* gdbtypes.c (create_set_type): Set TYPE_LENGTH in bytes, not bits.
[binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcore.h"
28 #include "target.h"
29 #include "demangle.h"
30 #include "language.h"
31
32 #include <errno.h>
33 #include "gdb_string.h"
34
35 /* Local functions. */
36
37 static int typecmp PARAMS ((int staticp, struct type *t1[], value_ptr t2[]));
38
39 static CORE_ADDR find_function_addr PARAMS ((value_ptr, struct type **));
40
41 static CORE_ADDR value_push PARAMS ((CORE_ADDR, value_ptr));
42
43 static value_ptr search_struct_field PARAMS ((char *, value_ptr, int,
44 struct type *, int));
45
46 static value_ptr search_struct_method PARAMS ((char *, value_ptr *,
47 value_ptr *,
48 int, int *, struct type *));
49
50 static int check_field_in PARAMS ((struct type *, const char *));
51
52 static CORE_ADDR allocate_space_in_inferior PARAMS ((int));
53
54 static value_ptr cast_into_complex PARAMS ((struct type *, value_ptr));
55
56 #define VALUE_SUBSTRING_START(VAL) VALUE_FRAME(VAL)
57
58 \f
59 /* Allocate NBYTES of space in the inferior using the inferior's malloc
60 and return a value that is a pointer to the allocated space. */
61
62 static CORE_ADDR
63 allocate_space_in_inferior (len)
64 int len;
65 {
66 register value_ptr val;
67 register struct symbol *sym;
68 struct minimal_symbol *msymbol;
69 struct type *type;
70 value_ptr blocklen;
71 LONGEST maddr;
72
73 /* Find the address of malloc in the inferior. */
74
75 sym = lookup_symbol ("malloc", 0, VAR_NAMESPACE, 0, NULL);
76 if (sym != NULL)
77 {
78 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
79 {
80 error ("\"malloc\" exists in this program but is not a function.");
81 }
82 val = value_of_variable (sym, NULL);
83 }
84 else
85 {
86 msymbol = lookup_minimal_symbol ("malloc", NULL, NULL);
87 if (msymbol != NULL)
88 {
89 type = lookup_pointer_type (builtin_type_char);
90 type = lookup_function_type (type);
91 type = lookup_pointer_type (type);
92 maddr = (LONGEST) SYMBOL_VALUE_ADDRESS (msymbol);
93 val = value_from_longest (type, maddr);
94 }
95 else
96 {
97 error ("evaluation of this expression requires the program to have a function \"malloc\".");
98 }
99 }
100
101 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
102 val = call_function_by_hand (val, 1, &blocklen);
103 if (value_logical_not (val))
104 {
105 error ("No memory available to program.");
106 }
107 return (value_as_long (val));
108 }
109
110 /* Cast value ARG2 to type TYPE and return as a value.
111 More general than a C cast: accepts any two types of the same length,
112 and if ARG2 is an lvalue it can be cast into anything at all. */
113 /* In C++, casts may change pointer or object representations. */
114
115 value_ptr
116 value_cast (type, arg2)
117 struct type *type;
118 register value_ptr arg2;
119 {
120 register enum type_code code1 = TYPE_CODE (type);
121 register enum type_code code2;
122 register int scalar;
123
124 if (VALUE_TYPE (arg2) == type)
125 return arg2;
126
127 COERCE_REF(arg2);
128
129 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
130 is treated like a cast to (TYPE [N])OBJECT,
131 where N is sizeof(OBJECT)/sizeof(TYPE). */
132 if (code1 == TYPE_CODE_ARRAY
133 && TYPE_LENGTH (TYPE_TARGET_TYPE (type)) > 0
134 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
135 {
136 struct type *element_type = TYPE_TARGET_TYPE (type);
137 struct type *range_type = TYPE_INDEX_TYPE (type);
138 int low_bound = TYPE_LOW_BOUND (range_type);
139 int val_length = TYPE_LENGTH (VALUE_TYPE (arg2));
140 int new_length = val_length / TYPE_LENGTH (element_type);
141 if (val_length % TYPE_LENGTH (element_type) != 0)
142 warning("array element type size does not divide object size in cast");
143 /* FIXME-type-allocation: need a way to free this type when we are
144 done with it. */
145 range_type = create_range_type ((struct type *) NULL,
146 TYPE_TARGET_TYPE (range_type),
147 low_bound, new_length + low_bound - 1);
148 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
149 element_type, range_type);
150 return arg2;
151 }
152
153 if (current_language->c_style_arrays
154 && (VALUE_REPEATED (arg2)
155 || TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_ARRAY))
156 arg2 = value_coerce_array (arg2);
157
158 if (TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_FUNC)
159 arg2 = value_coerce_function (arg2);
160
161 COERCE_VARYING_ARRAY (arg2);
162
163 code2 = TYPE_CODE (VALUE_TYPE (arg2));
164
165 if (code1 == TYPE_CODE_COMPLEX)
166 return cast_into_complex (type, arg2);
167 if (code1 == TYPE_CODE_BOOL)
168 code1 = TYPE_CODE_INT;
169 if (code2 == TYPE_CODE_BOOL)
170 code2 = TYPE_CODE_INT;
171
172 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
173 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
174
175 if ( code1 == TYPE_CODE_STRUCT
176 && code2 == TYPE_CODE_STRUCT
177 && TYPE_NAME (type) != 0)
178 {
179 /* Look in the type of the source to see if it contains the
180 type of the target as a superclass. If so, we'll need to
181 offset the object in addition to changing its type. */
182 value_ptr v = search_struct_field (type_name_no_tag (type),
183 arg2, 0, VALUE_TYPE (arg2), 1);
184 if (v)
185 {
186 VALUE_TYPE (v) = type;
187 return v;
188 }
189 }
190 if (code1 == TYPE_CODE_FLT && scalar)
191 return value_from_double (type, value_as_double (arg2));
192 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
193 || code1 == TYPE_CODE_RANGE)
194 && (scalar || code2 == TYPE_CODE_PTR))
195 return value_from_longest (type, value_as_long (arg2));
196 else if (TYPE_LENGTH (type) == TYPE_LENGTH (VALUE_TYPE (arg2)))
197 {
198 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
199 {
200 /* Look in the type of the source to see if it contains the
201 type of the target as a superclass. If so, we'll need to
202 offset the pointer rather than just change its type. */
203 struct type *t1 = TYPE_TARGET_TYPE (type);
204 struct type *t2 = TYPE_TARGET_TYPE (VALUE_TYPE (arg2));
205 if ( TYPE_CODE (t1) == TYPE_CODE_STRUCT
206 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
207 && TYPE_NAME (t1) != 0) /* if name unknown, can't have supercl */
208 {
209 value_ptr v = search_struct_field (type_name_no_tag (t1),
210 value_ind (arg2), 0, t2, 1);
211 if (v)
212 {
213 v = value_addr (v);
214 VALUE_TYPE (v) = type;
215 return v;
216 }
217 }
218 /* No superclass found, just fall through to change ptr type. */
219 }
220 VALUE_TYPE (arg2) = type;
221 return arg2;
222 }
223 else if (chill_varying_type (type))
224 {
225 struct type *range1, *range2, *eltype1, *eltype2;
226 value_ptr val;
227 int count1, count2;
228 char *valaddr, *valaddr_data;
229 if (code2 == TYPE_CODE_BITSTRING)
230 error ("not implemented: converting bitstring to varying type");
231 if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING)
232 || (eltype1 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1)),
233 eltype2 = TYPE_TARGET_TYPE (VALUE_TYPE (arg2)),
234 (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2)
235 /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ )))
236 error ("Invalid conversion to varying type");
237 range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0);
238 range2 = TYPE_FIELD_TYPE (VALUE_TYPE (arg2), 0);
239 count1 = TYPE_HIGH_BOUND (range1) - TYPE_LOW_BOUND (range1) + 1;
240 count2 = TYPE_HIGH_BOUND (range2) - TYPE_LOW_BOUND (range2) + 1;
241 if (count2 > count1)
242 error ("target varying type is too small");
243 val = allocate_value (type);
244 valaddr = VALUE_CONTENTS_RAW (val);
245 valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8;
246 /* Set val's __var_length field to count2. */
247 store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)),
248 count2);
249 /* Set the __var_data field to count2 elements copied from arg2. */
250 memcpy (valaddr_data, VALUE_CONTENTS (arg2),
251 count2 * TYPE_LENGTH (eltype2));
252 /* Zero the rest of the __var_data field of val. */
253 memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0',
254 (count1 - count2) * TYPE_LENGTH (eltype2));
255 return val;
256 }
257 else if (VALUE_LVAL (arg2) == lval_memory)
258 {
259 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2));
260 }
261 else if (code1 == TYPE_CODE_VOID)
262 {
263 return value_zero (builtin_type_void, not_lval);
264 }
265 else
266 {
267 error ("Invalid cast.");
268 return 0;
269 }
270 }
271
272 /* Create a value of type TYPE that is zero, and return it. */
273
274 value_ptr
275 value_zero (type, lv)
276 struct type *type;
277 enum lval_type lv;
278 {
279 register value_ptr val = allocate_value (type);
280
281 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (type));
282 VALUE_LVAL (val) = lv;
283
284 return val;
285 }
286
287 /* Return a value with type TYPE located at ADDR.
288
289 Call value_at only if the data needs to be fetched immediately;
290 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
291 value_at_lazy instead. value_at_lazy simply records the address of
292 the data and sets the lazy-evaluation-required flag. The lazy flag
293 is tested in the VALUE_CONTENTS macro, which is used if and when
294 the contents are actually required. */
295
296 value_ptr
297 value_at (type, addr)
298 struct type *type;
299 CORE_ADDR addr;
300 {
301 register value_ptr val;
302
303 if (TYPE_CODE (type) == TYPE_CODE_VOID)
304 error ("Attempt to dereference a generic pointer.");
305
306 val = allocate_value (type);
307
308 read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (type));
309
310 VALUE_LVAL (val) = lval_memory;
311 VALUE_ADDRESS (val) = addr;
312
313 return val;
314 }
315
316 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
317
318 value_ptr
319 value_at_lazy (type, addr)
320 struct type *type;
321 CORE_ADDR addr;
322 {
323 register value_ptr val;
324
325 if (TYPE_CODE (type) == TYPE_CODE_VOID)
326 error ("Attempt to dereference a generic pointer.");
327
328 val = allocate_value (type);
329
330 VALUE_LVAL (val) = lval_memory;
331 VALUE_ADDRESS (val) = addr;
332 VALUE_LAZY (val) = 1;
333
334 return val;
335 }
336
337 /* Called only from the VALUE_CONTENTS macro, if the current data for
338 a variable needs to be loaded into VALUE_CONTENTS(VAL). Fetches the
339 data from the user's process, and clears the lazy flag to indicate
340 that the data in the buffer is valid.
341
342 If the value is zero-length, we avoid calling read_memory, which would
343 abort. We mark the value as fetched anyway -- all 0 bytes of it.
344
345 This function returns a value because it is used in the VALUE_CONTENTS
346 macro as part of an expression, where a void would not work. The
347 value is ignored. */
348
349 int
350 value_fetch_lazy (val)
351 register value_ptr val;
352 {
353 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
354
355 if (TYPE_LENGTH (VALUE_TYPE (val)))
356 read_memory (addr, VALUE_CONTENTS_RAW (val),
357 TYPE_LENGTH (VALUE_TYPE (val)));
358 VALUE_LAZY (val) = 0;
359 return 0;
360 }
361
362
363 /* Store the contents of FROMVAL into the location of TOVAL.
364 Return a new value with the location of TOVAL and contents of FROMVAL. */
365
366 value_ptr
367 value_assign (toval, fromval)
368 register value_ptr toval, fromval;
369 {
370 register struct type *type;
371 register value_ptr val;
372 char raw_buffer[MAX_REGISTER_RAW_SIZE];
373 int use_buffer = 0;
374
375 if (!toval->modifiable)
376 error ("Left operand of assignment is not a modifiable lvalue.");
377
378 COERCE_ARRAY (fromval);
379 COERCE_REF (toval);
380
381 type = VALUE_TYPE (toval);
382 if (VALUE_LVAL (toval) != lval_internalvar)
383 fromval = value_cast (type, fromval);
384
385 /* If TOVAL is a special machine register requiring conversion
386 of program values to a special raw format,
387 convert FROMVAL's contents now, with result in `raw_buffer',
388 and set USE_BUFFER to the number of bytes to write. */
389
390 #ifdef REGISTER_CONVERTIBLE
391 if (VALUE_REGNO (toval) >= 0
392 && REGISTER_CONVERTIBLE (VALUE_REGNO (toval)))
393 {
394 int regno = VALUE_REGNO (toval);
395 if (REGISTER_CONVERTIBLE (regno))
396 {
397 REGISTER_CONVERT_TO_RAW (VALUE_TYPE (fromval), regno,
398 VALUE_CONTENTS (fromval), raw_buffer);
399 use_buffer = REGISTER_RAW_SIZE (regno);
400 }
401 }
402 #endif
403
404 switch (VALUE_LVAL (toval))
405 {
406 case lval_internalvar:
407 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
408 break;
409
410 case lval_internalvar_component:
411 set_internalvar_component (VALUE_INTERNALVAR (toval),
412 VALUE_OFFSET (toval),
413 VALUE_BITPOS (toval),
414 VALUE_BITSIZE (toval),
415 fromval);
416 break;
417
418 case lval_memory:
419 if (VALUE_BITSIZE (toval))
420 {
421 char buffer[sizeof (LONGEST)];
422 /* We assume that the argument to read_memory is in units of
423 host chars. FIXME: Is that correct? */
424 int len = (VALUE_BITPOS (toval)
425 + VALUE_BITSIZE (toval)
426 + HOST_CHAR_BIT - 1)
427 / HOST_CHAR_BIT;
428
429 if (len > sizeof (LONGEST))
430 error ("Can't handle bitfields which don't fit in a %d bit word.",
431 sizeof (LONGEST) * HOST_CHAR_BIT);
432
433 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
434 buffer, len);
435 modify_field (buffer, value_as_long (fromval),
436 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
437 write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
438 buffer, len);
439 }
440 else if (use_buffer)
441 write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
442 raw_buffer, use_buffer);
443 else
444 write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
445 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
446 break;
447
448 case lval_register:
449 if (VALUE_BITSIZE (toval))
450 {
451 char buffer[sizeof (LONGEST)];
452 int len = REGISTER_RAW_SIZE (VALUE_REGNO (toval));
453
454 if (len > sizeof (LONGEST))
455 error ("Can't handle bitfields in registers larger than %d bits.",
456 sizeof (LONGEST) * HOST_CHAR_BIT);
457
458 if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
459 > len * HOST_CHAR_BIT)
460 /* Getting this right would involve being very careful about
461 byte order. */
462 error ("\
463 Can't handle bitfield which doesn't fit in a single register.");
464
465 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
466 buffer, len);
467 modify_field (buffer, value_as_long (fromval),
468 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
469 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
470 buffer, len);
471 }
472 else if (use_buffer)
473 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
474 raw_buffer, use_buffer);
475 else
476 {
477 /* Do any conversion necessary when storing this type to more
478 than one register. */
479 #ifdef REGISTER_CONVERT_FROM_TYPE
480 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
481 REGISTER_CONVERT_FROM_TYPE(VALUE_REGNO (toval), type, raw_buffer);
482 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
483 raw_buffer, TYPE_LENGTH (type));
484 #else
485 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
486 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
487 #endif
488 }
489 /* Assigning to the stack pointer, frame pointer, and other
490 (architecture and calling convention specific) registers may
491 cause the frame cache to be out of date. We just do this
492 on all assignments to registers for simplicity; I doubt the slowdown
493 matters. */
494 reinit_frame_cache ();
495 break;
496
497 case lval_reg_frame_relative:
498 {
499 /* value is stored in a series of registers in the frame
500 specified by the structure. Copy that value out, modify
501 it, and copy it back in. */
502 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
503 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
504 int byte_offset = VALUE_OFFSET (toval) % reg_size;
505 int reg_offset = VALUE_OFFSET (toval) / reg_size;
506 int amount_copied;
507
508 /* Make the buffer large enough in all cases. */
509 char *buffer = (char *) alloca (amount_to_copy
510 + sizeof (LONGEST)
511 + MAX_REGISTER_RAW_SIZE);
512
513 int regno;
514 struct frame_info *frame;
515
516 /* Figure out which frame this is in currently. */
517 for (frame = get_current_frame ();
518 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
519 frame = get_prev_frame (frame))
520 ;
521
522 if (!frame)
523 error ("Value being assigned to is no longer active.");
524
525 amount_to_copy += (reg_size - amount_to_copy % reg_size);
526
527 /* Copy it out. */
528 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
529 amount_copied = 0);
530 amount_copied < amount_to_copy;
531 amount_copied += reg_size, regno++)
532 {
533 get_saved_register (buffer + amount_copied,
534 (int *)NULL, (CORE_ADDR *)NULL,
535 frame, regno, (enum lval_type *)NULL);
536 }
537
538 /* Modify what needs to be modified. */
539 if (VALUE_BITSIZE (toval))
540 modify_field (buffer + byte_offset,
541 value_as_long (fromval),
542 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
543 else if (use_buffer)
544 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
545 else
546 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
547 TYPE_LENGTH (type));
548
549 /* Copy it back. */
550 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
551 amount_copied = 0);
552 amount_copied < amount_to_copy;
553 amount_copied += reg_size, regno++)
554 {
555 enum lval_type lval;
556 CORE_ADDR addr;
557 int optim;
558
559 /* Just find out where to put it. */
560 get_saved_register ((char *)NULL,
561 &optim, &addr, frame, regno, &lval);
562
563 if (optim)
564 error ("Attempt to assign to a value that was optimized out.");
565 if (lval == lval_memory)
566 write_memory (addr, buffer + amount_copied, reg_size);
567 else if (lval == lval_register)
568 write_register_bytes (addr, buffer + amount_copied, reg_size);
569 else
570 error ("Attempt to assign to an unmodifiable value.");
571 }
572 }
573 break;
574
575
576 default:
577 error ("Left operand of assignment is not an lvalue.");
578 }
579
580 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
581 If the field is signed, and is negative, then sign extend. */
582 if ((VALUE_BITSIZE (toval) > 0)
583 && (VALUE_BITSIZE (toval) < 8 * sizeof (LONGEST)))
584 {
585 LONGEST fieldval = value_as_long (fromval);
586 LONGEST valmask = (((unsigned LONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
587
588 fieldval &= valmask;
589 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
590 fieldval |= ~valmask;
591
592 fromval = value_from_longest (type, fieldval);
593 }
594
595 /* Return a value just like TOVAL except with the contents of FROMVAL
596 (except in the case of the type if TOVAL is an internalvar). */
597
598 if (VALUE_LVAL (toval) == lval_internalvar
599 || VALUE_LVAL (toval) == lval_internalvar_component)
600 {
601 type = VALUE_TYPE (fromval);
602 }
603
604 val = value_copy (toval);
605 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
606 TYPE_LENGTH (type));
607 VALUE_TYPE (val) = type;
608
609 return val;
610 }
611
612 /* Extend a value VAL to COUNT repetitions of its type. */
613
614 value_ptr
615 value_repeat (arg1, count)
616 value_ptr arg1;
617 int count;
618 {
619 register value_ptr val;
620
621 if (VALUE_LVAL (arg1) != lval_memory)
622 error ("Only values in memory can be extended with '@'.");
623 if (count < 1)
624 error ("Invalid number %d of repetitions.", count);
625 if (VALUE_REPEATED (arg1))
626 error ("Cannot create artificial arrays of artificial arrays.");
627
628 val = allocate_repeat_value (VALUE_TYPE (arg1), count);
629
630 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
631 VALUE_CONTENTS_RAW (val),
632 TYPE_LENGTH (VALUE_TYPE (val)) * count);
633 VALUE_LVAL (val) = lval_memory;
634 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
635
636 return val;
637 }
638
639 value_ptr
640 value_of_variable (var, b)
641 struct symbol *var;
642 struct block *b;
643 {
644 value_ptr val;
645 struct frame_info *frame;
646
647 if (b == NULL)
648 /* Use selected frame. */
649 frame = NULL;
650 else
651 {
652 frame = block_innermost_frame (b);
653 if (frame == NULL && symbol_read_needs_frame (var))
654 {
655 if (BLOCK_FUNCTION (b) != NULL
656 && SYMBOL_NAME (BLOCK_FUNCTION (b)) != NULL)
657 error ("No frame is currently executing in block %s.",
658 SYMBOL_NAME (BLOCK_FUNCTION (b)));
659 else
660 error ("No frame is currently executing in specified block");
661 }
662 }
663 val = read_var_value (var, frame);
664 if (val == 0)
665 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
666 return val;
667 }
668
669 /* Given a value which is an array, return a value which is a pointer to its
670 first element, regardless of whether or not the array has a nonzero lower
671 bound.
672
673 FIXME: A previous comment here indicated that this routine should be
674 substracting the array's lower bound. It's not clear to me that this
675 is correct. Given an array subscripting operation, it would certainly
676 work to do the adjustment here, essentially computing:
677
678 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
679
680 However I believe a more appropriate and logical place to account for
681 the lower bound is to do so in value_subscript, essentially computing:
682
683 (&array[0] + ((index - lowerbound) * sizeof array[0]))
684
685 As further evidence consider what would happen with operations other
686 than array subscripting, where the caller would get back a value that
687 had an address somewhere before the actual first element of the array,
688 and the information about the lower bound would be lost because of
689 the coercion to pointer type.
690 */
691
692 value_ptr
693 value_coerce_array (arg1)
694 value_ptr arg1;
695 {
696 register struct type *type;
697
698 if (VALUE_LVAL (arg1) != lval_memory)
699 error ("Attempt to take address of value not located in memory.");
700
701 /* Get type of elements. */
702 if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_ARRAY
703 || TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_STRING)
704 type = TYPE_TARGET_TYPE (VALUE_TYPE (arg1));
705 else
706 /* A phony array made by value_repeat.
707 Its type is the type of the elements, not an array type. */
708 type = VALUE_TYPE (arg1);
709
710 return value_from_longest (lookup_pointer_type (type),
711 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
712 }
713
714 /* Given a value which is a function, return a value which is a pointer
715 to it. */
716
717 value_ptr
718 value_coerce_function (arg1)
719 value_ptr arg1;
720 {
721
722 if (VALUE_LVAL (arg1) != lval_memory)
723 error ("Attempt to take address of value not located in memory.");
724
725 return value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)),
726 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
727 }
728
729 /* Return a pointer value for the object for which ARG1 is the contents. */
730
731 value_ptr
732 value_addr (arg1)
733 value_ptr arg1;
734 {
735 struct type *type = VALUE_TYPE (arg1);
736 if (TYPE_CODE (type) == TYPE_CODE_REF)
737 {
738 /* Copy the value, but change the type from (T&) to (T*).
739 We keep the same location information, which is efficient,
740 and allows &(&X) to get the location containing the reference. */
741 value_ptr arg2 = value_copy (arg1);
742 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
743 return arg2;
744 }
745 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
746 return value_coerce_function (arg1);
747
748 if (VALUE_LVAL (arg1) != lval_memory)
749 error ("Attempt to take address of value not located in memory.");
750
751 return value_from_longest (lookup_pointer_type (type),
752 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
753 }
754
755 /* Given a value of a pointer type, apply the C unary * operator to it. */
756
757 value_ptr
758 value_ind (arg1)
759 value_ptr arg1;
760 {
761 COERCE_ARRAY (arg1);
762
763 if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_MEMBER)
764 error ("not implemented: member types in value_ind");
765
766 /* Allow * on an integer so we can cast it to whatever we want.
767 This returns an int, which seems like the most C-like thing
768 to do. "long long" variables are rare enough that
769 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
770 if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_INT)
771 return value_at (builtin_type_int,
772 (CORE_ADDR) value_as_long (arg1));
773 else if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_PTR)
774 return value_at_lazy (TYPE_TARGET_TYPE (VALUE_TYPE (arg1)),
775 value_as_pointer (arg1));
776 error ("Attempt to take contents of a non-pointer value.");
777 return 0; /* For lint -- never reached */
778 }
779 \f
780 /* Pushing small parts of stack frames. */
781
782 /* Push one word (the size of object that a register holds). */
783
784 CORE_ADDR
785 push_word (sp, word)
786 CORE_ADDR sp;
787 unsigned LONGEST word;
788 {
789 register int len = REGISTER_SIZE;
790 char buffer[MAX_REGISTER_RAW_SIZE];
791
792 store_unsigned_integer (buffer, len, word);
793 #if 1 INNER_THAN 2
794 sp -= len;
795 write_memory (sp, buffer, len);
796 #else /* stack grows upward */
797 write_memory (sp, buffer, len);
798 sp += len;
799 #endif /* stack grows upward */
800
801 return sp;
802 }
803
804 /* Push LEN bytes with data at BUFFER. */
805
806 CORE_ADDR
807 push_bytes (sp, buffer, len)
808 CORE_ADDR sp;
809 char *buffer;
810 int len;
811 {
812 #if 1 INNER_THAN 2
813 sp -= len;
814 write_memory (sp, buffer, len);
815 #else /* stack grows upward */
816 write_memory (sp, buffer, len);
817 sp += len;
818 #endif /* stack grows upward */
819
820 return sp;
821 }
822
823 /* Push onto the stack the specified value VALUE. */
824
825 static CORE_ADDR
826 value_push (sp, arg)
827 register CORE_ADDR sp;
828 value_ptr arg;
829 {
830 register int len = TYPE_LENGTH (VALUE_TYPE (arg));
831
832 #if 1 INNER_THAN 2
833 sp -= len;
834 write_memory (sp, VALUE_CONTENTS (arg), len);
835 #else /* stack grows upward */
836 write_memory (sp, VALUE_CONTENTS (arg), len);
837 sp += len;
838 #endif /* stack grows upward */
839
840 return sp;
841 }
842
843 /* Perform the standard coercions that are specified
844 for arguments to be passed to C functions.
845
846 If PARAM_TYPE is non-NULL, it is the expected parameter type. */
847
848 static value_ptr
849 value_arg_coerce (arg, param_type)
850 value_ptr arg;
851 struct type *param_type;
852 {
853 register struct type *type;
854
855 #if 1 /* FIXME: This is only a temporary patch. -fnf */
856 if (current_language->c_style_arrays
857 && (VALUE_REPEATED (arg)
858 || TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_ARRAY))
859 arg = value_coerce_array (arg);
860 #endif
861
862 type = param_type ? param_type : VALUE_TYPE (arg);
863
864 switch (TYPE_CODE (type))
865 {
866 case TYPE_CODE_REF:
867 if (TYPE_CODE (VALUE_TYPE (arg)) != TYPE_CODE_REF)
868 {
869 arg = value_addr (arg);
870 VALUE_TYPE (arg) = param_type;
871 return arg;
872 }
873 break;
874 case TYPE_CODE_INT:
875 case TYPE_CODE_CHAR:
876 case TYPE_CODE_BOOL:
877 case TYPE_CODE_ENUM:
878 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
879 type = builtin_type_int;
880 break;
881 case TYPE_CODE_FLT:
882 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
883 type = builtin_type_double;
884 break;
885 case TYPE_CODE_FUNC:
886 type = lookup_pointer_type (type);
887 break;
888 case TYPE_CODE_UNDEF:
889 case TYPE_CODE_PTR:
890 case TYPE_CODE_ARRAY:
891 case TYPE_CODE_STRUCT:
892 case TYPE_CODE_UNION:
893 case TYPE_CODE_VOID:
894 case TYPE_CODE_SET:
895 case TYPE_CODE_RANGE:
896 case TYPE_CODE_STRING:
897 case TYPE_CODE_BITSTRING:
898 case TYPE_CODE_ERROR:
899 case TYPE_CODE_MEMBER:
900 case TYPE_CODE_METHOD:
901 case TYPE_CODE_COMPLEX:
902 default:
903 break;
904 }
905
906 return value_cast (type, arg);
907 }
908
909 /* Determine a function's address and its return type from its value.
910 Calls error() if the function is not valid for calling. */
911
912 static CORE_ADDR
913 find_function_addr (function, retval_type)
914 value_ptr function;
915 struct type **retval_type;
916 {
917 register struct type *ftype = VALUE_TYPE (function);
918 register enum type_code code = TYPE_CODE (ftype);
919 struct type *value_type;
920 CORE_ADDR funaddr;
921
922 /* If it's a member function, just look at the function
923 part of it. */
924
925 /* Determine address to call. */
926 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
927 {
928 funaddr = VALUE_ADDRESS (function);
929 value_type = TYPE_TARGET_TYPE (ftype);
930 }
931 else if (code == TYPE_CODE_PTR)
932 {
933 funaddr = value_as_pointer (function);
934 if (TYPE_CODE (TYPE_TARGET_TYPE (ftype)) == TYPE_CODE_FUNC
935 || TYPE_CODE (TYPE_TARGET_TYPE (ftype)) == TYPE_CODE_METHOD)
936 {
937 #ifdef CONVERT_FROM_FUNC_PTR_ADDR
938 /* FIXME: This is a workaround for the unusual function
939 pointer representation on the RS/6000, see comment
940 in config/rs6000/tm-rs6000.h */
941 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
942 #endif
943 value_type = TYPE_TARGET_TYPE (TYPE_TARGET_TYPE (ftype));
944 }
945 else
946 value_type = builtin_type_int;
947 }
948 else if (code == TYPE_CODE_INT)
949 {
950 /* Handle the case of functions lacking debugging info.
951 Their values are characters since their addresses are char */
952 if (TYPE_LENGTH (ftype) == 1)
953 funaddr = value_as_pointer (value_addr (function));
954 else
955 /* Handle integer used as address of a function. */
956 funaddr = (CORE_ADDR) value_as_long (function);
957
958 value_type = builtin_type_int;
959 }
960 else
961 error ("Invalid data type for function to be called.");
962
963 *retval_type = value_type;
964 return funaddr;
965 }
966
967 #if defined (CALL_DUMMY)
968 /* All this stuff with a dummy frame may seem unnecessarily complicated
969 (why not just save registers in GDB?). The purpose of pushing a dummy
970 frame which looks just like a real frame is so that if you call a
971 function and then hit a breakpoint (get a signal, etc), "backtrace"
972 will look right. Whether the backtrace needs to actually show the
973 stack at the time the inferior function was called is debatable, but
974 it certainly needs to not display garbage. So if you are contemplating
975 making dummy frames be different from normal frames, consider that. */
976
977 /* Perform a function call in the inferior.
978 ARGS is a vector of values of arguments (NARGS of them).
979 FUNCTION is a value, the function to be called.
980 Returns a value representing what the function returned.
981 May fail to return, if a breakpoint or signal is hit
982 during the execution of the function.
983
984 ARGS is modified to contain coerced values. */
985
986 value_ptr
987 call_function_by_hand (function, nargs, args)
988 value_ptr function;
989 int nargs;
990 value_ptr *args;
991 {
992 register CORE_ADDR sp;
993 register int i;
994 CORE_ADDR start_sp;
995 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
996 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
997 and remove any extra bytes which might exist because unsigned LONGEST is
998 bigger than REGISTER_SIZE. */
999 static unsigned LONGEST dummy[] = CALL_DUMMY;
1000 char dummy1[REGISTER_SIZE * sizeof dummy / sizeof (unsigned LONGEST)];
1001 CORE_ADDR old_sp;
1002 struct type *value_type;
1003 unsigned char struct_return;
1004 CORE_ADDR struct_addr;
1005 struct inferior_status inf_status;
1006 struct cleanup *old_chain;
1007 CORE_ADDR funaddr;
1008 int using_gcc;
1009 CORE_ADDR real_pc;
1010 struct type *ftype = SYMBOL_TYPE (function);
1011
1012 if (!target_has_execution)
1013 noprocess();
1014
1015 save_inferior_status (&inf_status, 1);
1016 old_chain = make_cleanup (restore_inferior_status, &inf_status);
1017
1018 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1019 (and POP_FRAME for restoring them). (At least on most machines)
1020 they are saved on the stack in the inferior. */
1021 PUSH_DUMMY_FRAME;
1022
1023 old_sp = sp = read_sp ();
1024
1025 #if 1 INNER_THAN 2 /* Stack grows down */
1026 sp -= sizeof dummy1;
1027 start_sp = sp;
1028 #else /* Stack grows up */
1029 start_sp = sp;
1030 sp += sizeof dummy1;
1031 #endif
1032
1033 funaddr = find_function_addr (function, &value_type);
1034
1035 {
1036 struct block *b = block_for_pc (funaddr);
1037 /* If compiled without -g, assume GCC. */
1038 using_gcc = b == NULL ? 0 : BLOCK_GCC_COMPILED (b);
1039 }
1040
1041 /* Are we returning a value using a structure return or a normal
1042 value return? */
1043
1044 struct_return = using_struct_return (function, funaddr, value_type,
1045 using_gcc);
1046
1047 /* Create a call sequence customized for this function
1048 and the number of arguments for it. */
1049 for (i = 0; i < sizeof dummy / sizeof (dummy[0]); i++)
1050 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1051 REGISTER_SIZE,
1052 (unsigned LONGEST)dummy[i]);
1053
1054 #ifdef GDB_TARGET_IS_HPPA
1055 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1056 value_type, using_gcc);
1057 #else
1058 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1059 value_type, using_gcc);
1060 real_pc = start_sp;
1061 #endif
1062
1063 #if CALL_DUMMY_LOCATION == ON_STACK
1064 write_memory (start_sp, (char *)dummy1, sizeof dummy1);
1065 #endif /* On stack. */
1066
1067 #if CALL_DUMMY_LOCATION == BEFORE_TEXT_END
1068 /* Convex Unix prohibits executing in the stack segment. */
1069 /* Hope there is empty room at the top of the text segment. */
1070 {
1071 extern CORE_ADDR text_end;
1072 static checked = 0;
1073 if (!checked)
1074 for (start_sp = text_end - sizeof dummy1; start_sp < text_end; ++start_sp)
1075 if (read_memory_integer (start_sp, 1) != 0)
1076 error ("text segment full -- no place to put call");
1077 checked = 1;
1078 sp = old_sp;
1079 real_pc = text_end - sizeof dummy1;
1080 write_memory (real_pc, (char *)dummy1, sizeof dummy1);
1081 }
1082 #endif /* Before text_end. */
1083
1084 #if CALL_DUMMY_LOCATION == AFTER_TEXT_END
1085 {
1086 extern CORE_ADDR text_end;
1087 int errcode;
1088 sp = old_sp;
1089 real_pc = text_end;
1090 errcode = target_write_memory (real_pc, (char *)dummy1, sizeof dummy1);
1091 if (errcode != 0)
1092 error ("Cannot write text segment -- call_function failed");
1093 }
1094 #endif /* After text_end. */
1095
1096 #if CALL_DUMMY_LOCATION == AT_ENTRY_POINT
1097 real_pc = funaddr;
1098 #endif /* At entry point. */
1099
1100 #ifdef lint
1101 sp = old_sp; /* It really is used, for some ifdef's... */
1102 #endif
1103
1104 if (nargs < TYPE_NFIELDS (ftype))
1105 error ("too few arguments in function call");
1106
1107 for (i = nargs - 1; i >= 0; i--)
1108 {
1109 struct type *param_type;
1110 if (TYPE_NFIELDS (ftype) > i)
1111 param_type = TYPE_FIELD_TYPE (ftype, i);
1112 else
1113 param_type = 0;
1114 args[i] = value_arg_coerce (args[i], param_type);
1115 }
1116
1117 #if defined (REG_STRUCT_HAS_ADDR)
1118 {
1119 /* This is a machine like the sparc, where we may need to pass a pointer
1120 to the structure, not the structure itself. */
1121 for (i = nargs - 1; i >= 0; i--)
1122 if ((TYPE_CODE (VALUE_TYPE (args[i])) == TYPE_CODE_STRUCT
1123 || TYPE_CODE (VALUE_TYPE (args[i])) == TYPE_CODE_UNION
1124 || TYPE_CODE (VALUE_TYPE (args[i])) == TYPE_CODE_ARRAY
1125 || TYPE_CODE (VALUE_TYPE (args[i])) == TYPE_CODE_STRING)
1126 && REG_STRUCT_HAS_ADDR (using_gcc, VALUE_TYPE (args[i])))
1127 {
1128 CORE_ADDR addr;
1129 int len = TYPE_LENGTH (VALUE_TYPE (args[i]));
1130 #ifdef STACK_ALIGN
1131 int aligned_len = STACK_ALIGN (len);
1132 #else
1133 int aligned_len = len;
1134 #endif
1135 #if !(1 INNER_THAN 2)
1136 /* The stack grows up, so the address of the thing we push
1137 is the stack pointer before we push it. */
1138 addr = sp;
1139 #else
1140 sp -= aligned_len;
1141 #endif
1142 /* Push the structure. */
1143 write_memory (sp, VALUE_CONTENTS (args[i]), len);
1144 #if 1 INNER_THAN 2
1145 /* The stack grows down, so the address of the thing we push
1146 is the stack pointer after we push it. */
1147 addr = sp;
1148 #else
1149 sp += aligned_len;
1150 #endif
1151 /* The value we're going to pass is the address of the thing
1152 we just pushed. */
1153 args[i] = value_from_longest (lookup_pointer_type (value_type),
1154 (LONGEST) addr);
1155 }
1156 }
1157 #endif /* REG_STRUCT_HAS_ADDR. */
1158
1159 /* Reserve space for the return structure to be written on the
1160 stack, if necessary */
1161
1162 if (struct_return)
1163 {
1164 int len = TYPE_LENGTH (value_type);
1165 #ifdef STACK_ALIGN
1166 len = STACK_ALIGN (len);
1167 #endif
1168 #if 1 INNER_THAN 2
1169 sp -= len;
1170 struct_addr = sp;
1171 #else
1172 struct_addr = sp;
1173 sp += len;
1174 #endif
1175 }
1176
1177 #ifdef STACK_ALIGN
1178 /* If stack grows down, we must leave a hole at the top. */
1179 {
1180 int len = 0;
1181
1182 for (i = nargs - 1; i >= 0; i--)
1183 len += TYPE_LENGTH (VALUE_TYPE (args[i]));
1184 #ifdef CALL_DUMMY_STACK_ADJUST
1185 len += CALL_DUMMY_STACK_ADJUST;
1186 #endif
1187 #if 1 INNER_THAN 2
1188 sp -= STACK_ALIGN (len) - len;
1189 #else
1190 sp += STACK_ALIGN (len) - len;
1191 #endif
1192 }
1193 #endif /* STACK_ALIGN */
1194
1195 #ifdef PUSH_ARGUMENTS
1196 PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr);
1197 #else /* !PUSH_ARGUMENTS */
1198 for (i = nargs - 1; i >= 0; i--)
1199 sp = value_push (sp, args[i]);
1200 #endif /* !PUSH_ARGUMENTS */
1201
1202 #ifdef CALL_DUMMY_STACK_ADJUST
1203 #if 1 INNER_THAN 2
1204 sp -= CALL_DUMMY_STACK_ADJUST;
1205 #else
1206 sp += CALL_DUMMY_STACK_ADJUST;
1207 #endif
1208 #endif /* CALL_DUMMY_STACK_ADJUST */
1209
1210 /* Store the address at which the structure is supposed to be
1211 written. Note that this (and the code which reserved the space
1212 above) assumes that gcc was used to compile this function. Since
1213 it doesn't cost us anything but space and if the function is pcc
1214 it will ignore this value, we will make that assumption.
1215
1216 Also note that on some machines (like the sparc) pcc uses a
1217 convention like gcc's. */
1218
1219 if (struct_return)
1220 STORE_STRUCT_RETURN (struct_addr, sp);
1221
1222 /* Write the stack pointer. This is here because the statements above
1223 might fool with it. On SPARC, this write also stores the register
1224 window into the right place in the new stack frame, which otherwise
1225 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1226 write_sp (sp);
1227
1228 {
1229 char retbuf[REGISTER_BYTES];
1230 char *name;
1231 struct symbol *symbol;
1232
1233 name = NULL;
1234 symbol = find_pc_function (funaddr);
1235 if (symbol)
1236 {
1237 name = SYMBOL_SOURCE_NAME (symbol);
1238 }
1239 else
1240 {
1241 /* Try the minimal symbols. */
1242 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1243
1244 if (msymbol)
1245 {
1246 name = SYMBOL_SOURCE_NAME (msymbol);
1247 }
1248 }
1249 if (name == NULL)
1250 {
1251 char format[80];
1252 sprintf (format, "at %s", local_hex_format ());
1253 name = alloca (80);
1254 /* FIXME-32x64: assumes funaddr fits in a long. */
1255 sprintf (name, format, (unsigned long) funaddr);
1256 }
1257
1258 /* Execute the stack dummy routine, calling FUNCTION.
1259 When it is done, discard the empty frame
1260 after storing the contents of all regs into retbuf. */
1261 if (run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf))
1262 {
1263 /* We stopped somewhere besides the call dummy. */
1264
1265 /* If we did the cleanups, we would print a spurious error message
1266 (Unable to restore previously selected frame), would write the
1267 registers from the inf_status (which is wrong), and would do other
1268 wrong things (like set stop_bpstat to the wrong thing). */
1269 discard_cleanups (old_chain);
1270 /* Prevent memory leak. */
1271 bpstat_clear (&inf_status.stop_bpstat);
1272
1273 /* The following error message used to say "The expression
1274 which contained the function call has been discarded." It
1275 is a hard concept to explain in a few words. Ideally, GDB
1276 would be able to resume evaluation of the expression when
1277 the function finally is done executing. Perhaps someday
1278 this will be implemented (it would not be easy). */
1279
1280 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1281 a C++ name with arguments and stuff. */
1282 error ("\
1283 The program being debugged stopped while in a function called from GDB.\n\
1284 When the function (%s) is done executing, GDB will silently\n\
1285 stop (instead of continuing to evaluate the expression containing\n\
1286 the function call).", name);
1287 }
1288
1289 do_cleanups (old_chain);
1290
1291 /* Figure out the value returned by the function. */
1292 return value_being_returned (value_type, retbuf, struct_return);
1293 }
1294 }
1295 #else /* no CALL_DUMMY. */
1296 value_ptr
1297 call_function_by_hand (function, nargs, args)
1298 value_ptr function;
1299 int nargs;
1300 value_ptr *args;
1301 {
1302 error ("Cannot invoke functions on this machine.");
1303 }
1304 #endif /* no CALL_DUMMY. */
1305
1306 \f
1307 /* Create a value for an array by allocating space in the inferior, copying
1308 the data into that space, and then setting up an array value.
1309
1310 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1311 populated from the values passed in ELEMVEC.
1312
1313 The element type of the array is inherited from the type of the
1314 first element, and all elements must have the same size (though we
1315 don't currently enforce any restriction on their types). */
1316
1317 value_ptr
1318 value_array (lowbound, highbound, elemvec)
1319 int lowbound;
1320 int highbound;
1321 value_ptr *elemvec;
1322 {
1323 int nelem;
1324 int idx;
1325 int typelength;
1326 value_ptr val;
1327 struct type *rangetype;
1328 struct type *arraytype;
1329 CORE_ADDR addr;
1330
1331 /* Validate that the bounds are reasonable and that each of the elements
1332 have the same size. */
1333
1334 nelem = highbound - lowbound + 1;
1335 if (nelem <= 0)
1336 {
1337 error ("bad array bounds (%d, %d)", lowbound, highbound);
1338 }
1339 typelength = TYPE_LENGTH (VALUE_TYPE (elemvec[0]));
1340 for (idx = 0; idx < nelem; idx++)
1341 {
1342 if (TYPE_LENGTH (VALUE_TYPE (elemvec[idx])) != typelength)
1343 {
1344 error ("array elements must all be the same size");
1345 }
1346 }
1347
1348 /* Allocate space to store the array in the inferior, and then initialize
1349 it by copying in each element. FIXME: Is it worth it to create a
1350 local buffer in which to collect each value and then write all the
1351 bytes in one operation? */
1352
1353 addr = allocate_space_in_inferior (nelem * typelength);
1354 for (idx = 0; idx < nelem; idx++)
1355 {
1356 write_memory (addr + (idx * typelength), VALUE_CONTENTS (elemvec[idx]),
1357 typelength);
1358 }
1359
1360 /* Create the array type and set up an array value to be evaluated lazily. */
1361
1362 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1363 lowbound, highbound);
1364 arraytype = create_array_type ((struct type *) NULL,
1365 VALUE_TYPE (elemvec[0]), rangetype);
1366 val = value_at_lazy (arraytype, addr);
1367 return (val);
1368 }
1369
1370 /* Create a value for a string constant by allocating space in the inferior,
1371 copying the data into that space, and returning the address with type
1372 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1373 of characters.
1374 Note that string types are like array of char types with a lower bound of
1375 zero and an upper bound of LEN - 1. Also note that the string may contain
1376 embedded null bytes. */
1377
1378 value_ptr
1379 value_string (ptr, len)
1380 char *ptr;
1381 int len;
1382 {
1383 value_ptr val;
1384 int lowbound = current_language->string_lower_bound;
1385 struct type *rangetype = create_range_type ((struct type *) NULL,
1386 builtin_type_int,
1387 lowbound, len + lowbound - 1);
1388 struct type *stringtype
1389 = create_string_type ((struct type *) NULL, rangetype);
1390 CORE_ADDR addr;
1391
1392 if (current_language->c_style_arrays == 0)
1393 {
1394 val = allocate_value (stringtype);
1395 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1396 return val;
1397 }
1398
1399
1400 /* Allocate space to store the string in the inferior, and then
1401 copy LEN bytes from PTR in gdb to that address in the inferior. */
1402
1403 addr = allocate_space_in_inferior (len);
1404 write_memory (addr, ptr, len);
1405
1406 val = value_at_lazy (stringtype, addr);
1407 return (val);
1408 }
1409
1410 value_ptr
1411 value_bitstring (ptr, len)
1412 char *ptr;
1413 int len;
1414 {
1415 value_ptr val;
1416 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1417 0, len - 1);
1418 struct type *type = create_set_type ((struct type*) NULL, domain_type);
1419 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1420 val = allocate_value (type);
1421 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1422 return val;
1423 }
1424 \f
1425 /* See if we can pass arguments in T2 to a function which takes arguments
1426 of types T1. Both t1 and t2 are NULL-terminated vectors. If some
1427 arguments need coercion of some sort, then the coerced values are written
1428 into T2. Return value is 0 if the arguments could be matched, or the
1429 position at which they differ if not.
1430
1431 STATICP is nonzero if the T1 argument list came from a
1432 static member function.
1433
1434 For non-static member functions, we ignore the first argument,
1435 which is the type of the instance variable. This is because we want
1436 to handle calls with objects from derived classes. This is not
1437 entirely correct: we should actually check to make sure that a
1438 requested operation is type secure, shouldn't we? FIXME. */
1439
1440 static int
1441 typecmp (staticp, t1, t2)
1442 int staticp;
1443 struct type *t1[];
1444 value_ptr t2[];
1445 {
1446 int i;
1447
1448 if (t2 == 0)
1449 return 1;
1450 if (staticp && t1 == 0)
1451 return t2[1] != 0;
1452 if (t1 == 0)
1453 return 1;
1454 if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID) return 0;
1455 if (t1[!staticp] == 0) return 0;
1456 for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
1457 {
1458 struct type *tt1, *tt2;
1459 if (! t2[i])
1460 return i+1;
1461 tt1 = t1[i];
1462 tt2 = VALUE_TYPE(t2[i]);
1463 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1464 /* We should be doing hairy argument matching, as below. */
1465 && (TYPE_CODE (TYPE_TARGET_TYPE (tt1)) == TYPE_CODE (tt2)))
1466 {
1467 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY || VALUE_REPEATED (t2[i]))
1468 t2[i] = value_coerce_array (t2[i]);
1469 else
1470 t2[i] = value_addr (t2[i]);
1471 continue;
1472 }
1473
1474 while (TYPE_CODE (tt1) == TYPE_CODE_PTR
1475 && (TYPE_CODE(tt2)==TYPE_CODE_ARRAY || TYPE_CODE(tt2)==TYPE_CODE_PTR))
1476 {
1477 tt1 = TYPE_TARGET_TYPE(tt1);
1478 tt2 = TYPE_TARGET_TYPE(tt2);
1479 }
1480 if (TYPE_CODE(tt1) == TYPE_CODE(tt2)) continue;
1481 /* Array to pointer is a `trivial conversion' according to the ARM. */
1482
1483 /* We should be doing much hairier argument matching (see section 13.2
1484 of the ARM), but as a quick kludge, just check for the same type
1485 code. */
1486 if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
1487 return i+1;
1488 }
1489 if (!t1[i]) return 0;
1490 return t2[i] ? i+1 : 0;
1491 }
1492
1493 /* Helper function used by value_struct_elt to recurse through baseclasses.
1494 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1495 and search in it assuming it has (class) type TYPE.
1496 If found, return value, else return NULL.
1497
1498 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
1499 look for a baseclass named NAME. */
1500
1501 static value_ptr
1502 search_struct_field (name, arg1, offset, type, looking_for_baseclass)
1503 char *name;
1504 register value_ptr arg1;
1505 int offset;
1506 register struct type *type;
1507 int looking_for_baseclass;
1508 {
1509 int i;
1510
1511 check_stub_type (type);
1512
1513 if (! looking_for_baseclass)
1514 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1515 {
1516 char *t_field_name = TYPE_FIELD_NAME (type, i);
1517
1518 if (t_field_name && STREQ (t_field_name, name))
1519 {
1520 value_ptr v;
1521 if (TYPE_FIELD_STATIC (type, i))
1522 {
1523 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, i);
1524 struct symbol *sym =
1525 lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
1526 if (sym == NULL)
1527 error ("Internal error: could not find physical static variable named %s",
1528 phys_name);
1529 v = value_at (TYPE_FIELD_TYPE (type, i),
1530 (CORE_ADDR)SYMBOL_BLOCK_VALUE (sym));
1531 }
1532 else
1533 v = value_primitive_field (arg1, offset, i, type);
1534 if (v == 0)
1535 error("there is no field named %s", name);
1536 return v;
1537 }
1538 if (t_field_name && t_field_name[0] == '\0'
1539 && TYPE_CODE (TYPE_FIELD_TYPE (type, i)) == TYPE_CODE_UNION)
1540 {
1541 /* Look for a match through the fields of an anonymous union. */
1542 value_ptr v;
1543 v = search_struct_field (name, arg1, offset,
1544 TYPE_FIELD_TYPE (type, i),
1545 looking_for_baseclass);
1546 if (v)
1547 return v;
1548 }
1549 }
1550
1551 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1552 {
1553 value_ptr v;
1554 /* If we are looking for baseclasses, this is what we get when we
1555 hit them. But it could happen that the base part's member name
1556 is not yet filled in. */
1557 int found_baseclass = (looking_for_baseclass
1558 && TYPE_BASECLASS_NAME (type, i) != NULL
1559 && STREQ (name, TYPE_BASECLASS_NAME (type, i)));
1560
1561 if (BASETYPE_VIA_VIRTUAL (type, i))
1562 {
1563 value_ptr v2;
1564 /* Fix to use baseclass_offset instead. FIXME */
1565 baseclass_addr (type, i, VALUE_CONTENTS (arg1) + offset,
1566 &v2, (int *)NULL);
1567 if (v2 == 0)
1568 error ("virtual baseclass botch");
1569 if (found_baseclass)
1570 return v2;
1571 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
1572 looking_for_baseclass);
1573 }
1574 else if (found_baseclass)
1575 v = value_primitive_field (arg1, offset, i, type);
1576 else
1577 v = search_struct_field (name, arg1,
1578 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
1579 TYPE_BASECLASS (type, i),
1580 looking_for_baseclass);
1581 if (v) return v;
1582 }
1583 return NULL;
1584 }
1585
1586 /* Helper function used by value_struct_elt to recurse through baseclasses.
1587 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1588 and search in it assuming it has (class) type TYPE.
1589 If found, return value, else if name matched and args not return (value)-1,
1590 else return NULL. */
1591
1592 static value_ptr
1593 search_struct_method (name, arg1p, args, offset, static_memfuncp, type)
1594 char *name;
1595 register value_ptr *arg1p, *args;
1596 int offset, *static_memfuncp;
1597 register struct type *type;
1598 {
1599 int i;
1600 value_ptr v;
1601 int name_matched = 0;
1602 char dem_opname[64];
1603
1604 check_stub_type (type);
1605 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1606 {
1607 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1608 if (strncmp(t_field_name, "__", 2)==0 ||
1609 strncmp(t_field_name, "op", 2)==0 ||
1610 strncmp(t_field_name, "type", 4)==0 )
1611 {
1612 if (cplus_demangle_opname(t_field_name, dem_opname, DMGL_ANSI))
1613 t_field_name = dem_opname;
1614 else if (cplus_demangle_opname(t_field_name, dem_opname, 0))
1615 t_field_name = dem_opname;
1616 }
1617 if (t_field_name && STREQ (t_field_name, name))
1618 {
1619 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
1620 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1621 name_matched = 1;
1622
1623 if (j > 0 && args == 0)
1624 error ("cannot resolve overloaded method `%s'", name);
1625 while (j >= 0)
1626 {
1627 if (TYPE_FN_FIELD_STUB (f, j))
1628 check_stub_method (type, i, j);
1629 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
1630 TYPE_FN_FIELD_ARGS (f, j), args))
1631 {
1632 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
1633 return value_virtual_fn_field (arg1p, f, j, type, offset);
1634 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
1635 *static_memfuncp = 1;
1636 v = value_fn_field (arg1p, f, j, type, offset);
1637 if (v != NULL) return v;
1638 }
1639 j--;
1640 }
1641 }
1642 }
1643
1644 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1645 {
1646 int base_offset;
1647
1648 if (BASETYPE_VIA_VIRTUAL (type, i))
1649 {
1650 base_offset = baseclass_offset (type, i, *arg1p, offset);
1651 if (base_offset == -1)
1652 error ("virtual baseclass botch");
1653 }
1654 else
1655 {
1656 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
1657 }
1658 v = search_struct_method (name, arg1p, args, base_offset + offset,
1659 static_memfuncp, TYPE_BASECLASS (type, i));
1660 if (v == (value_ptr) -1)
1661 {
1662 name_matched = 1;
1663 }
1664 else if (v)
1665 {
1666 /* FIXME-bothner: Why is this commented out? Why is it here? */
1667 /* *arg1p = arg1_tmp;*/
1668 return v;
1669 }
1670 }
1671 if (name_matched) return (value_ptr) -1;
1672 else return NULL;
1673 }
1674
1675 /* Given *ARGP, a value of type (pointer to a)* structure/union,
1676 extract the component named NAME from the ultimate target structure/union
1677 and return it as a value with its appropriate type.
1678 ERR is used in the error message if *ARGP's type is wrong.
1679
1680 C++: ARGS is a list of argument types to aid in the selection of
1681 an appropriate method. Also, handle derived types.
1682
1683 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
1684 where the truthvalue of whether the function that was resolved was
1685 a static member function or not is stored.
1686
1687 ERR is an error message to be printed in case the field is not found. */
1688
1689 value_ptr
1690 value_struct_elt (argp, args, name, static_memfuncp, err)
1691 register value_ptr *argp, *args;
1692 char *name;
1693 int *static_memfuncp;
1694 char *err;
1695 {
1696 register struct type *t;
1697 value_ptr v;
1698
1699 COERCE_ARRAY (*argp);
1700
1701 t = VALUE_TYPE (*argp);
1702
1703 /* Follow pointers until we get to a non-pointer. */
1704
1705 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1706 {
1707 *argp = value_ind (*argp);
1708 /* Don't coerce fn pointer to fn and then back again! */
1709 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
1710 COERCE_ARRAY (*argp);
1711 t = VALUE_TYPE (*argp);
1712 }
1713
1714 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
1715 error ("not implemented: member type in value_struct_elt");
1716
1717 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
1718 && TYPE_CODE (t) != TYPE_CODE_UNION)
1719 error ("Attempt to extract a component of a value that is not a %s.", err);
1720
1721 /* Assume it's not, unless we see that it is. */
1722 if (static_memfuncp)
1723 *static_memfuncp =0;
1724
1725 if (!args)
1726 {
1727 /* if there are no arguments ...do this... */
1728
1729 /* Try as a field first, because if we succeed, there
1730 is less work to be done. */
1731 v = search_struct_field (name, *argp, 0, t, 0);
1732 if (v)
1733 return v;
1734
1735 /* C++: If it was not found as a data field, then try to
1736 return it as a pointer to a method. */
1737
1738 if (destructor_name_p (name, t))
1739 error ("Cannot get value of destructor");
1740
1741 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
1742
1743 if (v == (value_ptr) -1)
1744 error ("Cannot take address of a method");
1745 else if (v == 0)
1746 {
1747 if (TYPE_NFN_FIELDS (t))
1748 error ("There is no member or method named %s.", name);
1749 else
1750 error ("There is no member named %s.", name);
1751 }
1752 return v;
1753 }
1754
1755 if (destructor_name_p (name, t))
1756 {
1757 if (!args[1])
1758 {
1759 /* destructors are a special case. */
1760 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, 0),
1761 TYPE_FN_FIELDLIST_LENGTH (t, 0), 0, 0);
1762 if (!v) error("could not find destructor function named %s.", name);
1763 else return v;
1764 }
1765 else
1766 {
1767 error ("destructor should not have any argument");
1768 }
1769 }
1770 else
1771 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
1772
1773 if (v == (value_ptr) -1)
1774 {
1775 error("Argument list of %s mismatch with component in the structure.", name);
1776 }
1777 else if (v == 0)
1778 {
1779 /* See if user tried to invoke data as function. If so,
1780 hand it back. If it's not callable (i.e., a pointer to function),
1781 gdb should give an error. */
1782 v = search_struct_field (name, *argp, 0, t, 0);
1783 }
1784
1785 if (!v)
1786 error ("Structure has no component named %s.", name);
1787 return v;
1788 }
1789
1790 /* C++: return 1 is NAME is a legitimate name for the destructor
1791 of type TYPE. If TYPE does not have a destructor, or
1792 if NAME is inappropriate for TYPE, an error is signaled. */
1793 int
1794 destructor_name_p (name, type)
1795 const char *name;
1796 const struct type *type;
1797 {
1798 /* destructors are a special case. */
1799
1800 if (name[0] == '~')
1801 {
1802 char *dname = type_name_no_tag (type);
1803 char *cp = strchr (dname, '<');
1804 int len;
1805
1806 /* Do not compare the template part for template classes. */
1807 if (cp == NULL)
1808 len = strlen (dname);
1809 else
1810 len = cp - dname;
1811 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
1812 error ("name of destructor must equal name of class");
1813 else
1814 return 1;
1815 }
1816 return 0;
1817 }
1818
1819 /* Helper function for check_field: Given TYPE, a structure/union,
1820 return 1 if the component named NAME from the ultimate
1821 target structure/union is defined, otherwise, return 0. */
1822
1823 static int
1824 check_field_in (type, name)
1825 register struct type *type;
1826 const char *name;
1827 {
1828 register int i;
1829
1830 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1831 {
1832 char *t_field_name = TYPE_FIELD_NAME (type, i);
1833 if (t_field_name && STREQ (t_field_name, name))
1834 return 1;
1835 }
1836
1837 /* C++: If it was not found as a data field, then try to
1838 return it as a pointer to a method. */
1839
1840 /* Destructors are a special case. */
1841 if (destructor_name_p (name, type))
1842 return 1;
1843
1844 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1845 {
1846 if (STREQ (TYPE_FN_FIELDLIST_NAME (type, i), name))
1847 return 1;
1848 }
1849
1850 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1851 if (check_field_in (TYPE_BASECLASS (type, i), name))
1852 return 1;
1853
1854 return 0;
1855 }
1856
1857
1858 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
1859 return 1 if the component named NAME from the ultimate
1860 target structure/union is defined, otherwise, return 0. */
1861
1862 int
1863 check_field (arg1, name)
1864 register value_ptr arg1;
1865 const char *name;
1866 {
1867 register struct type *t;
1868
1869 COERCE_ARRAY (arg1);
1870
1871 t = VALUE_TYPE (arg1);
1872
1873 /* Follow pointers until we get to a non-pointer. */
1874
1875 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
1876 t = TYPE_TARGET_TYPE (t);
1877
1878 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
1879 error ("not implemented: member type in check_field");
1880
1881 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
1882 && TYPE_CODE (t) != TYPE_CODE_UNION)
1883 error ("Internal error: `this' is not an aggregate");
1884
1885 return check_field_in (t, name);
1886 }
1887
1888 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
1889 return the address of this member as a "pointer to member"
1890 type. If INTYPE is non-null, then it will be the type
1891 of the member we are looking for. This will help us resolve
1892 "pointers to member functions". This function is used
1893 to resolve user expressions of the form "DOMAIN::NAME". */
1894
1895 value_ptr
1896 value_struct_elt_for_reference (domain, offset, curtype, name, intype)
1897 struct type *domain, *curtype, *intype;
1898 int offset;
1899 char *name;
1900 {
1901 register struct type *t = curtype;
1902 register int i;
1903 value_ptr v;
1904
1905 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
1906 && TYPE_CODE (t) != TYPE_CODE_UNION)
1907 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
1908
1909 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
1910 {
1911 char *t_field_name = TYPE_FIELD_NAME (t, i);
1912
1913 if (t_field_name && STREQ (t_field_name, name))
1914 {
1915 if (TYPE_FIELD_STATIC (t, i))
1916 {
1917 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (t, i);
1918 struct symbol *sym =
1919 lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
1920 if (sym == NULL)
1921 error ("Internal error: could not find physical static variable named %s",
1922 phys_name);
1923 return value_at (SYMBOL_TYPE (sym),
1924 (CORE_ADDR)SYMBOL_BLOCK_VALUE (sym));
1925 }
1926 if (TYPE_FIELD_PACKED (t, i))
1927 error ("pointers to bitfield members not allowed");
1928
1929 return value_from_longest
1930 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
1931 domain)),
1932 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
1933 }
1934 }
1935
1936 /* C++: If it was not found as a data field, then try to
1937 return it as a pointer to a method. */
1938
1939 /* Destructors are a special case. */
1940 if (destructor_name_p (name, t))
1941 {
1942 error ("member pointers to destructors not implemented yet");
1943 }
1944
1945 /* Perform all necessary dereferencing. */
1946 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
1947 intype = TYPE_TARGET_TYPE (intype);
1948
1949 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
1950 {
1951 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
1952 char dem_opname[64];
1953
1954 if (strncmp(t_field_name, "__", 2)==0 ||
1955 strncmp(t_field_name, "op", 2)==0 ||
1956 strncmp(t_field_name, "type", 4)==0 )
1957 {
1958 if (cplus_demangle_opname(t_field_name, dem_opname, DMGL_ANSI))
1959 t_field_name = dem_opname;
1960 else if (cplus_demangle_opname(t_field_name, dem_opname, 0))
1961 t_field_name = dem_opname;
1962 }
1963 if (t_field_name && STREQ (t_field_name, name))
1964 {
1965 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
1966 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
1967
1968 if (intype == 0 && j > 1)
1969 error ("non-unique member `%s' requires type instantiation", name);
1970 if (intype)
1971 {
1972 while (j--)
1973 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
1974 break;
1975 if (j < 0)
1976 error ("no member function matches that type instantiation");
1977 }
1978 else
1979 j = 0;
1980
1981 if (TYPE_FN_FIELD_STUB (f, j))
1982 check_stub_method (t, i, j);
1983 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
1984 {
1985 return value_from_longest
1986 (lookup_reference_type
1987 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
1988 domain)),
1989 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
1990 }
1991 else
1992 {
1993 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
1994 0, VAR_NAMESPACE, 0, NULL);
1995 if (s == NULL)
1996 {
1997 v = 0;
1998 }
1999 else
2000 {
2001 v = read_var_value (s, 0);
2002 #if 0
2003 VALUE_TYPE (v) = lookup_reference_type
2004 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
2005 domain));
2006 #endif
2007 }
2008 return v;
2009 }
2010 }
2011 }
2012 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
2013 {
2014 value_ptr v;
2015 int base_offset;
2016
2017 if (BASETYPE_VIA_VIRTUAL (t, i))
2018 base_offset = 0;
2019 else
2020 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
2021 v = value_struct_elt_for_reference (domain,
2022 offset + base_offset,
2023 TYPE_BASECLASS (t, i),
2024 name,
2025 intype);
2026 if (v)
2027 return v;
2028 }
2029 return 0;
2030 }
2031
2032 /* C++: return the value of the class instance variable, if one exists.
2033 Flag COMPLAIN signals an error if the request is made in an
2034 inappropriate context. */
2035
2036 value_ptr
2037 value_of_this (complain)
2038 int complain;
2039 {
2040 struct symbol *func, *sym;
2041 struct block *b;
2042 int i;
2043 static const char funny_this[] = "this";
2044 value_ptr this;
2045
2046 if (selected_frame == 0)
2047 if (complain)
2048 error ("no frame selected");
2049 else return 0;
2050
2051 func = get_frame_function (selected_frame);
2052 if (!func)
2053 {
2054 if (complain)
2055 error ("no `this' in nameless context");
2056 else return 0;
2057 }
2058
2059 b = SYMBOL_BLOCK_VALUE (func);
2060 i = BLOCK_NSYMS (b);
2061 if (i <= 0)
2062 if (complain)
2063 error ("no args, no `this'");
2064 else return 0;
2065
2066 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
2067 symbol instead of the LOC_ARG one (if both exist). */
2068 sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE);
2069 if (sym == NULL)
2070 {
2071 if (complain)
2072 error ("current stack frame not in method");
2073 else
2074 return NULL;
2075 }
2076
2077 this = read_var_value (sym, selected_frame);
2078 if (this == 0 && complain)
2079 error ("`this' argument at unknown address");
2080 return this;
2081 }
2082
2083 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
2084 long, starting at LOWBOUND. The result has the same lower bound as
2085 the original ARRAY. */
2086
2087 value_ptr
2088 value_slice (array, lowbound, length)
2089 value_ptr array;
2090 int lowbound, length;
2091 {
2092 COERCE_VARYING_ARRAY (array);
2093 if (TYPE_CODE (VALUE_TYPE (array)) == TYPE_CODE_BITSTRING)
2094 error ("not implemented - bitstring slice");
2095 if (TYPE_CODE (VALUE_TYPE (array)) != TYPE_CODE_ARRAY
2096 && TYPE_CODE (VALUE_TYPE (array)) != TYPE_CODE_STRING)
2097 error ("cannot take slice of non-array");
2098 else
2099 {
2100 struct type *slice_range_type, *slice_type;
2101 value_ptr slice;
2102 struct type *range_type = TYPE_FIELD_TYPE (VALUE_TYPE (array), 0);
2103 struct type *element_type = TYPE_TARGET_TYPE (VALUE_TYPE (array));
2104 int lowerbound = TYPE_LOW_BOUND (range_type);
2105 int upperbound = TYPE_HIGH_BOUND (range_type);
2106 int offset = (lowbound - lowerbound) * TYPE_LENGTH (element_type);
2107 if (lowbound < lowerbound || length < 0
2108 || lowbound + length - 1 > upperbound)
2109 error ("slice out of range");
2110 /* FIXME-type-allocation: need a way to free this type when we are
2111 done with it. */
2112 slice_range_type = create_range_type ((struct type*) NULL,
2113 TYPE_TARGET_TYPE (range_type),
2114 lowerbound,
2115 lowerbound + length - 1);
2116 slice_type = create_array_type ((struct type*) NULL, element_type,
2117 slice_range_type);
2118 TYPE_CODE (slice_type) = TYPE_CODE (VALUE_TYPE (array));
2119 slice = allocate_value (slice_type);
2120 if (VALUE_LAZY (array))
2121 VALUE_LAZY (slice) = 1;
2122 else
2123 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
2124 TYPE_LENGTH (slice_type));
2125 if (VALUE_LVAL (array) == lval_internalvar)
2126 VALUE_LVAL (slice) = lval_internalvar_component;
2127 else
2128 VALUE_LVAL (slice) = VALUE_LVAL (array);
2129 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
2130 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
2131 return slice;
2132 }
2133 }
2134
2135 /* Assuming chill_varying_type (VARRAY) is true, return an equivalent
2136 value as a fixed-length array. */
2137
2138 value_ptr
2139 varying_to_slice (varray)
2140 value_ptr varray;
2141 {
2142 struct type *vtype = VALUE_TYPE (varray);
2143 LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
2144 VALUE_CONTENTS (varray)
2145 + TYPE_FIELD_BITPOS (vtype, 0) / 8);
2146 return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
2147 }
2148
2149 /* Create a value for a FORTRAN complex number. Currently most of
2150 the time values are coerced to COMPLEX*16 (i.e. a complex number
2151 composed of 2 doubles. This really should be a smarter routine
2152 that figures out precision inteligently as opposed to assuming
2153 doubles. FIXME: fmb */
2154
2155 value_ptr
2156 value_literal_complex (arg1, arg2, type)
2157 value_ptr arg1;
2158 value_ptr arg2;
2159 struct type *type;
2160 {
2161 register value_ptr val;
2162 struct type *real_type = TYPE_TARGET_TYPE (type);
2163
2164 val = allocate_value (type);
2165 arg1 = value_cast (real_type, arg1);
2166 arg2 = value_cast (real_type, arg2);
2167
2168 memcpy (VALUE_CONTENTS_RAW (val),
2169 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
2170 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
2171 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
2172 return val;
2173 }
2174
2175 /* Cast a value into the appropriate complex data type. */
2176
2177 static value_ptr
2178 cast_into_complex (type, val)
2179 struct type *type;
2180 register value_ptr val;
2181 {
2182 struct type *real_type = TYPE_TARGET_TYPE (type);
2183 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
2184 {
2185 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
2186 value_ptr re_val = allocate_value (val_real_type);
2187 value_ptr im_val = allocate_value (val_real_type);
2188
2189 memcpy (VALUE_CONTENTS_RAW (re_val),
2190 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
2191 memcpy (VALUE_CONTENTS_RAW (im_val),
2192 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
2193 TYPE_LENGTH (val_real_type));
2194
2195 return value_literal_complex (re_val, im_val, type);
2196 }
2197 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
2198 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
2199 return value_literal_complex (val, value_zero (real_type, not_lval), type);
2200 else
2201 error ("cannot cast non-number to complex");
2202 }