This commit was generated by cvs2svn to track changes on a CVS vendor
[binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 87, 89, 91, 92, 93, 94, 95, 96, 97, 1998
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcore.h"
29 #include "target.h"
30 #include "demangle.h"
31 #include "language.h"
32 #include "gdbcmd.h"
33
34 #include <errno.h>
35 #include "gdb_string.h"
36
37 /* Default to coercing float to double in function calls only when there is
38 no prototype. Otherwise on targets where the debug information is incorrect
39 for either the prototype or non-prototype case, we can force it by defining
40 COERCE_FLOAT_TO_DOUBLE in the target configuration file. */
41
42 #ifndef COERCE_FLOAT_TO_DOUBLE
43 #define COERCE_FLOAT_TO_DOUBLE (param_type == NULL)
44 #endif
45
46 /* Flag indicating HP compilers were used; needed to correctly handle some
47 value operations with HP aCC code/runtime. */
48 extern int hp_som_som_object_present;
49
50
51 /* Local functions. */
52
53 static int typecmp PARAMS ((int staticp, struct type * t1[], value_ptr t2[]));
54
55 static CORE_ADDR find_function_addr PARAMS ((value_ptr, struct type **));
56 static value_ptr value_arg_coerce PARAMS ((value_ptr, struct type *, int));
57
58
59 static CORE_ADDR value_push PARAMS ((CORE_ADDR, value_ptr));
60
61 static value_ptr search_struct_field PARAMS ((char *, value_ptr, int,
62 struct type *, int));
63
64 static value_ptr search_struct_field_aux PARAMS ((char *, value_ptr, int,
65 struct type *, int, int *, char *,
66 struct type **));
67
68 static value_ptr search_struct_method PARAMS ((char *, value_ptr *,
69 value_ptr *,
70 int, int *, struct type *));
71
72 static int check_field_in PARAMS ((struct type *, const char *));
73
74 static CORE_ADDR allocate_space_in_inferior PARAMS ((int));
75
76 static value_ptr cast_into_complex PARAMS ((struct type *, value_ptr));
77
78 static struct fn_field *find_method_list PARAMS ((value_ptr * argp, char *method, int offset, int *static_memfuncp, struct type * type, int *num_fns, struct type ** basetype, int *boffset));
79
80 void _initialize_valops PARAMS ((void));
81
82 #define VALUE_SUBSTRING_START(VAL) VALUE_FRAME(VAL)
83
84 /* Flag for whether we want to abandon failed expression evals by default. */
85
86 #if 0
87 static int auto_abandon = 0;
88 #endif
89
90 int overload_resolution = 0;
91 \f
92
93
94 /* Find the address of function name NAME in the inferior. */
95
96 value_ptr
97 find_function_in_inferior (name)
98 char *name;
99 {
100 register struct symbol *sym;
101 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
102 if (sym != NULL)
103 {
104 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
105 {
106 error ("\"%s\" exists in this program but is not a function.",
107 name);
108 }
109 return value_of_variable (sym, NULL);
110 }
111 else
112 {
113 struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL);
114 if (msymbol != NULL)
115 {
116 struct type *type;
117 LONGEST maddr;
118 type = lookup_pointer_type (builtin_type_char);
119 type = lookup_function_type (type);
120 type = lookup_pointer_type (type);
121 maddr = (LONGEST) SYMBOL_VALUE_ADDRESS (msymbol);
122 return value_from_longest (type, maddr);
123 }
124 else
125 {
126 if (!target_has_execution)
127 error ("evaluation of this expression requires the target program to be active");
128 else
129 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
130 }
131 }
132 }
133
134 /* Allocate NBYTES of space in the inferior using the inferior's malloc
135 and return a value that is a pointer to the allocated space. */
136
137 value_ptr
138 value_allocate_space_in_inferior (len)
139 int len;
140 {
141 value_ptr blocklen;
142 register value_ptr val = find_function_in_inferior ("malloc");
143
144 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
145 val = call_function_by_hand (val, 1, &blocklen);
146 if (value_logical_not (val))
147 {
148 if (!target_has_execution)
149 error ("No memory available to program now: you need to start the target first");
150 else
151 error ("No memory available to program: call to malloc failed");
152 }
153 return val;
154 }
155
156 static CORE_ADDR
157 allocate_space_in_inferior (len)
158 int len;
159 {
160 return value_as_long (value_allocate_space_in_inferior (len));
161 }
162
163 /* Cast value ARG2 to type TYPE and return as a value.
164 More general than a C cast: accepts any two types of the same length,
165 and if ARG2 is an lvalue it can be cast into anything at all. */
166 /* In C++, casts may change pointer or object representations. */
167
168 value_ptr
169 value_cast (type, arg2)
170 struct type *type;
171 register value_ptr arg2;
172 {
173 register enum type_code code1;
174 register enum type_code code2;
175 register int scalar;
176 struct type *type2;
177
178 int convert_to_boolean = 0;
179
180 if (VALUE_TYPE (arg2) == type)
181 return arg2;
182
183 CHECK_TYPEDEF (type);
184 code1 = TYPE_CODE (type);
185 COERCE_REF (arg2);
186 type2 = check_typedef (VALUE_TYPE (arg2));
187
188 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
189 is treated like a cast to (TYPE [N])OBJECT,
190 where N is sizeof(OBJECT)/sizeof(TYPE). */
191 if (code1 == TYPE_CODE_ARRAY)
192 {
193 struct type *element_type = TYPE_TARGET_TYPE (type);
194 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
195 if (element_length > 0
196 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
197 {
198 struct type *range_type = TYPE_INDEX_TYPE (type);
199 int val_length = TYPE_LENGTH (type2);
200 LONGEST low_bound, high_bound, new_length;
201 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
202 low_bound = 0, high_bound = 0;
203 new_length = val_length / element_length;
204 if (val_length % element_length != 0)
205 warning ("array element type size does not divide object size in cast");
206 /* FIXME-type-allocation: need a way to free this type when we are
207 done with it. */
208 range_type = create_range_type ((struct type *) NULL,
209 TYPE_TARGET_TYPE (range_type),
210 low_bound,
211 new_length + low_bound - 1);
212 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
213 element_type, range_type);
214 return arg2;
215 }
216 }
217
218 if (current_language->c_style_arrays
219 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
220 arg2 = value_coerce_array (arg2);
221
222 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
223 arg2 = value_coerce_function (arg2);
224
225 type2 = check_typedef (VALUE_TYPE (arg2));
226 COERCE_VARYING_ARRAY (arg2, type2);
227 code2 = TYPE_CODE (type2);
228
229 if (code1 == TYPE_CODE_COMPLEX)
230 return cast_into_complex (type, arg2);
231 if (code1 == TYPE_CODE_BOOL)
232 {
233 code1 = TYPE_CODE_INT;
234 convert_to_boolean = 1;
235 }
236 if (code1 == TYPE_CODE_CHAR)
237 code1 = TYPE_CODE_INT;
238 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
239 code2 = TYPE_CODE_INT;
240
241 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
242 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
243
244 if (code1 == TYPE_CODE_STRUCT
245 && code2 == TYPE_CODE_STRUCT
246 && TYPE_NAME (type) != 0)
247 {
248 /* Look in the type of the source to see if it contains the
249 type of the target as a superclass. If so, we'll need to
250 offset the object in addition to changing its type. */
251 value_ptr v = search_struct_field (type_name_no_tag (type),
252 arg2, 0, type2, 1);
253 if (v)
254 {
255 VALUE_TYPE (v) = type;
256 return v;
257 }
258 }
259 if (code1 == TYPE_CODE_FLT && scalar)
260 return value_from_double (type, value_as_double (arg2));
261 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
262 || code1 == TYPE_CODE_RANGE)
263 && (scalar || code2 == TYPE_CODE_PTR))
264 {
265 LONGEST longest;
266
267 if (hp_som_som_object_present && /* if target compiled by HP aCC */
268 (code2 == TYPE_CODE_PTR))
269 {
270 unsigned int *ptr;
271 value_ptr retvalp;
272
273 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
274 {
275 /* With HP aCC, pointers to data members have a bias */
276 case TYPE_CODE_MEMBER:
277 retvalp = value_from_longest (type, value_as_long (arg2));
278 ptr = (unsigned int *) VALUE_CONTENTS (retvalp); /* force evaluation */
279 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
280 return retvalp;
281
282 /* While pointers to methods don't really point to a function */
283 case TYPE_CODE_METHOD:
284 error ("Pointers to methods not supported with HP aCC");
285
286 default:
287 break; /* fall out and go to normal handling */
288 }
289 }
290 longest = value_as_long (arg2);
291 return value_from_longest (type, convert_to_boolean ? (LONGEST) (longest ? 1 : 0) : longest);
292 }
293 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
294 {
295 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
296 {
297 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
298 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
299 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
300 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
301 && !value_logical_not (arg2))
302 {
303 value_ptr v;
304
305 /* Look in the type of the source to see if it contains the
306 type of the target as a superclass. If so, we'll need to
307 offset the pointer rather than just change its type. */
308 if (TYPE_NAME (t1) != NULL)
309 {
310 v = search_struct_field (type_name_no_tag (t1),
311 value_ind (arg2), 0, t2, 1);
312 if (v)
313 {
314 v = value_addr (v);
315 VALUE_TYPE (v) = type;
316 return v;
317 }
318 }
319
320 /* Look in the type of the target to see if it contains the
321 type of the source as a superclass. If so, we'll need to
322 offset the pointer rather than just change its type.
323 FIXME: This fails silently with virtual inheritance. */
324 if (TYPE_NAME (t2) != NULL)
325 {
326 v = search_struct_field (type_name_no_tag (t2),
327 value_zero (t1, not_lval), 0, t1, 1);
328 if (v)
329 {
330 value_ptr v2 = value_ind (arg2);
331 VALUE_ADDRESS (v2) -= VALUE_ADDRESS (v)
332 + VALUE_OFFSET (v);
333 v2 = value_addr (v2);
334 VALUE_TYPE (v2) = type;
335 return v2;
336 }
337 }
338 }
339 /* No superclass found, just fall through to change ptr type. */
340 }
341 VALUE_TYPE (arg2) = type;
342 VALUE_ENCLOSING_TYPE (arg2) = type; /* pai: chk_val */
343 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
344 return arg2;
345 }
346 else if (chill_varying_type (type))
347 {
348 struct type *range1, *range2, *eltype1, *eltype2;
349 value_ptr val;
350 int count1, count2;
351 LONGEST low_bound, high_bound;
352 char *valaddr, *valaddr_data;
353 /* For lint warning about eltype2 possibly uninitialized: */
354 eltype2 = NULL;
355 if (code2 == TYPE_CODE_BITSTRING)
356 error ("not implemented: converting bitstring to varying type");
357 if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING)
358 || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))),
359 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)),
360 (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2)
361 /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ )))
362 error ("Invalid conversion to varying type");
363 range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0);
364 range2 = TYPE_FIELD_TYPE (type2, 0);
365 if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0)
366 count1 = -1;
367 else
368 count1 = high_bound - low_bound + 1;
369 if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0)
370 count1 = -1, count2 = 0; /* To force error before */
371 else
372 count2 = high_bound - low_bound + 1;
373 if (count2 > count1)
374 error ("target varying type is too small");
375 val = allocate_value (type);
376 valaddr = VALUE_CONTENTS_RAW (val);
377 valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8;
378 /* Set val's __var_length field to count2. */
379 store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)),
380 count2);
381 /* Set the __var_data field to count2 elements copied from arg2. */
382 memcpy (valaddr_data, VALUE_CONTENTS (arg2),
383 count2 * TYPE_LENGTH (eltype2));
384 /* Zero the rest of the __var_data field of val. */
385 memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0',
386 (count1 - count2) * TYPE_LENGTH (eltype2));
387 return val;
388 }
389 else if (VALUE_LVAL (arg2) == lval_memory)
390 {
391 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
392 VALUE_BFD_SECTION (arg2));
393 }
394 else if (code1 == TYPE_CODE_VOID)
395 {
396 return value_zero (builtin_type_void, not_lval);
397 }
398 else
399 {
400 error ("Invalid cast.");
401 return 0;
402 }
403 }
404
405 /* Create a value of type TYPE that is zero, and return it. */
406
407 value_ptr
408 value_zero (type, lv)
409 struct type *type;
410 enum lval_type lv;
411 {
412 register value_ptr val = allocate_value (type);
413
414 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
415 VALUE_LVAL (val) = lv;
416
417 return val;
418 }
419
420 /* Return a value with type TYPE located at ADDR.
421
422 Call value_at only if the data needs to be fetched immediately;
423 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
424 value_at_lazy instead. value_at_lazy simply records the address of
425 the data and sets the lazy-evaluation-required flag. The lazy flag
426 is tested in the VALUE_CONTENTS macro, which is used if and when
427 the contents are actually required.
428
429 Note: value_at does *NOT* handle embedded offsets; perform such
430 adjustments before or after calling it. */
431
432 value_ptr
433 value_at (type, addr, sect)
434 struct type *type;
435 CORE_ADDR addr;
436 asection *sect;
437 {
438 register value_ptr val;
439
440 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
441 error ("Attempt to dereference a generic pointer.");
442
443 val = allocate_value (type);
444
445 if (GDB_TARGET_IS_D10V
446 && TYPE_CODE (type) == TYPE_CODE_PTR
447 && TYPE_TARGET_TYPE (type)
448 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
449 {
450 /* pointer to function */
451 unsigned long num;
452 unsigned short snum;
453 snum = read_memory_unsigned_integer (addr, 2);
454 num = D10V_MAKE_IADDR (snum);
455 store_address (VALUE_CONTENTS_RAW (val), 4, num);
456 }
457 else if (GDB_TARGET_IS_D10V
458 && TYPE_CODE (type) == TYPE_CODE_PTR)
459 {
460 /* pointer to data */
461 unsigned long num;
462 unsigned short snum;
463 snum = read_memory_unsigned_integer (addr, 2);
464 num = D10V_MAKE_DADDR (snum);
465 store_address (VALUE_CONTENTS_RAW (val), 4, num);
466 }
467 else
468 read_memory_section (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type), sect);
469
470 VALUE_LVAL (val) = lval_memory;
471 VALUE_ADDRESS (val) = addr;
472 VALUE_BFD_SECTION (val) = sect;
473
474 return val;
475 }
476
477 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
478
479 value_ptr
480 value_at_lazy (type, addr, sect)
481 struct type *type;
482 CORE_ADDR addr;
483 asection *sect;
484 {
485 register value_ptr val;
486
487 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
488 error ("Attempt to dereference a generic pointer.");
489
490 val = allocate_value (type);
491
492 VALUE_LVAL (val) = lval_memory;
493 VALUE_ADDRESS (val) = addr;
494 VALUE_LAZY (val) = 1;
495 VALUE_BFD_SECTION (val) = sect;
496
497 return val;
498 }
499
500 /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
501 if the current data for a variable needs to be loaded into
502 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
503 clears the lazy flag to indicate that the data in the buffer is valid.
504
505 If the value is zero-length, we avoid calling read_memory, which would
506 abort. We mark the value as fetched anyway -- all 0 bytes of it.
507
508 This function returns a value because it is used in the VALUE_CONTENTS
509 macro as part of an expression, where a void would not work. The
510 value is ignored. */
511
512 int
513 value_fetch_lazy (val)
514 register value_ptr val;
515 {
516 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
517 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
518
519 struct type *type = VALUE_TYPE (val);
520 if (GDB_TARGET_IS_D10V
521 && TYPE_CODE (type) == TYPE_CODE_PTR
522 && TYPE_TARGET_TYPE (type)
523 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
524 {
525 /* pointer to function */
526 unsigned long num;
527 unsigned short snum;
528 snum = read_memory_unsigned_integer (addr, 2);
529 num = D10V_MAKE_IADDR (snum);
530 store_address (VALUE_CONTENTS_RAW (val), 4, num);
531 }
532 else if (GDB_TARGET_IS_D10V
533 && TYPE_CODE (type) == TYPE_CODE_PTR)
534 {
535 /* pointer to data */
536 unsigned long num;
537 unsigned short snum;
538 snum = read_memory_unsigned_integer (addr, 2);
539 num = D10V_MAKE_DADDR (snum);
540 store_address (VALUE_CONTENTS_RAW (val), 4, num);
541 }
542 else if (length)
543 read_memory_section (addr, VALUE_CONTENTS_ALL_RAW (val), length,
544 VALUE_BFD_SECTION (val));
545 VALUE_LAZY (val) = 0;
546 return 0;
547 }
548
549
550 /* Store the contents of FROMVAL into the location of TOVAL.
551 Return a new value with the location of TOVAL and contents of FROMVAL. */
552
553 value_ptr
554 value_assign (toval, fromval)
555 register value_ptr toval, fromval;
556 {
557 register struct type *type;
558 register value_ptr val;
559 char raw_buffer[MAX_REGISTER_RAW_SIZE];
560 int use_buffer = 0;
561
562 if (!toval->modifiable)
563 error ("Left operand of assignment is not a modifiable lvalue.");
564
565 COERCE_REF (toval);
566
567 type = VALUE_TYPE (toval);
568 if (VALUE_LVAL (toval) != lval_internalvar)
569 fromval = value_cast (type, fromval);
570 else
571 COERCE_ARRAY (fromval);
572 CHECK_TYPEDEF (type);
573
574 /* If TOVAL is a special machine register requiring conversion
575 of program values to a special raw format,
576 convert FROMVAL's contents now, with result in `raw_buffer',
577 and set USE_BUFFER to the number of bytes to write. */
578
579 if (VALUE_REGNO (toval) >= 0)
580 {
581 int regno = VALUE_REGNO (toval);
582 if (REGISTER_CONVERTIBLE (regno))
583 {
584 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
585 REGISTER_CONVERT_TO_RAW (fromtype, regno,
586 VALUE_CONTENTS (fromval), raw_buffer);
587 use_buffer = REGISTER_RAW_SIZE (regno);
588 }
589 }
590
591 switch (VALUE_LVAL (toval))
592 {
593 case lval_internalvar:
594 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
595 val = value_copy (VALUE_INTERNALVAR (toval)->value);
596 VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval);
597 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
598 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
599 return val;
600
601 case lval_internalvar_component:
602 set_internalvar_component (VALUE_INTERNALVAR (toval),
603 VALUE_OFFSET (toval),
604 VALUE_BITPOS (toval),
605 VALUE_BITSIZE (toval),
606 fromval);
607 break;
608
609 case lval_memory:
610 {
611 char *dest_buffer;
612 CORE_ADDR changed_addr;
613 int changed_len;
614
615 if (VALUE_BITSIZE (toval))
616 {
617 char buffer[sizeof (LONGEST)];
618 /* We assume that the argument to read_memory is in units of
619 host chars. FIXME: Is that correct? */
620 changed_len = (VALUE_BITPOS (toval)
621 + VALUE_BITSIZE (toval)
622 + HOST_CHAR_BIT - 1)
623 / HOST_CHAR_BIT;
624
625 if (changed_len > (int) sizeof (LONGEST))
626 error ("Can't handle bitfields which don't fit in a %d bit word.",
627 sizeof (LONGEST) * HOST_CHAR_BIT);
628
629 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
630 buffer, changed_len);
631 modify_field (buffer, value_as_long (fromval),
632 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
633 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
634 dest_buffer = buffer;
635 }
636 else if (use_buffer)
637 {
638 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
639 changed_len = use_buffer;
640 dest_buffer = raw_buffer;
641 }
642 else
643 {
644 changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval);
645 changed_len = TYPE_LENGTH (type);
646 dest_buffer = VALUE_CONTENTS (fromval);
647 }
648
649 write_memory (changed_addr, dest_buffer, changed_len);
650 if (memory_changed_hook)
651 memory_changed_hook (changed_addr, changed_len);
652 }
653 break;
654
655 case lval_register:
656 if (VALUE_BITSIZE (toval))
657 {
658 char buffer[sizeof (LONGEST)];
659 int len = REGISTER_RAW_SIZE (VALUE_REGNO (toval));
660
661 if (len > (int) sizeof (LONGEST))
662 error ("Can't handle bitfields in registers larger than %d bits.",
663 sizeof (LONGEST) * HOST_CHAR_BIT);
664
665 if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
666 > len * HOST_CHAR_BIT)
667 /* Getting this right would involve being very careful about
668 byte order. */
669 error ("\
670 Can't handle bitfield which doesn't fit in a single register.");
671
672 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
673 buffer, len);
674 modify_field (buffer, value_as_long (fromval),
675 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
676 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
677 buffer, len);
678 }
679 else if (use_buffer)
680 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
681 raw_buffer, use_buffer);
682 else
683 {
684 /* Do any conversion necessary when storing this type to more
685 than one register. */
686 #ifdef REGISTER_CONVERT_FROM_TYPE
687 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
688 REGISTER_CONVERT_FROM_TYPE (VALUE_REGNO (toval), type, raw_buffer);
689 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
690 raw_buffer, TYPE_LENGTH (type));
691 #else
692 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
693 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
694 #endif
695 }
696 /* Assigning to the stack pointer, frame pointer, and other
697 (architecture and calling convention specific) registers may
698 cause the frame cache to be out of date. We just do this
699 on all assignments to registers for simplicity; I doubt the slowdown
700 matters. */
701 reinit_frame_cache ();
702 break;
703
704 case lval_reg_frame_relative:
705 {
706 /* value is stored in a series of registers in the frame
707 specified by the structure. Copy that value out, modify
708 it, and copy it back in. */
709 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
710 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
711 int byte_offset = VALUE_OFFSET (toval) % reg_size;
712 int reg_offset = VALUE_OFFSET (toval) / reg_size;
713 int amount_copied;
714
715 /* Make the buffer large enough in all cases. */
716 char *buffer = (char *) alloca (amount_to_copy
717 + sizeof (LONGEST)
718 + MAX_REGISTER_RAW_SIZE);
719
720 int regno;
721 struct frame_info *frame;
722
723 /* Figure out which frame this is in currently. */
724 for (frame = get_current_frame ();
725 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
726 frame = get_prev_frame (frame))
727 ;
728
729 if (!frame)
730 error ("Value being assigned to is no longer active.");
731
732 amount_to_copy += (reg_size - amount_to_copy % reg_size);
733
734 /* Copy it out. */
735 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
736 amount_copied = 0);
737 amount_copied < amount_to_copy;
738 amount_copied += reg_size, regno++)
739 {
740 get_saved_register (buffer + amount_copied,
741 (int *) NULL, (CORE_ADDR *) NULL,
742 frame, regno, (enum lval_type *) NULL);
743 }
744
745 /* Modify what needs to be modified. */
746 if (VALUE_BITSIZE (toval))
747 modify_field (buffer + byte_offset,
748 value_as_long (fromval),
749 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
750 else if (use_buffer)
751 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
752 else
753 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
754 TYPE_LENGTH (type));
755
756 /* Copy it back. */
757 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
758 amount_copied = 0);
759 amount_copied < amount_to_copy;
760 amount_copied += reg_size, regno++)
761 {
762 enum lval_type lval;
763 CORE_ADDR addr;
764 int optim;
765
766 /* Just find out where to put it. */
767 get_saved_register ((char *) NULL,
768 &optim, &addr, frame, regno, &lval);
769
770 if (optim)
771 error ("Attempt to assign to a value that was optimized out.");
772 if (lval == lval_memory)
773 write_memory (addr, buffer + amount_copied, reg_size);
774 else if (lval == lval_register)
775 write_register_bytes (addr, buffer + amount_copied, reg_size);
776 else
777 error ("Attempt to assign to an unmodifiable value.");
778 }
779
780 if (register_changed_hook)
781 register_changed_hook (-1);
782 }
783 break;
784
785
786 default:
787 error ("Left operand of assignment is not an lvalue.");
788 }
789
790 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
791 If the field is signed, and is negative, then sign extend. */
792 if ((VALUE_BITSIZE (toval) > 0)
793 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
794 {
795 LONGEST fieldval = value_as_long (fromval);
796 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
797
798 fieldval &= valmask;
799 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
800 fieldval |= ~valmask;
801
802 fromval = value_from_longest (type, fieldval);
803 }
804
805 val = value_copy (toval);
806 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
807 TYPE_LENGTH (type));
808 VALUE_TYPE (val) = type;
809 VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval);
810 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
811 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
812
813 return val;
814 }
815
816 /* Extend a value VAL to COUNT repetitions of its type. */
817
818 value_ptr
819 value_repeat (arg1, count)
820 value_ptr arg1;
821 int count;
822 {
823 register value_ptr val;
824
825 if (VALUE_LVAL (arg1) != lval_memory)
826 error ("Only values in memory can be extended with '@'.");
827 if (count < 1)
828 error ("Invalid number %d of repetitions.", count);
829
830 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
831
832 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
833 VALUE_CONTENTS_ALL_RAW (val),
834 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
835 VALUE_LVAL (val) = lval_memory;
836 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
837
838 return val;
839 }
840
841 value_ptr
842 value_of_variable (var, b)
843 struct symbol *var;
844 struct block *b;
845 {
846 value_ptr val;
847 struct frame_info *frame = NULL;
848
849 if (!b)
850 frame = NULL; /* Use selected frame. */
851 else if (symbol_read_needs_frame (var))
852 {
853 frame = block_innermost_frame (b);
854 if (!frame)
855 {
856 if (BLOCK_FUNCTION (b)
857 && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
858 error ("No frame is currently executing in block %s.",
859 SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
860 else
861 error ("No frame is currently executing in specified block");
862 }
863 }
864
865 val = read_var_value (var, frame);
866 if (!val)
867 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
868
869 return val;
870 }
871
872 /* Given a value which is an array, return a value which is a pointer to its
873 first element, regardless of whether or not the array has a nonzero lower
874 bound.
875
876 FIXME: A previous comment here indicated that this routine should be
877 substracting the array's lower bound. It's not clear to me that this
878 is correct. Given an array subscripting operation, it would certainly
879 work to do the adjustment here, essentially computing:
880
881 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
882
883 However I believe a more appropriate and logical place to account for
884 the lower bound is to do so in value_subscript, essentially computing:
885
886 (&array[0] + ((index - lowerbound) * sizeof array[0]))
887
888 As further evidence consider what would happen with operations other
889 than array subscripting, where the caller would get back a value that
890 had an address somewhere before the actual first element of the array,
891 and the information about the lower bound would be lost because of
892 the coercion to pointer type.
893 */
894
895 value_ptr
896 value_coerce_array (arg1)
897 value_ptr arg1;
898 {
899 register struct type *type = check_typedef (VALUE_TYPE (arg1));
900
901 if (VALUE_LVAL (arg1) != lval_memory)
902 error ("Attempt to take address of value not located in memory.");
903
904 return value_from_longest (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
905 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
906 }
907
908 /* Given a value which is a function, return a value which is a pointer
909 to it. */
910
911 value_ptr
912 value_coerce_function (arg1)
913 value_ptr arg1;
914 {
915 value_ptr retval;
916
917 if (VALUE_LVAL (arg1) != lval_memory)
918 error ("Attempt to take address of value not located in memory.");
919
920 retval = value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)),
921 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
922 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
923 return retval;
924 }
925
926 /* Return a pointer value for the object for which ARG1 is the contents. */
927
928 value_ptr
929 value_addr (arg1)
930 value_ptr arg1;
931 {
932 value_ptr arg2;
933
934 struct type *type = check_typedef (VALUE_TYPE (arg1));
935 if (TYPE_CODE (type) == TYPE_CODE_REF)
936 {
937 /* Copy the value, but change the type from (T&) to (T*).
938 We keep the same location information, which is efficient,
939 and allows &(&X) to get the location containing the reference. */
940 arg2 = value_copy (arg1);
941 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
942 return arg2;
943 }
944 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
945 return value_coerce_function (arg1);
946
947 if (VALUE_LVAL (arg1) != lval_memory)
948 error ("Attempt to take address of value not located in memory.");
949
950 /* Get target memory address */
951 arg2 = value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)),
952 (LONGEST) (VALUE_ADDRESS (arg1)
953 + VALUE_OFFSET (arg1)
954 + VALUE_EMBEDDED_OFFSET (arg1)));
955
956 /* This may be a pointer to a base subobject; so remember the
957 full derived object's type ... */
958 VALUE_ENCLOSING_TYPE (arg2) = lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1));
959 /* ... and also the relative position of the subobject in the full object */
960 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
961 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
962 return arg2;
963 }
964
965 /* Given a value of a pointer type, apply the C unary * operator to it. */
966
967 value_ptr
968 value_ind (arg1)
969 value_ptr arg1;
970 {
971 struct type *base_type;
972 value_ptr arg2;
973 value_ptr real_val;
974
975 COERCE_ARRAY (arg1);
976
977 base_type = check_typedef (VALUE_TYPE (arg1));
978
979 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
980 error ("not implemented: member types in value_ind");
981
982 /* Allow * on an integer so we can cast it to whatever we want.
983 This returns an int, which seems like the most C-like thing
984 to do. "long long" variables are rare enough that
985 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
986 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
987 return value_at (builtin_type_int,
988 (CORE_ADDR) value_as_long (arg1),
989 VALUE_BFD_SECTION (arg1));
990 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
991 {
992 struct type *enc_type;
993 /* We may be pointing to something embedded in a larger object */
994 /* Get the real type of the enclosing object */
995 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
996 enc_type = TYPE_TARGET_TYPE (enc_type);
997 /* Retrieve the enclosing object pointed to */
998 arg2 = value_at_lazy (enc_type,
999 value_as_pointer (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
1000 VALUE_BFD_SECTION (arg1));
1001 /* Re-adjust type */
1002 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
1003 /* Add embedding info */
1004 VALUE_ENCLOSING_TYPE (arg2) = enc_type;
1005 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
1006
1007 /* We may be pointing to an object of some derived type */
1008 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
1009 return arg2;
1010 }
1011
1012 error ("Attempt to take contents of a non-pointer value.");
1013 return 0; /* For lint -- never reached */
1014 }
1015 \f
1016 /* Pushing small parts of stack frames. */
1017
1018 /* Push one word (the size of object that a register holds). */
1019
1020 CORE_ADDR
1021 push_word (sp, word)
1022 CORE_ADDR sp;
1023 ULONGEST word;
1024 {
1025 register int len = REGISTER_SIZE;
1026 char buffer[MAX_REGISTER_RAW_SIZE];
1027
1028 store_unsigned_integer (buffer, len, word);
1029 if (INNER_THAN (1, 2))
1030 {
1031 /* stack grows downward */
1032 sp -= len;
1033 write_memory (sp, buffer, len);
1034 }
1035 else
1036 {
1037 /* stack grows upward */
1038 write_memory (sp, buffer, len);
1039 sp += len;
1040 }
1041
1042 return sp;
1043 }
1044
1045 /* Push LEN bytes with data at BUFFER. */
1046
1047 CORE_ADDR
1048 push_bytes (sp, buffer, len)
1049 CORE_ADDR sp;
1050 char *buffer;
1051 int len;
1052 {
1053 if (INNER_THAN (1, 2))
1054 {
1055 /* stack grows downward */
1056 sp -= len;
1057 write_memory (sp, buffer, len);
1058 }
1059 else
1060 {
1061 /* stack grows upward */
1062 write_memory (sp, buffer, len);
1063 sp += len;
1064 }
1065
1066 return sp;
1067 }
1068
1069 /* Push onto the stack the specified value VALUE. */
1070
1071 static CORE_ADDR
1072 value_push (sp, arg)
1073 register CORE_ADDR sp;
1074 value_ptr arg;
1075 {
1076 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
1077
1078 if (INNER_THAN (1, 2))
1079 {
1080 /* stack grows downward */
1081 sp -= len;
1082 write_memory (sp, VALUE_CONTENTS_ALL (arg), len);
1083 }
1084 else
1085 {
1086 /* stack grows upward */
1087 write_memory (sp, VALUE_CONTENTS_ALL (arg), len);
1088 sp += len;
1089 }
1090
1091 return sp;
1092 }
1093
1094 #ifndef PUSH_ARGUMENTS
1095 #define PUSH_ARGUMENTS default_push_arguments
1096 #endif
1097
1098 CORE_ADDR
1099 default_push_arguments (nargs, args, sp, struct_return, struct_addr)
1100 int nargs;
1101 value_ptr *args;
1102 CORE_ADDR sp;
1103 int struct_return;
1104 CORE_ADDR struct_addr;
1105 {
1106 /* ASSERT ( !struct_return); */
1107 int i;
1108 for (i = nargs - 1; i >= 0; i--)
1109 sp = value_push (sp, args[i]);
1110 return sp;
1111 }
1112
1113
1114 /* Perform the standard coercions that are specified
1115 for arguments to be passed to C functions.
1116
1117 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1118 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1119
1120 static value_ptr
1121 value_arg_coerce (arg, param_type, is_prototyped)
1122 value_ptr arg;
1123 struct type *param_type;
1124 int is_prototyped;
1125 {
1126 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1127 register struct type *type
1128 = param_type ? check_typedef (param_type) : arg_type;
1129
1130 switch (TYPE_CODE (type))
1131 {
1132 case TYPE_CODE_REF:
1133 if (TYPE_CODE (arg_type) != TYPE_CODE_REF)
1134 {
1135 arg = value_addr (arg);
1136 VALUE_TYPE (arg) = param_type;
1137 return arg;
1138 }
1139 break;
1140 case TYPE_CODE_INT:
1141 case TYPE_CODE_CHAR:
1142 case TYPE_CODE_BOOL:
1143 case TYPE_CODE_ENUM:
1144 /* If we don't have a prototype, coerce to integer type if necessary. */
1145 if (!is_prototyped)
1146 {
1147 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1148 type = builtin_type_int;
1149 }
1150 /* Currently all target ABIs require at least the width of an integer
1151 type for an argument. We may have to conditionalize the following
1152 type coercion for future targets. */
1153 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1154 type = builtin_type_int;
1155 break;
1156 case TYPE_CODE_FLT:
1157 /* FIXME: We should always convert floats to doubles in the
1158 non-prototyped case. As many debugging formats include
1159 no information about prototyping, we have to live with
1160 COERCE_FLOAT_TO_DOUBLE for now. */
1161 if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE)
1162 {
1163 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1164 type = builtin_type_double;
1165 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1166 type = builtin_type_long_double;
1167 }
1168 break;
1169 case TYPE_CODE_FUNC:
1170 type = lookup_pointer_type (type);
1171 break;
1172 case TYPE_CODE_ARRAY:
1173 if (current_language->c_style_arrays)
1174 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1175 break;
1176 case TYPE_CODE_UNDEF:
1177 case TYPE_CODE_PTR:
1178 case TYPE_CODE_STRUCT:
1179 case TYPE_CODE_UNION:
1180 case TYPE_CODE_VOID:
1181 case TYPE_CODE_SET:
1182 case TYPE_CODE_RANGE:
1183 case TYPE_CODE_STRING:
1184 case TYPE_CODE_BITSTRING:
1185 case TYPE_CODE_ERROR:
1186 case TYPE_CODE_MEMBER:
1187 case TYPE_CODE_METHOD:
1188 case TYPE_CODE_COMPLEX:
1189 default:
1190 break;
1191 }
1192
1193 return value_cast (type, arg);
1194 }
1195
1196 /* Determine a function's address and its return type from its value.
1197 Calls error() if the function is not valid for calling. */
1198
1199 static CORE_ADDR
1200 find_function_addr (function, retval_type)
1201 value_ptr function;
1202 struct type **retval_type;
1203 {
1204 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1205 register enum type_code code = TYPE_CODE (ftype);
1206 struct type *value_type;
1207 CORE_ADDR funaddr;
1208
1209 /* If it's a member function, just look at the function
1210 part of it. */
1211
1212 /* Determine address to call. */
1213 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1214 {
1215 funaddr = VALUE_ADDRESS (function);
1216 value_type = TYPE_TARGET_TYPE (ftype);
1217 }
1218 else if (code == TYPE_CODE_PTR)
1219 {
1220 funaddr = value_as_pointer (function);
1221 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1222 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1223 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1224 {
1225 #ifdef CONVERT_FROM_FUNC_PTR_ADDR
1226 /* FIXME: This is a workaround for the unusual function
1227 pointer representation on the RS/6000, see comment
1228 in config/rs6000/tm-rs6000.h */
1229 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
1230 #endif
1231 value_type = TYPE_TARGET_TYPE (ftype);
1232 }
1233 else
1234 value_type = builtin_type_int;
1235 }
1236 else if (code == TYPE_CODE_INT)
1237 {
1238 /* Handle the case of functions lacking debugging info.
1239 Their values are characters since their addresses are char */
1240 if (TYPE_LENGTH (ftype) == 1)
1241 funaddr = value_as_pointer (value_addr (function));
1242 else
1243 /* Handle integer used as address of a function. */
1244 funaddr = (CORE_ADDR) value_as_long (function);
1245
1246 value_type = builtin_type_int;
1247 }
1248 else
1249 error ("Invalid data type for function to be called.");
1250
1251 *retval_type = value_type;
1252 return funaddr;
1253 }
1254
1255 /* All this stuff with a dummy frame may seem unnecessarily complicated
1256 (why not just save registers in GDB?). The purpose of pushing a dummy
1257 frame which looks just like a real frame is so that if you call a
1258 function and then hit a breakpoint (get a signal, etc), "backtrace"
1259 will look right. Whether the backtrace needs to actually show the
1260 stack at the time the inferior function was called is debatable, but
1261 it certainly needs to not display garbage. So if you are contemplating
1262 making dummy frames be different from normal frames, consider that. */
1263
1264 /* Perform a function call in the inferior.
1265 ARGS is a vector of values of arguments (NARGS of them).
1266 FUNCTION is a value, the function to be called.
1267 Returns a value representing what the function returned.
1268 May fail to return, if a breakpoint or signal is hit
1269 during the execution of the function.
1270
1271 ARGS is modified to contain coerced values. */
1272
1273 static value_ptr hand_function_call PARAMS ((value_ptr function, int nargs, value_ptr * args));
1274 static value_ptr
1275 hand_function_call (function, nargs, args)
1276 value_ptr function;
1277 int nargs;
1278 value_ptr *args;
1279 {
1280 register CORE_ADDR sp;
1281 register int i;
1282 CORE_ADDR start_sp;
1283 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1284 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1285 and remove any extra bytes which might exist because ULONGEST is
1286 bigger than REGISTER_SIZE.
1287
1288 NOTE: This is pretty wierd, as the call dummy is actually a
1289 sequence of instructions. But CISC machines will have
1290 to pack the instructions into REGISTER_SIZE units (and
1291 so will RISC machines for which INSTRUCTION_SIZE is not
1292 REGISTER_SIZE).
1293
1294 NOTE: This is pretty stupid. CALL_DUMMY should be in strict
1295 target byte order. */
1296
1297 static ULONGEST *dummy;
1298 int sizeof_dummy1;
1299 char *dummy1;
1300 CORE_ADDR old_sp;
1301 struct type *value_type;
1302 unsigned char struct_return;
1303 CORE_ADDR struct_addr = 0;
1304 struct inferior_status *inf_status;
1305 struct cleanup *old_chain;
1306 CORE_ADDR funaddr;
1307 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
1308 CORE_ADDR real_pc;
1309 struct type *param_type = NULL;
1310 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
1311
1312 dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
1313 sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
1314 dummy1 = alloca (sizeof_dummy1);
1315 memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
1316
1317 if (!target_has_execution)
1318 noprocess ();
1319
1320 inf_status = save_inferior_status (1);
1321 old_chain = make_cleanup ((make_cleanup_func) restore_inferior_status,
1322 inf_status);
1323
1324 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1325 (and POP_FRAME for restoring them). (At least on most machines)
1326 they are saved on the stack in the inferior. */
1327 PUSH_DUMMY_FRAME;
1328
1329 old_sp = sp = read_sp ();
1330
1331 if (INNER_THAN (1, 2))
1332 {
1333 /* Stack grows down */
1334 sp -= sizeof_dummy1;
1335 start_sp = sp;
1336 }
1337 else
1338 {
1339 /* Stack grows up */
1340 start_sp = sp;
1341 sp += sizeof_dummy1;
1342 }
1343
1344 funaddr = find_function_addr (function, &value_type);
1345 CHECK_TYPEDEF (value_type);
1346
1347 {
1348 struct block *b = block_for_pc (funaddr);
1349 /* If compiled without -g, assume GCC 2. */
1350 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1351 }
1352
1353 /* Are we returning a value using a structure return or a normal
1354 value return? */
1355
1356 struct_return = using_struct_return (function, funaddr, value_type,
1357 using_gcc);
1358
1359 /* Create a call sequence customized for this function
1360 and the number of arguments for it. */
1361 for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
1362 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1363 REGISTER_SIZE,
1364 (ULONGEST) dummy[i]);
1365
1366 #ifdef GDB_TARGET_IS_HPPA
1367 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1368 value_type, using_gcc);
1369 #else
1370 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1371 value_type, using_gcc);
1372 real_pc = start_sp;
1373 #endif
1374
1375 if (CALL_DUMMY_LOCATION == ON_STACK)
1376 {
1377 write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
1378 }
1379
1380 if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END)
1381 {
1382 /* Convex Unix prohibits executing in the stack segment. */
1383 /* Hope there is empty room at the top of the text segment. */
1384 extern CORE_ADDR text_end;
1385 static int checked = 0;
1386 if (!checked)
1387 for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp)
1388 if (read_memory_integer (start_sp, 1) != 0)
1389 error ("text segment full -- no place to put call");
1390 checked = 1;
1391 sp = old_sp;
1392 real_pc = text_end - sizeof_dummy1;
1393 write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1394 }
1395
1396 if (CALL_DUMMY_LOCATION == AFTER_TEXT_END)
1397 {
1398 extern CORE_ADDR text_end;
1399 int errcode;
1400 sp = old_sp;
1401 real_pc = text_end;
1402 errcode = target_write_memory (real_pc, (char *) dummy1, sizeof_dummy1);
1403 if (errcode != 0)
1404 error ("Cannot write text segment -- call_function failed");
1405 }
1406
1407 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
1408 {
1409 real_pc = funaddr;
1410 }
1411
1412 #ifdef lint
1413 sp = old_sp; /* It really is used, for some ifdef's... */
1414 #endif
1415
1416 if (nargs < TYPE_NFIELDS (ftype))
1417 error ("too few arguments in function call");
1418
1419 for (i = nargs - 1; i >= 0; i--)
1420 {
1421 /* If we're off the end of the known arguments, do the standard
1422 promotions. FIXME: if we had a prototype, this should only
1423 be allowed if ... were present. */
1424 if (i >= TYPE_NFIELDS (ftype))
1425 args[i] = value_arg_coerce (args[i], NULL, 0);
1426
1427 else
1428 {
1429 int is_prototyped = TYPE_FLAGS (ftype) & TYPE_FLAG_PROTOTYPED;
1430 param_type = TYPE_FIELD_TYPE (ftype, i);
1431
1432 args[i] = value_arg_coerce (args[i], param_type, is_prototyped);
1433 }
1434
1435 /*elz: this code is to handle the case in which the function to be called
1436 has a pointer to function as parameter and the corresponding actual argument
1437 is the address of a function and not a pointer to function variable.
1438 In aCC compiled code, the calls through pointers to functions (in the body
1439 of the function called by hand) are made via $$dyncall_external which
1440 requires some registers setting, this is taken care of if we call
1441 via a function pointer variable, but not via a function address.
1442 In cc this is not a problem. */
1443
1444 if (using_gcc == 0)
1445 if (param_type)
1446 /* if this parameter is a pointer to function */
1447 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
1448 if (TYPE_CODE (param_type->target_type) == TYPE_CODE_FUNC)
1449 /* elz: FIXME here should go the test about the compiler used
1450 to compile the target. We want to issue the error
1451 message only if the compiler used was HP's aCC.
1452 If we used HP's cc, then there is no problem and no need
1453 to return at this point */
1454 if (using_gcc == 0) /* && compiler == aCC */
1455 /* go see if the actual parameter is a variable of type
1456 pointer to function or just a function */
1457 if (args[i]->lval == not_lval)
1458 {
1459 char *arg_name;
1460 if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1461 error ("\
1462 You cannot use function <%s> as argument. \n\
1463 You must use a pointer to function type variable. Command ignored.", arg_name);
1464 }
1465 }
1466
1467 #if defined (REG_STRUCT_HAS_ADDR)
1468 {
1469 /* This is a machine like the sparc, where we may need to pass a pointer
1470 to the structure, not the structure itself. */
1471 for (i = nargs - 1; i >= 0; i--)
1472 {
1473 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1474 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1475 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1476 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1477 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1478 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1479 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1480 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1481 && TYPE_LENGTH (arg_type) > 8)
1482 )
1483 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1484 {
1485 CORE_ADDR addr;
1486 int len; /* = TYPE_LENGTH (arg_type); */
1487 int aligned_len;
1488 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1489 len = TYPE_LENGTH (arg_type);
1490
1491 #ifdef STACK_ALIGN
1492 /* MVS 11/22/96: I think at least some of this stack_align code is
1493 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1494 a target-defined manner. */
1495 aligned_len = STACK_ALIGN (len);
1496 #else
1497 aligned_len = len;
1498 #endif
1499 if (INNER_THAN (1, 2))
1500 {
1501 /* stack grows downward */
1502 sp -= aligned_len;
1503 }
1504 else
1505 {
1506 /* The stack grows up, so the address of the thing we push
1507 is the stack pointer before we push it. */
1508 addr = sp;
1509 }
1510 /* Push the structure. */
1511 write_memory (sp, VALUE_CONTENTS_ALL (args[i]), len);
1512 if (INNER_THAN (1, 2))
1513 {
1514 /* The stack grows down, so the address of the thing we push
1515 is the stack pointer after we push it. */
1516 addr = sp;
1517 }
1518 else
1519 {
1520 /* stack grows upward */
1521 sp += aligned_len;
1522 }
1523 /* The value we're going to pass is the address of the thing
1524 we just pushed. */
1525 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1526 (LONGEST) addr); */
1527 args[i] = value_from_longest (lookup_pointer_type (arg_type),
1528 (LONGEST) addr);
1529 }
1530 }
1531 }
1532 #endif /* REG_STRUCT_HAS_ADDR. */
1533
1534 /* Reserve space for the return structure to be written on the
1535 stack, if necessary */
1536
1537 if (struct_return)
1538 {
1539 int len = TYPE_LENGTH (value_type);
1540 #ifdef STACK_ALIGN
1541 /* MVS 11/22/96: I think at least some of this stack_align code is
1542 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1543 a target-defined manner. */
1544 len = STACK_ALIGN (len);
1545 #endif
1546 if (INNER_THAN (1, 2))
1547 {
1548 /* stack grows downward */
1549 sp -= len;
1550 struct_addr = sp;
1551 }
1552 else
1553 {
1554 /* stack grows upward */
1555 struct_addr = sp;
1556 sp += len;
1557 }
1558 }
1559
1560 /* elz: on HPPA no need for this extra alignment, maybe it is needed
1561 on other architectures. This is because all the alignment is taken care
1562 of in the above code (ifdef REG_STRUCT_HAS_ADDR) and in
1563 hppa_push_arguments */
1564 #ifndef NO_EXTRA_ALIGNMENT_NEEDED
1565
1566 #if defined(STACK_ALIGN)
1567 /* MVS 11/22/96: I think at least some of this stack_align code is
1568 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1569 a target-defined manner. */
1570 if (INNER_THAN (1, 2))
1571 {
1572 /* If stack grows down, we must leave a hole at the top. */
1573 int len = 0;
1574
1575 for (i = nargs - 1; i >= 0; i--)
1576 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1577 if (CALL_DUMMY_STACK_ADJUST_P)
1578 len += CALL_DUMMY_STACK_ADJUST;
1579 sp -= STACK_ALIGN (len) - len;
1580 }
1581 #endif /* STACK_ALIGN */
1582 #endif /* NO_EXTRA_ALIGNMENT_NEEDED */
1583
1584 sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr);
1585
1586 #ifdef PUSH_RETURN_ADDRESS /* for targets that use no CALL_DUMMY */
1587 /* There are a number of targets now which actually don't write any
1588 CALL_DUMMY instructions into the target, but instead just save the
1589 machine state, push the arguments, and jump directly to the callee
1590 function. Since this doesn't actually involve executing a JSR/BSR
1591 instruction, the return address must be set up by hand, either by
1592 pushing onto the stack or copying into a return-address register
1593 as appropriate. Formerly this has been done in PUSH_ARGUMENTS,
1594 but that's overloading its functionality a bit, so I'm making it
1595 explicit to do it here. */
1596 sp = PUSH_RETURN_ADDRESS (real_pc, sp);
1597 #endif /* PUSH_RETURN_ADDRESS */
1598
1599 #if defined(STACK_ALIGN)
1600 if (!INNER_THAN (1, 2))
1601 {
1602 /* If stack grows up, we must leave a hole at the bottom, note
1603 that sp already has been advanced for the arguments! */
1604 if (CALL_DUMMY_STACK_ADJUST_P)
1605 sp += CALL_DUMMY_STACK_ADJUST;
1606 sp = STACK_ALIGN (sp);
1607 }
1608 #endif /* STACK_ALIGN */
1609
1610 /* XXX This seems wrong. For stacks that grow down we shouldn't do
1611 anything here! */
1612 /* MVS 11/22/96: I think at least some of this stack_align code is
1613 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1614 a target-defined manner. */
1615 if (CALL_DUMMY_STACK_ADJUST_P)
1616 if (INNER_THAN (1, 2))
1617 {
1618 /* stack grows downward */
1619 sp -= CALL_DUMMY_STACK_ADJUST;
1620 }
1621
1622 /* Store the address at which the structure is supposed to be
1623 written. Note that this (and the code which reserved the space
1624 above) assumes that gcc was used to compile this function. Since
1625 it doesn't cost us anything but space and if the function is pcc
1626 it will ignore this value, we will make that assumption.
1627
1628 Also note that on some machines (like the sparc) pcc uses a
1629 convention like gcc's. */
1630
1631 if (struct_return)
1632 STORE_STRUCT_RETURN (struct_addr, sp);
1633
1634 /* Write the stack pointer. This is here because the statements above
1635 might fool with it. On SPARC, this write also stores the register
1636 window into the right place in the new stack frame, which otherwise
1637 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1638 write_sp (sp);
1639
1640 #ifdef SAVE_DUMMY_FRAME_TOS
1641 SAVE_DUMMY_FRAME_TOS (sp);
1642 #endif
1643
1644 {
1645 char retbuf[REGISTER_BYTES];
1646 char *name;
1647 struct symbol *symbol;
1648
1649 name = NULL;
1650 symbol = find_pc_function (funaddr);
1651 if (symbol)
1652 {
1653 name = SYMBOL_SOURCE_NAME (symbol);
1654 }
1655 else
1656 {
1657 /* Try the minimal symbols. */
1658 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1659
1660 if (msymbol)
1661 {
1662 name = SYMBOL_SOURCE_NAME (msymbol);
1663 }
1664 }
1665 if (name == NULL)
1666 {
1667 char format[80];
1668 sprintf (format, "at %s", local_hex_format ());
1669 name = alloca (80);
1670 /* FIXME-32x64: assumes funaddr fits in a long. */
1671 sprintf (name, format, (unsigned long) funaddr);
1672 }
1673
1674 /* Execute the stack dummy routine, calling FUNCTION.
1675 When it is done, discard the empty frame
1676 after storing the contents of all regs into retbuf. */
1677 if (run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf))
1678 {
1679 /* We stopped somewhere besides the call dummy. */
1680
1681 /* If we did the cleanups, we would print a spurious error
1682 message (Unable to restore previously selected frame),
1683 would write the registers from the inf_status (which is
1684 wrong), and would do other wrong things. */
1685 discard_cleanups (old_chain);
1686 discard_inferior_status (inf_status);
1687
1688 /* The following error message used to say "The expression
1689 which contained the function call has been discarded." It
1690 is a hard concept to explain in a few words. Ideally, GDB
1691 would be able to resume evaluation of the expression when
1692 the function finally is done executing. Perhaps someday
1693 this will be implemented (it would not be easy). */
1694
1695 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1696 a C++ name with arguments and stuff. */
1697 error ("\
1698 The program being debugged stopped while in a function called from GDB.\n\
1699 When the function (%s) is done executing, GDB will silently\n\
1700 stop (instead of continuing to evaluate the expression containing\n\
1701 the function call).", name);
1702 }
1703
1704 do_cleanups (old_chain);
1705
1706 /* Figure out the value returned by the function. */
1707 /* elz: I defined this new macro for the hppa architecture only.
1708 this gives us a way to get the value returned by the function from the stack,
1709 at the same address we told the function to put it.
1710 We cannot assume on the pa that r28 still contains the address of the returned
1711 structure. Usually this will be overwritten by the callee.
1712 I don't know about other architectures, so I defined this macro
1713 */
1714
1715 #ifdef VALUE_RETURNED_FROM_STACK
1716 if (struct_return)
1717 return (value_ptr) VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1718 #endif
1719
1720 return value_being_returned (value_type, retbuf, struct_return);
1721 }
1722 }
1723
1724 value_ptr
1725 call_function_by_hand (function, nargs, args)
1726 value_ptr function;
1727 int nargs;
1728 value_ptr *args;
1729 {
1730 if (CALL_DUMMY_P)
1731 {
1732 return hand_function_call (function, nargs, args);
1733 }
1734 else
1735 {
1736 error ("Cannot invoke functions on this machine.");
1737 }
1738 }
1739 \f
1740
1741
1742 /* Create a value for an array by allocating space in the inferior, copying
1743 the data into that space, and then setting up an array value.
1744
1745 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1746 populated from the values passed in ELEMVEC.
1747
1748 The element type of the array is inherited from the type of the
1749 first element, and all elements must have the same size (though we
1750 don't currently enforce any restriction on their types). */
1751
1752 value_ptr
1753 value_array (lowbound, highbound, elemvec)
1754 int lowbound;
1755 int highbound;
1756 value_ptr *elemvec;
1757 {
1758 int nelem;
1759 int idx;
1760 unsigned int typelength;
1761 value_ptr val;
1762 struct type *rangetype;
1763 struct type *arraytype;
1764 CORE_ADDR addr;
1765
1766 /* Validate that the bounds are reasonable and that each of the elements
1767 have the same size. */
1768
1769 nelem = highbound - lowbound + 1;
1770 if (nelem <= 0)
1771 {
1772 error ("bad array bounds (%d, %d)", lowbound, highbound);
1773 }
1774 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1775 for (idx = 1; idx < nelem; idx++)
1776 {
1777 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1778 {
1779 error ("array elements must all be the same size");
1780 }
1781 }
1782
1783 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1784 lowbound, highbound);
1785 arraytype = create_array_type ((struct type *) NULL,
1786 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
1787
1788 if (!current_language->c_style_arrays)
1789 {
1790 val = allocate_value (arraytype);
1791 for (idx = 0; idx < nelem; idx++)
1792 {
1793 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1794 VALUE_CONTENTS_ALL (elemvec[idx]),
1795 typelength);
1796 }
1797 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1798 return val;
1799 }
1800
1801 /* Allocate space to store the array in the inferior, and then initialize
1802 it by copying in each element. FIXME: Is it worth it to create a
1803 local buffer in which to collect each value and then write all the
1804 bytes in one operation? */
1805
1806 addr = allocate_space_in_inferior (nelem * typelength);
1807 for (idx = 0; idx < nelem; idx++)
1808 {
1809 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1810 typelength);
1811 }
1812
1813 /* Create the array type and set up an array value to be evaluated lazily. */
1814
1815 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1816 return (val);
1817 }
1818
1819 /* Create a value for a string constant by allocating space in the inferior,
1820 copying the data into that space, and returning the address with type
1821 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1822 of characters.
1823 Note that string types are like array of char types with a lower bound of
1824 zero and an upper bound of LEN - 1. Also note that the string may contain
1825 embedded null bytes. */
1826
1827 value_ptr
1828 value_string (ptr, len)
1829 char *ptr;
1830 int len;
1831 {
1832 value_ptr val;
1833 int lowbound = current_language->string_lower_bound;
1834 struct type *rangetype = create_range_type ((struct type *) NULL,
1835 builtin_type_int,
1836 lowbound, len + lowbound - 1);
1837 struct type *stringtype
1838 = create_string_type ((struct type *) NULL, rangetype);
1839 CORE_ADDR addr;
1840
1841 if (current_language->c_style_arrays == 0)
1842 {
1843 val = allocate_value (stringtype);
1844 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1845 return val;
1846 }
1847
1848
1849 /* Allocate space to store the string in the inferior, and then
1850 copy LEN bytes from PTR in gdb to that address in the inferior. */
1851
1852 addr = allocate_space_in_inferior (len);
1853 write_memory (addr, ptr, len);
1854
1855 val = value_at_lazy (stringtype, addr, NULL);
1856 return (val);
1857 }
1858
1859 value_ptr
1860 value_bitstring (ptr, len)
1861 char *ptr;
1862 int len;
1863 {
1864 value_ptr val;
1865 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1866 0, len - 1);
1867 struct type *type = create_set_type ((struct type *) NULL, domain_type);
1868 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1869 val = allocate_value (type);
1870 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1871 return val;
1872 }
1873 \f
1874 /* See if we can pass arguments in T2 to a function which takes arguments
1875 of types T1. Both t1 and t2 are NULL-terminated vectors. If some
1876 arguments need coercion of some sort, then the coerced values are written
1877 into T2. Return value is 0 if the arguments could be matched, or the
1878 position at which they differ if not.
1879
1880 STATICP is nonzero if the T1 argument list came from a
1881 static member function.
1882
1883 For non-static member functions, we ignore the first argument,
1884 which is the type of the instance variable. This is because we want
1885 to handle calls with objects from derived classes. This is not
1886 entirely correct: we should actually check to make sure that a
1887 requested operation is type secure, shouldn't we? FIXME. */
1888
1889 static int
1890 typecmp (staticp, t1, t2)
1891 int staticp;
1892 struct type *t1[];
1893 value_ptr t2[];
1894 {
1895 int i;
1896
1897 if (t2 == 0)
1898 return 1;
1899 if (staticp && t1 == 0)
1900 return t2[1] != 0;
1901 if (t1 == 0)
1902 return 1;
1903 if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID)
1904 return 0;
1905 if (t1[!staticp] == 0)
1906 return 0;
1907 for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
1908 {
1909 struct type *tt1, *tt2;
1910 if (!t2[i])
1911 return i + 1;
1912 tt1 = check_typedef (t1[i]);
1913 tt2 = check_typedef (VALUE_TYPE (t2[i]));
1914 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1915 /* We should be doing hairy argument matching, as below. */
1916 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1917 {
1918 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1919 t2[i] = value_coerce_array (t2[i]);
1920 else
1921 t2[i] = value_addr (t2[i]);
1922 continue;
1923 }
1924
1925 while (TYPE_CODE (tt1) == TYPE_CODE_PTR
1926 && (TYPE_CODE (tt2) == TYPE_CODE_ARRAY
1927 || TYPE_CODE (tt2) == TYPE_CODE_PTR))
1928 {
1929 tt1 = check_typedef (TYPE_TARGET_TYPE (tt1));
1930 tt2 = check_typedef (TYPE_TARGET_TYPE (tt2));
1931 }
1932 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1933 continue;
1934 /* Array to pointer is a `trivial conversion' according to the ARM. */
1935
1936 /* We should be doing much hairier argument matching (see section 13.2
1937 of the ARM), but as a quick kludge, just check for the same type
1938 code. */
1939 if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
1940 return i + 1;
1941 }
1942 if (!t1[i])
1943 return 0;
1944 return t2[i] ? i + 1 : 0;
1945 }
1946
1947 /* Helper function used by value_struct_elt to recurse through baseclasses.
1948 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1949 and search in it assuming it has (class) type TYPE.
1950 If found, return value, else return NULL.
1951
1952 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
1953 look for a baseclass named NAME. */
1954
1955 static value_ptr
1956 search_struct_field (name, arg1, offset, type, looking_for_baseclass)
1957 char *name;
1958 register value_ptr arg1;
1959 int offset;
1960 register struct type *type;
1961 int looking_for_baseclass;
1962 {
1963 int i;
1964 int nbases = TYPE_N_BASECLASSES (type);
1965
1966 CHECK_TYPEDEF (type);
1967
1968 if (!looking_for_baseclass)
1969 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1970 {
1971 char *t_field_name = TYPE_FIELD_NAME (type, i);
1972
1973 if (t_field_name && STREQ (t_field_name, name))
1974 {
1975 value_ptr v;
1976 if (TYPE_FIELD_STATIC (type, i))
1977 v = value_static_field (type, i);
1978 else
1979 v = value_primitive_field (arg1, offset, i, type);
1980 if (v == 0)
1981 error ("there is no field named %s", name);
1982 return v;
1983 }
1984
1985 if (t_field_name
1986 && (t_field_name[0] == '\0'
1987 || (TYPE_CODE (type) == TYPE_CODE_UNION
1988 && STREQ (t_field_name, "else"))))
1989 {
1990 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1991 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
1992 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
1993 {
1994 /* Look for a match through the fields of an anonymous union,
1995 or anonymous struct. C++ provides anonymous unions.
1996
1997 In the GNU Chill implementation of variant record types,
1998 each <alternative field> has an (anonymous) union type,
1999 each member of the union represents a <variant alternative>.
2000 Each <variant alternative> is represented as a struct,
2001 with a member for each <variant field>. */
2002
2003 value_ptr v;
2004 int new_offset = offset;
2005
2006 /* This is pretty gross. In G++, the offset in an anonymous
2007 union is relative to the beginning of the enclosing struct.
2008 In the GNU Chill implementation of variant records,
2009 the bitpos is zero in an anonymous union field, so we
2010 have to add the offset of the union here. */
2011 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2012 || (TYPE_NFIELDS (field_type) > 0
2013 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2014 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2015
2016 v = search_struct_field (name, arg1, new_offset, field_type,
2017 looking_for_baseclass);
2018 if (v)
2019 return v;
2020 }
2021 }
2022 }
2023
2024 for (i = 0; i < nbases; i++)
2025 {
2026 value_ptr v;
2027 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2028 /* If we are looking for baseclasses, this is what we get when we
2029 hit them. But it could happen that the base part's member name
2030 is not yet filled in. */
2031 int found_baseclass = (looking_for_baseclass
2032 && TYPE_BASECLASS_NAME (type, i) != NULL
2033 && STREQ (name, TYPE_BASECLASS_NAME (type, i)));
2034
2035 if (BASETYPE_VIA_VIRTUAL (type, i))
2036 {
2037 int boffset;
2038 value_ptr v2 = allocate_value (basetype);
2039
2040 boffset = baseclass_offset (type, i,
2041 VALUE_CONTENTS (arg1) + offset,
2042 VALUE_ADDRESS (arg1)
2043 + VALUE_OFFSET (arg1) + offset);
2044 if (boffset == -1)
2045 error ("virtual baseclass botch");
2046
2047 /* The virtual base class pointer might have been clobbered by the
2048 user program. Make sure that it still points to a valid memory
2049 location. */
2050
2051 boffset += offset;
2052 if (boffset < 0 || boffset >= TYPE_LENGTH (type))
2053 {
2054 CORE_ADDR base_addr;
2055
2056 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset;
2057 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2058 TYPE_LENGTH (basetype)) != 0)
2059 error ("virtual baseclass botch");
2060 VALUE_LVAL (v2) = lval_memory;
2061 VALUE_ADDRESS (v2) = base_addr;
2062 }
2063 else
2064 {
2065 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2066 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2067 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset;
2068 if (VALUE_LAZY (arg1))
2069 VALUE_LAZY (v2) = 1;
2070 else
2071 memcpy (VALUE_CONTENTS_RAW (v2),
2072 VALUE_CONTENTS_RAW (arg1) + boffset,
2073 TYPE_LENGTH (basetype));
2074 }
2075
2076 if (found_baseclass)
2077 return v2;
2078 v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i),
2079 looking_for_baseclass);
2080 }
2081 else if (found_baseclass)
2082 v = value_primitive_field (arg1, offset, i, type);
2083 else
2084 v = search_struct_field (name, arg1,
2085 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2086 basetype, looking_for_baseclass);
2087 if (v)
2088 return v;
2089 }
2090 return NULL;
2091 }
2092
2093
2094 /* Return the offset (in bytes) of the virtual base of type BASETYPE
2095 * in an object pointed to by VALADDR (on the host), assumed to be of
2096 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2097 * looking (in case VALADDR is the contents of an enclosing object).
2098 *
2099 * This routine recurses on the primary base of the derived class because
2100 * the virtual base entries of the primary base appear before the other
2101 * virtual base entries.
2102 *
2103 * If the virtual base is not found, a negative integer is returned.
2104 * The magnitude of the negative integer is the number of entries in
2105 * the virtual table to skip over (entries corresponding to various
2106 * ancestral classes in the chain of primary bases).
2107 *
2108 * Important: This assumes the HP / Taligent C++ runtime
2109 * conventions. Use baseclass_offset() instead to deal with g++
2110 * conventions. */
2111
2112 void
2113 find_rt_vbase_offset (type, basetype, valaddr, offset, boffset_p, skip_p)
2114 struct type *type;
2115 struct type *basetype;
2116 char *valaddr;
2117 int offset;
2118 int *boffset_p;
2119 int *skip_p;
2120 {
2121 int boffset; /* offset of virtual base */
2122 int index; /* displacement to use in virtual table */
2123 int skip;
2124
2125 value_ptr vp;
2126 CORE_ADDR vtbl; /* the virtual table pointer */
2127 struct type *pbc; /* the primary base class */
2128
2129 /* Look for the virtual base recursively in the primary base, first.
2130 * This is because the derived class object and its primary base
2131 * subobject share the primary virtual table. */
2132
2133 boffset = 0;
2134 pbc = TYPE_PRIMARY_BASE (type);
2135 if (pbc)
2136 {
2137 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2138 if (skip < 0)
2139 {
2140 *boffset_p = boffset;
2141 *skip_p = -1;
2142 return;
2143 }
2144 }
2145 else
2146 skip = 0;
2147
2148
2149 /* Find the index of the virtual base according to HP/Taligent
2150 runtime spec. (Depth-first, left-to-right.) */
2151 index = virtual_base_index_skip_primaries (basetype, type);
2152
2153 if (index < 0)
2154 {
2155 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2156 *boffset_p = 0;
2157 return;
2158 }
2159
2160 /* pai: FIXME -- 32x64 possible problem */
2161 /* First word (4 bytes) in object layout is the vtable pointer */
2162 vtbl = *(CORE_ADDR *) (valaddr + offset);
2163
2164 /* Before the constructor is invoked, things are usually zero'd out. */
2165 if (vtbl == 0)
2166 error ("Couldn't find virtual table -- object may not be constructed yet.");
2167
2168
2169 /* Find virtual base's offset -- jump over entries for primary base
2170 * ancestors, then use the index computed above. But also adjust by
2171 * HP_ACC_VBASE_START for the vtable slots before the start of the
2172 * virtual base entries. Offset is negative -- virtual base entries
2173 * appear _before_ the address point of the virtual table. */
2174
2175 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
2176 & use long type */
2177
2178 /* epstein : FIXME -- added param for overlay section. May not be correct */
2179 vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL);
2180 boffset = value_as_long (vp);
2181 *skip_p = -1;
2182 *boffset_p = boffset;
2183 return;
2184 }
2185
2186
2187 /* Helper function used by value_struct_elt to recurse through baseclasses.
2188 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2189 and search in it assuming it has (class) type TYPE.
2190 If found, return value, else if name matched and args not return (value)-1,
2191 else return NULL. */
2192
2193 static value_ptr
2194 search_struct_method (name, arg1p, args, offset, static_memfuncp, type)
2195 char *name;
2196 register value_ptr *arg1p, *args;
2197 int offset, *static_memfuncp;
2198 register struct type *type;
2199 {
2200 int i;
2201 value_ptr v;
2202 int name_matched = 0;
2203 char dem_opname[64];
2204
2205 CHECK_TYPEDEF (type);
2206 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2207 {
2208 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2209 /* FIXME! May need to check for ARM demangling here */
2210 if (strncmp (t_field_name, "__", 2) == 0 ||
2211 strncmp (t_field_name, "op", 2) == 0 ||
2212 strncmp (t_field_name, "type", 4) == 0)
2213 {
2214 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2215 t_field_name = dem_opname;
2216 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2217 t_field_name = dem_opname;
2218 }
2219 if (t_field_name && STREQ (t_field_name, name))
2220 {
2221 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2222 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2223 name_matched = 1;
2224
2225 if (j > 0 && args == 0)
2226 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
2227 while (j >= 0)
2228 {
2229 if (TYPE_FN_FIELD_STUB (f, j))
2230 check_stub_method (type, i, j);
2231 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2232 TYPE_FN_FIELD_ARGS (f, j), args))
2233 {
2234 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2235 return value_virtual_fn_field (arg1p, f, j, type, offset);
2236 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2237 *static_memfuncp = 1;
2238 v = value_fn_field (arg1p, f, j, type, offset);
2239 if (v != NULL)
2240 return v;
2241 }
2242 j--;
2243 }
2244 }
2245 }
2246
2247 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2248 {
2249 int base_offset;
2250
2251 if (BASETYPE_VIA_VIRTUAL (type, i))
2252 {
2253 if (TYPE_HAS_VTABLE (type))
2254 {
2255 /* HP aCC compiled type, search for virtual base offset
2256 according to HP/Taligent runtime spec. */
2257 int skip;
2258 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2259 VALUE_CONTENTS_ALL (*arg1p),
2260 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2261 &base_offset, &skip);
2262 if (skip >= 0)
2263 error ("Virtual base class offset not found in vtable");
2264 }
2265 else
2266 {
2267 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2268 char *base_valaddr;
2269
2270 /* The virtual base class pointer might have been clobbered by the
2271 user program. Make sure that it still points to a valid memory
2272 location. */
2273
2274 if (offset < 0 || offset >= TYPE_LENGTH (type))
2275 {
2276 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2277 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2278 + VALUE_OFFSET (*arg1p) + offset,
2279 base_valaddr,
2280 TYPE_LENGTH (baseclass)) != 0)
2281 error ("virtual baseclass botch");
2282 }
2283 else
2284 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2285
2286 base_offset =
2287 baseclass_offset (type, i, base_valaddr,
2288 VALUE_ADDRESS (*arg1p)
2289 + VALUE_OFFSET (*arg1p) + offset);
2290 if (base_offset == -1)
2291 error ("virtual baseclass botch");
2292 }
2293 }
2294 else
2295 {
2296 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2297 }
2298 v = search_struct_method (name, arg1p, args, base_offset + offset,
2299 static_memfuncp, TYPE_BASECLASS (type, i));
2300 if (v == (value_ptr) - 1)
2301 {
2302 name_matched = 1;
2303 }
2304 else if (v)
2305 {
2306 /* FIXME-bothner: Why is this commented out? Why is it here? */
2307 /* *arg1p = arg1_tmp; */
2308 return v;
2309 }
2310 }
2311 if (name_matched)
2312 return (value_ptr) - 1;
2313 else
2314 return NULL;
2315 }
2316
2317 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2318 extract the component named NAME from the ultimate target structure/union
2319 and return it as a value with its appropriate type.
2320 ERR is used in the error message if *ARGP's type is wrong.
2321
2322 C++: ARGS is a list of argument types to aid in the selection of
2323 an appropriate method. Also, handle derived types.
2324
2325 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2326 where the truthvalue of whether the function that was resolved was
2327 a static member function or not is stored.
2328
2329 ERR is an error message to be printed in case the field is not found. */
2330
2331 value_ptr
2332 value_struct_elt (argp, args, name, static_memfuncp, err)
2333 register value_ptr *argp, *args;
2334 char *name;
2335 int *static_memfuncp;
2336 char *err;
2337 {
2338 register struct type *t;
2339 value_ptr v;
2340
2341 COERCE_ARRAY (*argp);
2342
2343 t = check_typedef (VALUE_TYPE (*argp));
2344
2345 /* Follow pointers until we get to a non-pointer. */
2346
2347 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2348 {
2349 *argp = value_ind (*argp);
2350 /* Don't coerce fn pointer to fn and then back again! */
2351 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2352 COERCE_ARRAY (*argp);
2353 t = check_typedef (VALUE_TYPE (*argp));
2354 }
2355
2356 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2357 error ("not implemented: member type in value_struct_elt");
2358
2359 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2360 && TYPE_CODE (t) != TYPE_CODE_UNION)
2361 error ("Attempt to extract a component of a value that is not a %s.", err);
2362
2363 /* Assume it's not, unless we see that it is. */
2364 if (static_memfuncp)
2365 *static_memfuncp = 0;
2366
2367 if (!args)
2368 {
2369 /* if there are no arguments ...do this... */
2370
2371 /* Try as a field first, because if we succeed, there
2372 is less work to be done. */
2373 v = search_struct_field (name, *argp, 0, t, 0);
2374 if (v)
2375 return v;
2376
2377 /* C++: If it was not found as a data field, then try to
2378 return it as a pointer to a method. */
2379
2380 if (destructor_name_p (name, t))
2381 error ("Cannot get value of destructor");
2382
2383 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2384
2385 if (v == (value_ptr) - 1)
2386 error ("Cannot take address of a method");
2387 else if (v == 0)
2388 {
2389 if (TYPE_NFN_FIELDS (t))
2390 error ("There is no member or method named %s.", name);
2391 else
2392 error ("There is no member named %s.", name);
2393 }
2394 return v;
2395 }
2396
2397 if (destructor_name_p (name, t))
2398 {
2399 if (!args[1])
2400 {
2401 /* Destructors are a special case. */
2402 int m_index, f_index;
2403
2404 v = NULL;
2405 if (get_destructor_fn_field (t, &m_index, &f_index))
2406 {
2407 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2408 f_index, NULL, 0);
2409 }
2410 if (v == NULL)
2411 error ("could not find destructor function named %s.", name);
2412 else
2413 return v;
2414 }
2415 else
2416 {
2417 error ("destructor should not have any argument");
2418 }
2419 }
2420 else
2421 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2422
2423 if (v == (value_ptr) - 1)
2424 {
2425 error ("Argument list of %s mismatch with component in the structure.", name);
2426 }
2427 else if (v == 0)
2428 {
2429 /* See if user tried to invoke data as function. If so,
2430 hand it back. If it's not callable (i.e., a pointer to function),
2431 gdb should give an error. */
2432 v = search_struct_field (name, *argp, 0, t, 0);
2433 }
2434
2435 if (!v)
2436 error ("Structure has no component named %s.", name);
2437 return v;
2438 }
2439
2440 /* Search through the methods of an object (and its bases)
2441 * to find a specified method. Return the pointer to the
2442 * fn_field list of overloaded instances.
2443 * Helper function for value_find_oload_list.
2444 * ARGP is a pointer to a pointer to a value (the object)
2445 * METHOD is a string containing the method name
2446 * OFFSET is the offset within the value
2447 * STATIC_MEMFUNCP is set if the method is static
2448 * TYPE is the assumed type of the object
2449 * NUM_FNS is the number of overloaded instances
2450 * BASETYPE is set to the actual type of the subobject where the method is found
2451 * BOFFSET is the offset of the base subobject where the method is found */
2452
2453 static struct fn_field *
2454 find_method_list (argp, method, offset, static_memfuncp, type, num_fns, basetype, boffset)
2455 value_ptr *argp;
2456 char *method;
2457 int offset;
2458 int *static_memfuncp;
2459 struct type *type;
2460 int *num_fns;
2461 struct type **basetype;
2462 int *boffset;
2463 {
2464 int i;
2465 struct fn_field *f;
2466 CHECK_TYPEDEF (type);
2467
2468 *num_fns = 0;
2469
2470 /* First check in object itself */
2471 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2472 {
2473 /* pai: FIXME What about operators and type conversions? */
2474 char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2475 if (fn_field_name && STREQ (fn_field_name, method))
2476 {
2477 *num_fns = TYPE_FN_FIELDLIST_LENGTH (type, i);
2478 *basetype = type;
2479 *boffset = offset;
2480 return TYPE_FN_FIELDLIST1 (type, i);
2481 }
2482 }
2483
2484 /* Not found in object, check in base subobjects */
2485 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2486 {
2487 int base_offset;
2488 if (BASETYPE_VIA_VIRTUAL (type, i))
2489 {
2490 if (TYPE_HAS_VTABLE (type))
2491 {
2492 /* HP aCC compiled type, search for virtual base offset
2493 * according to HP/Taligent runtime spec. */
2494 int skip;
2495 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2496 VALUE_CONTENTS_ALL (*argp),
2497 offset + VALUE_EMBEDDED_OFFSET (*argp),
2498 &base_offset, &skip);
2499 if (skip >= 0)
2500 error ("Virtual base class offset not found in vtable");
2501 }
2502 else
2503 {
2504 /* probably g++ runtime model */
2505 base_offset = VALUE_OFFSET (*argp) + offset;
2506 base_offset =
2507 baseclass_offset (type, i,
2508 VALUE_CONTENTS (*argp) + base_offset,
2509 VALUE_ADDRESS (*argp) + base_offset);
2510 if (base_offset == -1)
2511 error ("virtual baseclass botch");
2512 }
2513 }
2514 else
2515 /* non-virtual base, simply use bit position from debug info */
2516 {
2517 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2518 }
2519 f = find_method_list (argp, method, base_offset + offset,
2520 static_memfuncp, TYPE_BASECLASS (type, i), num_fns, basetype, boffset);
2521 if (f)
2522 return f;
2523 }
2524 return NULL;
2525 }
2526
2527 /* Return the list of overloaded methods of a specified name.
2528 * ARGP is a pointer to a pointer to a value (the object)
2529 * METHOD is the method name
2530 * OFFSET is the offset within the value contents
2531 * STATIC_MEMFUNCP is set if the method is static
2532 * NUM_FNS is the number of overloaded instances
2533 * BASETYPE is set to the type of the base subobject that defines the method
2534 * BOFFSET is the offset of the base subobject which defines the method */
2535
2536 struct fn_field *
2537 value_find_oload_method_list (argp, method, offset, static_memfuncp, num_fns, basetype, boffset)
2538 value_ptr *argp;
2539 char *method;
2540 int offset;
2541 int *static_memfuncp;
2542 int *num_fns;
2543 struct type **basetype;
2544 int *boffset;
2545 {
2546 struct type *t;
2547 value_ptr v;
2548
2549 t = check_typedef (VALUE_TYPE (*argp));
2550
2551 /* code snarfed from value_struct_elt */
2552 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2553 {
2554 *argp = value_ind (*argp);
2555 /* Don't coerce fn pointer to fn and then back again! */
2556 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2557 COERCE_ARRAY (*argp);
2558 t = check_typedef (VALUE_TYPE (*argp));
2559 }
2560
2561 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2562 error ("Not implemented: member type in value_find_oload_lis");
2563
2564 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2565 && TYPE_CODE (t) != TYPE_CODE_UNION)
2566 error ("Attempt to extract a component of a value that is not a struct or union");
2567
2568 /* Assume it's not static, unless we see that it is. */
2569 if (static_memfuncp)
2570 *static_memfuncp = 0;
2571
2572 return find_method_list (argp, method, 0, static_memfuncp, t, num_fns, basetype, boffset);
2573
2574 }
2575
2576 /* Given an array of argument types (ARGTYPES) (which includes an
2577 entry for "this" in the case of C++ methods), the number of
2578 arguments NARGS, the NAME of a function whether it's a method or
2579 not (METHOD), and the degree of laxness (LAX) in conforming to
2580 overload resolution rules in ANSI C++, find the best function that
2581 matches on the argument types according to the overload resolution
2582 rules.
2583
2584 In the case of class methods, the parameter OBJ is an object value
2585 in which to search for overloaded methods.
2586
2587 In the case of non-method functions, the parameter FSYM is a symbol
2588 corresponding to one of the overloaded functions.
2589
2590 Return value is an integer: 0 -> good match, 10 -> debugger applied
2591 non-standard coercions, 100 -> incompatible.
2592
2593 If a method is being searched for, VALP will hold the value.
2594 If a non-method is being searched for, SYMP will hold the symbol for it.
2595
2596 If a method is being searched for, and it is a static method,
2597 then STATICP will point to a non-zero value.
2598
2599 Note: This function does *not* check the value of
2600 overload_resolution. Caller must check it to see whether overload
2601 resolution is permitted.
2602 */
2603
2604 int
2605 find_overload_match (arg_types, nargs, name, method, lax, obj, fsym, valp, symp, staticp)
2606 struct type **arg_types;
2607 int nargs;
2608 char *name;
2609 int method;
2610 int lax;
2611 value_ptr obj;
2612 struct symbol *fsym;
2613 value_ptr *valp;
2614 struct symbol **symp;
2615 int *staticp;
2616 {
2617 int nparms;
2618 struct type **parm_types;
2619 int champ_nparms = 0;
2620
2621 short oload_champ = -1; /* Index of best overloaded function */
2622 short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */
2623 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */
2624 short oload_ambig_champ = -1; /* 2nd contender for best match */
2625 short oload_non_standard = 0; /* did we have to use non-standard conversions? */
2626 short oload_incompatible = 0; /* are args supplied incompatible with any function? */
2627
2628 struct badness_vector *bv; /* A measure of how good an overloaded instance is */
2629 struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */
2630
2631 value_ptr temp = obj;
2632 struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */
2633 struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */
2634 int num_fns = 0; /* Number of overloaded instances being considered */
2635 struct type *basetype = NULL;
2636 int boffset;
2637 register int jj;
2638 register int ix;
2639
2640 char *obj_type_name = NULL;
2641 char *func_name = NULL;
2642
2643 /* Get the list of overloaded methods or functions */
2644 if (method)
2645 {
2646 obj_type_name = TYPE_NAME (VALUE_TYPE (obj));
2647 /* Hack: evaluate_subexp_standard often passes in a pointer
2648 value rather than the object itself, so try again */
2649 if ((!obj_type_name || !*obj_type_name) &&
2650 (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR))
2651 obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj)));
2652
2653 fns_ptr = value_find_oload_method_list (&temp, name, 0,
2654 staticp,
2655 &num_fns,
2656 &basetype, &boffset);
2657 if (!fns_ptr || !num_fns)
2658 error ("Couldn't find method %s%s%s",
2659 obj_type_name,
2660 (obj_type_name && *obj_type_name) ? "::" : "",
2661 name);
2662 }
2663 else
2664 {
2665 int i = -1;
2666 func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS);
2667
2668 oload_syms = make_symbol_overload_list (fsym);
2669 while (oload_syms[++i])
2670 num_fns++;
2671 if (!num_fns)
2672 error ("Couldn't find function %s", func_name);
2673 }
2674
2675 oload_champ_bv = NULL;
2676
2677 /* Consider each candidate in turn */
2678 for (ix = 0; ix < num_fns; ix++)
2679 {
2680 int jj;
2681
2682 /* Number of parameters for current candidate */
2683 nparms = method ? TYPE_NFIELDS (fns_ptr[ix].type)
2684 : TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
2685
2686 /* Prepare array of parameter types */
2687 parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *)));
2688 for (jj = 0; jj < nparms; jj++)
2689 parm_types[jj] = method ? TYPE_FIELD_TYPE (fns_ptr[ix].type, jj)
2690 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj);
2691
2692 /* Compare parameter types to supplied argument types */
2693 bv = rank_function (parm_types, nparms, arg_types, nargs);
2694
2695 if (!oload_champ_bv)
2696 {
2697 oload_champ_bv = bv;
2698 oload_champ = 0;
2699 champ_nparms = nparms;
2700 }
2701 else
2702 /* See whether current candidate is better or worse than previous best */
2703 switch (compare_badness (bv, oload_champ_bv))
2704 {
2705 case 0:
2706 oload_ambiguous = 1; /* top two contenders are equally good */
2707 oload_ambig_champ = ix;
2708 break;
2709 case 1:
2710 oload_ambiguous = 2; /* incomparable top contenders */
2711 oload_ambig_champ = ix;
2712 break;
2713 case 2:
2714 oload_champ_bv = bv; /* new champion, record details */
2715 oload_ambiguous = 0;
2716 oload_champ = ix;
2717 oload_ambig_champ = -1;
2718 champ_nparms = nparms;
2719 break;
2720 case 3:
2721 default:
2722 break;
2723 }
2724 free (parm_types);
2725 #ifdef DEBUG_OLOAD
2726 if (method)
2727 printf ("Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms);
2728 else
2729 printf ("Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms);
2730 for (jj = 0; jj <= nargs; jj++)
2731 printf ("...Badness @ %d : %d\n", jj, bv->rank[jj]);
2732 printf ("Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous);
2733 #endif
2734 } /* end loop over all candidates */
2735
2736 if (oload_ambiguous)
2737 {
2738 if (method)
2739 error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature",
2740 obj_type_name,
2741 (obj_type_name && *obj_type_name) ? "::" : "",
2742 name);
2743 else
2744 error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature",
2745 func_name);
2746 }
2747
2748 /* Check how bad the best match is */
2749 for (ix = 1; ix <= nargs; ix++)
2750 {
2751 switch (oload_champ_bv->rank[ix])
2752 {
2753 case 10:
2754 oload_non_standard = 1; /* non-standard type conversions needed */
2755 break;
2756 case 100:
2757 oload_incompatible = 1; /* truly mismatched types */
2758 break;
2759 }
2760 }
2761 if (oload_incompatible)
2762 {
2763 if (method)
2764 error ("Cannot resolve method %s%s%s to any overloaded instance",
2765 obj_type_name,
2766 (obj_type_name && *obj_type_name) ? "::" : "",
2767 name);
2768 else
2769 error ("Cannot resolve function %s to any overloaded instance",
2770 func_name);
2771 }
2772 else if (oload_non_standard)
2773 {
2774 if (method)
2775 warning ("Using non-standard conversion to match method %s%s%s to supplied arguments",
2776 obj_type_name,
2777 (obj_type_name && *obj_type_name) ? "::" : "",
2778 name);
2779 else
2780 warning ("Using non-standard conversion to match function %s to supplied arguments",
2781 func_name);
2782 }
2783
2784 if (method)
2785 {
2786 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ))
2787 *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2788 else
2789 *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset);
2790 }
2791 else
2792 {
2793 *symp = oload_syms[oload_champ];
2794 free (func_name);
2795 }
2796
2797 return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0);
2798 }
2799
2800 /* C++: return 1 is NAME is a legitimate name for the destructor
2801 of type TYPE. If TYPE does not have a destructor, or
2802 if NAME is inappropriate for TYPE, an error is signaled. */
2803 int
2804 destructor_name_p (name, type)
2805 const char *name;
2806 const struct type *type;
2807 {
2808 /* destructors are a special case. */
2809
2810 if (name[0] == '~')
2811 {
2812 char *dname = type_name_no_tag (type);
2813 char *cp = strchr (dname, '<');
2814 unsigned int len;
2815
2816 /* Do not compare the template part for template classes. */
2817 if (cp == NULL)
2818 len = strlen (dname);
2819 else
2820 len = cp - dname;
2821 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2822 error ("name of destructor must equal name of class");
2823 else
2824 return 1;
2825 }
2826 return 0;
2827 }
2828
2829 /* Helper function for check_field: Given TYPE, a structure/union,
2830 return 1 if the component named NAME from the ultimate
2831 target structure/union is defined, otherwise, return 0. */
2832
2833 static int
2834 check_field_in (type, name)
2835 register struct type *type;
2836 const char *name;
2837 {
2838 register int i;
2839
2840 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2841 {
2842 char *t_field_name = TYPE_FIELD_NAME (type, i);
2843 if (t_field_name && STREQ (t_field_name, name))
2844 return 1;
2845 }
2846
2847 /* C++: If it was not found as a data field, then try to
2848 return it as a pointer to a method. */
2849
2850 /* Destructors are a special case. */
2851 if (destructor_name_p (name, type))
2852 {
2853 int m_index, f_index;
2854
2855 return get_destructor_fn_field (type, &m_index, &f_index);
2856 }
2857
2858 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2859 {
2860 if (STREQ (TYPE_FN_FIELDLIST_NAME (type, i), name))
2861 return 1;
2862 }
2863
2864 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2865 if (check_field_in (TYPE_BASECLASS (type, i), name))
2866 return 1;
2867
2868 return 0;
2869 }
2870
2871
2872 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
2873 return 1 if the component named NAME from the ultimate
2874 target structure/union is defined, otherwise, return 0. */
2875
2876 int
2877 check_field (arg1, name)
2878 register value_ptr arg1;
2879 const char *name;
2880 {
2881 register struct type *t;
2882
2883 COERCE_ARRAY (arg1);
2884
2885 t = VALUE_TYPE (arg1);
2886
2887 /* Follow pointers until we get to a non-pointer. */
2888
2889 for (;;)
2890 {
2891 CHECK_TYPEDEF (t);
2892 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
2893 break;
2894 t = TYPE_TARGET_TYPE (t);
2895 }
2896
2897 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2898 error ("not implemented: member type in check_field");
2899
2900 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2901 && TYPE_CODE (t) != TYPE_CODE_UNION)
2902 error ("Internal error: `this' is not an aggregate");
2903
2904 return check_field_in (t, name);
2905 }
2906
2907 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2908 return the address of this member as a "pointer to member"
2909 type. If INTYPE is non-null, then it will be the type
2910 of the member we are looking for. This will help us resolve
2911 "pointers to member functions". This function is used
2912 to resolve user expressions of the form "DOMAIN::NAME". */
2913
2914 value_ptr
2915 value_struct_elt_for_reference (domain, offset, curtype, name, intype)
2916 struct type *domain, *curtype, *intype;
2917 int offset;
2918 char *name;
2919 {
2920 register struct type *t = curtype;
2921 register int i;
2922 value_ptr v;
2923
2924 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2925 && TYPE_CODE (t) != TYPE_CODE_UNION)
2926 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
2927
2928 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
2929 {
2930 char *t_field_name = TYPE_FIELD_NAME (t, i);
2931
2932 if (t_field_name && STREQ (t_field_name, name))
2933 {
2934 if (TYPE_FIELD_STATIC (t, i))
2935 {
2936 v = value_static_field (t, i);
2937 if (v == NULL)
2938 error ("Internal error: could not find static variable %s",
2939 name);
2940 return v;
2941 }
2942 if (TYPE_FIELD_PACKED (t, i))
2943 error ("pointers to bitfield members not allowed");
2944
2945 return value_from_longest
2946 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
2947 domain)),
2948 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
2949 }
2950 }
2951
2952 /* C++: If it was not found as a data field, then try to
2953 return it as a pointer to a method. */
2954
2955 /* Destructors are a special case. */
2956 if (destructor_name_p (name, t))
2957 {
2958 error ("member pointers to destructors not implemented yet");
2959 }
2960
2961 /* Perform all necessary dereferencing. */
2962 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
2963 intype = TYPE_TARGET_TYPE (intype);
2964
2965 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
2966 {
2967 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
2968 char dem_opname[64];
2969
2970 if (strncmp (t_field_name, "__", 2) == 0 ||
2971 strncmp (t_field_name, "op", 2) == 0 ||
2972 strncmp (t_field_name, "type", 4) == 0)
2973 {
2974 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2975 t_field_name = dem_opname;
2976 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2977 t_field_name = dem_opname;
2978 }
2979 if (t_field_name && STREQ (t_field_name, name))
2980 {
2981 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
2982 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
2983
2984 if (intype == 0 && j > 1)
2985 error ("non-unique member `%s' requires type instantiation", name);
2986 if (intype)
2987 {
2988 while (j--)
2989 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
2990 break;
2991 if (j < 0)
2992 error ("no member function matches that type instantiation");
2993 }
2994 else
2995 j = 0;
2996
2997 if (TYPE_FN_FIELD_STUB (f, j))
2998 check_stub_method (t, i, j);
2999 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3000 {
3001 return value_from_longest
3002 (lookup_reference_type
3003 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3004 domain)),
3005 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
3006 }
3007 else
3008 {
3009 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3010 0, VAR_NAMESPACE, 0, NULL);
3011 if (s == NULL)
3012 {
3013 v = 0;
3014 }
3015 else
3016 {
3017 v = read_var_value (s, 0);
3018 #if 0
3019 VALUE_TYPE (v) = lookup_reference_type
3020 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
3021 domain));
3022 #endif
3023 }
3024 return v;
3025 }
3026 }
3027 }
3028 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3029 {
3030 value_ptr v;
3031 int base_offset;
3032
3033 if (BASETYPE_VIA_VIRTUAL (t, i))
3034 base_offset = 0;
3035 else
3036 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3037 v = value_struct_elt_for_reference (domain,
3038 offset + base_offset,
3039 TYPE_BASECLASS (t, i),
3040 name,
3041 intype);
3042 if (v)
3043 return v;
3044 }
3045 return 0;
3046 }
3047
3048
3049 /* Find the real run-time type of a value using RTTI.
3050 * V is a pointer to the value.
3051 * A pointer to the struct type entry of the run-time type
3052 * is returneed.
3053 * FULL is a flag that is set only if the value V includes
3054 * the entire contents of an object of the RTTI type.
3055 * TOP is the offset to the top of the enclosing object of
3056 * the real run-time type. This offset may be for the embedded
3057 * object, or for the enclosing object of V.
3058 * USING_ENC is the flag that distinguishes the two cases.
3059 * If it is 1, then the offset is for the enclosing object,
3060 * otherwise for the embedded object.
3061 *
3062 * This currently works only for RTTI information generated
3063 * by the HP ANSI C++ compiler (aCC). g++ today (1997-06-10)
3064 * does not appear to support RTTI. This function returns a
3065 * NULL value for objects in the g++ runtime model. */
3066
3067 struct type *
3068 value_rtti_type (v, full, top, using_enc)
3069 value_ptr v;
3070 int *full;
3071 int *top;
3072 int *using_enc;
3073 {
3074 struct type *known_type;
3075 struct type *rtti_type;
3076 CORE_ADDR coreptr;
3077 value_ptr vp;
3078 int using_enclosing = 0;
3079 long top_offset = 0;
3080 char rtti_type_name[256];
3081
3082 if (full)
3083 *full = 0;
3084 if (top)
3085 *top = -1;
3086 if (using_enc)
3087 *using_enc = 0;
3088
3089 /* Get declared type */
3090 known_type = VALUE_TYPE (v);
3091 CHECK_TYPEDEF (known_type);
3092 /* RTTI works only or class objects */
3093 if (TYPE_CODE (known_type) != TYPE_CODE_CLASS)
3094 return NULL;
3095
3096 /* If neither the declared type nor the enclosing type of the
3097 * value structure has a HP ANSI C++ style virtual table,
3098 * we can't do anything. */
3099 if (!TYPE_HAS_VTABLE (known_type))
3100 {
3101 known_type = VALUE_ENCLOSING_TYPE (v);
3102 CHECK_TYPEDEF (known_type);
3103 if ((TYPE_CODE (known_type) != TYPE_CODE_CLASS) ||
3104 !TYPE_HAS_VTABLE (known_type))
3105 return NULL; /* No RTTI, or not HP-compiled types */
3106 CHECK_TYPEDEF (known_type);
3107 using_enclosing = 1;
3108 }
3109
3110 if (using_enclosing && using_enc)
3111 *using_enc = 1;
3112
3113 /* First get the virtual table address */
3114 coreptr = *(CORE_ADDR *) ((VALUE_CONTENTS_ALL (v))
3115 + VALUE_OFFSET (v)
3116 + (using_enclosing ? 0 : VALUE_EMBEDDED_OFFSET (v)));
3117 if (coreptr == 0)
3118 return NULL; /* return silently -- maybe called on gdb-generated value */
3119
3120 /* Fetch the top offset of the object */
3121 /* FIXME possible 32x64 problem with pointer size & arithmetic */
3122 vp = value_at (builtin_type_int,
3123 coreptr + 4 * HP_ACC_TOP_OFFSET_OFFSET,
3124 VALUE_BFD_SECTION (v));
3125 top_offset = value_as_long (vp);
3126 if (top)
3127 *top = top_offset;
3128
3129 /* Fetch the typeinfo pointer */
3130 /* FIXME possible 32x64 problem with pointer size & arithmetic */
3131 vp = value_at (builtin_type_int, coreptr + 4 * HP_ACC_TYPEINFO_OFFSET, VALUE_BFD_SECTION (v));
3132 /* Indirect through the typeinfo pointer and retrieve the pointer
3133 * to the string name */
3134 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
3135 if (!coreptr)
3136 error ("Retrieved null typeinfo pointer in trying to determine run-time type");
3137 vp = value_at (builtin_type_int, coreptr + 4, VALUE_BFD_SECTION (v)); /* 4 -> offset of name field */
3138 /* FIXME possible 32x64 problem */
3139
3140 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
3141
3142 read_memory_string (coreptr, rtti_type_name, 256);
3143
3144 if (strlen (rtti_type_name) == 0)
3145 error ("Retrieved null type name from typeinfo");
3146
3147 /* search for type */
3148 rtti_type = lookup_typename (rtti_type_name, (struct block *) 0, 1);
3149
3150 if (!rtti_type)
3151 error ("Could not find run-time type: invalid type name %s in typeinfo??", rtti_type_name);
3152 CHECK_TYPEDEF (rtti_type);
3153
3154 #if 0 /* debugging */
3155 printf ("RTTI type name %s, tag %s, full? %d\n", TYPE_NAME (rtti_type), TYPE_TAG_NAME (rtti_type), full ? *full : -1);
3156 #endif
3157
3158 /* Check whether we have the entire object */
3159 if (full /* Non-null pointer passed */
3160
3161 &&
3162 /* Either we checked on the whole object in hand and found the
3163 top offset to be zero */
3164 (((top_offset == 0) &&
3165 using_enclosing &&
3166 TYPE_LENGTH (known_type) == TYPE_LENGTH (rtti_type))
3167 ||
3168 /* Or we checked on the embedded object and top offset was the
3169 same as the embedded offset */
3170 ((top_offset == VALUE_EMBEDDED_OFFSET (v)) &&
3171 !using_enclosing &&
3172 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (v)) == TYPE_LENGTH (rtti_type))))
3173
3174 *full = 1;
3175
3176 return rtti_type;
3177 }
3178
3179 /* Given a pointer value V, find the real (RTTI) type
3180 of the object it points to.
3181 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3182 and refer to the values computed for the object pointed to. */
3183
3184 struct type *
3185 value_rtti_target_type (v, full, top, using_enc)
3186 value_ptr v;
3187 int *full;
3188 int *top;
3189 int *using_enc;
3190 {
3191 value_ptr target;
3192
3193 target = value_ind (v);
3194
3195 return value_rtti_type (target, full, top, using_enc);
3196 }
3197
3198 /* Given a value pointed to by ARGP, check its real run-time type, and
3199 if that is different from the enclosing type, create a new value
3200 using the real run-time type as the enclosing type (and of the same
3201 type as ARGP) and return it, with the embedded offset adjusted to
3202 be the correct offset to the enclosed object
3203 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3204 parameters, computed by value_rtti_type(). If these are available,
3205 they can be supplied and a second call to value_rtti_type() is avoided.
3206 (Pass RTYPE == NULL if they're not available */
3207
3208 value_ptr
3209 value_full_object (argp, rtype, xfull, xtop, xusing_enc)
3210 value_ptr argp;
3211 struct type *rtype;
3212 int xfull;
3213 int xtop;
3214 int xusing_enc;
3215
3216 {
3217 struct type *real_type;
3218 int full = 0;
3219 int top = -1;
3220 int using_enc = 0;
3221 value_ptr new_val;
3222
3223 if (rtype)
3224 {
3225 real_type = rtype;
3226 full = xfull;
3227 top = xtop;
3228 using_enc = xusing_enc;
3229 }
3230 else
3231 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3232
3233 /* If no RTTI data, or if object is already complete, do nothing */
3234 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3235 return argp;
3236
3237 /* If we have the full object, but for some reason the enclosing
3238 type is wrong, set it *//* pai: FIXME -- sounds iffy */
3239 if (full)
3240 {
3241 VALUE_ENCLOSING_TYPE (argp) = real_type;
3242 return argp;
3243 }
3244
3245 /* Check if object is in memory */
3246 if (VALUE_LVAL (argp) != lval_memory)
3247 {
3248 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
3249
3250 return argp;
3251 }
3252
3253 /* All other cases -- retrieve the complete object */
3254 /* Go back by the computed top_offset from the beginning of the object,
3255 adjusting for the embedded offset of argp if that's what value_rtti_type
3256 used for its computation. */
3257 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
3258 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3259 VALUE_BFD_SECTION (argp));
3260 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3261 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3262 return new_val;
3263 }
3264
3265
3266
3267
3268 /* C++: return the value of the class instance variable, if one exists.
3269 Flag COMPLAIN signals an error if the request is made in an
3270 inappropriate context. */
3271
3272 value_ptr
3273 value_of_this (complain)
3274 int complain;
3275 {
3276 struct symbol *func, *sym;
3277 struct block *b;
3278 int i;
3279 static const char funny_this[] = "this";
3280 value_ptr this;
3281
3282 if (selected_frame == 0)
3283 {
3284 if (complain)
3285 error ("no frame selected");
3286 else
3287 return 0;
3288 }
3289
3290 func = get_frame_function (selected_frame);
3291 if (!func)
3292 {
3293 if (complain)
3294 error ("no `this' in nameless context");
3295 else
3296 return 0;
3297 }
3298
3299 b = SYMBOL_BLOCK_VALUE (func);
3300 i = BLOCK_NSYMS (b);
3301 if (i <= 0)
3302 {
3303 if (complain)
3304 error ("no args, no `this'");
3305 else
3306 return 0;
3307 }
3308
3309 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3310 symbol instead of the LOC_ARG one (if both exist). */
3311 sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE);
3312 if (sym == NULL)
3313 {
3314 if (complain)
3315 error ("current stack frame not in method");
3316 else
3317 return NULL;
3318 }
3319
3320 this = read_var_value (sym, selected_frame);
3321 if (this == 0 && complain)
3322 error ("`this' argument at unknown address");
3323 return this;
3324 }
3325
3326 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3327 long, starting at LOWBOUND. The result has the same lower bound as
3328 the original ARRAY. */
3329
3330 value_ptr
3331 value_slice (array, lowbound, length)
3332 value_ptr array;
3333 int lowbound, length;
3334 {
3335 struct type *slice_range_type, *slice_type, *range_type;
3336 LONGEST lowerbound, upperbound, offset;
3337 value_ptr slice;
3338 struct type *array_type;
3339 array_type = check_typedef (VALUE_TYPE (array));
3340 COERCE_VARYING_ARRAY (array, array_type);
3341 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3342 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3343 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3344 error ("cannot take slice of non-array");
3345 range_type = TYPE_INDEX_TYPE (array_type);
3346 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3347 error ("slice from bad array or bitstring");
3348 if (lowbound < lowerbound || length < 0
3349 || lowbound + length - 1 > upperbound
3350 /* Chill allows zero-length strings but not arrays. */
3351 || (current_language->la_language == language_chill
3352 && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY))
3353 error ("slice out of range");
3354 /* FIXME-type-allocation: need a way to free this type when we are
3355 done with it. */
3356 slice_range_type = create_range_type ((struct type *) NULL,
3357 TYPE_TARGET_TYPE (range_type),
3358 lowbound, lowbound + length - 1);
3359 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3360 {
3361 int i;
3362 slice_type = create_set_type ((struct type *) NULL, slice_range_type);
3363 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3364 slice = value_zero (slice_type, not_lval);
3365 for (i = 0; i < length; i++)
3366 {
3367 int element = value_bit_index (array_type,
3368 VALUE_CONTENTS (array),
3369 lowbound + i);
3370 if (element < 0)
3371 error ("internal error accessing bitstring");
3372 else if (element > 0)
3373 {
3374 int j = i % TARGET_CHAR_BIT;
3375 if (BITS_BIG_ENDIAN)
3376 j = TARGET_CHAR_BIT - 1 - j;
3377 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3378 }
3379 }
3380 /* We should set the address, bitssize, and bitspos, so the clice
3381 can be used on the LHS, but that may require extensions to
3382 value_assign. For now, just leave as a non_lval. FIXME. */
3383 }
3384 else
3385 {
3386 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3387 offset
3388 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3389 slice_type = create_array_type ((struct type *) NULL, element_type,
3390 slice_range_type);
3391 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3392 slice = allocate_value (slice_type);
3393 if (VALUE_LAZY (array))
3394 VALUE_LAZY (slice) = 1;
3395 else
3396 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3397 TYPE_LENGTH (slice_type));
3398 if (VALUE_LVAL (array) == lval_internalvar)
3399 VALUE_LVAL (slice) = lval_internalvar_component;
3400 else
3401 VALUE_LVAL (slice) = VALUE_LVAL (array);
3402 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3403 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3404 }
3405 return slice;
3406 }
3407
3408 /* Assuming chill_varying_type (VARRAY) is true, return an equivalent
3409 value as a fixed-length array. */
3410
3411 value_ptr
3412 varying_to_slice (varray)
3413 value_ptr varray;
3414 {
3415 struct type *vtype = check_typedef (VALUE_TYPE (varray));
3416 LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
3417 VALUE_CONTENTS (varray)
3418 + TYPE_FIELD_BITPOS (vtype, 0) / 8);
3419 return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
3420 }
3421
3422 /* Create a value for a FORTRAN complex number. Currently most of
3423 the time values are coerced to COMPLEX*16 (i.e. a complex number
3424 composed of 2 doubles. This really should be a smarter routine
3425 that figures out precision inteligently as opposed to assuming
3426 doubles. FIXME: fmb */
3427
3428 value_ptr
3429 value_literal_complex (arg1, arg2, type)
3430 value_ptr arg1;
3431 value_ptr arg2;
3432 struct type *type;
3433 {
3434 register value_ptr val;
3435 struct type *real_type = TYPE_TARGET_TYPE (type);
3436
3437 val = allocate_value (type);
3438 arg1 = value_cast (real_type, arg1);
3439 arg2 = value_cast (real_type, arg2);
3440
3441 memcpy (VALUE_CONTENTS_RAW (val),
3442 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3443 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3444 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3445 return val;
3446 }
3447
3448 /* Cast a value into the appropriate complex data type. */
3449
3450 static value_ptr
3451 cast_into_complex (type, val)
3452 struct type *type;
3453 register value_ptr val;
3454 {
3455 struct type *real_type = TYPE_TARGET_TYPE (type);
3456 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3457 {
3458 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
3459 value_ptr re_val = allocate_value (val_real_type);
3460 value_ptr im_val = allocate_value (val_real_type);
3461
3462 memcpy (VALUE_CONTENTS_RAW (re_val),
3463 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3464 memcpy (VALUE_CONTENTS_RAW (im_val),
3465 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
3466 TYPE_LENGTH (val_real_type));
3467
3468 return value_literal_complex (re_val, im_val, type);
3469 }
3470 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3471 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3472 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3473 else
3474 error ("cannot cast non-number to complex");
3475 }
3476
3477 void
3478 _initialize_valops ()
3479 {
3480 #if 0
3481 add_show_from_set
3482 (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon,
3483 "Set automatic abandonment of expressions upon failure.",
3484 &setlist),
3485 &showlist);
3486 #endif
3487
3488 add_show_from_set
3489 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution,
3490 "Set overload resolution in evaluating C++ functions.",
3491 &setlist),
3492 &showlist);
3493 overload_resolution = 1;
3494
3495 }