gdb:
[binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008, 2009, 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcore.h"
29 #include "target.h"
30 #include "demangle.h"
31 #include "language.h"
32 #include "gdbcmd.h"
33 #include "regcache.h"
34 #include "cp-abi.h"
35 #include "block.h"
36 #include "infcall.h"
37 #include "dictionary.h"
38 #include "cp-support.h"
39 #include "dfp.h"
40 #include "user-regs.h"
41
42 #include <errno.h>
43 #include "gdb_string.h"
44 #include "gdb_assert.h"
45 #include "cp-support.h"
46 #include "observer.h"
47 #include "objfiles.h"
48 #include "symtab.h"
49 #include "exceptions.h"
50
51 extern int overload_debug;
52 /* Local functions. */
53
54 static int typecmp (int staticp, int varargs, int nargs,
55 struct field t1[], struct value *t2[]);
56
57 static struct value *search_struct_field (const char *, struct value *,
58 int, struct type *, int);
59
60 static struct value *search_struct_method (const char *, struct value **,
61 struct value **,
62 int, int *, struct type *);
63
64 static int find_oload_champ_namespace (struct type **, int,
65 const char *, const char *,
66 struct symbol ***,
67 struct badness_vector **,
68 const int no_adl);
69
70 static
71 int find_oload_champ_namespace_loop (struct type **, int,
72 const char *, const char *,
73 int, struct symbol ***,
74 struct badness_vector **, int *,
75 const int no_adl);
76
77 static int find_oload_champ (struct type **, int, int, int,
78 struct fn_field *, struct symbol **,
79 struct badness_vector **);
80
81 static int oload_method_static (int, struct fn_field *, int);
82
83 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
84
85 static enum
86 oload_classification classify_oload_match (struct badness_vector *,
87 int, int);
88
89 static struct value *value_struct_elt_for_reference (struct type *,
90 int, struct type *,
91 char *,
92 struct type *,
93 int, enum noside);
94
95 static struct value *value_namespace_elt (const struct type *,
96 char *, int , enum noside);
97
98 static struct value *value_maybe_namespace_elt (const struct type *,
99 char *, int,
100 enum noside);
101
102 static CORE_ADDR allocate_space_in_inferior (int);
103
104 static struct value *cast_into_complex (struct type *, struct value *);
105
106 static struct fn_field *find_method_list (struct value **, const char *,
107 int, struct type *, int *,
108 struct type **, int *);
109
110 void _initialize_valops (void);
111
112 #if 0
113 /* Flag for whether we want to abandon failed expression evals by
114 default. */
115
116 static int auto_abandon = 0;
117 #endif
118
119 int overload_resolution = 0;
120 static void
121 show_overload_resolution (struct ui_file *file, int from_tty,
122 struct cmd_list_element *c,
123 const char *value)
124 {
125 fprintf_filtered (file, _("\
126 Overload resolution in evaluating C++ functions is %s.\n"),
127 value);
128 }
129
130 /* Find the address of function name NAME in the inferior. If OBJF_P
131 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
132 is defined. */
133
134 struct value *
135 find_function_in_inferior (const char *name, struct objfile **objf_p)
136 {
137 struct symbol *sym;
138
139 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
140 if (sym != NULL)
141 {
142 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
143 {
144 error (_("\"%s\" exists in this program but is not a function."),
145 name);
146 }
147
148 if (objf_p)
149 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
150
151 return value_of_variable (sym, NULL);
152 }
153 else
154 {
155 struct minimal_symbol *msymbol =
156 lookup_minimal_symbol (name, NULL, NULL);
157
158 if (msymbol != NULL)
159 {
160 struct objfile *objfile = msymbol_objfile (msymbol);
161 struct gdbarch *gdbarch = get_objfile_arch (objfile);
162
163 struct type *type;
164 CORE_ADDR maddr;
165 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
166 type = lookup_function_type (type);
167 type = lookup_pointer_type (type);
168 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
169
170 if (objf_p)
171 *objf_p = objfile;
172
173 return value_from_pointer (type, maddr);
174 }
175 else
176 {
177 if (!target_has_execution)
178 error (_("evaluation of this expression requires the target program to be active"));
179 else
180 error (_("evaluation of this expression requires the program to have a function \"%s\"."), name);
181 }
182 }
183 }
184
185 /* Allocate NBYTES of space in the inferior using the inferior's
186 malloc and return a value that is a pointer to the allocated
187 space. */
188
189 struct value *
190 value_allocate_space_in_inferior (int len)
191 {
192 struct objfile *objf;
193 struct value *val = find_function_in_inferior ("malloc", &objf);
194 struct gdbarch *gdbarch = get_objfile_arch (objf);
195 struct value *blocklen;
196
197 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
198 val = call_function_by_hand (val, 1, &blocklen);
199 if (value_logical_not (val))
200 {
201 if (!target_has_execution)
202 error (_("No memory available to program now: you need to start the target first"));
203 else
204 error (_("No memory available to program: call to malloc failed"));
205 }
206 return val;
207 }
208
209 static CORE_ADDR
210 allocate_space_in_inferior (int len)
211 {
212 return value_as_long (value_allocate_space_in_inferior (len));
213 }
214
215 /* Cast struct value VAL to type TYPE and return as a value.
216 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
217 for this to work. Typedef to one of the codes is permitted.
218 Returns NULL if the cast is neither an upcast nor a downcast. */
219
220 static struct value *
221 value_cast_structs (struct type *type, struct value *v2)
222 {
223 struct type *t1;
224 struct type *t2;
225 struct value *v;
226
227 gdb_assert (type != NULL && v2 != NULL);
228
229 t1 = check_typedef (type);
230 t2 = check_typedef (value_type (v2));
231
232 /* Check preconditions. */
233 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
234 || TYPE_CODE (t1) == TYPE_CODE_UNION)
235 && !!"Precondition is that type is of STRUCT or UNION kind.");
236 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
237 || TYPE_CODE (t2) == TYPE_CODE_UNION)
238 && !!"Precondition is that value is of STRUCT or UNION kind");
239
240 if (TYPE_NAME (t1) != NULL
241 && TYPE_NAME (t2) != NULL
242 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
243 return NULL;
244
245 /* Upcasting: look in the type of the source to see if it contains the
246 type of the target as a superclass. If so, we'll need to
247 offset the pointer rather than just change its type. */
248 if (TYPE_NAME (t1) != NULL)
249 {
250 v = search_struct_field (type_name_no_tag (t1),
251 v2, 0, t2, 1);
252 if (v)
253 return v;
254 }
255
256 /* Downcasting: look in the type of the target to see if it contains the
257 type of the source as a superclass. If so, we'll need to
258 offset the pointer rather than just change its type. */
259 if (TYPE_NAME (t2) != NULL)
260 {
261 /* Try downcasting using the run-time type of the value. */
262 int full, top, using_enc;
263 struct type *real_type;
264
265 real_type = value_rtti_type (v2, &full, &top, &using_enc);
266 if (real_type)
267 {
268 v = value_full_object (v2, real_type, full, top, using_enc);
269 v = value_at_lazy (real_type, value_address (v));
270
271 /* We might be trying to cast to the outermost enclosing
272 type, in which case search_struct_field won't work. */
273 if (TYPE_NAME (real_type) != NULL
274 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
275 return v;
276
277 v = search_struct_field (type_name_no_tag (t2), v, 0, real_type, 1);
278 if (v)
279 return v;
280 }
281
282 /* Try downcasting using information from the destination type
283 T2. This wouldn't work properly for classes with virtual
284 bases, but those were handled above. */
285 v = search_struct_field (type_name_no_tag (t2),
286 value_zero (t1, not_lval), 0, t1, 1);
287 if (v)
288 {
289 /* Downcasting is possible (t1 is superclass of v2). */
290 CORE_ADDR addr2 = value_address (v2);
291
292 addr2 -= value_address (v) + value_embedded_offset (v);
293 return value_at (type, addr2);
294 }
295 }
296
297 return NULL;
298 }
299
300 /* Cast one pointer or reference type to another. Both TYPE and
301 the type of ARG2 should be pointer types, or else both should be
302 reference types. Returns the new pointer or reference. */
303
304 struct value *
305 value_cast_pointers (struct type *type, struct value *arg2)
306 {
307 struct type *type1 = check_typedef (type);
308 struct type *type2 = check_typedef (value_type (arg2));
309 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
310 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
311
312 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
313 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
314 && !value_logical_not (arg2))
315 {
316 struct value *v2;
317
318 if (TYPE_CODE (type2) == TYPE_CODE_REF)
319 v2 = coerce_ref (arg2);
320 else
321 v2 = value_ind (arg2);
322 gdb_assert (TYPE_CODE (check_typedef (value_type (v2))) == TYPE_CODE_STRUCT
323 && !!"Why did coercion fail?");
324 v2 = value_cast_structs (t1, v2);
325 /* At this point we have what we can have, un-dereference if needed. */
326 if (v2)
327 {
328 struct value *v = value_addr (v2);
329
330 deprecated_set_value_type (v, type);
331 return v;
332 }
333 }
334
335 /* No superclass found, just change the pointer type. */
336 arg2 = value_copy (arg2);
337 deprecated_set_value_type (arg2, type);
338 arg2 = value_change_enclosing_type (arg2, type);
339 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
340 return arg2;
341 }
342
343 /* Cast value ARG2 to type TYPE and return as a value.
344 More general than a C cast: accepts any two types of the same length,
345 and if ARG2 is an lvalue it can be cast into anything at all. */
346 /* In C++, casts may change pointer or object representations. */
347
348 struct value *
349 value_cast (struct type *type, struct value *arg2)
350 {
351 enum type_code code1;
352 enum type_code code2;
353 int scalar;
354 struct type *type2;
355
356 int convert_to_boolean = 0;
357
358 if (value_type (arg2) == type)
359 return arg2;
360
361 code1 = TYPE_CODE (check_typedef (type));
362
363 /* Check if we are casting struct reference to struct reference. */
364 if (code1 == TYPE_CODE_REF)
365 {
366 /* We dereference type; then we recurse and finally
367 we generate value of the given reference. Nothing wrong with
368 that. */
369 struct type *t1 = check_typedef (type);
370 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
371 struct value *val = value_cast (dereftype, arg2);
372
373 return value_ref (val);
374 }
375
376 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
377
378 if (code2 == TYPE_CODE_REF)
379 /* We deref the value and then do the cast. */
380 return value_cast (type, coerce_ref (arg2));
381
382 CHECK_TYPEDEF (type);
383 code1 = TYPE_CODE (type);
384 arg2 = coerce_ref (arg2);
385 type2 = check_typedef (value_type (arg2));
386
387 /* You can't cast to a reference type. See value_cast_pointers
388 instead. */
389 gdb_assert (code1 != TYPE_CODE_REF);
390
391 /* A cast to an undetermined-length array_type, such as
392 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
393 where N is sizeof(OBJECT)/sizeof(TYPE). */
394 if (code1 == TYPE_CODE_ARRAY)
395 {
396 struct type *element_type = TYPE_TARGET_TYPE (type);
397 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
398
399 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
400 {
401 struct type *range_type = TYPE_INDEX_TYPE (type);
402 int val_length = TYPE_LENGTH (type2);
403 LONGEST low_bound, high_bound, new_length;
404
405 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
406 low_bound = 0, high_bound = 0;
407 new_length = val_length / element_length;
408 if (val_length % element_length != 0)
409 warning (_("array element type size does not divide object size in cast"));
410 /* FIXME-type-allocation: need a way to free this type when
411 we are done with it. */
412 range_type = create_range_type ((struct type *) NULL,
413 TYPE_TARGET_TYPE (range_type),
414 low_bound,
415 new_length + low_bound - 1);
416 deprecated_set_value_type (arg2,
417 create_array_type ((struct type *) NULL,
418 element_type,
419 range_type));
420 return arg2;
421 }
422 }
423
424 if (current_language->c_style_arrays
425 && TYPE_CODE (type2) == TYPE_CODE_ARRAY
426 && !TYPE_VECTOR (type2))
427 arg2 = value_coerce_array (arg2);
428
429 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
430 arg2 = value_coerce_function (arg2);
431
432 type2 = check_typedef (value_type (arg2));
433 code2 = TYPE_CODE (type2);
434
435 if (code1 == TYPE_CODE_COMPLEX)
436 return cast_into_complex (type, arg2);
437 if (code1 == TYPE_CODE_BOOL)
438 {
439 code1 = TYPE_CODE_INT;
440 convert_to_boolean = 1;
441 }
442 if (code1 == TYPE_CODE_CHAR)
443 code1 = TYPE_CODE_INT;
444 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
445 code2 = TYPE_CODE_INT;
446
447 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
448 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
449 || code2 == TYPE_CODE_RANGE);
450
451 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
452 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
453 && TYPE_NAME (type) != 0)
454 {
455 struct value *v = value_cast_structs (type, arg2);
456
457 if (v)
458 return v;
459 }
460
461 if (code1 == TYPE_CODE_FLT && scalar)
462 return value_from_double (type, value_as_double (arg2));
463 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
464 {
465 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
466 int dec_len = TYPE_LENGTH (type);
467 gdb_byte dec[16];
468
469 if (code2 == TYPE_CODE_FLT)
470 decimal_from_floating (arg2, dec, dec_len, byte_order);
471 else if (code2 == TYPE_CODE_DECFLOAT)
472 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
473 byte_order, dec, dec_len, byte_order);
474 else
475 /* The only option left is an integral type. */
476 decimal_from_integral (arg2, dec, dec_len, byte_order);
477
478 return value_from_decfloat (type, dec);
479 }
480 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
481 || code1 == TYPE_CODE_RANGE)
482 && (scalar || code2 == TYPE_CODE_PTR
483 || code2 == TYPE_CODE_MEMBERPTR))
484 {
485 LONGEST longest;
486
487 /* When we cast pointers to integers, we mustn't use
488 gdbarch_pointer_to_address to find the address the pointer
489 represents, as value_as_long would. GDB should evaluate
490 expressions just as the compiler would --- and the compiler
491 sees a cast as a simple reinterpretation of the pointer's
492 bits. */
493 if (code2 == TYPE_CODE_PTR)
494 longest = extract_unsigned_integer
495 (value_contents (arg2), TYPE_LENGTH (type2),
496 gdbarch_byte_order (get_type_arch (type2)));
497 else
498 longest = value_as_long (arg2);
499 return value_from_longest (type, convert_to_boolean ?
500 (LONGEST) (longest ? 1 : 0) : longest);
501 }
502 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
503 || code2 == TYPE_CODE_ENUM
504 || code2 == TYPE_CODE_RANGE))
505 {
506 /* TYPE_LENGTH (type) is the length of a pointer, but we really
507 want the length of an address! -- we are really dealing with
508 addresses (i.e., gdb representations) not pointers (i.e.,
509 target representations) here.
510
511 This allows things like "print *(int *)0x01000234" to work
512 without printing a misleading message -- which would
513 otherwise occur when dealing with a target having two byte
514 pointers and four byte addresses. */
515
516 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
517 LONGEST longest = value_as_long (arg2);
518
519 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
520 {
521 if (longest >= ((LONGEST) 1 << addr_bit)
522 || longest <= -((LONGEST) 1 << addr_bit))
523 warning (_("value truncated"));
524 }
525 return value_from_longest (type, longest);
526 }
527 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
528 && value_as_long (arg2) == 0)
529 {
530 struct value *result = allocate_value (type);
531
532 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
533 return result;
534 }
535 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
536 && value_as_long (arg2) == 0)
537 {
538 /* The Itanium C++ ABI represents NULL pointers to members as
539 minus one, instead of biasing the normal case. */
540 return value_from_longest (type, -1);
541 }
542 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar)
543 {
544 /* Widen the scalar to a vector. */
545 struct type *eltype;
546 struct value *val;
547 LONGEST low_bound, high_bound;
548 int i;
549
550 if (!get_array_bounds (type, &low_bound, &high_bound))
551 error (_("Could not determine the vector bounds"));
552
553 eltype = check_typedef (TYPE_TARGET_TYPE (type));
554 arg2 = value_cast (eltype, arg2);
555 val = allocate_value (type);
556
557 for (i = 0; i < high_bound - low_bound + 1; i++)
558 {
559 /* Duplicate the contents of arg2 into the destination vector. */
560 memcpy (value_contents_writeable (val) + (i * TYPE_LENGTH (eltype)),
561 value_contents_all (arg2), TYPE_LENGTH (eltype));
562 }
563 return val;
564 }
565 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
566 {
567 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
568 return value_cast_pointers (type, arg2);
569
570 arg2 = value_copy (arg2);
571 deprecated_set_value_type (arg2, type);
572 arg2 = value_change_enclosing_type (arg2, type);
573 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
574 return arg2;
575 }
576 else if (VALUE_LVAL (arg2) == lval_memory)
577 return value_at_lazy (type, value_address (arg2));
578 else if (code1 == TYPE_CODE_VOID)
579 {
580 return value_zero (type, not_lval);
581 }
582 else
583 {
584 error (_("Invalid cast."));
585 return 0;
586 }
587 }
588
589 /* The C++ reinterpret_cast operator. */
590
591 struct value *
592 value_reinterpret_cast (struct type *type, struct value *arg)
593 {
594 struct value *result;
595 struct type *real_type = check_typedef (type);
596 struct type *arg_type, *dest_type;
597 int is_ref = 0;
598 enum type_code dest_code, arg_code;
599
600 /* Do reference, function, and array conversion. */
601 arg = coerce_array (arg);
602
603 /* Attempt to preserve the type the user asked for. */
604 dest_type = type;
605
606 /* If we are casting to a reference type, transform
607 reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */
608 if (TYPE_CODE (real_type) == TYPE_CODE_REF)
609 {
610 is_ref = 1;
611 arg = value_addr (arg);
612 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
613 real_type = lookup_pointer_type (real_type);
614 }
615
616 arg_type = value_type (arg);
617
618 dest_code = TYPE_CODE (real_type);
619 arg_code = TYPE_CODE (arg_type);
620
621 /* We can convert pointer types, or any pointer type to int, or int
622 type to pointer. */
623 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
624 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
625 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
626 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
627 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
628 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
629 || (dest_code == arg_code
630 && (dest_code == TYPE_CODE_PTR
631 || dest_code == TYPE_CODE_METHODPTR
632 || dest_code == TYPE_CODE_MEMBERPTR)))
633 result = value_cast (dest_type, arg);
634 else
635 error (_("Invalid reinterpret_cast"));
636
637 if (is_ref)
638 result = value_cast (type, value_ref (value_ind (result)));
639
640 return result;
641 }
642
643 /* A helper for value_dynamic_cast. This implements the first of two
644 runtime checks: we iterate over all the base classes of the value's
645 class which are equal to the desired class; if only one of these
646 holds the value, then it is the answer. */
647
648 static int
649 dynamic_cast_check_1 (struct type *desired_type,
650 const bfd_byte *contents,
651 CORE_ADDR address,
652 struct type *search_type,
653 CORE_ADDR arg_addr,
654 struct type *arg_type,
655 struct value **result)
656 {
657 int i, result_count = 0;
658
659 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
660 {
661 int offset = baseclass_offset (search_type, i, contents, address);
662
663 if (offset == -1)
664 error (_("virtual baseclass botch"));
665 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
666 {
667 if (address + offset >= arg_addr
668 && address + offset < arg_addr + TYPE_LENGTH (arg_type))
669 {
670 ++result_count;
671 if (!*result)
672 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
673 address + offset);
674 }
675 }
676 else
677 result_count += dynamic_cast_check_1 (desired_type,
678 contents + offset,
679 address + offset,
680 TYPE_BASECLASS (search_type, i),
681 arg_addr,
682 arg_type,
683 result);
684 }
685
686 return result_count;
687 }
688
689 /* A helper for value_dynamic_cast. This implements the second of two
690 runtime checks: we look for a unique public sibling class of the
691 argument's declared class. */
692
693 static int
694 dynamic_cast_check_2 (struct type *desired_type,
695 const bfd_byte *contents,
696 CORE_ADDR address,
697 struct type *search_type,
698 struct value **result)
699 {
700 int i, result_count = 0;
701
702 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
703 {
704 int offset;
705
706 if (! BASETYPE_VIA_PUBLIC (search_type, i))
707 continue;
708
709 offset = baseclass_offset (search_type, i, contents, address);
710 if (offset == -1)
711 error (_("virtual baseclass botch"));
712 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
713 {
714 ++result_count;
715 if (*result == NULL)
716 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
717 address + offset);
718 }
719 else
720 result_count += dynamic_cast_check_2 (desired_type,
721 contents + offset,
722 address + offset,
723 TYPE_BASECLASS (search_type, i),
724 result);
725 }
726
727 return result_count;
728 }
729
730 /* The C++ dynamic_cast operator. */
731
732 struct value *
733 value_dynamic_cast (struct type *type, struct value *arg)
734 {
735 int full, top, using_enc;
736 struct type *resolved_type = check_typedef (type);
737 struct type *arg_type = check_typedef (value_type (arg));
738 struct type *class_type, *rtti_type;
739 struct value *result, *tem, *original_arg = arg;
740 CORE_ADDR addr;
741 int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF;
742
743 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
744 && TYPE_CODE (resolved_type) != TYPE_CODE_REF)
745 error (_("Argument to dynamic_cast must be a pointer or reference type"));
746 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
747 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_CLASS)
748 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
749
750 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
751 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
752 {
753 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
754 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
755 && value_as_long (arg) == 0))
756 error (_("Argument to dynamic_cast does not have pointer type"));
757 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
758 {
759 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
760 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
761 error (_("Argument to dynamic_cast does not have pointer to class type"));
762 }
763
764 /* Handle NULL pointers. */
765 if (value_as_long (arg) == 0)
766 return value_zero (type, not_lval);
767
768 arg = value_ind (arg);
769 }
770 else
771 {
772 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
773 error (_("Argument to dynamic_cast does not have class type"));
774 }
775
776 /* If the classes are the same, just return the argument. */
777 if (class_types_same_p (class_type, arg_type))
778 return value_cast (type, arg);
779
780 /* If the target type is a unique base class of the argument's
781 declared type, just cast it. */
782 if (is_ancestor (class_type, arg_type))
783 {
784 if (is_unique_ancestor (class_type, arg))
785 return value_cast (type, original_arg);
786 error (_("Ambiguous dynamic_cast"));
787 }
788
789 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
790 if (! rtti_type)
791 error (_("Couldn't determine value's most derived type for dynamic_cast"));
792
793 /* Compute the most derived object's address. */
794 addr = value_address (arg);
795 if (full)
796 {
797 /* Done. */
798 }
799 else if (using_enc)
800 addr += top;
801 else
802 addr += top + value_embedded_offset (arg);
803
804 /* dynamic_cast<void *> means to return a pointer to the
805 most-derived object. */
806 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
807 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
808 return value_at_lazy (type, addr);
809
810 tem = value_at (type, addr);
811
812 /* The first dynamic check specified in 5.2.7. */
813 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
814 {
815 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
816 return tem;
817 result = NULL;
818 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
819 value_contents (tem), value_address (tem),
820 rtti_type, addr,
821 arg_type,
822 &result) == 1)
823 return value_cast (type,
824 is_ref ? value_ref (result) : value_addr (result));
825 }
826
827 /* The second dynamic check specified in 5.2.7. */
828 result = NULL;
829 if (is_public_ancestor (arg_type, rtti_type)
830 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
831 value_contents (tem), value_address (tem),
832 rtti_type, &result) == 1)
833 return value_cast (type,
834 is_ref ? value_ref (result) : value_addr (result));
835
836 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
837 return value_zero (type, not_lval);
838
839 error (_("dynamic_cast failed"));
840 }
841
842 /* Create a value of type TYPE that is zero, and return it. */
843
844 struct value *
845 value_zero (struct type *type, enum lval_type lv)
846 {
847 struct value *val = allocate_value (type);
848
849 VALUE_LVAL (val) = lv;
850 return val;
851 }
852
853 /* Create a value of numeric type TYPE that is one, and return it. */
854
855 struct value *
856 value_one (struct type *type, enum lval_type lv)
857 {
858 struct type *type1 = check_typedef (type);
859 struct value *val;
860
861 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
862 {
863 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
864 gdb_byte v[16];
865
866 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
867 val = value_from_decfloat (type, v);
868 }
869 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
870 {
871 val = value_from_double (type, (DOUBLEST) 1);
872 }
873 else if (is_integral_type (type1))
874 {
875 val = value_from_longest (type, (LONGEST) 1);
876 }
877 else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
878 {
879 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
880 int i, n = TYPE_LENGTH (type1) / TYPE_LENGTH (eltype);
881 struct value *tmp;
882
883 val = allocate_value (type);
884 for (i = 0; i < n; i++)
885 {
886 tmp = value_one (eltype, lv);
887 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
888 value_contents_all (tmp), TYPE_LENGTH (eltype));
889 }
890 }
891 else
892 {
893 error (_("Not a numeric type."));
894 }
895
896 VALUE_LVAL (val) = lv;
897 return val;
898 }
899
900 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack. */
901
902 static struct value *
903 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
904 {
905 struct value *val;
906
907 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
908 error (_("Attempt to dereference a generic pointer."));
909
910 if (lazy)
911 {
912 val = allocate_value_lazy (type);
913 }
914 else
915 {
916 val = allocate_value (type);
917 read_memory (addr, value_contents_all_raw (val), TYPE_LENGTH (type));
918 }
919
920 VALUE_LVAL (val) = lval_memory;
921 set_value_address (val, addr);
922
923 return val;
924 }
925
926 /* Return a value with type TYPE located at ADDR.
927
928 Call value_at only if the data needs to be fetched immediately;
929 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
930 value_at_lazy instead. value_at_lazy simply records the address of
931 the data and sets the lazy-evaluation-required flag. The lazy flag
932 is tested in the value_contents macro, which is used if and when
933 the contents are actually required.
934
935 Note: value_at does *NOT* handle embedded offsets; perform such
936 adjustments before or after calling it. */
937
938 struct value *
939 value_at (struct type *type, CORE_ADDR addr)
940 {
941 return get_value_at (type, addr, 0);
942 }
943
944 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
945
946 struct value *
947 value_at_lazy (struct type *type, CORE_ADDR addr)
948 {
949 return get_value_at (type, addr, 1);
950 }
951
952 /* Called only from the value_contents and value_contents_all()
953 macros, if the current data for a variable needs to be loaded into
954 value_contents(VAL). Fetches the data from the user's process, and
955 clears the lazy flag to indicate that the data in the buffer is
956 valid.
957
958 If the value is zero-length, we avoid calling read_memory, which
959 would abort. We mark the value as fetched anyway -- all 0 bytes of
960 it.
961
962 This function returns a value because it is used in the
963 value_contents macro as part of an expression, where a void would
964 not work. The value is ignored. */
965
966 int
967 value_fetch_lazy (struct value *val)
968 {
969 gdb_assert (value_lazy (val));
970 allocate_value_contents (val);
971 if (value_bitsize (val))
972 {
973 /* To read a lazy bitfield, read the entire enclosing value. This
974 prevents reading the same block of (possibly volatile) memory once
975 per bitfield. It would be even better to read only the containing
976 word, but we have no way to record that just specific bits of a
977 value have been fetched. */
978 struct type *type = check_typedef (value_type (val));
979 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
980 struct value *parent = value_parent (val);
981 LONGEST offset = value_offset (val);
982 LONGEST num = unpack_bits_as_long (value_type (val),
983 (value_contents_for_printing (parent)
984 + offset),
985 value_bitpos (val),
986 value_bitsize (val));
987 int length = TYPE_LENGTH (type);
988
989 if (!value_bits_valid (val,
990 TARGET_CHAR_BIT * offset + value_bitpos (val),
991 value_bitsize (val)))
992 error (_("value has been optimized out"));
993
994 store_signed_integer (value_contents_raw (val), length, byte_order, num);
995 }
996 else if (VALUE_LVAL (val) == lval_memory)
997 {
998 CORE_ADDR addr = value_address (val);
999 int length = TYPE_LENGTH (check_typedef (value_enclosing_type (val)));
1000
1001 if (length)
1002 {
1003 if (value_stack (val))
1004 read_stack (addr, value_contents_all_raw (val), length);
1005 else
1006 read_memory (addr, value_contents_all_raw (val), length);
1007 }
1008 }
1009 else if (VALUE_LVAL (val) == lval_register)
1010 {
1011 struct frame_info *frame;
1012 int regnum;
1013 struct type *type = check_typedef (value_type (val));
1014 struct value *new_val = val, *mark = value_mark ();
1015
1016 /* Offsets are not supported here; lazy register values must
1017 refer to the entire register. */
1018 gdb_assert (value_offset (val) == 0);
1019
1020 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
1021 {
1022 frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
1023 regnum = VALUE_REGNUM (new_val);
1024
1025 gdb_assert (frame != NULL);
1026
1027 /* Convertible register routines are used for multi-register
1028 values and for interpretation in different types
1029 (e.g. float or int from a double register). Lazy
1030 register values should have the register's natural type,
1031 so they do not apply. */
1032 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
1033 regnum, type));
1034
1035 new_val = get_frame_register_value (frame, regnum);
1036 }
1037
1038 /* If it's still lazy (for instance, a saved register on the
1039 stack), fetch it. */
1040 if (value_lazy (new_val))
1041 value_fetch_lazy (new_val);
1042
1043 /* If the register was not saved, mark it unavailable. */
1044 if (value_optimized_out (new_val))
1045 set_value_optimized_out (val, 1);
1046 else
1047 memcpy (value_contents_raw (val), value_contents (new_val),
1048 TYPE_LENGTH (type));
1049
1050 if (frame_debug)
1051 {
1052 struct gdbarch *gdbarch;
1053 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1054 regnum = VALUE_REGNUM (val);
1055 gdbarch = get_frame_arch (frame);
1056
1057 fprintf_unfiltered (gdb_stdlog, "\
1058 { value_fetch_lazy (frame=%d,regnum=%d(%s),...) ",
1059 frame_relative_level (frame), regnum,
1060 user_reg_map_regnum_to_name (gdbarch, regnum));
1061
1062 fprintf_unfiltered (gdb_stdlog, "->");
1063 if (value_optimized_out (new_val))
1064 fprintf_unfiltered (gdb_stdlog, " optimized out");
1065 else
1066 {
1067 int i;
1068 const gdb_byte *buf = value_contents (new_val);
1069
1070 if (VALUE_LVAL (new_val) == lval_register)
1071 fprintf_unfiltered (gdb_stdlog, " register=%d",
1072 VALUE_REGNUM (new_val));
1073 else if (VALUE_LVAL (new_val) == lval_memory)
1074 fprintf_unfiltered (gdb_stdlog, " address=%s",
1075 paddress (gdbarch,
1076 value_address (new_val)));
1077 else
1078 fprintf_unfiltered (gdb_stdlog, " computed");
1079
1080 fprintf_unfiltered (gdb_stdlog, " bytes=");
1081 fprintf_unfiltered (gdb_stdlog, "[");
1082 for (i = 0; i < register_size (gdbarch, regnum); i++)
1083 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1084 fprintf_unfiltered (gdb_stdlog, "]");
1085 }
1086
1087 fprintf_unfiltered (gdb_stdlog, " }\n");
1088 }
1089
1090 /* Dispose of the intermediate values. This prevents
1091 watchpoints from trying to watch the saved frame pointer. */
1092 value_free_to_mark (mark);
1093 }
1094 else if (VALUE_LVAL (val) == lval_computed)
1095 value_computed_funcs (val)->read (val);
1096 else
1097 internal_error (__FILE__, __LINE__, "Unexpected lazy value type.");
1098
1099 set_value_lazy (val, 0);
1100 return 0;
1101 }
1102
1103
1104 /* Store the contents of FROMVAL into the location of TOVAL.
1105 Return a new value with the location of TOVAL and contents of FROMVAL. */
1106
1107 struct value *
1108 value_assign (struct value *toval, struct value *fromval)
1109 {
1110 struct type *type;
1111 struct value *val;
1112 struct frame_id old_frame;
1113
1114 if (!deprecated_value_modifiable (toval))
1115 error (_("Left operand of assignment is not a modifiable lvalue."));
1116
1117 toval = coerce_ref (toval);
1118
1119 type = value_type (toval);
1120 if (VALUE_LVAL (toval) != lval_internalvar)
1121 fromval = value_cast (type, fromval);
1122 else
1123 {
1124 /* Coerce arrays and functions to pointers, except for arrays
1125 which only live in GDB's storage. */
1126 if (!value_must_coerce_to_target (fromval))
1127 fromval = coerce_array (fromval);
1128 }
1129
1130 CHECK_TYPEDEF (type);
1131
1132 /* Since modifying a register can trash the frame chain, and
1133 modifying memory can trash the frame cache, we save the old frame
1134 and then restore the new frame afterwards. */
1135 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1136
1137 switch (VALUE_LVAL (toval))
1138 {
1139 case lval_internalvar:
1140 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1141 val = value_copy (fromval);
1142 val = value_change_enclosing_type (val,
1143 value_enclosing_type (fromval));
1144 set_value_embedded_offset (val, value_embedded_offset (fromval));
1145 set_value_pointed_to_offset (val,
1146 value_pointed_to_offset (fromval));
1147 return val;
1148
1149 case lval_internalvar_component:
1150 set_internalvar_component (VALUE_INTERNALVAR (toval),
1151 value_offset (toval),
1152 value_bitpos (toval),
1153 value_bitsize (toval),
1154 fromval);
1155 break;
1156
1157 case lval_memory:
1158 {
1159 const gdb_byte *dest_buffer;
1160 CORE_ADDR changed_addr;
1161 int changed_len;
1162 gdb_byte buffer[sizeof (LONGEST)];
1163
1164 if (value_bitsize (toval))
1165 {
1166 struct value *parent = value_parent (toval);
1167
1168 changed_addr = value_address (parent) + value_offset (toval);
1169 changed_len = (value_bitpos (toval)
1170 + value_bitsize (toval)
1171 + HOST_CHAR_BIT - 1)
1172 / HOST_CHAR_BIT;
1173
1174 /* If we can read-modify-write exactly the size of the
1175 containing type (e.g. short or int) then do so. This
1176 is safer for volatile bitfields mapped to hardware
1177 registers. */
1178 if (changed_len < TYPE_LENGTH (type)
1179 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1180 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1181 changed_len = TYPE_LENGTH (type);
1182
1183 if (changed_len > (int) sizeof (LONGEST))
1184 error (_("Can't handle bitfields which don't fit in a %d bit word."),
1185 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1186
1187 read_memory (changed_addr, buffer, changed_len);
1188 modify_field (type, buffer, value_as_long (fromval),
1189 value_bitpos (toval), value_bitsize (toval));
1190 dest_buffer = buffer;
1191 }
1192 else
1193 {
1194 changed_addr = value_address (toval);
1195 changed_len = TYPE_LENGTH (type);
1196 dest_buffer = value_contents (fromval);
1197 }
1198
1199 write_memory (changed_addr, dest_buffer, changed_len);
1200 observer_notify_memory_changed (changed_addr, changed_len,
1201 dest_buffer);
1202 }
1203 break;
1204
1205 case lval_register:
1206 {
1207 struct frame_info *frame;
1208 struct gdbarch *gdbarch;
1209 int value_reg;
1210
1211 /* Figure out which frame this is in currently. */
1212 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1213 value_reg = VALUE_REGNUM (toval);
1214
1215 if (!frame)
1216 error (_("Value being assigned to is no longer active."));
1217
1218 gdbarch = get_frame_arch (frame);
1219 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
1220 {
1221 /* If TOVAL is a special machine register requiring
1222 conversion of program values to a special raw
1223 format. */
1224 gdbarch_value_to_register (gdbarch, frame,
1225 VALUE_REGNUM (toval), type,
1226 value_contents (fromval));
1227 }
1228 else
1229 {
1230 if (value_bitsize (toval))
1231 {
1232 struct value *parent = value_parent (toval);
1233 int offset = value_offset (parent) + value_offset (toval);
1234 int changed_len;
1235 gdb_byte buffer[sizeof (LONGEST)];
1236
1237 changed_len = (value_bitpos (toval)
1238 + value_bitsize (toval)
1239 + HOST_CHAR_BIT - 1)
1240 / HOST_CHAR_BIT;
1241
1242 if (changed_len > (int) sizeof (LONGEST))
1243 error (_("Can't handle bitfields which don't fit in a %d bit word."),
1244 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1245
1246 get_frame_register_bytes (frame, value_reg, offset,
1247 changed_len, buffer);
1248
1249 modify_field (type, buffer, value_as_long (fromval),
1250 value_bitpos (toval), value_bitsize (toval));
1251
1252 put_frame_register_bytes (frame, value_reg, offset,
1253 changed_len, buffer);
1254 }
1255 else
1256 {
1257 put_frame_register_bytes (frame, value_reg,
1258 value_offset (toval),
1259 TYPE_LENGTH (type),
1260 value_contents (fromval));
1261 }
1262 }
1263
1264 if (deprecated_register_changed_hook)
1265 deprecated_register_changed_hook (-1);
1266 observer_notify_target_changed (&current_target);
1267 break;
1268 }
1269
1270 case lval_computed:
1271 {
1272 struct lval_funcs *funcs = value_computed_funcs (toval);
1273
1274 funcs->write (toval, fromval);
1275 }
1276 break;
1277
1278 default:
1279 error (_("Left operand of assignment is not an lvalue."));
1280 }
1281
1282 /* Assigning to the stack pointer, frame pointer, and other
1283 (architecture and calling convention specific) registers may
1284 cause the frame cache to be out of date. Assigning to memory
1285 also can. We just do this on all assignments to registers or
1286 memory, for simplicity's sake; I doubt the slowdown matters. */
1287 switch (VALUE_LVAL (toval))
1288 {
1289 case lval_memory:
1290 case lval_register:
1291 case lval_computed:
1292
1293 reinit_frame_cache ();
1294
1295 /* Having destroyed the frame cache, restore the selected
1296 frame. */
1297
1298 /* FIXME: cagney/2002-11-02: There has to be a better way of
1299 doing this. Instead of constantly saving/restoring the
1300 frame. Why not create a get_selected_frame() function that,
1301 having saved the selected frame's ID can automatically
1302 re-find the previously selected frame automatically. */
1303
1304 {
1305 struct frame_info *fi = frame_find_by_id (old_frame);
1306
1307 if (fi != NULL)
1308 select_frame (fi);
1309 }
1310
1311 break;
1312 default:
1313 break;
1314 }
1315
1316 /* If the field does not entirely fill a LONGEST, then zero the sign
1317 bits. If the field is signed, and is negative, then sign
1318 extend. */
1319 if ((value_bitsize (toval) > 0)
1320 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1321 {
1322 LONGEST fieldval = value_as_long (fromval);
1323 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1324
1325 fieldval &= valmask;
1326 if (!TYPE_UNSIGNED (type)
1327 && (fieldval & (valmask ^ (valmask >> 1))))
1328 fieldval |= ~valmask;
1329
1330 fromval = value_from_longest (type, fieldval);
1331 }
1332
1333 val = value_copy (toval);
1334 memcpy (value_contents_raw (val), value_contents (fromval),
1335 TYPE_LENGTH (type));
1336 deprecated_set_value_type (val, type);
1337 val = value_change_enclosing_type (val,
1338 value_enclosing_type (fromval));
1339 set_value_embedded_offset (val, value_embedded_offset (fromval));
1340 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1341
1342 return val;
1343 }
1344
1345 /* Extend a value VAL to COUNT repetitions of its type. */
1346
1347 struct value *
1348 value_repeat (struct value *arg1, int count)
1349 {
1350 struct value *val;
1351
1352 if (VALUE_LVAL (arg1) != lval_memory)
1353 error (_("Only values in memory can be extended with '@'."));
1354 if (count < 1)
1355 error (_("Invalid number %d of repetitions."), count);
1356
1357 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1358
1359 read_memory (value_address (arg1),
1360 value_contents_all_raw (val),
1361 TYPE_LENGTH (value_enclosing_type (val)));
1362 VALUE_LVAL (val) = lval_memory;
1363 set_value_address (val, value_address (arg1));
1364
1365 return val;
1366 }
1367
1368 struct value *
1369 value_of_variable (struct symbol *var, struct block *b)
1370 {
1371 struct value *val;
1372 struct frame_info *frame;
1373
1374 if (!symbol_read_needs_frame (var))
1375 frame = NULL;
1376 else if (!b)
1377 frame = get_selected_frame (_("No frame selected."));
1378 else
1379 {
1380 frame = block_innermost_frame (b);
1381 if (!frame)
1382 {
1383 if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
1384 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1385 error (_("No frame is currently executing in block %s."),
1386 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1387 else
1388 error (_("No frame is currently executing in specified block"));
1389 }
1390 }
1391
1392 val = read_var_value (var, frame);
1393 if (!val)
1394 error (_("Address of symbol \"%s\" is unknown."), SYMBOL_PRINT_NAME (var));
1395
1396 return val;
1397 }
1398
1399 struct value *
1400 address_of_variable (struct symbol *var, struct block *b)
1401 {
1402 struct type *type = SYMBOL_TYPE (var);
1403 struct value *val;
1404
1405 /* Evaluate it first; if the result is a memory address, we're fine.
1406 Lazy evaluation pays off here. */
1407
1408 val = value_of_variable (var, b);
1409
1410 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1411 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1412 {
1413 CORE_ADDR addr = value_address (val);
1414
1415 return value_from_pointer (lookup_pointer_type (type), addr);
1416 }
1417
1418 /* Not a memory address; check what the problem was. */
1419 switch (VALUE_LVAL (val))
1420 {
1421 case lval_register:
1422 {
1423 struct frame_info *frame;
1424 const char *regname;
1425
1426 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1427 gdb_assert (frame);
1428
1429 regname = gdbarch_register_name (get_frame_arch (frame),
1430 VALUE_REGNUM (val));
1431 gdb_assert (regname && *regname);
1432
1433 error (_("Address requested for identifier "
1434 "\"%s\" which is in register $%s"),
1435 SYMBOL_PRINT_NAME (var), regname);
1436 break;
1437 }
1438
1439 default:
1440 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1441 SYMBOL_PRINT_NAME (var));
1442 break;
1443 }
1444
1445 return val;
1446 }
1447
1448 /* Return one if VAL does not live in target memory, but should in order
1449 to operate on it. Otherwise return zero. */
1450
1451 int
1452 value_must_coerce_to_target (struct value *val)
1453 {
1454 struct type *valtype;
1455
1456 /* The only lval kinds which do not live in target memory. */
1457 if (VALUE_LVAL (val) != not_lval
1458 && VALUE_LVAL (val) != lval_internalvar)
1459 return 0;
1460
1461 valtype = check_typedef (value_type (val));
1462
1463 switch (TYPE_CODE (valtype))
1464 {
1465 case TYPE_CODE_ARRAY:
1466 return TYPE_VECTOR (valtype) ? 0 : 1;
1467 case TYPE_CODE_STRING:
1468 return 1;
1469 default:
1470 return 0;
1471 }
1472 }
1473
1474 /* Make sure that VAL lives in target memory if it's supposed to. For instance,
1475 strings are constructed as character arrays in GDB's storage, and this
1476 function copies them to the target. */
1477
1478 struct value *
1479 value_coerce_to_target (struct value *val)
1480 {
1481 LONGEST length;
1482 CORE_ADDR addr;
1483
1484 if (!value_must_coerce_to_target (val))
1485 return val;
1486
1487 length = TYPE_LENGTH (check_typedef (value_type (val)));
1488 addr = allocate_space_in_inferior (length);
1489 write_memory (addr, value_contents (val), length);
1490 return value_at_lazy (value_type (val), addr);
1491 }
1492
1493 /* Given a value which is an array, return a value which is a pointer
1494 to its first element, regardless of whether or not the array has a
1495 nonzero lower bound.
1496
1497 FIXME: A previous comment here indicated that this routine should
1498 be substracting the array's lower bound. It's not clear to me that
1499 this is correct. Given an array subscripting operation, it would
1500 certainly work to do the adjustment here, essentially computing:
1501
1502 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1503
1504 However I believe a more appropriate and logical place to account
1505 for the lower bound is to do so in value_subscript, essentially
1506 computing:
1507
1508 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1509
1510 As further evidence consider what would happen with operations
1511 other than array subscripting, where the caller would get back a
1512 value that had an address somewhere before the actual first element
1513 of the array, and the information about the lower bound would be
1514 lost because of the coercion to pointer type.
1515 */
1516
1517 struct value *
1518 value_coerce_array (struct value *arg1)
1519 {
1520 struct type *type = check_typedef (value_type (arg1));
1521
1522 /* If the user tries to do something requiring a pointer with an
1523 array that has not yet been pushed to the target, then this would
1524 be a good time to do so. */
1525 arg1 = value_coerce_to_target (arg1);
1526
1527 if (VALUE_LVAL (arg1) != lval_memory)
1528 error (_("Attempt to take address of value not located in memory."));
1529
1530 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1531 value_address (arg1));
1532 }
1533
1534 /* Given a value which is a function, return a value which is a pointer
1535 to it. */
1536
1537 struct value *
1538 value_coerce_function (struct value *arg1)
1539 {
1540 struct value *retval;
1541
1542 if (VALUE_LVAL (arg1) != lval_memory)
1543 error (_("Attempt to take address of value not located in memory."));
1544
1545 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1546 value_address (arg1));
1547 return retval;
1548 }
1549
1550 /* Return a pointer value for the object for which ARG1 is the
1551 contents. */
1552
1553 struct value *
1554 value_addr (struct value *arg1)
1555 {
1556 struct value *arg2;
1557 struct type *type = check_typedef (value_type (arg1));
1558
1559 if (TYPE_CODE (type) == TYPE_CODE_REF)
1560 {
1561 /* Copy the value, but change the type from (T&) to (T*). We
1562 keep the same location information, which is efficient, and
1563 allows &(&X) to get the location containing the reference. */
1564 arg2 = value_copy (arg1);
1565 deprecated_set_value_type (arg2,
1566 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1567 return arg2;
1568 }
1569 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1570 return value_coerce_function (arg1);
1571
1572 /* If this is an array that has not yet been pushed to the target,
1573 then this would be a good time to force it to memory. */
1574 arg1 = value_coerce_to_target (arg1);
1575
1576 if (VALUE_LVAL (arg1) != lval_memory)
1577 error (_("Attempt to take address of value not located in memory."));
1578
1579 /* Get target memory address */
1580 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1581 (value_address (arg1)
1582 + value_embedded_offset (arg1)));
1583
1584 /* This may be a pointer to a base subobject; so remember the
1585 full derived object's type ... */
1586 arg2 = value_change_enclosing_type (arg2, lookup_pointer_type (value_enclosing_type (arg1)));
1587 /* ... and also the relative position of the subobject in the full
1588 object. */
1589 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1590 return arg2;
1591 }
1592
1593 /* Return a reference value for the object for which ARG1 is the
1594 contents. */
1595
1596 struct value *
1597 value_ref (struct value *arg1)
1598 {
1599 struct value *arg2;
1600 struct type *type = check_typedef (value_type (arg1));
1601
1602 if (TYPE_CODE (type) == TYPE_CODE_REF)
1603 return arg1;
1604
1605 arg2 = value_addr (arg1);
1606 deprecated_set_value_type (arg2, lookup_reference_type (type));
1607 return arg2;
1608 }
1609
1610 /* Given a value of a pointer type, apply the C unary * operator to
1611 it. */
1612
1613 struct value *
1614 value_ind (struct value *arg1)
1615 {
1616 struct type *base_type;
1617 struct value *arg2;
1618
1619 arg1 = coerce_array (arg1);
1620
1621 base_type = check_typedef (value_type (arg1));
1622
1623 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1624 {
1625 struct type *enc_type;
1626
1627 /* We may be pointing to something embedded in a larger object.
1628 Get the real type of the enclosing object. */
1629 enc_type = check_typedef (value_enclosing_type (arg1));
1630 enc_type = TYPE_TARGET_TYPE (enc_type);
1631
1632 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1633 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1634 /* For functions, go through find_function_addr, which knows
1635 how to handle function descriptors. */
1636 arg2 = value_at_lazy (enc_type,
1637 find_function_addr (arg1, NULL));
1638 else
1639 /* Retrieve the enclosing object pointed to */
1640 arg2 = value_at_lazy (enc_type,
1641 (value_as_address (arg1)
1642 - value_pointed_to_offset (arg1)));
1643
1644 /* Re-adjust type. */
1645 deprecated_set_value_type (arg2, TYPE_TARGET_TYPE (base_type));
1646 /* Add embedding info. */
1647 arg2 = value_change_enclosing_type (arg2, enc_type);
1648 set_value_embedded_offset (arg2, value_pointed_to_offset (arg1));
1649
1650 /* We may be pointing to an object of some derived type. */
1651 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1652 return arg2;
1653 }
1654
1655 error (_("Attempt to take contents of a non-pointer value."));
1656 return 0; /* For lint -- never reached. */
1657 }
1658 \f
1659 /* Create a value for an array by allocating space in GDB, copying
1660 copying the data into that space, and then setting up an array
1661 value.
1662
1663 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1664 is populated from the values passed in ELEMVEC.
1665
1666 The element type of the array is inherited from the type of the
1667 first element, and all elements must have the same size (though we
1668 don't currently enforce any restriction on their types). */
1669
1670 struct value *
1671 value_array (int lowbound, int highbound, struct value **elemvec)
1672 {
1673 int nelem;
1674 int idx;
1675 unsigned int typelength;
1676 struct value *val;
1677 struct type *arraytype;
1678
1679 /* Validate that the bounds are reasonable and that each of the
1680 elements have the same size. */
1681
1682 nelem = highbound - lowbound + 1;
1683 if (nelem <= 0)
1684 {
1685 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1686 }
1687 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1688 for (idx = 1; idx < nelem; idx++)
1689 {
1690 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1691 {
1692 error (_("array elements must all be the same size"));
1693 }
1694 }
1695
1696 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1697 lowbound, highbound);
1698
1699 if (!current_language->c_style_arrays)
1700 {
1701 val = allocate_value (arraytype);
1702 for (idx = 0; idx < nelem; idx++)
1703 {
1704 memcpy (value_contents_all_raw (val) + (idx * typelength),
1705 value_contents_all (elemvec[idx]),
1706 typelength);
1707 }
1708 return val;
1709 }
1710
1711 /* Allocate space to store the array, and then initialize it by
1712 copying in each element. */
1713
1714 val = allocate_value (arraytype);
1715 for (idx = 0; idx < nelem; idx++)
1716 memcpy (value_contents_writeable (val) + (idx * typelength),
1717 value_contents_all (elemvec[idx]),
1718 typelength);
1719 return val;
1720 }
1721
1722 struct value *
1723 value_cstring (char *ptr, int len, struct type *char_type)
1724 {
1725 struct value *val;
1726 int lowbound = current_language->string_lower_bound;
1727 int highbound = len / TYPE_LENGTH (char_type);
1728 struct type *stringtype
1729 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1730
1731 val = allocate_value (stringtype);
1732 memcpy (value_contents_raw (val), ptr, len);
1733 return val;
1734 }
1735
1736 /* Create a value for a string constant by allocating space in the
1737 inferior, copying the data into that space, and returning the
1738 address with type TYPE_CODE_STRING. PTR points to the string
1739 constant data; LEN is number of characters.
1740
1741 Note that string types are like array of char types with a lower
1742 bound of zero and an upper bound of LEN - 1. Also note that the
1743 string may contain embedded null bytes. */
1744
1745 struct value *
1746 value_string (char *ptr, int len, struct type *char_type)
1747 {
1748 struct value *val;
1749 int lowbound = current_language->string_lower_bound;
1750 int highbound = len / TYPE_LENGTH (char_type);
1751 struct type *stringtype
1752 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1753
1754 val = allocate_value (stringtype);
1755 memcpy (value_contents_raw (val), ptr, len);
1756 return val;
1757 }
1758
1759 struct value *
1760 value_bitstring (char *ptr, int len, struct type *index_type)
1761 {
1762 struct value *val;
1763 struct type *domain_type
1764 = create_range_type (NULL, index_type, 0, len - 1);
1765 struct type *type = create_set_type (NULL, domain_type);
1766
1767 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1768 val = allocate_value (type);
1769 memcpy (value_contents_raw (val), ptr, TYPE_LENGTH (type));
1770 return val;
1771 }
1772 \f
1773 /* See if we can pass arguments in T2 to a function which takes
1774 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1775 a NULL-terminated vector. If some arguments need coercion of some
1776 sort, then the coerced values are written into T2. Return value is
1777 0 if the arguments could be matched, or the position at which they
1778 differ if not.
1779
1780 STATICP is nonzero if the T1 argument list came from a static
1781 member function. T2 will still include the ``this'' pointer, but
1782 it will be skipped.
1783
1784 For non-static member functions, we ignore the first argument,
1785 which is the type of the instance variable. This is because we
1786 want to handle calls with objects from derived classes. This is
1787 not entirely correct: we should actually check to make sure that a
1788 requested operation is type secure, shouldn't we? FIXME. */
1789
1790 static int
1791 typecmp (int staticp, int varargs, int nargs,
1792 struct field t1[], struct value *t2[])
1793 {
1794 int i;
1795
1796 if (t2 == 0)
1797 internal_error (__FILE__, __LINE__,
1798 _("typecmp: no argument list"));
1799
1800 /* Skip ``this'' argument if applicable. T2 will always include
1801 THIS. */
1802 if (staticp)
1803 t2 ++;
1804
1805 for (i = 0;
1806 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1807 i++)
1808 {
1809 struct type *tt1, *tt2;
1810
1811 if (!t2[i])
1812 return i + 1;
1813
1814 tt1 = check_typedef (t1[i].type);
1815 tt2 = check_typedef (value_type (t2[i]));
1816
1817 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1818 /* We should be doing hairy argument matching, as below. */
1819 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1820 {
1821 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1822 t2[i] = value_coerce_array (t2[i]);
1823 else
1824 t2[i] = value_ref (t2[i]);
1825 continue;
1826 }
1827
1828 /* djb - 20000715 - Until the new type structure is in the
1829 place, and we can attempt things like implicit conversions,
1830 we need to do this so you can take something like a map<const
1831 char *>, and properly access map["hello"], because the
1832 argument to [] will be a reference to a pointer to a char,
1833 and the argument will be a pointer to a char. */
1834 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1835 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1836 {
1837 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1838 }
1839 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1840 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1841 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1842 {
1843 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1844 }
1845 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1846 continue;
1847 /* Array to pointer is a `trivial conversion' according to the
1848 ARM. */
1849
1850 /* We should be doing much hairier argument matching (see
1851 section 13.2 of the ARM), but as a quick kludge, just check
1852 for the same type code. */
1853 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1854 return i + 1;
1855 }
1856 if (varargs || t2[i] == NULL)
1857 return 0;
1858 return i + 1;
1859 }
1860
1861 /* Helper function used by value_struct_elt to recurse through
1862 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1863 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1864 TYPE. If found, return value, else return NULL.
1865
1866 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1867 fields, look for a baseclass named NAME. */
1868
1869 static struct value *
1870 search_struct_field (const char *name, struct value *arg1, int offset,
1871 struct type *type, int looking_for_baseclass)
1872 {
1873 int i;
1874 int nbases;
1875
1876 CHECK_TYPEDEF (type);
1877 nbases = TYPE_N_BASECLASSES (type);
1878
1879 if (!looking_for_baseclass)
1880 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1881 {
1882 char *t_field_name = TYPE_FIELD_NAME (type, i);
1883
1884 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1885 {
1886 struct value *v;
1887
1888 if (field_is_static (&TYPE_FIELD (type, i)))
1889 {
1890 v = value_static_field (type, i);
1891 if (v == 0)
1892 error (_("field %s is nonexistent or has been optimized out"),
1893 name);
1894 }
1895 else
1896 {
1897 v = value_primitive_field (arg1, offset, i, type);
1898 if (v == 0)
1899 error (_("there is no field named %s"), name);
1900 }
1901 return v;
1902 }
1903
1904 if (t_field_name
1905 && (t_field_name[0] == '\0'
1906 || (TYPE_CODE (type) == TYPE_CODE_UNION
1907 && (strcmp_iw (t_field_name, "else") == 0))))
1908 {
1909 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1910
1911 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1912 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1913 {
1914 /* Look for a match through the fields of an anonymous
1915 union, or anonymous struct. C++ provides anonymous
1916 unions.
1917
1918 In the GNU Chill (now deleted from GDB)
1919 implementation of variant record types, each
1920 <alternative field> has an (anonymous) union type,
1921 each member of the union represents a <variant
1922 alternative>. Each <variant alternative> is
1923 represented as a struct, with a member for each
1924 <variant field>. */
1925
1926 struct value *v;
1927 int new_offset = offset;
1928
1929 /* This is pretty gross. In G++, the offset in an
1930 anonymous union is relative to the beginning of the
1931 enclosing struct. In the GNU Chill (now deleted
1932 from GDB) implementation of variant records, the
1933 bitpos is zero in an anonymous union field, so we
1934 have to add the offset of the union here. */
1935 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
1936 || (TYPE_NFIELDS (field_type) > 0
1937 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1938 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1939
1940 v = search_struct_field (name, arg1, new_offset,
1941 field_type,
1942 looking_for_baseclass);
1943 if (v)
1944 return v;
1945 }
1946 }
1947 }
1948
1949 for (i = 0; i < nbases; i++)
1950 {
1951 struct value *v;
1952 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1953 /* If we are looking for baseclasses, this is what we get when
1954 we hit them. But it could happen that the base part's member
1955 name is not yet filled in. */
1956 int found_baseclass = (looking_for_baseclass
1957 && TYPE_BASECLASS_NAME (type, i) != NULL
1958 && (strcmp_iw (name,
1959 TYPE_BASECLASS_NAME (type,
1960 i)) == 0));
1961
1962 if (BASETYPE_VIA_VIRTUAL (type, i))
1963 {
1964 int boffset;
1965 struct value *v2;
1966
1967 boffset = baseclass_offset (type, i,
1968 value_contents (arg1) + offset,
1969 value_address (arg1)
1970 + value_embedded_offset (arg1)
1971 + offset);
1972 if (boffset == -1)
1973 error (_("virtual baseclass botch"));
1974
1975 /* The virtual base class pointer might have been clobbered
1976 by the user program. Make sure that it still points to a
1977 valid memory location. */
1978
1979 boffset += value_embedded_offset (arg1) + offset;
1980 if (boffset < 0
1981 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
1982 {
1983 CORE_ADDR base_addr;
1984
1985 v2 = allocate_value (basetype);
1986 base_addr = value_address (arg1) + boffset;
1987 if (target_read_memory (base_addr,
1988 value_contents_raw (v2),
1989 TYPE_LENGTH (basetype)) != 0)
1990 error (_("virtual baseclass botch"));
1991 VALUE_LVAL (v2) = lval_memory;
1992 set_value_address (v2, base_addr);
1993 }
1994 else
1995 {
1996 v2 = value_copy (arg1);
1997 deprecated_set_value_type (v2, basetype);
1998 set_value_embedded_offset (v2, boffset);
1999 }
2000
2001 if (found_baseclass)
2002 return v2;
2003 v = search_struct_field (name, v2, 0,
2004 TYPE_BASECLASS (type, i),
2005 looking_for_baseclass);
2006 }
2007 else if (found_baseclass)
2008 v = value_primitive_field (arg1, offset, i, type);
2009 else
2010 v = search_struct_field (name, arg1,
2011 offset + TYPE_BASECLASS_BITPOS (type,
2012 i) / 8,
2013 basetype, looking_for_baseclass);
2014 if (v)
2015 return v;
2016 }
2017 return NULL;
2018 }
2019
2020 /* Helper function used by value_struct_elt to recurse through
2021 baseclasses. Look for a field NAME in ARG1. Adjust the address of
2022 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2023 TYPE.
2024
2025 If found, return value, else if name matched and args not return
2026 (value) -1, else return NULL. */
2027
2028 static struct value *
2029 search_struct_method (const char *name, struct value **arg1p,
2030 struct value **args, int offset,
2031 int *static_memfuncp, struct type *type)
2032 {
2033 int i;
2034 struct value *v;
2035 int name_matched = 0;
2036 char dem_opname[64];
2037
2038 CHECK_TYPEDEF (type);
2039 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2040 {
2041 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2042
2043 /* FIXME! May need to check for ARM demangling here */
2044 if (strncmp (t_field_name, "__", 2) == 0 ||
2045 strncmp (t_field_name, "op", 2) == 0 ||
2046 strncmp (t_field_name, "type", 4) == 0)
2047 {
2048 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2049 t_field_name = dem_opname;
2050 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2051 t_field_name = dem_opname;
2052 }
2053 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2054 {
2055 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2056 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2057
2058 name_matched = 1;
2059 check_stub_method_group (type, i);
2060 if (j > 0 && args == 0)
2061 error (_("cannot resolve overloaded method `%s': no arguments supplied"), name);
2062 else if (j == 0 && args == 0)
2063 {
2064 v = value_fn_field (arg1p, f, j, type, offset);
2065 if (v != NULL)
2066 return v;
2067 }
2068 else
2069 while (j >= 0)
2070 {
2071 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2072 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2073 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2074 TYPE_FN_FIELD_ARGS (f, j), args))
2075 {
2076 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2077 return value_virtual_fn_field (arg1p, f, j,
2078 type, offset);
2079 if (TYPE_FN_FIELD_STATIC_P (f, j)
2080 && static_memfuncp)
2081 *static_memfuncp = 1;
2082 v = value_fn_field (arg1p, f, j, type, offset);
2083 if (v != NULL)
2084 return v;
2085 }
2086 j--;
2087 }
2088 }
2089 }
2090
2091 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2092 {
2093 int base_offset;
2094
2095 if (BASETYPE_VIA_VIRTUAL (type, i))
2096 {
2097 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2098 const gdb_byte *base_valaddr;
2099
2100 /* The virtual base class pointer might have been
2101 clobbered by the user program. Make sure that it
2102 still points to a valid memory location. */
2103
2104 if (offset < 0 || offset >= TYPE_LENGTH (type))
2105 {
2106 gdb_byte *tmp = alloca (TYPE_LENGTH (baseclass));
2107
2108 if (target_read_memory (value_address (*arg1p) + offset,
2109 tmp, TYPE_LENGTH (baseclass)) != 0)
2110 error (_("virtual baseclass botch"));
2111 base_valaddr = tmp;
2112 }
2113 else
2114 base_valaddr = value_contents (*arg1p) + offset;
2115
2116 base_offset = baseclass_offset (type, i, base_valaddr,
2117 value_address (*arg1p) + offset);
2118 if (base_offset == -1)
2119 error (_("virtual baseclass botch"));
2120 }
2121 else
2122 {
2123 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2124 }
2125 v = search_struct_method (name, arg1p, args, base_offset + offset,
2126 static_memfuncp, TYPE_BASECLASS (type, i));
2127 if (v == (struct value *) - 1)
2128 {
2129 name_matched = 1;
2130 }
2131 else if (v)
2132 {
2133 /* FIXME-bothner: Why is this commented out? Why is it here? */
2134 /* *arg1p = arg1_tmp; */
2135 return v;
2136 }
2137 }
2138 if (name_matched)
2139 return (struct value *) - 1;
2140 else
2141 return NULL;
2142 }
2143
2144 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2145 extract the component named NAME from the ultimate target
2146 structure/union and return it as a value with its appropriate type.
2147 ERR is used in the error message if *ARGP's type is wrong.
2148
2149 C++: ARGS is a list of argument types to aid in the selection of
2150 an appropriate method. Also, handle derived types.
2151
2152 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2153 where the truthvalue of whether the function that was resolved was
2154 a static member function or not is stored.
2155
2156 ERR is an error message to be printed in case the field is not
2157 found. */
2158
2159 struct value *
2160 value_struct_elt (struct value **argp, struct value **args,
2161 const char *name, int *static_memfuncp, const char *err)
2162 {
2163 struct type *t;
2164 struct value *v;
2165
2166 *argp = coerce_array (*argp);
2167
2168 t = check_typedef (value_type (*argp));
2169
2170 /* Follow pointers until we get to a non-pointer. */
2171
2172 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2173 {
2174 *argp = value_ind (*argp);
2175 /* Don't coerce fn pointer to fn and then back again! */
2176 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2177 *argp = coerce_array (*argp);
2178 t = check_typedef (value_type (*argp));
2179 }
2180
2181 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2182 && TYPE_CODE (t) != TYPE_CODE_UNION)
2183 error (_("Attempt to extract a component of a value that is not a %s."), err);
2184
2185 /* Assume it's not, unless we see that it is. */
2186 if (static_memfuncp)
2187 *static_memfuncp = 0;
2188
2189 if (!args)
2190 {
2191 /* if there are no arguments ...do this... */
2192
2193 /* Try as a field first, because if we succeed, there is less
2194 work to be done. */
2195 v = search_struct_field (name, *argp, 0, t, 0);
2196 if (v)
2197 return v;
2198
2199 /* C++: If it was not found as a data field, then try to
2200 return it as a pointer to a method. */
2201 v = search_struct_method (name, argp, args, 0,
2202 static_memfuncp, t);
2203
2204 if (v == (struct value *) - 1)
2205 error (_("Cannot take address of method %s."), name);
2206 else if (v == 0)
2207 {
2208 if (TYPE_NFN_FIELDS (t))
2209 error (_("There is no member or method named %s."), name);
2210 else
2211 error (_("There is no member named %s."), name);
2212 }
2213 return v;
2214 }
2215
2216 v = search_struct_method (name, argp, args, 0,
2217 static_memfuncp, t);
2218
2219 if (v == (struct value *) - 1)
2220 {
2221 error (_("One of the arguments you tried to pass to %s could not be converted to what the function wants."), name);
2222 }
2223 else if (v == 0)
2224 {
2225 /* See if user tried to invoke data as function. If so, hand it
2226 back. If it's not callable (i.e., a pointer to function),
2227 gdb should give an error. */
2228 v = search_struct_field (name, *argp, 0, t, 0);
2229 /* If we found an ordinary field, then it is not a method call.
2230 So, treat it as if it were a static member function. */
2231 if (v && static_memfuncp)
2232 *static_memfuncp = 1;
2233 }
2234
2235 if (!v)
2236 throw_error (NOT_FOUND_ERROR,
2237 _("Structure has no component named %s."), name);
2238 return v;
2239 }
2240
2241 /* Search through the methods of an object (and its bases) to find a
2242 specified method. Return the pointer to the fn_field list of
2243 overloaded instances.
2244
2245 Helper function for value_find_oload_list.
2246 ARGP is a pointer to a pointer to a value (the object).
2247 METHOD is a string containing the method name.
2248 OFFSET is the offset within the value.
2249 TYPE is the assumed type of the object.
2250 NUM_FNS is the number of overloaded instances.
2251 BASETYPE is set to the actual type of the subobject where the
2252 method is found.
2253 BOFFSET is the offset of the base subobject where the method is found.
2254 */
2255
2256 static struct fn_field *
2257 find_method_list (struct value **argp, const char *method,
2258 int offset, struct type *type, int *num_fns,
2259 struct type **basetype, int *boffset)
2260 {
2261 int i;
2262 struct fn_field *f;
2263 CHECK_TYPEDEF (type);
2264
2265 *num_fns = 0;
2266
2267 /* First check in object itself. */
2268 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2269 {
2270 /* pai: FIXME What about operators and type conversions? */
2271 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2272
2273 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2274 {
2275 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2276 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2277
2278 *num_fns = len;
2279 *basetype = type;
2280 *boffset = offset;
2281
2282 /* Resolve any stub methods. */
2283 check_stub_method_group (type, i);
2284
2285 return f;
2286 }
2287 }
2288
2289 /* Not found in object, check in base subobjects. */
2290 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2291 {
2292 int base_offset;
2293
2294 if (BASETYPE_VIA_VIRTUAL (type, i))
2295 {
2296 base_offset = value_offset (*argp) + offset;
2297 base_offset = baseclass_offset (type, i,
2298 value_contents (*argp) + base_offset,
2299 value_address (*argp) + base_offset);
2300 if (base_offset == -1)
2301 error (_("virtual baseclass botch"));
2302 }
2303 else /* Non-virtual base, simply use bit position from debug
2304 info. */
2305 {
2306 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2307 }
2308 f = find_method_list (argp, method, base_offset + offset,
2309 TYPE_BASECLASS (type, i), num_fns,
2310 basetype, boffset);
2311 if (f)
2312 return f;
2313 }
2314 return NULL;
2315 }
2316
2317 /* Return the list of overloaded methods of a specified name.
2318
2319 ARGP is a pointer to a pointer to a value (the object).
2320 METHOD is the method name.
2321 OFFSET is the offset within the value contents.
2322 NUM_FNS is the number of overloaded instances.
2323 BASETYPE is set to the type of the base subobject that defines the
2324 method.
2325 BOFFSET is the offset of the base subobject which defines the method.
2326 */
2327
2328 struct fn_field *
2329 value_find_oload_method_list (struct value **argp, const char *method,
2330 int offset, int *num_fns,
2331 struct type **basetype, int *boffset)
2332 {
2333 struct type *t;
2334
2335 t = check_typedef (value_type (*argp));
2336
2337 /* Code snarfed from value_struct_elt. */
2338 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2339 {
2340 *argp = value_ind (*argp);
2341 /* Don't coerce fn pointer to fn and then back again! */
2342 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2343 *argp = coerce_array (*argp);
2344 t = check_typedef (value_type (*argp));
2345 }
2346
2347 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2348 && TYPE_CODE (t) != TYPE_CODE_UNION)
2349 error (_("Attempt to extract a component of a value that is not a struct or union"));
2350
2351 return find_method_list (argp, method, 0, t, num_fns,
2352 basetype, boffset);
2353 }
2354
2355 /* Given an array of argument types (ARGTYPES) (which includes an
2356 entry for "this" in the case of C++ methods), the number of
2357 arguments NARGS, the NAME of a function whether it's a method or
2358 not (METHOD), and the degree of laxness (LAX) in conforming to
2359 overload resolution rules in ANSI C++, find the best function that
2360 matches on the argument types according to the overload resolution
2361 rules.
2362
2363 METHOD can be one of three values:
2364 NON_METHOD for non-member functions.
2365 METHOD: for member functions.
2366 BOTH: used for overload resolution of operators where the
2367 candidates are expected to be either member or non member
2368 functions. In this case the first argument ARGTYPES
2369 (representing 'this') is expected to be a reference to the
2370 target object, and will be dereferenced when attempting the
2371 non-member search.
2372
2373 In the case of class methods, the parameter OBJ is an object value
2374 in which to search for overloaded methods.
2375
2376 In the case of non-method functions, the parameter FSYM is a symbol
2377 corresponding to one of the overloaded functions.
2378
2379 Return value is an integer: 0 -> good match, 10 -> debugger applied
2380 non-standard coercions, 100 -> incompatible.
2381
2382 If a method is being searched for, VALP will hold the value.
2383 If a non-method is being searched for, SYMP will hold the symbol
2384 for it.
2385
2386 If a method is being searched for, and it is a static method,
2387 then STATICP will point to a non-zero value.
2388
2389 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2390 ADL overload candidates when performing overload resolution for a fully
2391 qualified name.
2392
2393 Note: This function does *not* check the value of
2394 overload_resolution. Caller must check it to see whether overload
2395 resolution is permitted.
2396 */
2397
2398 int
2399 find_overload_match (struct type **arg_types, int nargs,
2400 const char *name, enum oload_search_type method,
2401 int lax, struct value **objp, struct symbol *fsym,
2402 struct value **valp, struct symbol **symp,
2403 int *staticp, const int no_adl)
2404 {
2405 struct value *obj = (objp ? *objp : NULL);
2406 /* Index of best overloaded function. */
2407 int func_oload_champ = -1;
2408 int method_oload_champ = -1;
2409
2410 /* The measure for the current best match. */
2411 struct badness_vector *method_badness = NULL;
2412 struct badness_vector *func_badness = NULL;
2413
2414 struct value *temp = obj;
2415 /* For methods, the list of overloaded methods. */
2416 struct fn_field *fns_ptr = NULL;
2417 /* For non-methods, the list of overloaded function symbols. */
2418 struct symbol **oload_syms = NULL;
2419 /* Number of overloaded instances being considered. */
2420 int num_fns = 0;
2421 struct type *basetype = NULL;
2422 int boffset;
2423
2424 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2425
2426 const char *obj_type_name = NULL;
2427 const char *func_name = NULL;
2428 enum oload_classification match_quality;
2429 enum oload_classification method_match_quality = INCOMPATIBLE;
2430 enum oload_classification func_match_quality = INCOMPATIBLE;
2431
2432 /* Get the list of overloaded methods or functions. */
2433 if (method == METHOD || method == BOTH)
2434 {
2435 gdb_assert (obj);
2436
2437 /* OBJ may be a pointer value rather than the object itself. */
2438 obj = coerce_ref (obj);
2439 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2440 obj = coerce_ref (value_ind (obj));
2441 obj_type_name = TYPE_NAME (value_type (obj));
2442
2443 /* First check whether this is a data member, e.g. a pointer to
2444 a function. */
2445 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2446 {
2447 *valp = search_struct_field (name, obj, 0,
2448 check_typedef (value_type (obj)), 0);
2449 if (*valp)
2450 {
2451 *staticp = 1;
2452 return 0;
2453 }
2454 }
2455
2456 /* Retrieve the list of methods with the name NAME. */
2457 fns_ptr = value_find_oload_method_list (&temp, name,
2458 0, &num_fns,
2459 &basetype, &boffset);
2460 /* If this is a method only search, and no methods were found
2461 the search has faild. */
2462 if (method == METHOD && (!fns_ptr || !num_fns))
2463 error (_("Couldn't find method %s%s%s"),
2464 obj_type_name,
2465 (obj_type_name && *obj_type_name) ? "::" : "",
2466 name);
2467 /* If we are dealing with stub method types, they should have
2468 been resolved by find_method_list via
2469 value_find_oload_method_list above. */
2470 if (fns_ptr)
2471 {
2472 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2473 method_oload_champ = find_oload_champ (arg_types, nargs, method,
2474 num_fns, fns_ptr,
2475 oload_syms, &method_badness);
2476
2477 method_match_quality =
2478 classify_oload_match (method_badness, nargs,
2479 oload_method_static (method, fns_ptr,
2480 method_oload_champ));
2481
2482 make_cleanup (xfree, method_badness);
2483 }
2484
2485 }
2486
2487 if (method == NON_METHOD || method == BOTH)
2488 {
2489 const char *qualified_name = NULL;
2490
2491 /* If the the overload match is being search for both
2492 as a method and non member function, the first argument
2493 must now be dereferenced. */
2494 if (method == BOTH)
2495 arg_types[0] = TYPE_TARGET_TYPE (arg_types[0]);
2496
2497 if (fsym)
2498 {
2499 qualified_name = SYMBOL_NATURAL_NAME (fsym);
2500
2501 /* If we have a function with a C++ name, try to extract just
2502 the function part. Do not try this for non-functions (e.g.
2503 function pointers). */
2504 if (qualified_name
2505 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym))) == TYPE_CODE_FUNC)
2506 {
2507 char *temp;
2508
2509 temp = cp_func_name (qualified_name);
2510
2511 /* If cp_func_name did not remove anything, the name of the
2512 symbol did not include scope or argument types - it was
2513 probably a C-style function. */
2514 if (temp)
2515 {
2516 make_cleanup (xfree, temp);
2517 if (strcmp (temp, qualified_name) == 0)
2518 func_name = NULL;
2519 else
2520 func_name = temp;
2521 }
2522 }
2523 }
2524 else
2525 {
2526 func_name = name;
2527 qualified_name = name;
2528 }
2529
2530 /* If there was no C++ name, this must be a C-style function or
2531 not a function at all. Just return the same symbol. Do the
2532 same if cp_func_name fails for some reason. */
2533 if (func_name == NULL)
2534 {
2535 *symp = fsym;
2536 return 0;
2537 }
2538
2539 func_oload_champ = find_oload_champ_namespace (arg_types, nargs,
2540 func_name,
2541 qualified_name,
2542 &oload_syms,
2543 &func_badness,
2544 no_adl);
2545
2546 if (func_oload_champ >= 0)
2547 func_match_quality = classify_oload_match (func_badness, nargs, 0);
2548
2549 make_cleanup (xfree, oload_syms);
2550 make_cleanup (xfree, func_badness);
2551 }
2552
2553 /* Did we find a match ? */
2554 if (method_oload_champ == -1 && func_oload_champ == -1)
2555 throw_error (NOT_FOUND_ERROR,
2556 _("No symbol \"%s\" in current context."),
2557 name);
2558
2559 /* If we have found both a method match and a function
2560 match, find out which one is better, and calculate match
2561 quality. */
2562 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2563 {
2564 switch (compare_badness (func_badness, method_badness))
2565 {
2566 case 0: /* Top two contenders are equally good. */
2567 /* FIXME: GDB does not support the general ambiguous
2568 case. All candidates should be collected and presented
2569 the the user. */
2570 error (_("Ambiguous overload resolution"));
2571 break;
2572 case 1: /* Incomparable top contenders. */
2573 /* This is an error incompatible candidates
2574 should not have been proposed. */
2575 error (_("Internal error: incompatible overload candidates proposed"));
2576 break;
2577 case 2: /* Function champion. */
2578 method_oload_champ = -1;
2579 match_quality = func_match_quality;
2580 break;
2581 case 3: /* Method champion. */
2582 func_oload_champ = -1;
2583 match_quality = method_match_quality;
2584 break;
2585 default:
2586 error (_("Internal error: unexpected overload comparison result"));
2587 break;
2588 }
2589 }
2590 else
2591 {
2592 /* We have either a method match or a function match. */
2593 if (method_oload_champ >= 0)
2594 match_quality = method_match_quality;
2595 else
2596 match_quality = func_match_quality;
2597 }
2598
2599 if (match_quality == INCOMPATIBLE)
2600 {
2601 if (method == METHOD)
2602 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2603 obj_type_name,
2604 (obj_type_name && *obj_type_name) ? "::" : "",
2605 name);
2606 else
2607 error (_("Cannot resolve function %s to any overloaded instance"),
2608 func_name);
2609 }
2610 else if (match_quality == NON_STANDARD)
2611 {
2612 if (method == METHOD)
2613 warning (_("Using non-standard conversion to match method %s%s%s to supplied arguments"),
2614 obj_type_name,
2615 (obj_type_name && *obj_type_name) ? "::" : "",
2616 name);
2617 else
2618 warning (_("Using non-standard conversion to match function %s to supplied arguments"),
2619 func_name);
2620 }
2621
2622 if (staticp != NULL)
2623 *staticp = oload_method_static (method, fns_ptr, method_oload_champ);
2624
2625 if (method_oload_champ >= 0)
2626 {
2627 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ))
2628 *valp = value_virtual_fn_field (&temp, fns_ptr, method_oload_champ,
2629 basetype, boffset);
2630 else
2631 *valp = value_fn_field (&temp, fns_ptr, method_oload_champ,
2632 basetype, boffset);
2633 }
2634 else
2635 *symp = oload_syms[func_oload_champ];
2636
2637 if (objp)
2638 {
2639 struct type *temp_type = check_typedef (value_type (temp));
2640 struct type *obj_type = check_typedef (value_type (*objp));
2641
2642 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2643 && (TYPE_CODE (obj_type) == TYPE_CODE_PTR
2644 || TYPE_CODE (obj_type) == TYPE_CODE_REF))
2645 {
2646 temp = value_addr (temp);
2647 }
2648 *objp = temp;
2649 }
2650
2651 do_cleanups (all_cleanups);
2652
2653 switch (match_quality)
2654 {
2655 case INCOMPATIBLE:
2656 return 100;
2657 case NON_STANDARD:
2658 return 10;
2659 default: /* STANDARD */
2660 return 0;
2661 }
2662 }
2663
2664 /* Find the best overload match, searching for FUNC_NAME in namespaces
2665 contained in QUALIFIED_NAME until it either finds a good match or
2666 runs out of namespaces. It stores the overloaded functions in
2667 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2668 calling function is responsible for freeing *OLOAD_SYMS and
2669 *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not
2670 performned. */
2671
2672 static int
2673 find_oload_champ_namespace (struct type **arg_types, int nargs,
2674 const char *func_name,
2675 const char *qualified_name,
2676 struct symbol ***oload_syms,
2677 struct badness_vector **oload_champ_bv,
2678 const int no_adl)
2679 {
2680 int oload_champ;
2681
2682 find_oload_champ_namespace_loop (arg_types, nargs,
2683 func_name,
2684 qualified_name, 0,
2685 oload_syms, oload_champ_bv,
2686 &oload_champ,
2687 no_adl);
2688
2689 return oload_champ;
2690 }
2691
2692 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2693 how deep we've looked for namespaces, and the champ is stored in
2694 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2695 if it isn't. Other arguments are the same as in
2696 find_oload_champ_namespace
2697
2698 It is the caller's responsibility to free *OLOAD_SYMS and
2699 *OLOAD_CHAMP_BV. */
2700
2701 static int
2702 find_oload_champ_namespace_loop (struct type **arg_types, int nargs,
2703 const char *func_name,
2704 const char *qualified_name,
2705 int namespace_len,
2706 struct symbol ***oload_syms,
2707 struct badness_vector **oload_champ_bv,
2708 int *oload_champ,
2709 const int no_adl)
2710 {
2711 int next_namespace_len = namespace_len;
2712 int searched_deeper = 0;
2713 int num_fns = 0;
2714 struct cleanup *old_cleanups;
2715 int new_oload_champ;
2716 struct symbol **new_oload_syms;
2717 struct badness_vector *new_oload_champ_bv;
2718 char *new_namespace;
2719
2720 if (next_namespace_len != 0)
2721 {
2722 gdb_assert (qualified_name[next_namespace_len] == ':');
2723 next_namespace_len += 2;
2724 }
2725 next_namespace_len +=
2726 cp_find_first_component (qualified_name + next_namespace_len);
2727
2728 /* Initialize these to values that can safely be xfree'd. */
2729 *oload_syms = NULL;
2730 *oload_champ_bv = NULL;
2731
2732 /* First, see if we have a deeper namespace we can search in.
2733 If we get a good match there, use it. */
2734
2735 if (qualified_name[next_namespace_len] == ':')
2736 {
2737 searched_deeper = 1;
2738
2739 if (find_oload_champ_namespace_loop (arg_types, nargs,
2740 func_name, qualified_name,
2741 next_namespace_len,
2742 oload_syms, oload_champ_bv,
2743 oload_champ, no_adl))
2744 {
2745 return 1;
2746 }
2747 };
2748
2749 /* If we reach here, either we're in the deepest namespace or we
2750 didn't find a good match in a deeper namespace. But, in the
2751 latter case, we still have a bad match in a deeper namespace;
2752 note that we might not find any match at all in the current
2753 namespace. (There's always a match in the deepest namespace,
2754 because this overload mechanism only gets called if there's a
2755 function symbol to start off with.) */
2756
2757 old_cleanups = make_cleanup (xfree, *oload_syms);
2758 make_cleanup (xfree, *oload_champ_bv);
2759 new_namespace = alloca (namespace_len + 1);
2760 strncpy (new_namespace, qualified_name, namespace_len);
2761 new_namespace[namespace_len] = '\0';
2762 new_oload_syms = make_symbol_overload_list (func_name,
2763 new_namespace);
2764
2765 /* If we have reached the deepest level perform argument
2766 determined lookup. */
2767 if (!searched_deeper && !no_adl)
2768 make_symbol_overload_list_adl (arg_types, nargs, func_name);
2769
2770 while (new_oload_syms[num_fns])
2771 ++num_fns;
2772
2773 new_oload_champ = find_oload_champ (arg_types, nargs, 0, num_fns,
2774 NULL, new_oload_syms,
2775 &new_oload_champ_bv);
2776
2777 /* Case 1: We found a good match. Free earlier matches (if any),
2778 and return it. Case 2: We didn't find a good match, but we're
2779 not the deepest function. Then go with the bad match that the
2780 deeper function found. Case 3: We found a bad match, and we're
2781 the deepest function. Then return what we found, even though
2782 it's a bad match. */
2783
2784 if (new_oload_champ != -1
2785 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2786 {
2787 *oload_syms = new_oload_syms;
2788 *oload_champ = new_oload_champ;
2789 *oload_champ_bv = new_oload_champ_bv;
2790 do_cleanups (old_cleanups);
2791 return 1;
2792 }
2793 else if (searched_deeper)
2794 {
2795 xfree (new_oload_syms);
2796 xfree (new_oload_champ_bv);
2797 discard_cleanups (old_cleanups);
2798 return 0;
2799 }
2800 else
2801 {
2802 *oload_syms = new_oload_syms;
2803 *oload_champ = new_oload_champ;
2804 *oload_champ_bv = new_oload_champ_bv;
2805 do_cleanups (old_cleanups);
2806 return 0;
2807 }
2808 }
2809
2810 /* Look for a function to take NARGS args of types ARG_TYPES. Find
2811 the best match from among the overloaded methods or functions
2812 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
2813 The number of methods/functions in the list is given by NUM_FNS.
2814 Return the index of the best match; store an indication of the
2815 quality of the match in OLOAD_CHAMP_BV.
2816
2817 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
2818
2819 static int
2820 find_oload_champ (struct type **arg_types, int nargs, int method,
2821 int num_fns, struct fn_field *fns_ptr,
2822 struct symbol **oload_syms,
2823 struct badness_vector **oload_champ_bv)
2824 {
2825 int ix;
2826 /* A measure of how good an overloaded instance is. */
2827 struct badness_vector *bv;
2828 /* Index of best overloaded function. */
2829 int oload_champ = -1;
2830 /* Current ambiguity state for overload resolution. */
2831 int oload_ambiguous = 0;
2832 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
2833
2834 *oload_champ_bv = NULL;
2835
2836 /* Consider each candidate in turn. */
2837 for (ix = 0; ix < num_fns; ix++)
2838 {
2839 int jj;
2840 int static_offset = oload_method_static (method, fns_ptr, ix);
2841 int nparms;
2842 struct type **parm_types;
2843
2844 if (method)
2845 {
2846 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
2847 }
2848 else
2849 {
2850 /* If it's not a method, this is the proper place. */
2851 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
2852 }
2853
2854 /* Prepare array of parameter types. */
2855 parm_types = (struct type **)
2856 xmalloc (nparms * (sizeof (struct type *)));
2857 for (jj = 0; jj < nparms; jj++)
2858 parm_types[jj] = (method
2859 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
2860 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
2861 jj));
2862
2863 /* Compare parameter types to supplied argument types. Skip
2864 THIS for static methods. */
2865 bv = rank_function (parm_types, nparms,
2866 arg_types + static_offset,
2867 nargs - static_offset);
2868
2869 if (!*oload_champ_bv)
2870 {
2871 *oload_champ_bv = bv;
2872 oload_champ = 0;
2873 }
2874 else /* See whether current candidate is better or worse than
2875 previous best. */
2876 switch (compare_badness (bv, *oload_champ_bv))
2877 {
2878 case 0: /* Top two contenders are equally good. */
2879 oload_ambiguous = 1;
2880 break;
2881 case 1: /* Incomparable top contenders. */
2882 oload_ambiguous = 2;
2883 break;
2884 case 2: /* New champion, record details. */
2885 *oload_champ_bv = bv;
2886 oload_ambiguous = 0;
2887 oload_champ = ix;
2888 break;
2889 case 3:
2890 default:
2891 break;
2892 }
2893 xfree (parm_types);
2894 if (overload_debug)
2895 {
2896 if (method)
2897 fprintf_filtered (gdb_stderr,
2898 "Overloaded method instance %s, # of parms %d\n",
2899 fns_ptr[ix].physname, nparms);
2900 else
2901 fprintf_filtered (gdb_stderr,
2902 "Overloaded function instance %s # of parms %d\n",
2903 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
2904 nparms);
2905 for (jj = 0; jj < nargs - static_offset; jj++)
2906 fprintf_filtered (gdb_stderr,
2907 "...Badness @ %d : %d\n",
2908 jj, bv->rank[jj]);
2909 fprintf_filtered (gdb_stderr,
2910 "Overload resolution champion is %d, ambiguous? %d\n",
2911 oload_champ, oload_ambiguous);
2912 }
2913 }
2914
2915 return oload_champ;
2916 }
2917
2918 /* Return 1 if we're looking at a static method, 0 if we're looking at
2919 a non-static method or a function that isn't a method. */
2920
2921 static int
2922 oload_method_static (int method, struct fn_field *fns_ptr, int index)
2923 {
2924 if (method && fns_ptr && index >= 0
2925 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
2926 return 1;
2927 else
2928 return 0;
2929 }
2930
2931 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
2932
2933 static enum oload_classification
2934 classify_oload_match (struct badness_vector *oload_champ_bv,
2935 int nargs,
2936 int static_offset)
2937 {
2938 int ix;
2939
2940 for (ix = 1; ix <= nargs - static_offset; ix++)
2941 {
2942 if (oload_champ_bv->rank[ix] >= 100)
2943 return INCOMPATIBLE; /* Truly mismatched types. */
2944 else if (oload_champ_bv->rank[ix] >= 10)
2945 return NON_STANDARD; /* Non-standard type conversions
2946 needed. */
2947 }
2948
2949 return STANDARD; /* Only standard conversions needed. */
2950 }
2951
2952 /* C++: return 1 is NAME is a legitimate name for the destructor of
2953 type TYPE. If TYPE does not have a destructor, or if NAME is
2954 inappropriate for TYPE, an error is signaled. */
2955 int
2956 destructor_name_p (const char *name, const struct type *type)
2957 {
2958 if (name[0] == '~')
2959 {
2960 char *dname = type_name_no_tag (type);
2961 char *cp = strchr (dname, '<');
2962 unsigned int len;
2963
2964 /* Do not compare the template part for template classes. */
2965 if (cp == NULL)
2966 len = strlen (dname);
2967 else
2968 len = cp - dname;
2969 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
2970 error (_("name of destructor must equal name of class"));
2971 else
2972 return 1;
2973 }
2974 return 0;
2975 }
2976
2977 /* Given TYPE, a structure/union,
2978 return 1 if the component named NAME from the ultimate target
2979 structure/union is defined, otherwise, return 0. */
2980
2981 int
2982 check_field (struct type *type, const char *name)
2983 {
2984 int i;
2985
2986 /* The type may be a stub. */
2987 CHECK_TYPEDEF (type);
2988
2989 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2990 {
2991 char *t_field_name = TYPE_FIELD_NAME (type, i);
2992
2993 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2994 return 1;
2995 }
2996
2997 /* C++: If it was not found as a data field, then try to return it
2998 as a pointer to a method. */
2999
3000 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
3001 {
3002 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
3003 return 1;
3004 }
3005
3006 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
3007 if (check_field (TYPE_BASECLASS (type, i), name))
3008 return 1;
3009
3010 return 0;
3011 }
3012
3013 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3014 return the appropriate member (or the address of the member, if
3015 WANT_ADDRESS). This function is used to resolve user expressions
3016 of the form "DOMAIN::NAME". For more details on what happens, see
3017 the comment before value_struct_elt_for_reference. */
3018
3019 struct value *
3020 value_aggregate_elt (struct type *curtype, char *name,
3021 struct type *expect_type, int want_address,
3022 enum noside noside)
3023 {
3024 switch (TYPE_CODE (curtype))
3025 {
3026 case TYPE_CODE_STRUCT:
3027 case TYPE_CODE_UNION:
3028 return value_struct_elt_for_reference (curtype, 0, curtype,
3029 name, expect_type,
3030 want_address, noside);
3031 case TYPE_CODE_NAMESPACE:
3032 return value_namespace_elt (curtype, name,
3033 want_address, noside);
3034 default:
3035 internal_error (__FILE__, __LINE__,
3036 _("non-aggregate type in value_aggregate_elt"));
3037 }
3038 }
3039
3040 /* Compares the two method/function types T1 and T2 for "equality"
3041 with respect to the the methods' parameters. If the types of the
3042 two parameter lists are the same, returns 1; 0 otherwise. This
3043 comparison may ignore any artificial parameters in T1 if
3044 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3045 the first artificial parameter in T1, assumed to be a 'this' pointer.
3046
3047 The type T2 is expected to have come from make_params (in eval.c). */
3048
3049 static int
3050 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3051 {
3052 int start = 0;
3053
3054 if (TYPE_FIELD_ARTIFICIAL (t1, 0))
3055 ++start;
3056
3057 /* If skipping artificial fields, find the first real field
3058 in T1. */
3059 if (skip_artificial)
3060 {
3061 while (start < TYPE_NFIELDS (t1)
3062 && TYPE_FIELD_ARTIFICIAL (t1, start))
3063 ++start;
3064 }
3065
3066 /* Now compare parameters */
3067
3068 /* Special case: a method taking void. T1 will contain no
3069 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3070 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
3071 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
3072 return 1;
3073
3074 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
3075 {
3076 int i;
3077
3078 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
3079 {
3080 if (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3081 TYPE_FIELD_TYPE (t2, i))
3082 != 0)
3083 return 0;
3084 }
3085
3086 return 1;
3087 }
3088
3089 return 0;
3090 }
3091
3092 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3093 return the address of this member as a "pointer to member" type.
3094 If INTYPE is non-null, then it will be the type of the member we
3095 are looking for. This will help us resolve "pointers to member
3096 functions". This function is used to resolve user expressions of
3097 the form "DOMAIN::NAME". */
3098
3099 static struct value *
3100 value_struct_elt_for_reference (struct type *domain, int offset,
3101 struct type *curtype, char *name,
3102 struct type *intype,
3103 int want_address,
3104 enum noside noside)
3105 {
3106 struct type *t = curtype;
3107 int i;
3108 struct value *v, *result;
3109
3110 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3111 && TYPE_CODE (t) != TYPE_CODE_UNION)
3112 error (_("Internal error: non-aggregate type to value_struct_elt_for_reference"));
3113
3114 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3115 {
3116 char *t_field_name = TYPE_FIELD_NAME (t, i);
3117
3118 if (t_field_name && strcmp (t_field_name, name) == 0)
3119 {
3120 if (field_is_static (&TYPE_FIELD (t, i)))
3121 {
3122 v = value_static_field (t, i);
3123 if (v == NULL)
3124 error (_("static field %s has been optimized out"),
3125 name);
3126 if (want_address)
3127 v = value_addr (v);
3128 return v;
3129 }
3130 if (TYPE_FIELD_PACKED (t, i))
3131 error (_("pointers to bitfield members not allowed"));
3132
3133 if (want_address)
3134 return value_from_longest
3135 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3136 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3137 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3138 return allocate_value (TYPE_FIELD_TYPE (t, i));
3139 else
3140 error (_("Cannot reference non-static field \"%s\""), name);
3141 }
3142 }
3143
3144 /* C++: If it was not found as a data field, then try to return it
3145 as a pointer to a method. */
3146
3147 /* Perform all necessary dereferencing. */
3148 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3149 intype = TYPE_TARGET_TYPE (intype);
3150
3151 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3152 {
3153 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3154 char dem_opname[64];
3155
3156 if (strncmp (t_field_name, "__", 2) == 0
3157 || strncmp (t_field_name, "op", 2) == 0
3158 || strncmp (t_field_name, "type", 4) == 0)
3159 {
3160 if (cplus_demangle_opname (t_field_name,
3161 dem_opname, DMGL_ANSI))
3162 t_field_name = dem_opname;
3163 else if (cplus_demangle_opname (t_field_name,
3164 dem_opname, 0))
3165 t_field_name = dem_opname;
3166 }
3167 if (t_field_name && strcmp (t_field_name, name) == 0)
3168 {
3169 int j;
3170 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3171 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3172
3173 check_stub_method_group (t, i);
3174
3175 if (intype)
3176 {
3177 for (j = 0; j < len; ++j)
3178 {
3179 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3180 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 1))
3181 break;
3182 }
3183
3184 if (j == len)
3185 error (_("no member function matches that type instantiation"));
3186 }
3187 else
3188 {
3189 int ii;
3190
3191 j = -1;
3192 for (ii = 0; ii < TYPE_FN_FIELDLIST_LENGTH (t, i);
3193 ++ii)
3194 {
3195 /* Skip artificial methods. This is necessary if,
3196 for example, the user wants to "print
3197 subclass::subclass" with only one user-defined
3198 constructor. There is no ambiguity in this
3199 case. */
3200 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3201 continue;
3202
3203 /* Desired method is ambiguous if more than one
3204 method is defined. */
3205 if (j != -1)
3206 error (_("non-unique member `%s' requires type instantiation"), name);
3207
3208 j = ii;
3209 }
3210 }
3211
3212 if (TYPE_FN_FIELD_STATIC_P (f, j))
3213 {
3214 struct symbol *s =
3215 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3216 0, VAR_DOMAIN, 0);
3217
3218 if (s == NULL)
3219 return NULL;
3220
3221 if (want_address)
3222 return value_addr (read_var_value (s, 0));
3223 else
3224 return read_var_value (s, 0);
3225 }
3226
3227 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3228 {
3229 if (want_address)
3230 {
3231 result = allocate_value
3232 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3233 cplus_make_method_ptr (value_type (result),
3234 value_contents_writeable (result),
3235 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3236 }
3237 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3238 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3239 else
3240 error (_("Cannot reference virtual member function \"%s\""),
3241 name);
3242 }
3243 else
3244 {
3245 struct symbol *s =
3246 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3247 0, VAR_DOMAIN, 0);
3248
3249 if (s == NULL)
3250 return NULL;
3251
3252 v = read_var_value (s, 0);
3253 if (!want_address)
3254 result = v;
3255 else
3256 {
3257 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3258 cplus_make_method_ptr (value_type (result),
3259 value_contents_writeable (result),
3260 value_address (v), 0);
3261 }
3262 }
3263 return result;
3264 }
3265 }
3266 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3267 {
3268 struct value *v;
3269 int base_offset;
3270
3271 if (BASETYPE_VIA_VIRTUAL (t, i))
3272 base_offset = 0;
3273 else
3274 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3275 v = value_struct_elt_for_reference (domain,
3276 offset + base_offset,
3277 TYPE_BASECLASS (t, i),
3278 name, intype,
3279 want_address, noside);
3280 if (v)
3281 return v;
3282 }
3283
3284 /* As a last chance, pretend that CURTYPE is a namespace, and look
3285 it up that way; this (frequently) works for types nested inside
3286 classes. */
3287
3288 return value_maybe_namespace_elt (curtype, name,
3289 want_address, noside);
3290 }
3291
3292 /* C++: Return the member NAME of the namespace given by the type
3293 CURTYPE. */
3294
3295 static struct value *
3296 value_namespace_elt (const struct type *curtype,
3297 char *name, int want_address,
3298 enum noside noside)
3299 {
3300 struct value *retval = value_maybe_namespace_elt (curtype, name,
3301 want_address,
3302 noside);
3303
3304 if (retval == NULL)
3305 error (_("No symbol \"%s\" in namespace \"%s\"."),
3306 name, TYPE_TAG_NAME (curtype));
3307
3308 return retval;
3309 }
3310
3311 /* A helper function used by value_namespace_elt and
3312 value_struct_elt_for_reference. It looks up NAME inside the
3313 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3314 is a class and NAME refers to a type in CURTYPE itself (as opposed
3315 to, say, some base class of CURTYPE). */
3316
3317 static struct value *
3318 value_maybe_namespace_elt (const struct type *curtype,
3319 char *name, int want_address,
3320 enum noside noside)
3321 {
3322 const char *namespace_name = TYPE_TAG_NAME (curtype);
3323 struct symbol *sym;
3324 struct value *result;
3325
3326 sym = cp_lookup_symbol_namespace (namespace_name, name,
3327 get_selected_block (0), VAR_DOMAIN);
3328
3329 if (sym == NULL)
3330 {
3331 char *concatenated_name = alloca (strlen (namespace_name) + 2
3332 + strlen (name) + 1);
3333
3334 sprintf (concatenated_name, "%s::%s", namespace_name, name);
3335 sym = lookup_static_symbol_aux (concatenated_name, VAR_DOMAIN);
3336 }
3337
3338 if (sym == NULL)
3339 return NULL;
3340 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3341 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
3342 result = allocate_value (SYMBOL_TYPE (sym));
3343 else
3344 result = value_of_variable (sym, get_selected_block (0));
3345
3346 if (result && want_address)
3347 result = value_addr (result);
3348
3349 return result;
3350 }
3351
3352 /* Given a pointer value V, find the real (RTTI) type of the object it
3353 points to.
3354
3355 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3356 and refer to the values computed for the object pointed to. */
3357
3358 struct type *
3359 value_rtti_target_type (struct value *v, int *full,
3360 int *top, int *using_enc)
3361 {
3362 struct value *target;
3363
3364 target = value_ind (v);
3365
3366 return value_rtti_type (target, full, top, using_enc);
3367 }
3368
3369 /* Given a value pointed to by ARGP, check its real run-time type, and
3370 if that is different from the enclosing type, create a new value
3371 using the real run-time type as the enclosing type (and of the same
3372 type as ARGP) and return it, with the embedded offset adjusted to
3373 be the correct offset to the enclosed object. RTYPE is the type,
3374 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3375 by value_rtti_type(). If these are available, they can be supplied
3376 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3377 NULL if they're not available. */
3378
3379 struct value *
3380 value_full_object (struct value *argp,
3381 struct type *rtype,
3382 int xfull, int xtop,
3383 int xusing_enc)
3384 {
3385 struct type *real_type;
3386 int full = 0;
3387 int top = -1;
3388 int using_enc = 0;
3389 struct value *new_val;
3390
3391 if (rtype)
3392 {
3393 real_type = rtype;
3394 full = xfull;
3395 top = xtop;
3396 using_enc = xusing_enc;
3397 }
3398 else
3399 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3400
3401 /* If no RTTI data, or if object is already complete, do nothing. */
3402 if (!real_type || real_type == value_enclosing_type (argp))
3403 return argp;
3404
3405 /* If we have the full object, but for some reason the enclosing
3406 type is wrong, set it. */
3407 /* pai: FIXME -- sounds iffy */
3408 if (full)
3409 {
3410 argp = value_change_enclosing_type (argp, real_type);
3411 return argp;
3412 }
3413
3414 /* Check if object is in memory */
3415 if (VALUE_LVAL (argp) != lval_memory)
3416 {
3417 warning (_("Couldn't retrieve complete object of RTTI type %s; object may be in register(s)."),
3418 TYPE_NAME (real_type));
3419
3420 return argp;
3421 }
3422
3423 /* All other cases -- retrieve the complete object. */
3424 /* Go back by the computed top_offset from the beginning of the
3425 object, adjusting for the embedded offset of argp if that's what
3426 value_rtti_type used for its computation. */
3427 new_val = value_at_lazy (real_type, value_address (argp) - top +
3428 (using_enc ? 0 : value_embedded_offset (argp)));
3429 deprecated_set_value_type (new_val, value_type (argp));
3430 set_value_embedded_offset (new_val, (using_enc
3431 ? top + value_embedded_offset (argp)
3432 : top));
3433 return new_val;
3434 }
3435
3436
3437 /* Return the value of the local variable, if one exists.
3438 Flag COMPLAIN signals an error if the request is made in an
3439 inappropriate context. */
3440
3441 struct value *
3442 value_of_local (const char *name, int complain)
3443 {
3444 struct symbol *func, *sym;
3445 struct block *b;
3446 struct value * ret;
3447 struct frame_info *frame;
3448
3449 if (complain)
3450 frame = get_selected_frame (_("no frame selected"));
3451 else
3452 {
3453 frame = deprecated_safe_get_selected_frame ();
3454 if (frame == 0)
3455 return 0;
3456 }
3457
3458 func = get_frame_function (frame);
3459 if (!func)
3460 {
3461 if (complain)
3462 error (_("no `%s' in nameless context"), name);
3463 else
3464 return 0;
3465 }
3466
3467 b = SYMBOL_BLOCK_VALUE (func);
3468 if (dict_empty (BLOCK_DICT (b)))
3469 {
3470 if (complain)
3471 error (_("no args, no `%s'"), name);
3472 else
3473 return 0;
3474 }
3475
3476 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3477 symbol instead of the LOC_ARG one (if both exist). */
3478 sym = lookup_block_symbol (b, name, VAR_DOMAIN);
3479 if (sym == NULL)
3480 {
3481 if (complain)
3482 error (_("current stack frame does not contain a variable named `%s'"),
3483 name);
3484 else
3485 return NULL;
3486 }
3487
3488 ret = read_var_value (sym, frame);
3489 if (ret == 0 && complain)
3490 error (_("`%s' argument unreadable"), name);
3491 return ret;
3492 }
3493
3494 /* C++/Objective-C: return the value of the class instance variable,
3495 if one exists. Flag COMPLAIN signals an error if the request is
3496 made in an inappropriate context. */
3497
3498 struct value *
3499 value_of_this (int complain)
3500 {
3501 if (!current_language->la_name_of_this)
3502 return 0;
3503 return value_of_local (current_language->la_name_of_this, complain);
3504 }
3505
3506 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3507 elements long, starting at LOWBOUND. The result has the same lower
3508 bound as the original ARRAY. */
3509
3510 struct value *
3511 value_slice (struct value *array, int lowbound, int length)
3512 {
3513 struct type *slice_range_type, *slice_type, *range_type;
3514 LONGEST lowerbound, upperbound;
3515 struct value *slice;
3516 struct type *array_type;
3517
3518 array_type = check_typedef (value_type (array));
3519 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3520 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3521 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3522 error (_("cannot take slice of non-array"));
3523
3524 range_type = TYPE_INDEX_TYPE (array_type);
3525 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3526 error (_("slice from bad array or bitstring"));
3527
3528 if (lowbound < lowerbound || length < 0
3529 || lowbound + length - 1 > upperbound)
3530 error (_("slice out of range"));
3531
3532 /* FIXME-type-allocation: need a way to free this type when we are
3533 done with it. */
3534 slice_range_type = create_range_type ((struct type *) NULL,
3535 TYPE_TARGET_TYPE (range_type),
3536 lowbound,
3537 lowbound + length - 1);
3538 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3539 {
3540 int i;
3541
3542 slice_type = create_set_type ((struct type *) NULL,
3543 slice_range_type);
3544 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3545 slice = value_zero (slice_type, not_lval);
3546
3547 for (i = 0; i < length; i++)
3548 {
3549 int element = value_bit_index (array_type,
3550 value_contents (array),
3551 lowbound + i);
3552
3553 if (element < 0)
3554 error (_("internal error accessing bitstring"));
3555 else if (element > 0)
3556 {
3557 int j = i % TARGET_CHAR_BIT;
3558
3559 if (gdbarch_bits_big_endian (get_type_arch (array_type)))
3560 j = TARGET_CHAR_BIT - 1 - j;
3561 value_contents_raw (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3562 }
3563 }
3564 /* We should set the address, bitssize, and bitspos, so the
3565 slice can be used on the LHS, but that may require extensions
3566 to value_assign. For now, just leave as a non_lval.
3567 FIXME. */
3568 }
3569 else
3570 {
3571 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3572 LONGEST offset =
3573 (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3574
3575 slice_type = create_array_type ((struct type *) NULL,
3576 element_type,
3577 slice_range_type);
3578 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3579
3580 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3581 slice = allocate_value_lazy (slice_type);
3582 else
3583 {
3584 slice = allocate_value (slice_type);
3585 memcpy (value_contents_writeable (slice),
3586 value_contents (array) + offset,
3587 TYPE_LENGTH (slice_type));
3588 }
3589
3590 set_value_component_location (slice, array);
3591 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3592 set_value_offset (slice, value_offset (array) + offset);
3593 }
3594 return slice;
3595 }
3596
3597 /* Create a value for a FORTRAN complex number. Currently most of the
3598 time values are coerced to COMPLEX*16 (i.e. a complex number
3599 composed of 2 doubles. This really should be a smarter routine
3600 that figures out precision inteligently as opposed to assuming
3601 doubles. FIXME: fmb */
3602
3603 struct value *
3604 value_literal_complex (struct value *arg1,
3605 struct value *arg2,
3606 struct type *type)
3607 {
3608 struct value *val;
3609 struct type *real_type = TYPE_TARGET_TYPE (type);
3610
3611 val = allocate_value (type);
3612 arg1 = value_cast (real_type, arg1);
3613 arg2 = value_cast (real_type, arg2);
3614
3615 memcpy (value_contents_raw (val),
3616 value_contents (arg1), TYPE_LENGTH (real_type));
3617 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3618 value_contents (arg2), TYPE_LENGTH (real_type));
3619 return val;
3620 }
3621
3622 /* Cast a value into the appropriate complex data type. */
3623
3624 static struct value *
3625 cast_into_complex (struct type *type, struct value *val)
3626 {
3627 struct type *real_type = TYPE_TARGET_TYPE (type);
3628
3629 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3630 {
3631 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3632 struct value *re_val = allocate_value (val_real_type);
3633 struct value *im_val = allocate_value (val_real_type);
3634
3635 memcpy (value_contents_raw (re_val),
3636 value_contents (val), TYPE_LENGTH (val_real_type));
3637 memcpy (value_contents_raw (im_val),
3638 value_contents (val) + TYPE_LENGTH (val_real_type),
3639 TYPE_LENGTH (val_real_type));
3640
3641 return value_literal_complex (re_val, im_val, type);
3642 }
3643 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3644 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3645 return value_literal_complex (val,
3646 value_zero (real_type, not_lval),
3647 type);
3648 else
3649 error (_("cannot cast non-number to complex"));
3650 }
3651
3652 void
3653 _initialize_valops (void)
3654 {
3655 add_setshow_boolean_cmd ("overload-resolution", class_support,
3656 &overload_resolution, _("\
3657 Set overload resolution in evaluating C++ functions."), _("\
3658 Show overload resolution in evaluating C++ functions."),
3659 NULL, NULL,
3660 show_overload_resolution,
3661 &setlist, &showlist);
3662 overload_resolution = 1;
3663 }