclosed object
2585 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
2586 parameters, computed by value_rtti_type(). If these are available,
2587 they can be supplied and a second call to value_rtti_type() is avoided.
2588 (Pass RTYPE == NULL if they're not available */
2589
2590 struct value *
2591 value_full_object (struct value *argp, struct type *rtype, int xfull, int xtop,
2592 int xusing_enc)
2593 {
2594 struct type *real_type;
2595 int full = 0;
2596 int top = -1;
2597 int using_enc = 0;
2598 struct value *new_val;
2599
2600 if (rtype)
2601 {
2602 real_type = rtype;
2603 full = xfull;
2604 top = xtop;
2605 using_enc = xusing_enc;
2606 }
2607 else
2608 real_type = value_rtti_type (argp, &full, &top, &using_enc);
2609
2610 /* If no RTTI data, or if object is already complete, do nothing */
2611 if (!real_type || real_type == value_enclosing_type (argp))
2612 return argp;
2613
2614 /* If we have the full object, but for some reason the enclosing
2615 type is wrong, set it *//* pai: FIXME -- sounds iffy */
2616 if (full)
2617 {
2618 argp = value_change_enclosing_type (argp, real_type);
2619 return argp;
2620 }
2621
2622 /* Check if object is in memory */
2623 if (VALUE_LVAL (argp) != lval_memory)
2624 {
2625 warning (_("Couldn't retrieve complete object of RTTI type %s; object may be in register(s)."), TYPE_NAME (real_type));
2626
2627 return argp;
2628 }
2629
2630 /* All other cases -- retrieve the complete object */
2631 /* Go back by the computed top_offset from the beginning of the object,
2632 adjusting for the embedded offset of argp if that's what value_rtti_type
2633 used for its computation. */
2634 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
2635 (using_enc ? 0 : value_embedded_offset (argp)));
2636 deprecated_set_value_type (new_val, value_type (argp));
2637 set_value_embedded_offset (new_val, (using_enc
2638 ? top + value_embedded_offset (argp)
2639 : top));
2640 return new_val;
2641 }
2642
2643
2644
2645
2646 /* Return the value of the local variable, if one exists.
2647 Flag COMPLAIN signals an error if the request is made in an
2648 inappropriate context. */
2649
2650 struct value *
2651 value_of_local (const char *name, int complain)
2652 {
2653 struct symbol *func, *sym;
2654 struct block *b;
2655 struct value * ret;
2656 struct frame_info *frame;
2657
2658 if (complain)
2659 frame = get_selected_frame (_("no frame selected"));
2660 else
2661 {
2662 frame = deprecated_safe_get_selected_frame ();
2663 if (frame == 0)
2664 return 0;
2665 }
2666
2667 func = get_frame_function (frame);
2668 if (!func)
2669 {
2670 if (complain)
2671 error (_("no `%s' in nameless context"), name);
2672 else
2673 return 0;
2674 }
2675
2676 b = SYMBOL_BLOCK_VALUE (func);
2677 if (dict_empty (BLOCK_DICT (b)))
2678 {
2679 if (complain)
2680 error (_("no args, no `%s'"), name);
2681 else
2682 return 0;
2683 }
2684
2685 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
2686 symbol instead of the LOC_ARG one (if both exist). */
2687 sym = lookup_block_symbol (b, name, NULL, VAR_DOMAIN);
2688 if (sym == NULL)
2689 {
2690 if (complain)
2691 error (_("current stack frame does not contain a variable named `%s'"), name);
2692 else
2693 return NULL;
2694 }
2695
2696 ret = read_var_value (sym, frame);
2697 if (ret == 0 && complain)
2698 error (_("`%s' argument unreadable"), name);
2699 return ret;
2700 }
2701
2702 /* C++/Objective-C: return the value of the class instance variable,
2703 if one exists. Flag COMPLAIN signals an error if the request is
2704 made in an inappropriate context. */
2705
2706 struct value *
2707 value_of_this (int complain)
2708 {
2709 if (current_language->la_language == language_objc)
2710 return value_of_local ("self", complain);
2711 else
2712 return value_of_local ("this", complain);
2713 }
2714
2715 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
2716 long, starting at LOWBOUND. The result has the same lower bound as
2717 the original ARRAY. */
2718
2719 struct value *
2720 value_slice (struct value *array, int lowbound, int length)
2721 {
2722 struct type *slice_range_type, *slice_type, *range_type;
2723 LONGEST lowerbound, upperbound;
2724 struct value *slice;
2725 struct type *array_type;
2726 array_type = check_typedef (value_type (array));
2727 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
2728 && TYPE_CODE (array_type) != TYPE_CODE_STRING
2729 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
2730 error (_("cannot take slice of non-array"));
2731 range_type = TYPE_INDEX_TYPE (array_type);
2732 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2733 error (_("slice from bad array or bitstring"));
2734 if (lowbound < lowerbound || length < 0
2735 || lowbound + length - 1 > upperbound)
2736 error (_("slice out of range"));
2737 /* FIXME-type-allocation: need a way to free this type when we are
2738 done with it. */
2739 slice_range_type = create_range_type ((struct type *) NULL,
2740 TYPE_TARGET_TYPE (range_type),
2741 lowbound, lowbound + length - 1);
2742 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
2743 {
2744 int i;
2745 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
2746 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
2747 slice = value_zero (slice_type, not_lval);
2748 for (i = 0; i < length; i++)
2749 {
2750 int element = value_bit_index (array_type,
2751 value_contents (array),
2752 lowbound + i);
2753 if (element < 0)
2754 error (_("internal error accessing bitstring"));
2755 else if (element > 0)
2756 {
2757 int j = i % TARGET_CHAR_BIT;
2758 if (BITS_BIG_ENDIAN)
2759 j = TARGET_CHAR_BIT - 1 - j;
2760 value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
2761 }
2762 }
2763 /* We should set the address, bitssize, and bitspos, so the clice
2764 can be used on the LHS, but that may require extensions to
2765 value_assign. For now, just leave as a non_lval. FIXME. */
2766 }
2767 else
2768 {
2769 struct type *element_type = TYPE_TARGET_TYPE (array_type);
2770 LONGEST offset
2771 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
2772 slice_type = create_array_type ((struct type *) NULL, element_type,
2773 slice_range_type);
2774 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
2775 slice = allocate_value (slice_type);
2776 if (value_lazy (array))
2777 set_value_lazy (slice, 1);
2778 else
2779 memcpy (value_contents_writeable (slice),
2780 value_contents (array) + offset,
2781 TYPE_LENGTH (slice_type));
2782 if (VALUE_LVAL (array) == lval_internalvar)
2783 VALUE_LVAL (slice) = lval_internalvar_component;
2784 else
2785 VALUE_LVAL (slice) = VALUE_LVAL (array);
2786 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
2787 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
2788 set_value_offset (slice, value_offset (array) + offset);
2789 }
2790 return slice;
2791 }
2792
2793 /* Create a value for a FORTRAN complex number. Currently most of
2794 the time values are coerced to COMPLEX*16 (i.e. a complex number
2795 composed of 2 doubles. This really should be a smarter routine
2796 that figures out precision inteligently as opposed to assuming
2797 doubles. FIXME: fmb */
2798
2799 struct value *
2800 value_literal_complex (struct value *arg1, struct value *arg2, struct type *type)
2801 {
2802 struct value *val;
2803 struct type *real_type = TYPE_TARGET_TYPE (type);
2804
2805 val = allocate_value (type);
2806 arg1 = value_cast (real_type, arg1);
2807 arg2 = value_cast (real_type, arg2);
2808
2809 memcpy (value_contents_raw (val),
2810 value_contents (arg1), TYPE_LENGTH (real_type));
2811 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
2812 value_contents (arg2), TYPE_LENGTH (real_type));
2813 return val;
2814 }
2815
2816 /* Cast a value into the appropriate complex data type. */
2817
2818 static struct value *
2819 cast_into_complex (struct type *type, struct value *val)
2820 {
2821 struct type *real_type = TYPE_TARGET_TYPE (type);
2822 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
2823 {
2824 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
2825 struct value *re_val = allocate_value (val_real_type);
2826 struct value *im_val = allocate_value (val_real_type);
2827
2828 memcpy (value_contents_raw (re_val),
2829 value_contents (val), TYPE_LENGTH (val_real_type));
2830 memcpy (value_contents_raw (im_val),
2831 value_contents (val) + TYPE_LENGTH (val_real_type),
2832 TYPE_LENGTH (val_real_type));
2833
2834 return value_literal_complex (re_val, im_val, type);
2835 }
2836 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
2837 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
2838 return value_literal_complex (val, value_zero (real_type, not_lval), type);
2839 else
2840 error (_("cannot cast non-number to complex"));
2841 }
2842
2843 void
2844 _initialize_valops (void)
2845 {
2846 add_setshow_boolean_cmd ("overload-resolution", class_support,
2847 &overload_resolution, _("\
2848 Set overload resolution in evaluating C++ functions."), _("\
2849 Show overload resolution in evaluating C++ functions."), NULL,
2850 NULL,
2851 show_overload_resolution,
2852 &setlist, &showlist);
2853 overload_resolution = 1;
2854 }